Charge-induced facial selectivity in the formation of new cationic planar chiral iridacycles derived from aniline.

Jean-Pierre Djukic,<sup>\*</sup> Wissam Iali, Michel Pfeffer and Xavier-Frédéric Le Goff

ESI

| Crystal Data (succinct form)   4     Experimental procedures   5     Complex 2a   6     Complex 1c   10     Complex 1c   10     Complex 1d   12     Complex 1d   12     Complex 5a   14     Complex 5b   19     Complex 5b   19     Complex 5b   23     Dependence of the 'H NMR spectrum of endo-3a on the nature of the counter anion.   25     Variable Temperature 'H NMR experiments.   26     Crystallographic data   28     2a   2a   29     3a   44     4a   44     4a   47     5b   55     Computational details   62     Chooretical and Computational details.   62     Conorbotential maps for the following models drawn over the SCF electron density isosurface.   63     III, charge 1+ (0.025 elohr)   63     V, neutral (0.025 elohr)   63     K, charge 1+ (0.025 elohr)   63     Dimethylaniline at TPSS   64     dimethylaniline BP86/T22, D2P   70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Figure S1                                                                       | 3        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------|
| Experimental procedures     5       Complex 2b.     6       Complex 2b.     8       Complex 1d.     10       Complex 1d.     12       Complex 1d.     14       Complex 5a.     16       Synthesis of 5a by an alternative method.     18       Complex 5b.     19       Complex 5b.     19       Complex 5b.     21       Ligand 1b.     23       Dependence of the <sup>1</sup> H NMR spectrum of endo-3a on the nature of the counter anion.     25       Za.     28       Za.     29       Jaa.     41       4a.     44       4a.     44       4a.     44       4a.     47       5c     55       Computational details.     62       Coulomb potential maps for the following models drawn over the SCF electron density isosurface.     63       III, charge 1+ (0.025 e/bohr <sup>2</sup> ).     63       V. neutral (0.025 e/bohr <sup>2</sup> ).     63       V. neutral (0.025 e/bohr <sup>2</sup> ).     63       Dimethylaniline at TPSS     66 <th>Crystal Data (succinct form)</th> <th>4</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Crystal Data (succinct form)                                                    | 4        |
| Complex 2a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Experimental procedures                                                         | 5        |
| Complex 1b.   8     Complex 1d.   10     Complex 1d.   12     Complex 1d.   12     Complex 5a.   14     Synthesis of 5a by an alternative method.   18     Complex 5b.   19     Complex 4a.   21     Ligand 1b   23     Dependence of the <sup>1</sup> H NMR spectrum of endo-3a on the nature of the counter anion.   25     Variable Temperature <sup>1</sup> H NMR experiments   26     Carystallographic data.   28     2a   29     3a   41     4a.   55     Computational details   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface.   63     IV, charge 1+ (0.025 e/bohr <sup>2</sup> ).   63     V, neutral (0.025 e/bohr <sup>2</sup> ).   64     TS-dimethylaniline at TPSS./TZP.   64     TS-dimethylaniline at TPSS./TZP.   64     TS-dimethylaniline BP86/TZP, DZP.   70     TS1-V.   77     TS2-V   78     II   81     St1-III.   90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Complex 2a                                                                      | 6        |
| Complex Ic   10     Complex Id   12     Complex scho-3a   14     Complex Sa   16     Synthesis of Sa by an alternative method   18     Complex Sb   19     Complex 4a   21     Ligant 1b   23     Dependence of the 'H NMR spectrum of endo-3a on the nature of the counter anion.   25     Variable Temperature 'H NMR experiments.   26     Crystallographic data.   28     2a   29   3a     4a   44     4a   47     5b   55     Computational details.   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isourface.   63     IV, charge 1+ (0.025 e/bohr <sup>2</sup> )   63     IV, charge 1+ (0.025 e/bohr <sup>2</sup> )   63     N, neutral (0.025 e/bohr <sup>2</sup> )   63     Dimethylaniline at TPSS/TZP.   64     TS-dimethylaniline BP86/TZP, DZP.   78     TS-V   78     TS-Z-V   78     TI   81     TS2-V   78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Complex 2b                                                                      | 8        |
| Complex Id   12     Complex Ndo-3a   14     Complex Sa   14     Complex Sa   18     Synthesis of Sa by an alternative method   18     Complex 4a   21     Ligand Ib   23     Dependence of the 'H NMR spectrum of endo-3a on the nature of the counter anion.   25     Variable Temperature 'H NMR experiments   26     Crystallographic data.   29     3a   41     4a   47     5b   55     Computational details   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface.   63     III, charge 2+ (0.035 e/bohr <sup>1</sup> ).   63     V, neutral (0.025 e/bohr <sup>1</sup> ).   63     V, neutral (0.025 e/bohr <sup>1</sup> ).   64     TS-dimethylaniline at TPSS/TZP   66     dimethylaniline BP86/TZP, DZP   70     TS1-V.   75     TS2-V   78     II   81     TS2-II   84     TS2-II   84     TS1-IV   75 <td< td=""><td>Complex 1c</td><td>10</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Complex 1c                                                                      | 10       |
| Complex endo-3a   14     Complex 5a   16     Synthesis of 5a by an alternative method   18     Complex 5b   19     Complex 4a   21     Ligand 1b   23     Dependence of the 'H NMR spectrum of endo-3a on the nature of the counter anion.   25     Variable Temperature 'H NMR experiments.   26     Crystallographic data   28     2a   29     3a   41     4a   47     5b   55     Computational details   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface.   63     III, charge 2+ (0.035 e/bohr <sup>2</sup> )   63     V, neural (0.025 e/bohr <sup>2</sup> )   63     V, charge 1+ (0.025 e/bohr <sup>2</sup> )   63     Dimethylaniline at TPSS/TZP   64     TS-dimethylaniline at TPSS/TZP   64     TS-dimethylaniline BP86/TZP, DZP   70     TS1-V   75     TS2-V   78     II   81     TS2-II   84     TS1-V   78  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Complex 1d                                                                      | 12       |
| Complex Sa   16     Synthesis of 5a by an alternative method   18     Complex Sb   19     Complex Aa   21     Ligand Ib   23     Dependence of the <sup>1</sup> H NMR spectrum of endo-3a on the nature of the counter anion.   25     Variable Temperature <sup>1</sup> H NMR experiments.   26     Crystallographic data.   28     2a   29     3a   41     4a   47     5b   55     Computational details   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface   63     III, charge 1+ (0.025 e/bohr <sup>1</sup> )   63     V, neutral (0.025 e/bohr <sup>1</sup> )   63     Dimethylaniline at TPSS/TZP   64     TS-dimethylaniline at TPSS   66     dimethylaniline BP86/TZP, DZP   70     TSI-V   75     TS2-V   78     II   81     TS2-III   81     TSI-V   70     TSI-V   73     TSI-III   84     TSI-III   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Complex endo- <b>3a</b>                                                         | 14       |
| Synthesis of 5a by an alternative method.   18     Complex 5b.   19     Complex 4a.   21     Ligand 1b.   23     Dependence of the <sup>1</sup> H NMR spectrum of endo-3a on the nature of the counter anion.   25     Variable Temperature <sup>1</sup> H NMR experiments   26     Crystallographic data.   28     2a.   29     3a.   41     4a.   47     7b.   55     Computational details.   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface.   63     III, charge 2+ (0.035 e/bohr <sup>3</sup> ).   63     V, neutral (0.025 e/bohr <sup>3</sup> ).   63     V, neutral (0.025 e/bohr <sup>3</sup> ).   63     V, neutral (0.025 e/bohr <sup>3</sup> ).   64     TS-dimethylaniline at TPSS.   66     TS-dimethylaniline BP86/TZP, DZP.   70     TSI-V   70     TSI-V   70     TSI-V   78     II   81     TSI-III   81     TSI-III   81     TSI-III   96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Complex 5a                                                                      | 16       |
| Complex 5b.   19     Complex 4a.   21     Ligard 1b.   23     Dependence of the <sup>1</sup> H NMR spectrum of endo-3a on the nature of the counter anion.   25     Variable Temperature <sup>1</sup> H NMR experiments.   26     Crystallographic data   28     2a   29     3a   41     4a   47     5b   55     Computational details   62     Culomb potential maps for the following models drawn over the SCF electron density isosurface.   63     III, charge 2+ (0.035 e/bohr <sup>3</sup> )   63     IV, charge 1+ (0.025 e/bohr <sup>3</sup> )   63     V, neutral (0.025 e/bohr <sup>3</sup> )   63     Dimethylaniline at TPSS/TZP.   64     TS-dimethylaniline at TPSS   66     dimethylaniline BP86/TZP,DZP.   70     TS1-V   75     TS2-V   75     TS2-V   76     TS2-V   78     II   81     TS2-TI   84     TS2-TI   84     TS2-TI   90     TS1-TV   75     TS2-TV   96     III </td <td>Synthesis of 5a by an alternative method</td> <td>18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Synthesis of 5a by an alternative method                                        | 18       |
| Complex 4a.   21     Ligand 1b   23     Dependence of the <sup>1</sup> H NMR spectrum of endo-3a on the nature of the counter anion.   25     Variable Temperature <sup>1</sup> H NMR experiments.   26     Crystallographic data.   28     2a   29     3a   41     4a   47     5b   55     Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface.   63     III, charge 2+ (0.035 e/bohr <sup>3</sup> ).   63     IV, charge 1+ (0.025 e/bohr <sup>3</sup> ).   63     V, neural (0.025 e/bohr <sup>3</sup> ).   63     Dimethylaniline at TPSS/TZP.   64     TS-dimethylaniline BP86/TZP,DZP.   66     dimethylaniline BP86/TZP,DZP.   70     TSI-V.   75     TS2-V   78     II   81     TS2-TI   84     TSI-IV.   90     TSI-IV.   90     TSI-III.   90     TSI-III.   90     TSI-III.   90     TSI-III.   90     TSI-III.   90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Complex 5b                                                                      | 19       |
| Ligand 1b. 23<br>Dependence of the <sup>1</sup> H NMR spectrum of endo-3a on the nature of the counter anion. 25<br>Variable Temperature <sup>1</sup> H NMR experiments. 26<br>Crystallographic data. 28<br>2a 29<br>3a 41<br>4a 41<br>4a 41<br>4a 47<br>5b 55<br>Computational details 62<br>Theoretical and Computational details. 62<br>Coulomb potential maps for the following models drawn over the SCF electron density isourface. 63<br>III, charge 2+ (0.035 e'bohr <sup>2</sup> ). 63<br>IV, charge 1+ (0.025 e'bohr <sup>2</sup> ). 63<br>V, neutral (0.025 e'bohr <sup>2</sup> ). 63<br>V, neutral (0.025 e'bohr <sup>2</sup> ). 63<br>V, neutral (0.025 e'bohr <sup>2</sup> ). 70<br>TS-dimethylaniline at TPSS/TZP. 64<br>TS-dimethylaniline BP86/TZP, DZP. 70<br>TS1-V. 75<br>TS2-V. 78<br>III. 87<br>IV. 90<br>TS1-IV. 90<br>TS1-IV. 90<br>TS1-IV. 90<br>TS1-IV. 90<br>TS1-IV. 90<br>TS1-IV. 90<br>TS1-IV. 90<br>TS1-III. 10<br>TS2-III. 10 | Complex 4a                                                                      | 21       |
| Dependence of the 'H NMR spectrum of endo-3a on the nature of the counter anion.   25     Variable Temperature <sup>1</sup> H NMR experiments.   26     Crystallographic data   28     2a   29     3a   41     4a   47     5b   55     Computational details   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface   63     III, charge 2+ (0.035 e/bohr <sup>2</sup> )   63     V, neutral (0.025 e/bohr <sup>2</sup> )   63     V, neutral (0.025 e/bohr <sup>2</sup> )   63     Dimethylaniline at TPSS/TZP   64     TS-dimethylaniline BP86/TZP, DZP   70     TS1-V   75     TS2-V   70     TS1-V   75     TS2-V   78     TII   81     TS2-III   84     TS1-IV   93     TS2-IV   93     TS2-III   84     TS1-III   81     TS2-III   84     TS1-III   93     TS2-III   93     TS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ligand 1b                                                                       | 23       |
| Variable Temperature 'H NMR experiments   26     Crystallographic data   28     2a   28     3a   41     4a   62     Computational details   62     Coulomb potential maps for the following models drawn over the SCF electron density isourface     63   IV, charge 1+ (0.025 e/bohr <sup>3</sup> )     63   V, neutral (0.025 e/bohr <sup>3</sup> )     64   TS-dimethylaniline at TPSS/TZP     64   TS-dimethylaniline at TPSS     75   dimethylaniline BP86/TZP, DZP     70   TS1-V     75   TS2-V     75   TS2-V     71   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dependence of the 'H NMR spectrum of endo-3a on the nature of the counter anion | 25       |
| Crystallographic data   28     2a   29     3a   41     4a   47     5b   55     Computational details   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface   63     III, charge 1+ (0.025 e/bohr <sup>3</sup> )   63     V, neutral (0.025 e/bohr <sup>3</sup> )   63     V, neutral (0.025 e/bohr <sup>3</sup> )   63     V, neutral (0.025 e/bohr <sup>3</sup> )   63     Dimethylaniline at TPSS/TZP   64     TS-dimethylaniline BP86/TZP, DZP   70     TSI-V   75     TS2-V   75     TS2-V   78     III   81     TS2-III   84     TSI-III   81     TS2-III   90     TSI-IV   90     TSI-III   99     TSI-III   102     TS2-III   102     TS2-III   102     SI   90     TSI-III   102     TSI-III   102     TSI-IIII   102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Variable Temperature 'H NMR experiments                                         |          |
| 2a   29     3a   41     4a   47     5b   55     Computational details   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface   63     III, charge 2+ (0.035 e/bohr <sup>2</sup> )   63     V, neutral (0.025 e/bohr <sup>2</sup> )   63     Dimethylaniline at TPSS/TZP   64     TS-dimethylaniline BP86/TZP, DZP   66     dimethylaniline BP86/TZP, DZP   70     TS1-V   75     TS2-V   78     II   81     TS2-II   81     TS2-II   81     TS1-IV   78     TI   81     TS2-II   81     TS2-II   81     TS2-II   81     TS1-IV   78     TI   81     TS2-II   81     TS1-II   81     TS2-III   81     TS2-III   90     TS1-III   90     TS2-III   96     TII <td< td=""><td>Crystallographic data</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Crystallographic data                                                           |          |
| 3a   41     4a   47     5b   55     Computational details   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface.   63     III, charge 2+ (0.035 e/bohr <sup>2</sup> )   63     V, neutral (0.025 e/bohr <sup>2</sup> )   63     Dimethylaniline at TPSS/TZP.   63     Collemethylaniline at TPSS   66     dimethylaniline at TPSS   66     dimethylaniline BP86/TZP, DZP.   68     TS-dimethylaniline BP86/TZP, DZP.   70     TS1-V   75     TS2-V   78     II   81     TS2-II   84     TS1-IV   90     TS1-IV   90     TS1-IV   93     TS2-III   84     TS1-IV   93     TS2-III   102     TS2-III   102     TS2-III   102     TS2-III   102     TS2-III   102     TS2-III   102     TS2-III   103     [endo-3a]2+ </td <td>2a</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2a                                                                              |          |
| 4a   4/     5b   55     Computational details   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface.   63     III, charge 2+ (0.035 e/bohr <sup>3</sup> ).   63     IV, charge 1+ (0.025 e/bohr <sup>3</sup> ).   63     Dimethylaniline at TPSS/TZP.   63     dimethylaniline at TPSS/TZP.   64     TS-dimethylaniline at TPSS.   66     dimethylaniline B86/TZP, DZP.   68     TS-dimethylaniline BP86/TZP, DZP.   70     TSI-V.   75     TS2-V   78     II   81     TS2-II   84     TSI-IV.   90     TSI-III.   102     TS2-IV.   102     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3a                                                                              |          |
| 50   55     Computational details   62     Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface   63     III, charge 2+ (0.035 e/bohr <sup>3</sup> )   63     V, neutral (0.025 e/bohr <sup>3</sup> )   63     Dimethylaniline at TPSS/TZP   64     TS-dimethylaniline at TPSS   66     dimethylaniline BP86/TZP, DZP   68     TS-dimethylaniline BP86/TZP, DZP   70     TSI-V   75     TS2-V   78     II   81     TS2-II   84     TSI-IV   90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4a                                                                              |          |
| Computational details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |          |
| Theoretical and Computational details.   62     Coulomb potential maps for the following models drawn over the SCF electron density isosurface.   63     III, charge 2+ (0.035 e/bohr <sup>3</sup> )   63     V, neatral (0.025 e/bohr <sup>3</sup> )   63     Dimethylaniline at TPSS/TZP   64     TS-dimethylaniline at TPSS   66     dimethylaniline BP86/TZP, DZP   68     TS-dimethylaniline BP86/TZP, DZP   70     TS1-V   75     TS2-V   75     TS2-V   78     II   81     TS2-II   84     TS1-IV   90     TS1-IV   93     TS2-II   84     TS1-IV   90     TS1-IV   90     TS2-III   84     TS2-III   81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Computational details                                                           |          |
| Coloring potential maps for the following models drawn over the SCP electron density isosurface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I neoretical and Computational details.                                         |          |
| IN, charge 2+ (0.025 e/bohr <sup>3</sup> )   63     IV, charge 1+ (0.025 e/bohr <sup>3</sup> )   63     Dimethylaniline at TPSS/TZP   64     TS-dimethylaniline at TPSS   66     dimethylaniline BP86/TZP, DZP   68     TS-dimethylaniline BP86/TZP, DZP   70     TS1-V   75     TS2-V   75     TS2-V   78     II   81     TS2-TI   84     TS1-IV   78     II   90     TS1-IV   90     TS1-IV   90     TS1-III   81     III   99     TS2-IV   96     III   99     TS2-III   102     TS2-III   102     TS2-III   105     [endo-3a]2+   105     Indo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UL abarga 2 + (0.025 a/babr <sup>3</sup> )                                      |          |
| IV, charge IP (0.025 c/bohr <sup>3</sup> ).   63     V, neutral (0.025 c/bohr <sup>3</sup> ).   63     Dimethylaniline at TPSS/TZP   64     TS-dimethylaniline at TPSS   66     dimethylaniline BP86/TZP,DZP   68     TS-dimethylaniline BP86/TZP,DZP   70     TS1-V   75     TS2-V   78     II   81     TS2-II   84     TS1-IV   78     IV   90     TS1-IV   90     TS1-IV   91     TS2-II   81     TS2-III   84     TS1-III   81     TS2-III   81     TS2-III   81     TS2-III   81     TS2-III   81     TS2-III   81     TS2-III   93     TS2-III   99     TS1-IIII   102     TS2-IIII   105     [endo-3a]2+   108     TS1-[endo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | III, charge 1+ (0.055 c/bohr3)                                                  |          |
| V, Heuna (0.025 coolin )   05     Dimethylaniline at TPSS/TZP   64     TS-dimethylaniline BP86/TZP,DZP   68     TS-dimethylaniline BP86/TZP,DZP   70     TS1-V   75     TS2-V   78     II   81     TS2-II   84     TS1-IV   90     TS1-IV   91     II   102     TS2-III   105     [endo-3a]2+   105     TS2-III   107     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V neutral (0.025 e/bohr <sup>3</sup> )                                          | 03       |
| Dimetrylanifine at TPSS/DP   04     TS-dimethylaniline at TPSS   66     dimethylaniline BP86/TZP,DZP   68     TS-dimethylaniline BP86/TZP,DZP   70     TS1-V   75     TS2-V   78     II   81     TS2-II   81     TV   90     TS1-IV   91     TS2-IV   102     TS2-III   102     TS2-III   105     [endo-3a]2+   105     TS1-[endo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dimothylanilino at TPSS/TZP                                                     | 03<br>64 |
| TS-dimetry laniline at TPSS   00     dimethylaniline BP86/TZP,DZP   68     TS-dimethylaniline BP86/TZP,DZP   70     TS1-V   75     TS2-V   78     II   81     TS2-II   81     TV   90     TS1-IV   91     TS2-IV   102     TS2-III   102     TS2-III   105     [endo-3a]2+   108     TS1-[endo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dimethylaniline at 1855/128                                                     |          |
| dimethylaniline BP86/T2P,D2P   68     TS-dimethylaniline BP86/T2P,D2P   70     TS1-V   75     TS2-V   78     II   81     TS2-II   84     TS1-IV   87     IV   90     TS1-IV   93     TS2-IV   96     III   99     TS1-IV   96     III   102     TS2-IV   105     [endo-3a]2+   108     TS1-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dimethylaniline at IPSS                                                         |          |
| TS-dimetrylaniline BP86/T2P, D2P   70     TS1-V   75     TS2-V   78     II   81     TS2-II   84     TS1-IV   87     IV   90     TS1-IV   93     TS2-IV   96     III   99     TS1-IV   96     III   102     TS2-IV   105     [endo-3a]2+   108     TS1-[endo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dimethylaniline BP86/TZP, DZP                                                   |          |
| TS1-V   75     TS2-V   78     II   81     TS2-II   84     TS1-II   87     IV   90     TS1-IV   93     TS2-IV   96     III   99     TS1-III   102     TS2-IV   105     [endo-3a]2+   108     TS1-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TS-dimethylaniline BP86/TZP, DZP                                                |          |
| TS2-V   78     II   81     TS2-II   84     TS1-II   87     IV   90     TS1-IV   93     TS2-IV   96     III   99     TS1-III   102     TS2-III   105     [endo-3a]2+   108     TS1-[endo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |          |
| II   81     TS2-II   84     TS1-II   87     IV   90     TS1-IV   93     TS2-IV   96     III   99     TS1-III   102     TS2-III   105     [endo-3a]2+   108     TS1-[endo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TS2-V                                                                           |          |
| TS2-II   84     TS1-II   87     IV   90     TS1-IV   93     TS2-IV   96     III   99     TS1-III   102     TS2-III   105     [endo-3a]2+   108     TS1-[endo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | II                                                                              | 81       |
| TS1-II   87     IV   90     TS1-IV   93     TS2-IV   96     III   99     TS1-III   102     TS2-III   105     [endo-3a]2+   108     TS1-[endo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TS2-II                                                                          |          |
| IV   90     TS1-IV   93     TS2-IV   96     III   99     TS1-III   102     TS2-III   105     [endo-3a]2+   108     TS1-[endo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TS1-II                                                                          | 87       |
| TS1-IV   .93     TS2-IV   .96     III   .99     TS1-III   .102     TS2-III   .105     [endo-3a]2+   .108     TS1-[endo-3a]2+   .112     TS2-[endo-3a]2+   .117     References   .122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV                                                                              | 90       |
| TS2-IV   .96     III   .99     TS1-III   .102     TS2-III   .105     [endo-3a]2+   .108     TS1-[endo-3a]2+   .112     TS2-[endo-3a]2+   .117     References   .122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TS1-IV                                                                          | 93       |
| III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TS2-IV                                                                          | 96       |
| TS1-III   102     TS2-III   105     [endo-3a]2+   108     TS1-[endo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | III                                                                             | 99       |
| TS2-III   105     [endo-3a]2+   108     TS1-[endo-3a]2+   112     TS2-[endo-3a]2+   117     References   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TS1-III                                                                         | 102      |
| [endo-3a]2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TS2-III                                                                         | 105      |
| TS1-[endo-3a]2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [endo-3a]2+                                                                     | 108      |
| TS2-[endo-3a]2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TS1-[endo-3a]2+                                                                 | 112      |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TS2-[endo-3a]2+                                                                 | 117      |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | References                                                                      |          |

#### Figure S1



**Fig. S1** Singlet ground state geometry for  $[endo-3a]^{2+}$  and singlet transition state geometries **TS1**<sub>3a</sub> and **TS2**<sub>3a</sub> computed at the COSMO (acetone) ZORA-PBE/all electron TZP(Ir),DZP(H,C,N,Cl) level. **TS1**<sub>3a</sub>, 105*i* cm<sup>-1</sup>; **TS2**<sub>3a</sub>, 95*i* cm<sup>-1</sup>. Atoms are colored as follows: yellow, Ir; green, Cl; blue, N; grey, C; white, H. Selected interatomic distances and angle for  $[endo-3a]^{2+}$ :  $d_M$ , 2.476 Å;  $d_N$ , 1.337 Å;  $d_{Cl}$ , 2.420 Å;  $\alpha$ , 114.1 deg; C<sub>ipso</sub>-N-C<sub>Me</sub>, 120.9-120.5 deg. *wbi* (C<sub>Ar</sub>-N)= 1.30. Selected interatomic distances and angle for **TS1**<sub>3a</sub>(identical values are found for **TS2**<sub>3a</sub>):  $d_M$ , 2.318 Å; $d_N$ , 1.425 Å;  $d_{Cl}$ , 2.424 Å;  $\alpha$ , 118.4 deg; C<sub>ipso</sub>-N-C<sub>Me endo</sub>, 115.9 deg; C<sub>ipso</sub>-N-C<sub>Me exo</sub>, 110.9 deg. *wbi* (C<sub>Ar</sub>-N) = 1.01.

### Crystal Data (succinct form)

Crystal data for **2a**:  $C_{23}H_{28}CIIrN_2$ , Mr = 560.12 g/mol,  $0.38 \times 0.30 \times 0.20$  mm<sup>3</sup>, monoclinic,  $P_{21}/c$ , a = 100016.5371(6), b = 7.5131(3), c = 20.9885(6) Å,  $\beta = 128.903(2)1$ , V = 2029.35(12) Å<sup>3</sup>, Z = 4,  $\rho_{calcd} =$ 1.833 g cm<sup>-3</sup>,  $\mu = 6.72$  mm<sup>-1</sup>, T=173(2)K,  $\theta_{max}$ =32.1, 20707 reflections measured, 7014 independent  $R_{\text{int}}=0.017$ , R=0.023,  $wR^2=0.052$ . reflections. CCDC 805113. [*endo*-**3a**][PF<sub>6</sub>]<sub>2</sub>:  $C_{33}H_{43}CIIr_{2}N_{2} \cdot 2(F_{6}P) \cdot C_{3}H_{6}O, Mr = 1235.56 \text{ g/mol}, 0.28 \times 0.12 \times 0.10 \text{ mm}^{3}, \text{monoclinic}, P_{21}/c, a =$ 13.019(1), b = 20.090(1), c = 17.132(1) Å,  $\beta = 108.824(1)^{\circ}$ , V = 4241.2(5) Å<sup>3</sup>, Z = 4,  $\rho_{calcd} = 1.935$ g cm<sup>-3</sup>,  $\mu = 6.492$  mm<sup>-1</sup>, T=150(2)K,  $\theta_{max} = 30.02$ , 30593 reflections measured, 12327 independent reflections,  $R_{int}=0.0464$ , R=0.0440,  $wR^2=0.1312$ , CCDC 805114. [*endo*-4a][PF<sub>6</sub>]: 13.989(1), c = 28.862(1) Å,  $\beta = 105.194(2)^{\circ}$ , V = 3378.5(5) Å<sup>3</sup>, Z = 4,  $\rho_{calcd} = 1.851$  g cm<sup>-3</sup>,  $\mu =$ 4.568 mm<sup>-1</sup>, T=150(2)K,  $\theta_{max}$ = 30.02, 29565 reflections measured, 9531 independent reflections,  $R_{int}=0.0298$ , R=0.0314,  $wR^2=0.0704$ , CCDC 805115.  $[exo-5b]^0$ :  $C_{30}H_{36}ClCrIrN_2O_3, C_3H_6O$ , Mr = $810.34 \text{ g/mol}, 0.34 \times 0.04 \times 0.02 \text{ mm}^3$ , monoclinic,  $P2_1/c$ , a = 10.649(1), b = 15.812(1), c = 21.131(1)Å,  $\beta = 107.397(3)^{\circ}$ , V = 3395.3(4) Å<sup>3</sup>, Z = 4,  $\rho_{calcd} = 1.585$  g cm<sup>-3</sup>,  $\mu = 4.351$  mm<sup>-1</sup>, T=150(2)K,  $\theta_{max}= 29.95$ , 26792 reflections measured, 9667 independent reflections,  $R_{int}=0.0494$ , R=0.0495, w $R^2=0.0624$ , CCDC 805116. For all structures Mo K $\alpha$  radiation (0.71073 Å).

## **Experimental procedures**

All experiments were carried out under a dry argon atmosphere using the standard Schlenk technique or in an argon filled glove-box when necessary. Anhydrous THF was distilled from purple solutions of Na/benzophenone under argon. All other solvents were distilled over sodium or CaH<sub>2</sub> under argon. Deuterated solvents were dried over sodium or CaH<sub>2</sub> and purified by trap-to-trap techniques, degassed by freeze-pump-thaw cycles and stored under argon. <sup>1</sup>H, <sup>13</sup>C NMR spectra were obtained on Bruker DPX 300, 400 or Avance 500 spectrometers. Chemical shifts were referenced against solvent peaks or external references.



7,129 % ppm 

Figure 3 NMR <sup>13</sup>C in CDCl<sub>3</sub>

A mixture [Cp\*IrCl<sub>2</sub>]<sub>2</sub> (500 mg, 0.628 mmol), NaOAc (307 mg, 3.75 mmol) and 1a (251 mg, 1.25

mmol ) was stirred in 15 mL of CH<sub>2</sub>Cl<sub>2</sub> at room temperature for 24h. Cyclometalated compound **2a** was isolated as a yellow-orange solid upon recrystallization in 80% yield (559.5 mg). Anal. Calcd for C<sub>23</sub>H<sub>28</sub>ClIrN<sub>2</sub>. 1/4 CH<sub>2</sub>Cl<sub>2</sub>: C, 48.03; H, 4.94; N, 4.82. Found: C, 48.04; H, 4.743; N, 4.717. <sup>1</sup>H NMR (CDCl<sub>3</sub>): § 1.68 (s,15 H, C<sub>5</sub>Me<sub>5</sub>), 3.08 (s, 6 H, NMe<sub>2</sub>), 6.45 (dd, 1 H, <sup>4</sup>*J* = 2.6, <sup>3</sup>*J* = 8.6 Hz), 6.86 (ddd, 1 H, <sup>4</sup>*J* = 1.5, <sup>3</sup>*J* = 5.7, <sup>3</sup>*J* = 7.2 Hz), 7.16 (d, 1 H, <sup>4</sup>*J* = 2.5 Hz), 7.50(m, 1 H, <sup>4</sup>*J* = 1.3, <sup>4</sup>*J* = 2.6, <sup>3</sup>*J* = 7.5 Hz), 7.53 (d, 1 H, <sup>3</sup>*J* = 8.5 Hz), 7.58 (dd, <sup>2</sup>*J* = 1.41, <sup>3</sup>*J* = 8.12 Hz), 8.55 (d, 1 H, <sup>3</sup>*J* = 5.8 Hz). <sup>13</sup>C NMR(CDCl<sub>3</sub>): § 167.4, 164.7, 152.0, 150.7, 136.2, 132.9, 124.8, 119.6, 118.1, 117.3, 106.9, 88.0, 40.29, 8.8.

Complex 2b



**Figure 4** NMR (<sup>1</sup>H) in CD<sub>2</sub>Cl<sub>2</sub> with sight contamination by acetone



Similar procedure was applied for the synthesis of complex **2b**: [Cp\*IrCl<sub>2</sub>]<sub>2</sub> (800 mg, 1 mmol), **1b** (510

mg, 2 mmol) and NaOAc (350 mg, 4.26 mmol) in 20 mL of CH<sub>2</sub>Cl<sub>2</sub>. yield is 80% (986.4 mg). Anal. Calcd for C<sub>27</sub>H<sub>36</sub>ClIrN<sub>2</sub>: C, 52.6; H, 5.89; N, 4.55. Found: C, 52.52; H, 5.812; N, 4.433. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  1.23 (s, 9 H, tBu), 1.52 (s, 15 H, C<sub>5</sub>Me<sub>5</sub>), 2.92 (s, 6 H, NMe<sub>2</sub>), 6.30 (dd, 1 H, <sup>4</sup>*J* = 2.6, <sup>3</sup>*J* = 8.6 Hz), 6.87 (dd, 1 H, <sup>4</sup>*J* = 2.1, <sup>3</sup>*J* = 6.2 Hz), 6.99 (d, 1 H, <sup>4</sup>*J* = 2.6 Hz), 7.44 (d, 1 H, <sup>3</sup>*J* = 8.6 Hz), 7.50 (d, 1 H, <sup>4</sup>*J* = 2.1 Hz), 8.33 (d, 1 H, *J* = 6.2 Hz). <sup>13</sup>C NMR(CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  167.17, 164.9, 160.9, 152.1, 150.8, 134.0, 124.8, 118.7, 118.0, 114.0, 106.8, 88.2, 40.2, 30.3, 8.7.



A mixture of **1a** (1.335 g, 6.74 mmol) and  $Cr(CO)_6$  (1.63 g, 7.416 mmol) was dissolved in *n*-Bu<sub>2</sub>O (150 mL), and THF (10 mL) was added to the resulting mixture. The suspension was gently refluxed for 7

days under argon. The resulting yellow solution was cooled to room temperature and filtered through Celite. The filtrate was evaporated under reduced pressure, the resulting oil dissolved in CH<sub>2</sub>Cl<sub>2</sub>, and silica gel added. After evaporation of the solvent under reduced pressure, the coated silica gel was loaded on the top of a SiO<sub>2</sub> column packed in mixture pentane/ acetone (95/5). Complex **1c** was eluted with pentane/acetone (85/15), the polarity was increased. The solvent was removed under vacuum and the bright yellow solid. The yield is 76% (1.7 g). Anal. Calcd for C<sub>16</sub>H<sub>14</sub>CrN<sub>2</sub>O<sub>3</sub>: C, 57.47; H, 4.22; N, 8.38. Found: C, 57.47; H, 4.188; N, 8.248. (IR)  $\upsilon$ = 1936(s), 1835(vs) (C=O). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  2.94 (s, 6 H, NMe<sub>2</sub>), 4.95 (d, 2 H, <sup>3</sup>*J* = 7.4 Hz), 6.44 (d, 2 H, <sup>3</sup>*J* = 7.3 Hz), 7.17 (dd, 1 H, <sup>3</sup>*J* = 4.89, <sup>3</sup>*J* = 7.4 Hz), 7.51 (d, 1 H, <sup>3</sup>*J* = 8.1 Hz), 7.67 (dd, 1 H, <sup>4</sup>*J* = 1.66, <sup>3</sup>*J* = 6 Hz), 8.54 (d, 1 H, <sup>3</sup>*J* = 5.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  233.9, 154.0, 136.8, 135.2, 122.6, 119.2, 96.6, 95.7, 73.9, 39.9.





Figure 9 NMR <sup>13</sup>C in CDCl<sub>3</sub>

A similar procedure was applied for the synthesis of complex **1d**: **1a** (2 g, 7.84 mmol) and Cr(CO)<sub>6</sub> (1.9 g, 8.62 mmol). The yield is 71.8 % (2.2 g). Anal. Calcd for C<sub>20</sub>H<sub>22</sub>CrN<sub>2</sub>O<sub>3</sub>: C, 61.51; H, 5.68; N, 7.18. Found: C, 61.35; H, 5.82; N, 7.04. (IR)  $\upsilon$ = 1936, 1840 (C=O).<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  1.35 (s, 9 H, tBu), 2.94 (s, 6 H, NMe<sub>2</sub>), 4.96 (d, 2 H, <sup>3</sup>*J* = 7.3 Hz), 6.43 (d, 2 H, <sup>3</sup>*J* = 7.3 Hz), 7.19 (dd, 1 H, <sup>4</sup>*J* = 1.8, <sup>3</sup>*J* = 5.3 Hz), 7.53 (d, 1 H, <sup>4</sup>*J* = 1.9 Hz), 8.44 (d, 1 H, <sup>3</sup>*J* = 5.3 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  234.1, 160.8, 154.0, 149.0, 13, 1, 116.6, 97.5, 96, 7, 39.8, 34.8, 30.5.



A solution of compound **2a** (230 mg, 0.41 mmol) in acetone (8 mL) was added to a freshly prepared solution of [Cp\*Ir(CH<sub>3</sub>COCH<sub>3</sub>)<sub>3</sub>](PF<sub>6</sub>)<sub>2</sub> [generated in situ by reaction of [Cp\*IrCl<sub>2</sub>]<sub>2</sub> (200 mg, 0.25

mmol) and AgPF<sub>6</sub> (253 mg, 1 mmol) in acetone (8 mL) at room temperature 30 minutes] and the resulting solution was left to stir for 24 h at room temperature. Upon filtration of the reaction mixture, the filtrate was concentrated and the resulting precipitate was washed with pentane (15 mL). The compound was recrystallized and subsequently isolated as an orange solid with a yield of 78% (370 mg). Anal. Calcd for C<sub>33</sub>H<sub>43</sub>ClF<sub>12</sub>Ir<sub>2</sub>N<sub>2</sub>P<sub>2</sub>: C, 33.66 ; H, 3.69; N, 2.38. Found: C, 33.82; H, 4.104; N, 2.108. <sup>1</sup>H NMR ( $d_6$ .acetone):  $\delta$  1.7 (s,15 H, C<sub>5</sub>Me<sub>5</sub>), 2.14 (s,15 H, C<sub>5</sub>Me<sub>5</sub>), 3.57 (s, 3 H, NMe), 3.73 (s, 3 H, NMe), 6.68 (dd, 1 H, <sup>4</sup>*J* = 2.4, 3*J* = 7.1 Hz), 7.2 (d, 1 H, <sup>4</sup>*J* = 2.3 Hz), 7.58 (d, 1 H, <sup>3</sup>*J* = 7.0 Hz), 7.81 (ddd, 1 H, <sup>4</sup>*J* = 2.3, <sup>3</sup>*J* = 5.7, <sup>3</sup>*J* = 6.6 Hz), 8.27 (m, 2 H, <sup>3</sup>*J* = 1.7, <sup>3</sup>*J* = 5.4, <sup>3</sup>*J* = 7.0 Hz), 8.88 (d, 1 H, <sup>3</sup>*J* = 5.5 Hz). <sup>13</sup>C NMR ( $d_6$ .acetone):  $\delta$  157.6, 154.7, 151.3, 141.1, 140.7, 127.7, 120.8, 103.4, 101.9, 92.6, 86.7, 74.0, 68.8, 39.6, 39.3, 10.3, 7.9.



[Cp\*IrCl<sub>2</sub>]<sub>2</sub> (0.498 mmol), **1c** (336 mg, 1.006 mmol) and NaOAc<sup>3</sup>H<sub>2</sub>O (324 mg, 3.95mmol) were dissolved in dichloromethane (20 mL), and the resulting mixture was stirred at room temperature for 24 h under argon. The resulting red solution was filtered through Celite, the filtrate was evaporated to

dryness under reduced pressure to afford an orange solid, which was recrystallized from a mixture of pentane (15 mL) and dichloromethane (5 mL) and dried under reduced pressure overnight. Compound **5a** was recovered as an orange powder with a yield of 75% (520 mg). Anal. Calcd for  $C_{26}H_{28}ClCrIrN_2O_3 \ 0.3CH_2Cl_2$ : C, 43.77; H, 3.99; N, 3.88. Found: C, 43.76; H, 4.16; N, 3.55. (IR)  $\upsilon$ = 1917, 1829 (C=O). <sup>1</sup>H NMR (CDCl\_3):  $\delta$  1.77 (s, 15 H, C<sub>5</sub>Me<sub>5</sub>), 2.96 (s, 6 H, NMe<sub>2</sub>), 4.82 (dd, 1 H, <sup>4</sup>*J* = 2.4, <sup>3</sup>*J* = 7.1 Hz), 5.61 (d, 1 H, <sup>4</sup>*J* = 2.4 Hz), 6.23 (d, 1 H, <sup>3</sup>*J* = 7.1 Hz), 7.07 (ddd, 1 H, <sup>4</sup>*J* = 1.4, <sup>3</sup>*J* = 5.8, <sup>3</sup>*J* = 7.5 Hz), 7.49 (d, 1 H, <sup>3</sup>*J* = 8.2 Hz), 7.68 (dt, 1 H, <sup>2</sup>*J* = 1.5, <sup>3</sup>*J* = 7.8 Hz), 8.59 (d, 1 H, <sup>3</sup>*J* = 5.8 Hz).

 $\delta \ 235.9, 165.9, 150.6, 137.4, 135.1, 131.2, 122.5, 119.3, 103.4, 93.9, 89.6, 86.8, 72.4, \ 40.1, 8.9.$ 

### Synthesis of 5a by an alternative method

**2a** (159 mg, 0.282 mmol) and tricarbonyl( $\eta^6$ -naphthalene)chromium (108 mg, 0.408 mmol) were dissolved in dry and degassed tetrahydrofuran (15 mL). The resulting mixture was stirred at room temperature for 24 h under argon. The resulting solution was filtered through Celite, the filtrate was concentrated to ca. 5 mL, and silica gel was added. The solvent was evaporated under reduced pressure, and the coated silica gel was loaded on the top of a silica gel column packed in mixture pentane and dichloromethane (50/50) at 5 °C. The product was eluted with a 75:25 mixture of dichloromethane and pentane (195 mg, 100%).



A similar procedure was applied for the synthesis of complex **2b: 1d** (250 mg, 0.639 mmol), [Cp\*IrCl<sub>2</sub>]<sub>2</sub> (254 mg, 0.319 mmol) and NaOAc 3H<sub>2</sub>O (209.59 mg, 2.55 mmol) in dichloromethane (15

mL). The yield was 70% (336 mg). Anal. Calcd for  $C_{30}H_{36}ClCrIrN_2O_3 0.6CH_2Cl_2$ : C, 45.88; H, 4.888; N, 3.093. Found: C, 45.76; H, 4.67; N, 3.49. (IR)  $\upsilon$ = 1917, 1829 (C=O). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  1.34 (s, 9 H, *t*Bu), 1.78 (s,15 H, C<sub>5</sub>Me<sub>5</sub>), 2.96 (s, 6 H, NMe<sub>2</sub>), 4.82 (d, 1 H, <sup>3</sup>*J* = 7.1 Hz), 5.61 (d, 1 H, <sup>4</sup>*J* = 1.7 Hz), 6.23 (d, 1 H, <sup>3</sup>*J* = 7.2 Hz), 7.06 (d, 1 H, <sup>3</sup>*J* = 5.7 Hz), 7.4 (s, 1 H), 8.46 (d, 1 H, <sup>3</sup>*J* = 6.3 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  235.9, 165.2, 161.8, 149.9, 135.1, 131.4, 120.5, 115.9, 104.0, 93.8, 89.4, 86.8, 72.3, 40.1, 35.2, 30.5, 8.9.





A mixture compound **2a** (100 mg, 0.178 mmol) and [Cp\*Ru(NCCH<sub>3</sub>)<sub>3</sub>]PF<sub>6</sub> (90 mg, 0.178 mmol) in THF (10 mL) was stirred at room temperature for 24 h under argon. After a flash filtration of the solution through celite, the filtrate was concentrated and the resulting precipitate recrystallized with pentane. The precipitate was washed 3 times with pentane and finally evaporated to dryness under reduced pressure. The compound **4a** was isolated as a yellow-orange solid with a yield of 75% (127 mg). Anal. Calcd for C<sub>33</sub>H<sub>43</sub>ClF<sub>6</sub>IrN<sub>2</sub>PRu. 2CH<sub>2</sub>Cl<sub>2</sub>. H<sub>2</sub>O: C, 37.29; H, 4.51; N, 2.92. Found: C, 37.22; H, 4.37; N, 2.48. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ I.501 (s, 15 H, C<sub>5</sub>Me<sub>5</sub>), 1.685 (s, 15 H, C<sub>5</sub>Me<sub>5</sub>), 3.06 (s, 6 H, NMe<sub>2</sub>), 5.34 (dd, 1 H, <sup>4</sup>*J* = 1.99, <sup>3</sup>*J* = 6.38 Hz), 5.73 (d, 1 H, <sup>4</sup>*J* = 1.9 Hz), 6.41 (d, 1 H, <sup>3</sup>*J* = 6.5 Hz), 7.26 (m, 1 H, <sup>4</sup>*J* = 1.4, <sup>3</sup>*J* = 4.2 Hz), 7.83 (d, 1 H, <sup>3</sup>*J* = 7.9 Hz), 7.9 (dt, 1 H, <sup>4</sup>*J* = 1.6, <sup>3</sup>*J* = 7.7 Hz), 8.54 (d, 1 H, <sup>3</sup>*J* = 5.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$ I 63.6, 152.4, 151.0, 124.6, 119.3, 117.7, 97.1, 93.7, 88.7, 80.4, 69.2, 39.9, 31.0, 11.4, 8.7.



A solution of 4-lithio,N,N-dimethylaniline (57.5 mmol, prepared by reaction of 4-bromo,N,Ndimethylaniline with excess Li metal) in diethyl ether (125 mL) was added to pure and dry 4-

tbutylpyridine (7.75 g, 57.5 mmol) at room temperature and the resulting solution was left to stir for ca. 7 h. The resulting solution evaporated to dryness and the residue suspended in dry cyclohexane (70 mL) and boiled overnight. The resulting suspension was hydrolized with water and the mixture extracted dichloromethane following convention workup procedure. The organic phase was dried over MgSO<sub>4</sub>, filtered through Celite and the filtrate was stripped of solvents. The residue was purified by chromatography through SiO<sub>2</sub> and eluted with a 30:70 mixture of CH<sub>2</sub>Cl<sub>2</sub> and *n*-pentane. Pure compound **1b** was recovered as off-white crystals upon concentration of the eluate and crystallization (8.7 g, 60 %).

Anal. Calcd for C<sub>17</sub>H<sub>22</sub>N<sub>2</sub>: C, 80.27; H, 8.72; N, 11.02. Found: C, 80.08; H, 8.42; N, 11.00. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ 1.35 (s, 9 H, *t*Bu), 3.02 (s, 6 H, NMe<sub>2</sub>), 6.80 (d, 2 H, <sup>3</sup>J = 8.9 Hz), 7.11 (dd, 1 H, <sup>4</sup>J = 1.9, <sup>3</sup>J = 5.3 Hz), 7.62 (d, 1 H, <sup>4</sup>J = 2.1 Hz), 7.90 (d, 2 H, <sup>3</sup>J = 8.9 Hz), 8.52 (d, 1 H, <sup>3</sup>J = 5.3 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$ 159.9, 157.2, 150.5, 148.8, 127.4, 117.6, 115.9, 111.8, 40.0, 34.4, 30.2.

Dependence of the <sup>1</sup>H NMR spectrum of endo-3a on the nature of the counter anion.



**Figure 20:** <sup>1</sup>H signals of the NMe<sub>2</sub> group in the presence of different anions



Figure 2: <sup>1</sup>H NMR signals in the aromatic region in the presence of different anions

## Variable Temperature <sup>1</sup>H NMR experiments

Line shape analysis of the rotation of the  $-NMe_2$  group in compound  $[endo-3a][PF_6]_2$  in deuterated acetone<sup>1, 2</sup>



Figure 21 Experimental and simulated portions of the <sup>1</sup>H NMR spectrum of a 15 mM solution of  $[endo-3a][PF_6]_2$ .



**Figure 22** Eyring plot of  $\ln(k_{rot}/T) = f(1/T)$ . The data of three independent VT experiments carried out with solutions of different ionic strength have been merged here since no major difference in  $k_{rot}$  for each temperature was noticed. Variable-temperature (VT) <sup>1</sup>H NMR experiments were carried out with 9.3 mM solutions of [*endo*-**3a**][PF<sub>6</sub>]<sub>2</sub> in *d*<sub>6</sub>-acetone.

| - | Intercept | Intercept | Slope       | Slope     | Statistics          |  |
|---|-----------|-----------|-------------|-----------|---------------------|--|
|   | Value     | Error     | Value       | Error     | Adj. R <sup>2</sup> |  |
| Ι | 17.38001  | 0.62043   | -6516.16576 | 198.99825 | 0.9871              |  |

 $\ln(k_{\rm rot}/T) - \ln[\kappa(k_{\rm B} / h)] = \Delta S_{\rm rot}/R - \Delta H_{\rm rot}/RT$ , with  $\kappa = 1$ 

# Crystallographic data

2a

3a

4a

5b

# 2a

Crystal data

| $\underline{C_{23}H_{28}ClIrN_2}$   |                                                                               |
|-------------------------------------|-------------------------------------------------------------------------------|
| $M_r = 560.12$                      | $D_{\rm x} = 1.833 {\rm Mg}{\rm m}^{-3}$                                      |
| Monoclinic, <u>P2<sub>1</sub>/c</u> |                                                                               |
| Hall symbol: <u>-P 2ybc</u>         | <u>Mo <i>K</i>\alpha</u> radiation, $\lambda = 0.71073$ Å                     |
| <i>a</i> = <u>16.5371 (6)</u> Å     | Cell parameters from 9910 reflections                                         |
| $b = \underline{7.5131(3)}$ Å       | $\theta = \underline{3.0} - \underline{32.1}^{\circ}$                         |
| <i>c</i> = <u>20.9885 (6)</u> Å     | $\mu = 6.72 \text{ mm}^{-1}$                                                  |
| $\beta = 128.903 (2)^{\circ}$       | T = 173 K                                                                     |
| $V = 2029.35 (12) \text{ Å}^3$      | Block, yellow                                                                 |
| $Z = \underline{4}$                 | $\underline{0.38} \times \underline{0.30} \times \underline{0.20} \text{ mm}$ |
| F(000) = 1096                       |                                                                               |

### Data collection

| Bruker APEX-II CCD<br>diffractometer                      | 7014 independent reflections                                                                      |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                  | <u>6324</u> reflections with $\underline{I > 2\sigma(I)}$                                         |
| graphite                                                  | $R_{\rm int} = 0.017$                                                                             |
| Detector resolution: ? pixels mm <sup>-1</sup>            | $\theta_{\text{max}} = \underline{32.1}^{\circ}, \ \theta_{\text{min}} = \underline{3.0}^{\circ}$ |
| $\varphi$ and $\omega$ scans                              | h = -24  20                                                                                       |
| Absorption correction: <u>multi-scan</u><br><u>sadabs</u> | k = -10  11                                                                                       |
| $T_{\min} = 0.184, T_{\max} = 0.347$                      | l = -30  31                                                                                       |
| 20707 measured reflections                                |                                                                                                   |

## Refinement

| Refinement on $\underline{F^2}$ Second | ondary atom site location: difference Fourier |
|----------------------------------------|-----------------------------------------------|
|----------------------------------------|-----------------------------------------------|

|                                                                                 | map                                                                                            |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Least-squares matrix: <u>full</u>                                               | Hydrogen site location: <u>inferred from</u><br><u>neighbouring sites</u>                      |
| $R[F^2 > 2\sigma(F^2)] = \underline{0.023}$                                     | H-atom parameters constrained                                                                  |
| $wR(F^2) = \underline{0.052}$                                                   | $\frac{w = 1/[\sigma^2(F_o^2) + (0.0166P)^2 + 4.1026P]}{\text{where } P = (F_o^2 + 2F_c^2)/3}$ |
| S = 1.14                                                                        | $(\Delta/\sigma)_{\rm max} = \underline{0.003}$                                                |
| 7014 reflections                                                                | $\Delta \rho_{\text{max}} = \underline{2.90} \text{ e } \text{\AA}^{-3}$                       |
| 251 parameters                                                                  | $\Delta \rho_{\rm min} = \underline{-1.45} \ e \ \text{\AA}^{-3}$                              |
| <u>0</u> restraints                                                             | Extinction correction: none                                                                    |
| ? constraints                                                                   | Extinction coefficient: ?                                                                      |
| Primary atom site location: <u>structure-invariant</u><br><u>direct methods</u> |                                                                                                |

Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

| Fractional | l atomic | coordinates | and iso | tropic | or ec | uivalen | t isotro | pic dis | placement | parameters ( | $(\text{\AA}^2)$ |
|------------|----------|-------------|---------|--------|-------|---------|----------|---------|-----------|--------------|------------------|
|            |          |             |         |        |       |         |          |         |           |              |                  |

|     | x             | у              | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|---------------|----------------|---------------|-------------------------------|
| Ir1 | -0.267470 (6) | -0.258435 (10) | -0.998843 (5) | 0.01386 (3)                   |
| Cl1 | -0.32964 (5)  | -0.54194 (8)   | -1.06777 (4)  | 0.02188 (11)                  |
| N1  | -0.29354 (16) | -0.3639 (3)    | -0.92061 (13) | 0.0166 (4)                    |
| N2  | 0.13504 (18)  | -0.4641 (4)    | -0.84389 (16) | 0.0290 (5)                    |
| C1  | -0.12850 (18) | -0.3758 (3)    | -0.91031 (14) | 0.0150 (4)                    |
| C2  | -0.04238 (19) | -0.3782 (3)    | -0.90755 (15) | 0.0181 (4)                    |
| H2  | -0.0467       | -0.3205        | -0.9499       | 0.022*                        |
| C3  | 0.05145 (19)  | -0.4634 (3)    | -0.84412 (15) | 0.0198 (4)                    |
| C4  | 0.0559 (2)    | -0.5514 (3)    | -0.78263 (16) | 0.0227 (5)                    |
| H4  | 0.1179        | -0.6103        | -0.7394       | 0.027*                        |
| C5  | -0.0293 (2)   | -0.5524 (3)    | -0.78481 (15) | 0.0207 (5)                    |

| H5   | -0.0257       | -0.6139     | -0.7435       | 0.025*     |
|------|---------------|-------------|---------------|------------|
| C6   | -0.12093 (18) | -0.4639 (3) | -0.84718 (14) | 0.0158 (4) |
| C7   | -0.21354 (19) | -0.4569 (3) | -0.85414 (14) | 0.0170 (4) |
| C8   | -0.2266 (2)   | -0.5366 (3) | -0.80067 (16) | 0.0229 (5) |
| H8   | -0.1706       | -0.5990     | -0.7537       | 0.027*     |
| C9   | -0.3209 (2)   | -0.5245 (4) | -0.81630 (17) | 0.0270 (5) |
| Н9   | -0.3301       | -0.5788     | -0.7804       | 0.032*     |
| C10  | -0.4024 (2)   | -0.4322 (4) | -0.88505 (18) | 0.0268 (5) |
| H10  | -0.4680       | -0.4227     | -0.8971       | 0.032*     |
| C11  | -0.3852 (2)   | -0.3550 (4) | -0.93532 (17) | 0.0228 (5) |
| H11  | -0.4408       | -0.2926     | -0.9825       | 0.027*     |
| C12  | 0.2370 (2)    | -0.5113 (5) | -0.76996 (19) | 0.0338 (7) |
| H12A | 0.2564        | -0.4307     | -0.7256       | 0.051*     |
| H12B | 0.2878        | -0.5011     | -0.7794       | 0.051*     |
| H12C | 0.2359        | -0.6340     | -0.7547       | 0.051*     |
| C13  | 0.1321 (2)    | -0.3572 (5) | -0.9026 (2)   | 0.0342 (7) |
| H13A | 0.0746        | -0.3968     | -0.9581       | 0.051*     |
| H13B | 0.1978        | -0.3702     | -0.8932       | 0.051*     |
| H13C | 0.1219        | -0.2319     | -0.8962       | 0.051*     |
| C14  | -0.2426 (2)   | -0.0894 (3) | -1.06843 (14) | 0.0182 (4) |
| C15  | -0.20860 (19) | 0.0023 (3)  | -0.99487 (14) | 0.0165 (4) |
| C16  | -0.2977 (2)   | 0.0214 (3)  | -0.99808 (15) | 0.0177 (4) |
| C17  | -0.3885 (2)   | -0.0456 (3) | -1.07653 (16) | 0.0209 (5) |
| C18  | -0.3538 (2)   | -0.1134 (3) | -1.11821 (15) | 0.0202 (4) |
| C19  | -0.1779 (2)   | -0.1286 (4) | -1.09422 (18) | 0.0267 (5) |
| H19A | -0.2017       | -0.0550     | -1.1417       | 0.040*     |
| H19B | -0.1848       | -0.2547     | -1.1089       | 0.040*     |
| H19C | -0.1049       | -0.1017     | -1.0490       | 0.040*     |

| C20  | -0.1043 (2) | 0.0796 (4)  | -0.93120 (16) | 0.0246 (5) |
|------|-------------|-------------|---------------|------------|
| H20A | -0.1026     | 0.2028      | -0.9456       | 0.037*     |
| H20B | -0.0516     | 0.0096      | -0.9277       | 0.037*     |
| H20C | -0.0897     | 0.0773      | -0.8782       | 0.037*     |
| C21  | -0.3000 (2) | 0.1134 (4)  | -0.93623 (18) | 0.0258 (5) |
| H21A | -0.2293     | 0.1211      | -0.8841       | 0.039*     |
| H21B | -0.3438     | 0.0460      | -0.9283       | 0.039*     |
| H21C | -0.3284     | 0.2336      | -0.9556       | 0.039*     |
| C22  | -0.4982 (2) | -0.0315 (4) | -1.1086 (2)   | 0.0337 (7) |
| H22A | -0.5303     | 0.0749      | -1.1430       | 0.050*     |
| H22B | -0.4995     | -0.0228     | -1.0627       | 0.050*     |
| H22C | -0.5369     | -0.1373     | -1.1412       | 0.050*     |
| C23  | -0.4212 (3) | -0.1961 (4) | -1.20203 (17) | 0.0325 (6) |
| H23A | -0.4681     | -0.2830     | -1.2055       | 0.049*     |
| H23B | -0.3774     | -0.2560     | -1.2119       | 0.049*     |
| H23C | -0.4623     | -0.1031     | -1.2433       | 0.049*     |

# Atomic displacement parameters (Å<sup>2</sup>)

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| Ir1 | 0.01495 (4) | 0.01173 (4) | 0.01424 (4) | 0.00102 (3) | 0.00886 (3) | 0.00074 (3) |
| Cl1 | 0.0270 (3)  | 0.0162 (2)  | 0.0246 (3)  | -0.0030 (2) | 0.0172 (2)  | -0.0042 (2) |
| N1  | 0.0184 (9)  | 0.0156 (8)  | 0.0198 (9)  | -0.0009 (7) | 0.0139 (8)  | -0.0007 (7) |
| N2  | 0.0181 (10) | 0.0367 (13) | 0.0314 (12) | 0.0064 (9)  | 0.0151 (10) | 0.0041 (10) |
| C1  | 0.0172 (10) | 0.0113 (9)  | 0.0160 (9)  | -0.0001 (7) | 0.0102 (8)  | 0.0005 (7)  |
| C2  | 0.0193 (10) | 0.0168 (10) | 0.0199 (10) | 0.0033 (8)  | 0.0132 (9)  | 0.0032 (8)  |
| C3  | 0.0161 (10) | 0.0182 (10) | 0.0214 (11) | 0.0015 (8)  | 0.0100 (9)  | -0.0012 (8) |
| C4  | 0.0195 (11) | 0.0208 (11) | 0.0189 (11) | 0.0047 (9)  | 0.0078 (9)  | 0.0032 (9)  |
| C5  | 0.0238 (11) | 0.0183 (10) | 0.0163 (10) | 0.0007 (9)  | 0.0107 (9)  | 0.0025 (8)  |

| C6  | 0.0184 (10) | 0.0129 (9)  | 0.0151 (9)  | -0.0008 (7)  | 0.0101 (8)  | -0.0005 (7)  |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C7  | 0.0224 (11) | 0.0133 (9)  | 0.0176 (10) | -0.0033 (8)  | 0.0136 (9)  | -0.0030 (7)  |
| C8  | 0.0306 (13) | 0.0215 (11) | 0.0203 (11) | -0.0041 (10) | 0.0178 (10) | -0.0013 (9)  |
| C9  | 0.0374 (15) | 0.0276 (13) | 0.0275 (13) | -0.0106 (11) | 0.0260 (12) | -0.0069 (10) |
| C10 | 0.0294 (13) | 0.0284 (13) | 0.0344 (14) | -0.0068 (10) | 0.0257 (12) | -0.0079 (11) |
| C11 | 0.0229 (12) | 0.0233 (11) | 0.0281 (12) | -0.0018 (9)  | 0.0189 (11) | -0.0031 (9)  |
| C12 | 0.0184 (12) | 0.0434 (17) | 0.0301 (14) | 0.0049 (12)  | 0.0106 (11) | -0.0067 (13) |
| C13 | 0.0284 (14) | 0.0371 (16) | 0.0467 (18) | 0.0003 (12)  | 0.0282 (14) | 0.0014 (13)  |
| C14 | 0.0259 (11) | 0.0154 (10) | 0.0172 (10) | 0.0019 (8)   | 0.0154 (9)  | 0.0037 (8)   |
| C15 | 0.0221 (11) | 0.0117 (9)  | 0.0161 (9)  | -0.0006 (8)  | 0.0122 (9)  | 0.0005 (7)   |
| C16 | 0.0238 (11) | 0.0112 (9)  | 0.0201 (10) | 0.0037 (8)   | 0.0148 (9)  | 0.0024 (8)   |
| C17 | 0.0199 (11) | 0.0165 (10) | 0.0216 (11) | 0.0043 (8)   | 0.0107 (9)  | 0.0028 (8)   |
| C18 | 0.0234 (11) | 0.0168 (10) | 0.0164 (10) | 0.0038 (8)   | 0.0105 (9)  | 0.0038 (8)   |
| C19 | 0.0363 (15) | 0.0265 (13) | 0.0291 (13) | 0.0021 (11)  | 0.0262 (12) | 0.0021 (10)  |
| C20 | 0.0276 (13) | 0.0208 (11) | 0.0225 (11) | -0.0064 (10) | 0.0144 (10) | -0.0025 (9)  |
| C21 | 0.0367 (15) | 0.0201 (11) | 0.0306 (13) | 0.0032 (10)  | 0.0259 (12) | -0.0013 (10) |
| C22 | 0.0211 (13) | 0.0325 (15) | 0.0390 (16) | 0.0088 (11)  | 0.0148 (12) | 0.0057 (12)  |
| C23 | 0.0354 (15) | 0.0303 (14) | 0.0168 (11) | 0.0020 (12)  | 0.0091 (11) | -0.0014 (10) |

## Geometric parameters (Å, °)

| Ir1—C1  | 2.037 (2)  | C12—H12A | 0.9800    |
|---------|------------|----------|-----------|
| Ir1—N1  | 2.097 (2)  | C12—H12B | 0.9800    |
| Ir1—C14 | 2.161 (2)  | C12—H12C | 0.9800    |
| Ir1—C16 | 2.163 (2)  | С13—Н13А | 0.9800    |
| Ir1—C15 | 2.166 (2)  | С13—Н13В | 0.9800    |
| Ir1—C18 | 2.238 (2)  | С13—Н13С | 0.9800    |
| Ir1—C17 | 2.263 (2)  | C14—C15  | 1.443 (3) |
| Ir1—Cl1 | 2.4122 (6) | C14—C18  | 1.446 (4) |

| N1—C11      | 1.346 (3)  | C14—C19       | 1.501 (4) |
|-------------|------------|---------------|-----------|
| N1—C7       | 1.366 (3)  | C15—C16       | 1.440 (3) |
| N2—C3       | 1.379 (3)  | C15—C20       | 1.484 (4) |
| N2—C13      | 1.446 (4)  | C16—C17       | 1.454 (4) |
| N2—C12      | 1.446 (4)  | C16—C21       | 1.492 (3) |
| C1—C2       | 1.389 (3)  | C17—C18       | 1.409 (4) |
| C1—C6       | 1.415 (3)  | C17—C22       | 1.491 (4) |
| С2—С3       | 1.413 (3)  | C18—C23       | 1.503 (4) |
| С2—Н2       | 0.9500     | C19—H19A      | 0.9800    |
| C3—C4       | 1.410 (4)  | С19—Н19В      | 0.9800    |
| C4—C5       | 1.380 (4)  | С19—Н19С      | 0.9800    |
| C4—H4       | 0.9500     | С20—Н20А      | 0.9800    |
| С5—С6       | 1.400 (3)  | С20—Н20В      | 0.9800    |
| С5—Н5       | 0.9500     | С20—Н20С      | 0.9800    |
| С6—С7       | 1.445 (3)  | C21—H21A      | 0.9800    |
| С7—С8       | 1.404 (3)  | C21—H21B      | 0.9800    |
| С8—С9       | 1.379 (4)  | C21—H21C      | 0.9800    |
| С8—Н8       | 0.9500     | C22—H22A      | 0.9800    |
| С9—С10      | 1.392 (4)  | С22—Н22В      | 0.9800    |
| С9—Н9       | 0.9500     | С22—Н22С      | 0.9800    |
| C10-C11     | 1.380 (4)  | С23—Н23А      | 0.9800    |
| С10—Н10     | 0.9500     | С23—Н23В      | 0.9800    |
| С11—Н11     | 0.9500     | С23—Н23С      | 0.9800    |
| C1—Ir1—N1   | 77.94 (9)  | N2—C12—H12C   | 109.5     |
| C1—Ir1—C14  | 106.65 (9) | H12A—C12—H12C | 109.5     |
| N1—Ir1—C14  | 166.19 (9) | H12B—C12—H12C | 109.5     |
| C1—Ir1—C16  | 123.20 (9) | N2—C13—H13A   | 109.5     |
| N1—Ir1—C16  | 101.49 (9) | N2—C13—H13B   | 109.5     |
| C14—Ir1—C16 | 64.96 (9)  | H13A—C13—H13B | 109.5     |

| C1—Ir1—C15  | 97.70 (9)   | N2-C13-H13C   | 109.5       |
|-------------|-------------|---------------|-------------|
| N1—Ir1—C15  | 128.32 (8)  | H13A—C13—H13C | 109.5       |
| C14—Ir1—C15 | 38.97 (9)   | H13B—C13—H13C | 109.5       |
| C16—Ir1—C15 | 38.85 (9)   | C15—C14—C18   | 107.3 (2)   |
| C1—Ir1—C18  | 142.46 (9)  | C15—C14—C19   | 126.3 (2)   |
| N1—Ir1—C18  | 139.48 (9)  | C18—C14—C19   | 125.8 (2)   |
| C14—Ir1—C18 | 38.33 (9)   | C15—C14—Ir1   | 70.70 (13)  |
| C16—Ir1—C18 | 63.09 (9)   | C18—C14—Ir1   | 73.73 (14)  |
| C15—Ir1—C18 | 63.77 (9)   | C19—C14—Ir1   | 127.56 (18) |
| C1—Ir1—C17  | 160.69 (10) | C16—C15—C14   | 107.3 (2)   |
| N1—Ir1—C17  | 107.92 (9)  | C16—C15—C20   | 125.5 (2)   |
| C14—Ir1—C17 | 63.57 (10)  | C14—C15—C20   | 127.0 (2)   |
| C16—Ir1—C17 | 38.26 (9)   | C16—C15—Ir1   | 70.48 (13)  |
| C15—Ir1—C17 | 63.98 (9)   | C14—C15—Ir1   | 70.33 (13)  |
| C18—Ir1—C17 | 36.47 (9)   | C20—C15—Ir1   | 128.94 (17) |
| C1—Ir1—Cl1  | 88.67 (7)   | C15—C16—C17   | 108.5 (2)   |
| N1—Ir1—Cl1  | 85.19 (6)   | C15—C16—C21   | 126.1 (2)   |
| C14—Ir1—Cl1 | 107.70 (7)  | C17—C16—C21   | 125.0 (2)   |
| C16—Ir1—Cl1 | 148.11 (7)  | C15—C16—Ir1   | 70.67 (13)  |
| C15—Ir1—Cl1 | 146.49 (6)  | C17—C16—Ir1   | 74.58 (13)  |
| C18—Ir1—Cl1 | 91.51 (7)   | C21—C16—Ir1   | 126.10 (17) |
| C17—Ir1—Cl1 | 109.92 (7)  | C18—C17—C16   | 107.2 (2)   |
| C11—N1—C7   | 119.2 (2)   | C18—C17—C22   | 126.9 (3)   |
| C11—N1—Ir1  | 123.89 (18) | C16—C17—C22   | 125.8 (2)   |
| C7—N1—Ir1   | 116.71 (16) | C18—C17—Ir1   | 70.82 (14)  |
| C3—N2—C13   | 119.8 (2)   | C16—C17—Ir1   | 67.16 (13)  |
| C3—N2—C12   | 119.7 (3)   | C22—C17—Ir1   | 130.6 (2)   |
| C13—N2—C12  | 116.3 (3)   | C17—C18—C14   | 109.5 (2)   |
| C2—C1—C6    | 118.0 (2)   | C17—C18—C23   | 125.7 (3)   |

| C2—C1—Ir1   | 125.72 (17) | C14—C18—C23   | 124.7 (2)   |
|-------------|-------------|---------------|-------------|
| C6—C1—Ir1   | 116.28 (17) | C17—C18—Ir1   | 72.71 (14)  |
| C1—C2—C3    | 122.4 (2)   | C14—C18—Ir1   | 67.94 (13)  |
| C1—C2—H2    | 118.8       | C23—C18—Ir1   | 126.29 (19) |
| С3—С2—Н2    | 118.8       | С14—С19—Н19А  | 109.5       |
| N2—C3—C4    | 121.3 (2)   | C14—C19—H19B  | 109.5       |
| N2—C3—C2    | 120.7 (2)   | H19A—C19—H19B | 109.5       |
| C4—C3—C2    | 118.0 (2)   | С14—С19—Н19С  | 109.5       |
| C5—C4—C3    | 120.5 (2)   | Н19А—С19—Н19С | 109.5       |
| С5—С4—Н4    | 119.8       | H19B—C19—H19C | 109.5       |
| С3—С4—Н4    | 119.8       | С15—С20—Н20А  | 109.5       |
| C4—C5—C6    | 120.7 (2)   | С15—С20—Н20В  | 109.5       |
| С4—С5—Н5    | 119.6       | H20A—C20—H20B | 109.5       |
| С6—С5—Н5    | 119.6       | С15—С20—Н20С  | 109.5       |
| C5—C6—C1    | 120.3 (2)   | H20A—C20—H20C | 109.5       |
| C5—C6—C7    | 124.6 (2)   | H20B—C20—H20C | 109.5       |
| C1—C6—C7    | 115.0 (2)   | C16—C21—H21A  | 109.5       |
| N1—C7—C8    | 119.9 (2)   | C16—C21—H21B  | 109.5       |
| N1—C7—C6    | 114.0 (2)   | H21A—C21—H21B | 109.5       |
| С8—С7—С6    | 126.1 (2)   | C16—C21—H21C  | 109.5       |
| С9—С8—С7    | 120.0 (3)   | H21A—C21—H21C | 109.5       |
| С9—С8—Н8    | 120.0       | H21B—C21—H21C | 109.5       |
| С7—С8—Н8    | 120.0       | С17—С22—Н22А  | 109.5       |
| C8—C9—C10   | 119.6 (2)   | С17—С22—Н22В  | 109.5       |
| С8—С9—Н9    | 120.2       | H22A—C22—H22B | 109.5       |
| С10—С9—Н9   | 120.2       | С17—С22—Н22С  | 109.5       |
| С11—С10—С9  | 118.1 (3)   | H22A—C22—H22C | 109.5       |
| С11—С10—Н10 | 120.9       | H22B—C22—H22C | 109.5       |
| С9—С10—Н10  | 120.9       | C18—C23—H23A  | 109.5       |
| N1-C11-C10     | 123.1 (3)    | С18—С23—Н23В    | 109.5        |
|----------------|--------------|-----------------|--------------|
| N1—C11—H11     | 118.4        | H23A—C23—H23B   | 109.5        |
| С10—С11—Н11    | 118.4        | С18—С23—Н23С    | 109.5        |
| N2—C12—H12A    | 109.5        | H23A—C23—H23C   | 109.5        |
| N2—C12—H12B    | 109.5        | H23B—C23—H23C   | 109.5        |
| H12A—C12—H12B  | 109.5        |                 |              |
| C1—Ir1—N1—C11  | -176.8 (2)   | Cl1—Ir1—C15—C14 | 7.7 (2)      |
| C14—Ir1—N1—C11 | 72.2 (4)     | C1—Ir1—C15—C20  | -15.2 (2)    |
| C16—Ir1—N1—C11 | 61.3 (2)     | N1—Ir1—C15—C20  | 65.5 (3)     |
| C15—Ir1—N1—C11 | 92.9 (2)     | C14—Ir1—C15—C20 | -122.2 (3)   |
| C18—Ir1—N1—C11 | -0.4 (3)     | C16—Ir1—C15—C20 | 120.3 (3)    |
| C17—Ir1—N1—C11 | 22.3 (2)     | C18—Ir1—C15—C20 | -160.8 (3)   |
| Cl1—Ir1—N1—C11 | -87.14 (19)  | C17—Ir1—C15—C20 | 158.4 (3)    |
| C1—Ir1—N1—C7   | -1.37 (17)   | Cl1—Ir1—C15—C20 | -114.5 (2)   |
| C14—Ir1—N1—C7  | -112.4 (4)   | C14—C15—C16—C17 | -4.5 (3)     |
| C16—Ir1—N1—C7  | -123.23 (17) | C20-C15-C16-C17 | 170.0 (2)    |
| C15—Ir1—N1—C7  | -91.70 (19)  | Ir1—C15—C16—C17 | -65.53 (16)  |
| C18—Ir1—N1—C7  | 174.99 (16)  | C14—C15—C16—C21 | -177.9 (2)   |
| C17—Ir1—N1—C7  | -162.30 (16) | C20-C15-C16-C21 | -3.4 (4)     |
| Cl1—Ir1—N1—C7  | 88.30 (16)   | Ir1—C15—C16—C21 | 121.1 (2)    |
| N1—Ir1—C1—C2   | -179.9 (2)   | C14—C15—C16—Ir1 | 61.02 (15)   |
| C14—Ir1—C1—C2  | -13.4 (2)    | C20—C15—C16—Ir1 | -124.5 (2)   |
| C16—Ir1—C1—C2  | -84.0 (2)    | C1—Ir1—C16—C15  | 56.14 (17)   |
| C15—Ir1—C1—C2  | -52.3 (2)    | N1—Ir1—C16—C15  | 139.15 (13)  |
| C18—Ir1—C1—C2  | 4.0 (3)      | C14—Ir1—C16—C15 | -38.01 (13)  |
| C17—Ir1—C1—C2  | -69.9 (4)    | C18—Ir1—C16—C15 | -80.80 (15)  |
| Cl1—Ir1—C1—C2  | 94.7 (2)     | C17—Ir1—C16—C15 | -116.4 (2)   |
| N1—Ir1—C1—C6   | 0.98 (16)    | Cl1—Ir1—C16—C15 | -121.37 (14) |

| C14—Ir1—C1—C6 | 167.52 (17)  | C1—Ir1—C16—C17  | 172.56 (14)  |
|---------------|--------------|-----------------|--------------|
| C16—Ir1—C1—C6 | 96.93 (18)   | N1—Ir1—C16—C17  | -104.43 (15) |
| C15—Ir1—C1—C6 | 128.64 (17)  | C14—Ir1—C16—C17 | 78.41 (16)   |
| C18—Ir1—C1—C6 | -175.14 (16) | C15—Ir1—C16—C17 | 116.4 (2)    |
| C17—Ir1—C1—C6 | 111.0 (3)    | C18—Ir1—C16—C17 | 35.63 (15)   |
| Cl1—Ir1—C1—C6 | -84.39 (17)  | Cl1—Ir1—C16—C17 | -5.0 (2)     |
| C6—C1—C2—C3   | -0.6 (3)     | C1—Ir1—C16—C21  | -65.0 (3)    |
| Ir1—C1—C2—C3  | -179.67 (18) | N1—Ir1—C16—C21  | 18.0 (2)     |
| C13—N2—C3—C4  | -173.4 (3)   | C14—Ir1—C16—C21 | -159.2 (3)   |
| C12—N2—C3—C4  | -17.1 (4)    | C15—Ir1—C16—C21 | -121.2 (3)   |
| C13—N2—C3—C2  | 8.4 (4)      | C18—Ir1—C16—C21 | 158.0 (3)    |
| C12—N2—C3—C2  | 164.6 (3)    | C17—Ir1—C16—C21 | 122.4 (3)    |
| C1—C2—C3—N2   | 179.5 (2)    | Cl1—Ir1—C16—C21 | 117.5 (2)    |
| C1—C2—C3—C4   | 1.2 (4)      | C15—C16—C17—C18 | 3.2 (3)      |
| N2—C3—C4—C5   | -178.6 (2)   | C21—C16—C17—C18 | 176.7 (2)    |
| C2—C3—C4—C5   | -0.3 (4)     | Ir1—C16—C17—C18 | -59.77 (17)  |
| C3—C4—C5—C6   | -1.1 (4)     | C15—C16—C17—C22 | -172.5 (2)   |
| C4—C5—C6—C1   | 1.7 (4)      | C21—C16—C17—C22 | 0.9 (4)      |
| C4—C5—C6—C7   | -179.6 (2)   | Ir1—C16—C17—C22 | 124.5 (3)    |
| C2—C1—C6—C5   | -0.8 (3)     | C15—C16—C17—Ir1 | 62.99 (15)   |
| Ir1—C1—C6—C5  | 178.32 (18)  | C21—C16—C17—Ir1 | -123.6 (2)   |
| C2—C1—C6—C7   | -179.7 (2)   | C1—Ir1—C17—C18  | 100.0 (3)    |
| Ir1—C1—C6—C7  | -0.5 (3)     | N1—Ir1—C17—C18  | -155.04 (15) |
| C11—N1—C7—C8  | -2.1 (3)     | C14—Ir1—C17—C18 | 36.74 (15)   |
| Ir1—N1—C7—C8  | -177.76 (18) | C16—Ir1—C17—C18 | 119.1 (2)    |
| C11—N1—C7—C6  | 177.1 (2)    | C15—Ir1—C17—C18 | 80.40 (16)   |
| Ir1—N1—C7—C6  | 1.5 (3)      | Cl1—Ir1—C17—C18 | -63.69 (16)  |
| C5—C6—C7—N1   | -179.4 (2)   | C1—Ir1—C17—C16  | -19.1 (4)    |

| C1—C6—C7—N1     | -0.6 (3)     | N1—Ir1—C17—C16  | 85.88 (15)  |
|-----------------|--------------|-----------------|-------------|
| С5—С6—С7—С8     | -0.2 (4)     | C14—Ir1—C17—C16 | -82.35 (16) |
| C1—C6—C7—C8     | 178.6 (2)    | C15—Ir1—C17—C16 | -38.69 (14) |
| N1—C7—C8—C9     | 1.5 (4)      | C18—Ir1—C17—C16 | -119.1 (2)  |
| С6—С7—С8—С9     | -177.7 (2)   | Cl1—Ir1—C17—C16 | 177.22 (13) |
| C7—C8—C9—C10    | -0.3 (4)     | C1—Ir1—C17—C22  | -137.5 (3)  |
| C8—C9—C10—C11   | -0.2 (4)     | N1—Ir1—C17—C22  | -32.5 (3)   |
| C7—N1—C11—C10   | 1.6 (4)      | C14—Ir1—C17—C22 | 159.3 (3)   |
| Ir1—N1—C11—C10  | 177.0 (2)    | C16—Ir1—C17—C22 | -118.3 (3)  |
| C9—C10—C11—N1   | -0.4 (4)     | C15—Ir1—C17—C22 | -157.0 (3)  |
| C1—Ir1—C14—C15  | -81.53 (15)  | C18—Ir1—C17—C22 | 122.6 (3)   |
| N1—Ir1—C14—C15  | 26.1 (4)     | Cl1—Ir1—C17—C22 | 58.9 (3)    |
| C16—Ir1—C14—C15 | 37.88 (14)   | C16—C17—C18—C14 | -0.7 (3)    |
| C18—Ir1—C14—C15 | 115.5 (2)    | C22—C17—C18—C14 | 175.0 (3)   |
| C17—Ir1—C14—C15 | 80.52 (15)   | Ir1—C17—C18—C14 | -58.14 (17) |
| Cl1—Ir1—C14—C15 | -175.54 (12) | C16—C17—C18—C23 | -179.9 (2)  |
| C1—Ir1—C14—C18  | 162.97 (14)  | C22—C17—C18—C23 | -4.2 (4)    |
| N1—Ir1—C14—C18  | -89.4 (4)    | Ir1—C17—C18—C23 | 122.7 (3)   |
| C16—Ir1—C14—C18 | -77.62 (15)  | C16—C17—C18—Ir1 | 57.47 (16)  |
| C15—Ir1—C14—C18 | -115.5 (2)   | C22—C17—C18—Ir1 | -126.8 (3)  |
| C17—Ir1—C14—C18 | -34.98 (14)  | C15—C14—C18—C17 | -2.1 (3)    |
| Cl1—Ir1—C14—C18 | 68.96 (14)   | C19—C14—C18—C17 | -174.0 (2)  |
| C1—Ir1—C14—C19  | 39.9 (3)     | Ir1—C14—C18—C17 | 61.05 (18)  |
| N1—Ir1—C14—C19  | 147.6 (3)    | C15—C14—C18—C23 | 177.1 (2)   |
| C16—Ir1—C14—C19 | 159.4 (3)    | C19—C14—C18—C23 | 5.2 (4)     |
| C15—Ir1—C14—C19 | 121.5 (3)    | Ir1—C14—C18—C23 | -119.7 (3)  |
| C18—Ir1—C14—C19 | -123.0 (3)   | C15—C14—C18—Ir1 | -63.16 (15) |
| C17—Ir1—C14—C19 | -158.0 (3)   | C19—C14—C18—Ir1 | 124.9 (2)   |

| Cl1—Ir1—C14—C19 | -54.1 (2)    | C1—Ir1—C18—C17  | -147.69 (16) |
|-----------------|--------------|-----------------|--------------|
| C18—C14—C15—C16 | 4.0 (3)      | N1—Ir1—C18—C17  | 38.2 (2)     |
| C19—C14—C15—C16 | 175.9 (2)    | C14—Ir1—C18—C17 | -120.3 (2)   |
| Ir1—C14—C15—C16 | -61.12 (15)  | C16—Ir1—C18—C17 | -37.36 (15)  |
| C18—C14—C15—C20 | -170.3 (2)   | C15—Ir1—C18—C17 | -81.01 (16)  |
| C19—C14—C15—C20 | 1.5 (4)      | Cl1—Ir1—C18—C17 | 122.53 (14)  |
| Ir1—C14—C15—C20 | 124.5 (2)    | C1—Ir1—C18—C14  | -27.4 (2)    |
| C18—C14—C15—Ir1 | 65.17 (16)   | N1—Ir1—C18—C14  | 158.44 (14)  |
| C19—C14—C15—Ir1 | -123.0 (2)   | C16—Ir1—C18—C14 | 82.91 (15)   |
| C1—Ir1—C15—C16  | -135.48 (14) | C15—Ir1—C18—C14 | 39.26 (14)   |
| N1—Ir1—C15—C16  | -54.79 (17)  | C17—Ir1—C18—C14 | 120.3 (2)    |
| C14—Ir1—C15—C16 | 117.5 (2)    | Cl1—Ir1—C18—C14 | -117.20 (13) |
| C18—Ir1—C15—C16 | 78.90 (15)   | C1—Ir1—C18—C23  | 90.3 (3)     |
| C17—Ir1—C15—C16 | 38.11 (14)   | N1—Ir1—C18—C23  | -83.8 (3)    |
| Cl1—Ir1—C15—C16 | 125.22 (13)  | C14—Ir1—C18—C23 | 117.7 (3)    |
| C1—Ir1—C15—C14  | 107.02 (15)  | C16—Ir1—C18—C23 | -159.4 (3)   |
| N1—Ir1—C15—C14  | -172.30 (13) | C15—Ir1—C18—C23 | 157.0 (3)    |
| C16—Ir1—C15—C14 | -117.5 (2)   | C17—Ir1—C18—C23 | -122.0 (3)   |
| C18—Ir1—C15—C14 | -38.61 (14)  | Cl1—Ir1—C18—C23 | 0.5 (2)      |
| C17—Ir1—C15—C14 | -79.40 (15)  |                 |              |

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

## **Computing details**

Data collection: <u>Bruker APEX2</u>; cell refinement: <u>Bruker SAINT</u>; data reduction: <u>Bruker SAINT</u>; program(s) used to solve structure: <u>SHELXS97 (Sheldrick, 2008)</u>; program(s) used to refine structure: <u>SHELXL97 (Sheldrick, 1997)</u>; molecular graphics: <u>Bruker SHELXTL</u>; software used to prepare material for publication: <u>Bruker SHELXTL</u>.

# 3a

Table 1. Crystal data for 3a

| Compound                                    | 3a                                                                                                                                |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Molecular formula                           | C <sub>33</sub> H <sub>43</sub> ClIr <sub>2</sub> N <sub>2</sub> ,C <sub>3</sub> H <sub>6</sub> O <sub>2</sub> (F <sub>6</sub> P) |
| Molecular weight                            | 1235.56                                                                                                                           |
| Crystal habit                               | Orange Needle                                                                                                                     |
| Crystal dimensions(mm)                      | 0.28x0.12x0.10                                                                                                                    |
| Crystal system                              | monoclinic                                                                                                                        |
| Space group                                 | $P2_1/c$                                                                                                                          |
| a(Å)                                        | 13.019(1)                                                                                                                         |
| b(Å)                                        | 20.090(1)                                                                                                                         |
| c(Å)                                        | 17.132(1)                                                                                                                         |
| α(°)                                        | 90.00                                                                                                                             |
| β(°)                                        | 108.824(1)                                                                                                                        |
| γ(°)                                        | 90.00                                                                                                                             |
| $V(Å^3)$                                    | 4241.2(5)                                                                                                                         |
| Z                                           | 4                                                                                                                                 |
| $d(g-cm^{-3})$                              | 1.935                                                                                                                             |
| F(000)                                      | 2384                                                                                                                              |
| $\mu(\text{cm}^{-1})$                       | 6.492                                                                                                                             |
| Absorption corrections                      | multi-scan; 0.2637 min, 0.5629 max                                                                                                |
| Diffractometer                              | KappaCCD                                                                                                                          |
| X-ray source                                | ΜοΚα                                                                                                                              |
| λ(Å)                                        | 0.71069                                                                                                                           |
| Monochromator                               | graphite                                                                                                                          |
| Т (К)                                       | 150.0(1)                                                                                                                          |
| Scan mode                                   | phi and omega scans                                                                                                               |
| Maximum θ                                   | 30.02                                                                                                                             |
| HKL ranges                                  | -15 18 ; -24 28 ; -24 22                                                                                                          |
| Reflections measured                        | 30593                                                                                                                             |
| Unique data                                 | 12327                                                                                                                             |
| Rint                                        | 0.0464                                                                                                                            |
| Reflections used                            | 8865                                                                                                                              |
| Criterion                                   | $I > 2\sigma I$ )                                                                                                                 |
| Refinement type                             | Fsqd                                                                                                                              |
| Hydrogen atoms                              | constr                                                                                                                            |
| Parameters refined                          | 519                                                                                                                               |
| Reflections / parameter                     | 17                                                                                                                                |
| wR2                                         | 0.1312                                                                                                                            |
| R1                                          | 0.0440                                                                                                                            |
| Weights a, b                                | 0.0768 ; 0.0000                                                                                                                   |
| GoF                                         | 0.990                                                                                                                             |
| difference peak / hole (e Å <sup>-3</sup> ) | 2.681(0.354) / -2.894(0.354)                                                                                                      |

| Table 2.   | Atomic   | Coordin | lates | (A | x   | 10′ | ^4) | and | equivalent | isotropic |
|------------|----------|---------|-------|----|-----|-----|-----|-----|------------|-----------|
| displaceme | ent para | ameters | (A^2  | х  | 10' | `3) | for | 3a  |            |           |

| atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x                                                                                                                                 | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U(eq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| atom<br>Ir(1)<br>Ir(2)<br>Cl(1)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)<br>C(5)<br>C(6)<br>C(7)<br>C(3)<br>C(4)<br>C(5)<br>C(6)<br>C(7)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(12)<br>C(20)<br>C(21)<br>C(22)<br>C(22)<br>C(22)<br>C(23)<br>C(22)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(21)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(21)<br>C(22)<br>C(23)<br>C(23)<br>C(22)<br>C(23)<br>C(31)<br>C(32)<br>C(31)<br>C(32)<br>C(31)<br>C(32)<br>C(31)<br>F(1)<br>F(2)<br>F(3)<br>F(2)<br>F(3)<br>F(2)<br>F(3)<br>F(2)<br>F(3)<br>F(2)<br>F(3)<br>F(2)<br>F(3)<br>F(2)<br>F(3)<br>F(2)<br>F(3)<br>F(2)<br>F(3)<br>F(2)<br>F(3)<br>F(2)<br>F(3)<br>F(3)<br>F(2)<br>F(3)<br>F(2)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(2)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F(3)<br>F( | $\begin{array}{c} x\\$                                                                                                            | $\begin{array}{c} y\\ 2201(1)\\ 3280(1)\\ 2616(1)\\ 2388(2)\\ 3580(2)\\ 2998(3)\\ 3295(3)\\ 3295(3)\\ 3206(3)\\ 2600(3)\\ 2242(3)\\ 2431(3)\\ 2082(3)\\ 1489(3)\\ 1209(3)\\ 1514(4)\\ 2100(3)\\ 4158(3)\\ 3437(4)\\ 2048(3)\\ 1552(3)\\ 1458(3)\\ 3437(4)\\ 2048(3)\\ 1552(3)\\ 1156(3)\\ 1407(3)\\ 1956(3)\\ 2547(4)\\ 1432(4)\\ 559(3)\\ 1093(3)\\ 2547(4)\\ 1432(4)\\ 559(3)\\ 1093(3)\\ 2316(3)\\ 3871(3)\\ 3951(3)\\ 4226(3)\\ 4351(3)\\ 4093(3)\\ 3623(4)\\ 3782(4)\\ 4405(4)\\ 4707(4)\\ 4162(5)\\ 328(1)\\ 261(2)\\ -365(3)\\ 386(2)\\ 1013(2)\\ -45(2)\\ 711(3)\\ 4520(1)\\ 3775(3)\\ 4470(4)\\ \end{array}$ | z<br>-1750(1)<br>-2826(1)<br>-1792(1)<br>-3482(3)<br>-1753(3)<br>-2579(4)<br>-2032(4)<br>-2129(4)<br>-2560(4)<br>-3029(4)<br>-3029(4)<br>-3045(4)<br>-3528(4)<br>-3528(4)<br>-3528(4)<br>-3528(4)<br>-3528(4)<br>-3528(4)<br>-4349(5)<br>-4287(5)<br>-3855(6)<br>-1256(5)<br>-1805(6)<br>-453(4)<br>-919(4)<br>-1350(4)<br>-1129(4)<br>-583(4)<br>127(4)<br>-941(6)<br>-1854(5)<br>-1385(5)<br>-118(4)<br>-3692(4)<br>-2900(5)<br>-2378(4)<br>-2871(5)<br>-3681(5)<br>-4445(6)<br>-2616(7)<br>-1481(6)<br>-2589(8)<br>-4423(6)<br>-4591(1)<br>-4697(3)<br>-4127(4)<br>-489(3)<br>-5077(4)<br>-5453(3)<br>-3758(3)<br>-3758(3)<br>-3936(1)<br>-3868(5)<br>-3211(4) | $\begin{array}{c} U(eq) \\ \hline \\ 23(1) \\ 25(1) \\ 52(1) \\ 52(1) \\ 32(1) \\ 24(1) \\ 24(1) \\ 24(1) \\ 24(1) \\ 24(1) \\ 29(1) \\ 26(1) \\ 28(1) \\ 36(1) \\ 49(2) \\ 56(2) \\ 50(2) \\ 44(2) \\ 49(2) \\ 56(2) \\ 50(2) \\ 44(2) \\ 49(2) \\ 34(1) \\ 36(1) \\ 33(1) \\ 30(1) \\ 54(2) \\ 56(2) \\ 52(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43(2) \\ 43($ |
| F (4)<br>F (5)<br>F (6)<br>F (2)<br>F (7)<br>F (8)<br>F (9)<br>F (10)<br>F (11)<br>F (12)<br>O (1)<br>C (34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2496(4)<br>-2473(4)<br>-2097(5)<br>-1370(2)<br>-1090(10)<br>-1816(7)<br>-1550(10)<br>-231(6)<br>-2436(6)<br>-9219(7)<br>-8625(8) | -45(2)<br>-45(2)<br>711(3)<br>4520(1)<br>3775(3)<br>4470(4)<br>5262(3)<br>4551(5)<br>4665(5)<br>4375(4)<br>2052(4)<br>1586(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5077(4)<br>-5453(3)<br>-3758(3)<br>-3936(1)<br>-3868(5)<br>-3211(4)<br>-3986(5)<br>-4631(6)<br>-3253(6)<br>-4605(5)<br>-2762(6)<br>-2621(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69(2)<br>65(1)<br>88(2)<br>45(1)<br>163(4)<br>115(3)<br>174(5)<br>171(4)<br>162(4)<br>148(4)<br>110(3)<br>64(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C(35)<br>C(36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -7710(10)<br>-8740(20)                                                                                                            | 1556(8)<br>1052(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1860(10)<br>-3210(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 142(7)<br>136(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

U(eq) is defined as 1/3 the trace of the Uij tensor.

| Table 3. Bond lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (A) and angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (deg) for 3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ir(1) -C(14) $Ir(1) -C(6)$ $Ir(1) -C(6)$ $Ir(1) -C(3)$ $Ir(2) -N(1)$ $Ir(2) -C(26)$ $Ir(2) -C(24)$ $Ir(2) -C(11)$ $N(1) -C(11)$ $N(1) -C(11)$ $N(1) -C(11)$ $N(2) -C(3)$ $C(3) -C(4)$ $C(4) -H(4)$ $C(5) -H(5)$ $C(7) -C(8)$ $C(8) -H(8)$ $C(9) -H(9)$ $C(10) -H(10)$ $C(12) -H(12A)$ $C(12) -H(12A)$ $C(12) -H(12A)$ $C(12) -H(12B)$ $C(14) -C(15)$ $C(14) -C(15)$ $C(14) -C(15)$ $C(16) -C(21)$ $C(17) -C(22)$ $C(19) -H(19A)$ $C(19) -H(19C)$ $C(20) -H(20B)$ $C(21) -H(21A)$ $C(21) -H(21A)$ $C(23) -H(23A)$ $C(30) -H(30A)$ $C(30) -H(30A)$ $C(30) -H(30A)$ $C(30) -H(30A)$ $C(30) -H(31B)$ $C(32) -H(32A)$ $C(32) -H(32A)$ $C(32) -H(32A)$ $C(33) -H(33B)$ $P(1) -F(6)$ $P(1) -F(2)$ $P(1) -F(5)$ $P(2) -F(10)$ $O(1) -C(34)$ $C(34) -C(35)$ $C(36) -H(36A)$ $C(36) -H(36C)$ | 2.166(6)<br>2.186(6)<br>2.202(6)<br>2.234(5)<br>2.261(6)<br>2.444(5)<br>2.087(5)<br>2.175(6)<br>2.373(2)<br>1.36(1)<br>1.453(8)<br>1.426(8)<br>1.463(8)<br>1.463(8)<br>1.463(8)<br>1.456(8)<br>0.9500<br>0.9500<br>0.9500<br>0.9500<br>0.9500<br>0.9500<br>0.9500<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9 | Ir (1) -C (15) Ir (1) -C (17) Ir (1) -C (2) Ir (1) -C (1) Ir (2) -C (28) Ir (2) -C (27) Ir (2) -C (25) N (1) -C (7) N (2) -C (3) N (2) -C (12) C (1) -C (6) C (2) -H (2) C (4) -C (5) C (5) -C (6) C (6) -C (7) C (8) -C (9) C (9) -C (10) C (10) -C (11) C (11) -H (11) C (12) -H (12B) C (13) -H (13A) C (13) -H (13C) C (14) -C (18) C (15) -C (16) C (16) -C (17) C (17) -C (18) C (16) -C (17) C (17) -C (18) C (19) -H (19B) C (20) -H (20A) C (20) -H (20A) C (20) -H (20A) C (21) -H (21B) C (22) -H (22A) C (22) -H (22A) C (22) -H (22A) C (22) -H (22B) C (24) -C (25) C (24) -C (25) C (24) -C (25) C (24) -C (29) C (25) -C (30) C (26) -C (31) C (27) -C (32) C (29) -H (29A) C (29) -H (29A) C (20) -H (30B) C (31) -H (31A) C (31) -H (31A) C (31) -H (31A) C (31) -H (32B) C (33) -H (33A) C (33) -H (33A) C (33) -H (33A) C (33) -H (35A) C (35) -H (35A) C (36) -H (36B) | 2.184(6)<br>2.193(6)<br>2.218(5)<br>2.254(5)<br>2.390(6)<br>2.021(6)<br>2.145(6)<br>2.145(6)<br>2.188(6)<br>2.251(6)<br>1.349(8)<br>1.326(7)<br>1.464(8)<br>1.443(8)<br>0.9500<br>1.40(1)<br>1.434(8)<br>1.472(8)<br>1.38(1)<br>1.39(1)<br>1.37(1)<br>0.9500<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800 |
| C(14) - Ir(1) - C(15)<br>C(15) - Ir(1) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.5(2)<br>116.6(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(14) - Ir(1) - C(5)<br>C(14) - Ir(1) - C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150.0(3)<br>38.6(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Supplementary Material (ESI) for Chemical             | Communications      |                                                |               |
|-------------------------------------------------------|---------------------|------------------------------------------------|---------------|
| This journal is (c) The Royal Society of Che          |                     | $G(E) = T_{r_{2}}(1) = G(10)$                  | 1(5 7(2))     |
| C(15) - II(1) - C(16)                                 | 64.3(2)             | C(15) = Tr(1) - C(16)                          | 103.7(2)      |
| C(14) - 11(1) - C(10)<br>C(5) - Tr(1) - C(16)         | 04.4(2)<br>107 0(0) | C(12) - II(1) - C(10)<br>C(12) - Ir(1) - C(16) | 50.0(2)       |
| C(14) = Tr(1) = C(17)                                 | 107.2(2)            | C(15) - 1r(1) - C(10)                          | $63 \ 9(2)$   |
| C(14) = II(1) = C(17)<br>C(5) = Ir(1) = C(17)         | 128 5(2)            | C(18) = Tr(1) = C(17)                          | 37 7(2)       |
| C(16) = Tr(1) = C(17)                                 | 37 9(2)             | C(14) - Tr(1) - C(4)                           | 118 8(2)      |
| C(15) - Tr(1) - C(4)                                  | 101.9(2)            | C(5) - Tr(1) - C(4)                            | 37.0(2)       |
| C(18) - Ir(1) - C(4)                                  | 156.4(2)            | C(16) - Ir(1) - C(4)                           | 118.2(2)      |
| C(17) - Ir(1) - C(4)                                  | 155.0(2)            | C(14) - Ir(1) - C(2)                           | 110.8(2)      |
| C(15) - Ir(1) - C(2)                                  | 139.1(2)            | C(5) - Ir(1) - C(2)                            | 78.5(2)       |
| C(18) - Ir(1) - C(2)                                  | 110.6(2)            | C(16)-Ir(1)-C(2)                               | 174.3(2)      |
| C(17) - Ir(1) - C(2)                                  | 138.1(2)            | C(4) - Ir(1) - C(2)                            | 66.3(2)       |
| C(14) - Ir(1) - C(6)                                  | 172.1(2)            | C(15) - Ir(1) - C(6)                           | 148.5(2)      |
| C(5) - Ir(1) - C(6)                                   | 37.6(2)             | C(18) - Ir(1) - C(6)                           | 135.0(2)      |
| C(16) - Ir(1) - C(6)                                  | 119.1(2)            | C(17) - Ir(1) - C(6)                           | 113.9(2)      |
| C(4) - Ir(1) - C(6)                                   | 66.7(2)             | C(2) - Ir(1) - C(6)                            | 65.4(2)       |
| C(14) - Ir(1) - C(1)                                  | 137.4(2)            | C(15) - Ir(1) - C(1)                           | 174.6(2)      |
| C(5) - Ir(1) - C(1)                                   | 65.9(2)             | C(18) - Ir(1) - C(1)                           | 114.6(2)      |
| C(10) - Ir(1) - C(1)                                  | 140.4(2)            | C(1) - Ir(1) - C(1)<br>C(2) - Tr(1) - C(1)     | 118.9(2)      |
| C(4) - II(1) - C(1)                                   | 77.2(2)             | C(2) - II(1) - C(1)<br>C(14) = Tr(1) - C(2)    | 105 4(2)      |
| C(0) = II(1) = C(1)<br>C(15) = Ir(1) = C(3)           | 113 0(2)            | C(14) - 11(1) - C(3)<br>C(5) - Tr(1) - C(3)    | 103.4(2)      |
| C(18) - Tr(1) - C(3)                                  | 129 2(2)            | C(16) - Tr(1) - C(3)                           | 146 3(2)      |
| C(17) - Tr(1) - C(3)                                  | 166.8(2)            | C(4) - Tr(1) - C(3)                            | 35.9(2)       |
| C(2) - Ir(1) - C(3)                                   | 36.0(2)             | C(6) - Ir(1) - C(3)                            | 75.7(2)       |
| C(1) - Ir(1) - C(3)                                   | 63.2(2)             | C(1) - Ir(2) - N(1)                            | 78.7(2)       |
| C(1) - Ir(2) - C(28)                                  | 107.1(2)            | N(1) - Ir(2) - C(28)                           | 108.8(2)      |
| C(1) - Ir(2) - C(26)                                  | 120.6(3)            | N(1) - Ir(2) - C(26)                           | 160.4(2)      |
| C(28) - Ir(2) - C(26)                                 | 64.4(3)             | C(1) - Ir(2) - C(27)                           | 96.5(2)       |
| N(1) - Ir(2) - C(27)                                  | 144.7(3)            | C(28) - Ir(2) - C(27)                          | 38.8(3)       |
| C(26) - Ir(2) - C(27)                                 | 38.2(3)             | C(1) - Ir(2) - C(24)                           | 143.6(3)      |
| N(1) - Ir(2) - C(24)                                  | 99.8(2)             | C(28) - Ir(2) - C(24)                          | 38.4(3)       |
| C(26) - Ir(2) - C(24)<br>C(1) = Ir(2) - C(25)         | $(5) \cdot (5)$     | C(2/) - Ir(2) - C(24)<br>N(1) $Tr(2) - C(25)$  | 63.7(3)       |
| C(1) - II(2) - C(25)<br>C(28) = Irr(2) - C(25)        | 100.2(2)            | N(1) - II(2) - C(25)<br>C(26) Tr(2) C(25)      | 122.4(2)      |
| C(20) = Ir(2) = C(25)<br>C(27) = Ir(2) = C(25)        | 63.4(2)             | C(24) = Tr(2) = C(25)                          | 36 5(3)       |
| C(1) - Tr(2) - C1(1)                                  | 96.1(2)             | N(1) - Tr(2) - C1(1)                           | 84.5(2)       |
| C(28) - Ir(2) - Cl(1)                                 | 155.0(2)            | C(26) - Ir(2) - Cl(1)                          | 95.9(2)       |
| C(27) - Ir(2) - Cl(1)                                 | 130.8(2)            | C(24) - Ir(2) - Cl(1)                          | 120.1(2)      |
| C(25) - Ir(2) - Cl(1)                                 | 91.7(2)             | C(7) - N(1) - C(11)                            | 118.7(5)      |
| C(7) - N(1) - Ir(2)                                   | 118.3(4)            | C(11) - N(1) - Ir(2)                           | 123.0(4)      |
| C(3)-N(2)-C(13)                                       | 122.0(5)            | C(3)-N(2)-C(12)                                | 121.6(5)      |
| C(13) - N(2) - C(12)                                  | 116.4(5)            | C(2) - C(1) - C(6)                             | 116.5(5)      |
| C(2) - C(1) - Ir(2)                                   | 129.0(4)            | C(6) - C(1) - Ir(2)                            | 114.5(4)      |
| C(2) - C(1) - Ir(1)                                   | 67.0(3)             | C(6) - C(1) - Ir(1)                            | 67.1(3)       |
| $\Gamma(2) - C(1) - \Gamma(1)$<br>C(1) - C(2) - Tr(1) | 138.9(3)            | C(1) - C(2) - C(3)<br>C(2) - C(2) - Tr(1)      | 122.4(5)      |
| C(1) - C(2) - H(2)                                    | 118 8               | C(3) = C(2) = H(2)                             | 118 8         |
| Tr(1) - C(2) - H(2)                                   | 115.0               | N(2) - C(3) - C(4)                             | 120.9(5)      |
| N(2) - C(3) - C(2)                                    | 123.8(5)            | C(4) - C(3) - C(2)                             | 114.6(5)      |
| N(2) - C(3) - Ir(1)                                   | 134.2(4)            | C(4) - C(3) - Ir(1)                            | 64.2(3)       |
| C(2) - C(3) - Ir(1)                                   | 64.9(3)             | C(5) - C(4) - C(3)                             | 120.8(5)      |
| C(5) - C(4) - Ir(1)                                   | 69.6(3)             | C(3) - C(4) - Ir(1)                            | 79.9(3)       |
| C(5)-C(4)-H(4)                                        | 119.6               | C(3)-C(4)-H(4)                                 | 119.6         |
| Ir(1) - C(4) - H(4)                                   | 121.9               | C(4) - C(5) - C(6)                             | 121.1(5)      |
| C(4) - C(5) - Ir(1)                                   | 73.4(3)             | C(6) - C(5) - Ir(1)                            | 74.1(3)       |
| C(4) - C(5) - H(5)                                    | 119.4               | C(6) - C(5) - H(5)                             | 119.4         |
| Lr(1) - U(5) - H(5)                                   | 124.8<br>124 0/5)   | C(5) - C(6) - C(1)<br>C(1) - C(6) - C(7)       | $\pm 20.3(5)$ |
| $C(5) - C(6) - T \sim (1)$                            | 124.U(D)            | C(1) = C(0) = C(1)<br>C(1) = C(6) = Tr(1)      | 110.0(0)      |
| C(3) - C(0) - II(1)<br>C(7) - C(6) - Ir(1)            | 127.9(4)            | N(1) - C(7) - C(8)                             | $122 \ 4(6)$  |
| N(1) - C(7) - C(6)                                    | 112.1(5)            | C(8) - C(7) - C(6)                             | 125.4(6)      |
| C(9) - C(8) - C(7)                                    | 118.5(6)            | C(9) - C(8) - H(8)                             | 120.8         |
| C(7) - C(8) - H(8)                                    | 120.8               | C(8) - C(9) - C(10)                            | 119.4(6)      |
| С(8)-С(9)-Н(9)                                        | 120.3               | C(10) - C(9) - H(9)                            | 120.3         |
| C(11)-C(10)-C(9)                                      | 119.1(7)            | C(11)-C(10)-H(10)                              | 120.4         |
| C(9)-C(10)-H(10)                                      | 120.4               | N(1) - C(11) - C(10)                           | 121.8(7)      |

| Supplementary Material (ESI) for Chemical This journal is (c) The Royal Society of Che | Communications       |                                                    |                       |
|----------------------------------------------------------------------------------------|----------------------|----------------------------------------------------|-----------------------|
| N(1) - C(11) - H(11)                                                                   | 119.1                | C(10)-C(11)-H(11)                                  | 119.1                 |
| N(2) - C(12) - H(12A)                                                                  | 109.5                | N(2)-C(12)-H(12B)                                  | 109.5                 |
| H(12A)-C(12)-H(12B)                                                                    | 109.5                | N(2)-C(12)-H(12C)                                  | 109.5                 |
| H(12A)-C(12)-H(12C)                                                                    | 109.5                | H(12B)-C(12)-H(12C)                                | 109.5                 |
| N(2)-C(13)-H(13A)                                                                      | 109.5                | N(2)-C(13)-H(13B)                                  | 109.5                 |
| H(13A) - C(13) - H(13B)                                                                | 109.5                | N(2) - C(13) - H(13C)                              | 109.5                 |
| H(13A) - C(13) - H(13C)                                                                | 109.5                | H(13B) - C(13) - H(13C)                            | 109.5                 |
| C(13) - C(14) - C(16)<br>C(18) - C(14) - C(19)                                         | 106.5(5)<br>125.9(6) | C(15) - C(14) - C(19)<br>C(15) - C(14) - Tr(1)     | 125.7(7)<br>71 $A(A)$ |
| C(18) - C(14) - Ir(1)                                                                  | 71.7(3)              | C(19) - C(14) - Ir(1)                              | 126.1(4)              |
| C(14) - C(15) - C(16)                                                                  | 107.6(6)             | C(14) - C(15) - C(20)                              | 127.4(7)              |
| C(16)-C(15)-C(20)                                                                      | 124.9(7)             | C(14)-C(15)-Ir(1)                                  | 70.1(4)               |
| C(16) - C(15) - Ir(1)                                                                  | 71.4(4)              | C(20) - C(15) - Ir(1)                              | 126.0(5)              |
| C(17) - C(16) - C(15)                                                                  | 107.5(5)             | C(17) - C(16) - C(21)                              | 127.3(6)              |
| C(15) - C(16) - C(21)<br>C(15) - C(16) - Tro(1)                                        | 124.9(6)             | C(17) - C(16) - Ir(1)                              | 71.6(3)               |
| C(13) - C(10) - II(1)<br>C(18) - C(17) - C(16)                                         | 10.0(3)<br>108.6(5)  | C(21) - C(10) - II(1)<br>C(18) - C(17) - C(22)     | 120.4(5)<br>127 3(6)  |
| C(16) - C(17) - C(22)                                                                  | 123.9(6)             | C(18) - C(17) - Tr(1)                              | 70.2(3)               |
| C(16) - C(17) - Ir(1)                                                                  | 70.4(3)              | C(22) - C(17) - Ir(1)                              | 129.2(5)              |
| C(17) - C(18) - C(14)                                                                  | 108.0(5)             | C(17)-C(18)-C(23)                                  | 126.5(6)              |
| C(14)-C(18)-C(23)                                                                      | 124.9(6)             | C(17) - C(18) - Ir(1)                              | 72.1(3)               |
| C(14) - C(18) - Ir(1)                                                                  | 69.7(3)              | C(23)-C(18)-Ir(1)                                  | 130.6(4)              |
| C(14) - C(19) - H(19A)                                                                 | 109.5                | C(14) - C(19) - H(19B)                             | 109.5                 |
| H(19A) - C(19) - H(19B)<br>H(19A) - C(19) - H(19C)                                     | 109.5                | C(14) - C(19) - H(19C)<br>H(19B) - C(19) - H(19C)  | 109.5                 |
| C(15) - C(20) - H(20A)                                                                 | 109.5                | C(15) - C(20) - H(20B)                             | 109.5                 |
| H(20A) - C(20) - H(20B)                                                                | 109.5                | C(15) - C(20) - H(20C)                             | 109.5                 |
| H(20A)-C(20)-H(20C)                                                                    | 109.5                | H(20B)-C(20)-H(20C)                                | 109.5                 |
| C(16)-C(21)-H(21A)                                                                     | 109.5                | C(16)-C(21)-H(21B)                                 | 109.5                 |
| H(21A)-C(21)-H(21B)                                                                    | 109.5                | С(16)-С(21)-Н(21С)                                 | 109.5                 |
| H(21A) - C(21) - H(21C)                                                                | 109.5                | H(21B) - C(21) - H(21C)                            | 109.5                 |
| C(17) - C(22) - H(22A)<br>H(22A) - C(22) - H(22B)                                      | 109.5                | C(17) - C(22) - H(22B)                             | 109.5                 |
| H(22A) - C(22) - H(22B)<br>H(22A) - C(22) - H(22C)                                     | 109.5                | H(22B) - C(22) - H(22C)                            | 109.5                 |
| C(18) - C(23) - H(23A)                                                                 | 109.5                | C(18) - C(23) - H(23B)                             | 109.5                 |
| H(23A) -C(23) -H(23B)                                                                  | 109.5                | С(18)-С(23)-Н(23С)                                 | 109.5                 |
| H(23A)-C(23)-H(23C)                                                                    | 109.5                | H(23B)-C(23)-H(23C)                                | 109.5                 |
| C(25)-C(24)-C(28)                                                                      | 108.5(6)             | C(25)-C(24)-C(29)                                  | 126.6(8)              |
| C(28) - C(24) - C(29)                                                                  | 124.8(8)             | C(25) - C(24) - Ir(2)                              | 72.6(4)               |
| C(28) - C(24) - Ir(2)<br>C(24) - C(25) - C(26)                                         | 67.6(4)<br>107 8(6)  | C(29) - C(24) - IF(2)<br>C(24) - C(25) - C(30)     | 127.4(5)<br>127.8(8)  |
| C(24) - C(25) - C(20)<br>C(26) - C(25) - C(30)                                         | 124.4(8)             | C(24) - C(25) - C(50)<br>C(24) - C(25) - Tr(2)     | 70.9(4)               |
| C(26) - C(25) - Ir(2)                                                                  | 68.1(3)              | C(30) - C(25) - Ir(2)                              | 125.7(4)              |
| C(27) - C(26) - C(25)                                                                  | 108.5(6)             | C(27) - C(26) - C(31)                              | 127.0(8)              |
| C(25)-C(26)-C(31)                                                                      | 124.2(7)             | C(27)-C(26)-Ir(2)                                  | 71.4(3)               |
| C(25) - C(26) - Ir(2)                                                                  | 73.8(3)              | C(31) - C(26) - Ir(2)                              | 125.2(5)              |
| C(26) - C(27) - C(28)                                                                  | 106.8(6)             | C(26) - C(27) - C(32)                              | 124.9(8)              |
| C(28) - C(27) - C(32)<br>C(28) - C(27) - Tr(2)                                         | 120.3(0)             | C(20) - C(27) - II(2)<br>C(32) - C(27) - Ir(2)     | 10.4(3)<br>127 8(5)   |
| C(27) - C(28) - C(24)                                                                  | 108.1(6)             | C(27) - C(28) - C(33)                              | 124.9(8)              |
| C(24) - C(28) - C(33)                                                                  | 126.2(8)             | C(27) - C(28) - Ir(2)                              | 72.2(4)               |
| C(24) - C(28) - Ir(2)                                                                  | 74.0(4)              | C(33)-C(28)-Ir(2)                                  | 127.7(5)              |
| C(24)-C(29)-H(29A)                                                                     | 109.5                | C(24)-C(29)-H(29B)                                 | 109.5                 |
| H(29A) -C(29) -H(29B)                                                                  | 109.5                | C(24) - C(29) - H(29C)                             | 109.5                 |
| H(29A) - C(29) - H(29C)                                                                | 109.5                | H(29B) - C(29) - H(29C)                            | 109.5<br>109.5        |
| H(30A) = C(30) = H(30B)                                                                | 109.5                | C(25) - C(30) - H(30C)                             | 109.5                 |
| H(30A) - C(30) - H(30C)                                                                | 109.5                | H(30B) - C(30) - H(30C)                            | 109.5                 |
| C(26)-C(31)-H(31A)                                                                     | 109.5                | C(26)-C(31)-H(31B)                                 | 109.5                 |
| H(31A)-C(31)-H(31B)                                                                    | 109.5                | C(26)-C(31)-H(31C)                                 | 109.5                 |
| H(31A) - C(31) - H(31C)                                                                | 109.5                | H(31B) - C(31) - H(31C)                            | 109.5                 |
| C(27) - C(32) - H(32A)                                                                 | 109.5                | C(27) - C(32) - H(32B)                             | 109.5                 |
| H(32A) - C(32) - H(32B)<br>H(32A) - C(32) - H(32C)                                     | 109.5<br>109 5       | U(Z I) = U(3Z) = H(3ZU)<br>H(32B) = C(32) = H(32C) | 109.5<br>109 5        |
| C(28) - C(33) - H(33A)                                                                 | 109.5                | C(28) - C(33) - H(33R)                             | 109.5                 |
| Н(33А) –С(33) –Н(33В)                                                                  | 109.5                | С(28) –С(33) –Н(33С)                               | 109.5                 |
| H(33A)-C(33)-H(33C)                                                                    | 109.5                | H(33B)-C(33)-H(33C)                                | 109.5                 |
|                                                                                        |                      |                                                    |                       |

| Supplementary Material (ESI) for Chemica    | al Communications |                     |          |
|---------------------------------------------|-------------------|---------------------|----------|
| This journal is (c) The Royal Society of Ch | emistry 2011      |                     |          |
| F(6)-P(1)-F(3)                              | 91.4(3)           | F(6)-P(1)-F(2)      | 91.4(3)  |
| F(3)-P(1)-F(2)                              | 90.1(3)           | F(6)-P(1)-F(4)      | 90.0(3)  |
| F(3)-P(1)-F(4)                              | 90.4(3)           | F(2)-P(1)-F(4)      | 178.6(4) |
| F(6)-P(1)-F(5)                              | 178.1(3)          | F(3)-P(1)-F(5)      | 89.9(3)  |
| F(2)-P(1)-F(5)                              | 90.0(3)           | F(4)-P(1)-F(5)      | 88.6(3)  |
| F(6)-P(1)-F(1)                              | 89.0(3)           | F(3)-P(1)-F(1)      | 179.4(3) |
| F(2)-P(1)-F(1)                              | 89.4(3)           | F(4) - P(1) - F(1)  | 90.1(2)  |
| F(5)-P(1)-F(1)                              | 89.7(3)           | F(9)-P(2)-F(12)     | 93.6(5)  |
| F(9)-P(2)-F(8)                              | 91.2(5)           | F(12)-P(2)-F(8)     | 96.1(5)  |
| F(9)-P(2)-F(7)                              | 175.0(6)          | F(12)-P(2)-F(7)     | 90.5(5)  |
| F(8)-P(2)-F(7)                              | 91.1(5)           | F(9)-P(2)-F(10)     | 90.8(5)  |
| F(12)-P(2)-F(10)                            | 87.1(6)           | F(8)-P(2)-F(10)     | 176.2(6) |
| F(7)-P(2)-F(10)                             | 86.6(5)           | F(9)-P(2)-F(11)     | 87.1(5)  |
| F(12)-P(2)-F(11)                            | 178.2(5)          | F(8)-P(2)-F(11)     | 85.6(5)  |
| F(7)-P(2)-F(11)                             | 88.7(5)           | F(10)-P(2)-F(11)    | 91.3(6)  |
| O(1)-C(34)-C(36)                            | 122(1)            | O(1)-C(34)-C(35)    | 120(1)   |
| C(36)-C(34)-C(35)                           | 118(1)            | С(34)-С(35)-Н(35А)  | 109.5    |
| С(34)-С(35)-Н(35В)                          | 109.5             | H(35A)-C(35)-H(35B) | 109.5    |
| С(34)-С(35)-Н(35С)                          | 109.5             | H(35A)-C(35)-H(35C) | 109.5    |
| H(35B)-C(35)-H(35C)                         | 109.5             | C(34)-C(36)-H(36A)  | 109.5    |
| C(34)-C(36)-H(36B)                          | 109.5             | H(36A)-C(36)-H(36B) | 109.5    |
| С(34)-С(36)-Н(36С)                          | 109.5             | H(36A)-C(36)-H(36C) | 109.5    |
| Н(36В)-С(36)-Н(36С)                         | 109.5             |                     |          |

Table 5. Hydrogen Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for 3a

| H(2) $-2751$ $3559$ $-1588.9999$ $29$ $H(4)$ $-807.9999$ $2445$ $-2523$ $34$ $H(5)$ $-2340$ $1868$ $-3340$ $35$ $H(6)$ $-3887$ $1278$ $-3963$ $43$ $H(9)$ $-5593$ $813$ $-4662$ $58$ $H(10)$ $-7164.0005$ $1320$ $-4539$ $67$ $H(121)$ $-7011$ $2309$ $-3816$ $60$ $H(122)$ $-1581$ $4351$ $-1477$ $65$ $H(122)$ $-722$ $4018$ $-684$ $65$ $H(133)$ $633$ $3075$ $-1423$ $73$ $H(134)$ $633$ $3075$ $-1423$ $73$ $H(134)$ $-452$ $2336$ $662$ $81$ $H(194)$ $-452$ $2336$ $662$ $81$ $H(194)$ $-452$ $2336$ $662$ $81$ $H(195)$ $-223$ $2702$ $-107.0000$ $81$ $H(204)$ $340$ $1838$ $-776$ $84$ $H(205)$ $242$ $1071$ $-560$ $84$ $H(206)$ $242$ $1071$ $-560$ $84$ $H(214)$ $-1883$ $173$ $-1492.0001$ $77$ $H(214)$ $-1883$ $173$ $-1492.0001$ $77$ $H(214)$ $-1883$ $173$ $-1492.0001$ $65$ $H(226)$ $242$ $1071$ $-560$ $84$ $H(226)$ $-4364$ $993$ $-1976.0001$ $65$ $H(228)$ $-4364$ $993$ $-1976.000$ | atom                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | У                                                                                                                                                                                                                                                                                                      | Z                                                                                                                                                                                                                                                                                                                                                                                                      | U(eq)                                                                                                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| H(32B) $-3537$ $4623$ $-1999$ $111$ $H(32C)$ $-4019$ $5184$ $-2681$ $111$ $H(33A)$ $-5518$ $4516$ $-4784$ $126$ $H(33B)$ $-5220$ $3741$ $-4727$ $126$ $H(33C)$ $-4333$ $4275$ $-4237$ $126$ $H(35A)$ $-7039$ $1491$ $-1988$ $214$ $H(35B)$ $-7815$ $1184$ $-1521$ $214$ $H(35C)$ $-7669$ $1974$ $-1553.0001$ $214$ $H(36A)$ $-9295$ $1169$ $-3726$ $204$ $H(36B)$ $-8948$ $643$ $-2985$ $204$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | atom<br>H(2)<br>H(4)<br>H(5)<br>H(9)<br>H(10)<br>H(11)<br>H(12A)<br>H(12B)<br>H(12C)<br>H(12A)<br>H(12B)<br>H(12C)<br>H(12A)<br>H(13A)<br>H(13B)<br>H(13C)<br>H(19A)<br>H(19B)<br>H(19C)<br>H(20A)<br>H(20B)<br>H(20C)<br>H(21A)<br>H(21A)<br>H(21B)<br>H(21C)<br>H(22A)<br>H(22B)<br>H(22C)<br>H(22A)<br>H(22B)<br>H(22C)<br>H(23A)<br>H(23B)<br>H(23C)<br>H(29B)<br>H(29C)<br>H(29C)<br>H(30A)<br>H(31C)<br>H(31C)<br>H(32A) | $\begin{array}{c} x \\ -2751 \\ -807.9999 \\ -2340 \\ -3887 \\ -5593 \\ -7164.0005 \\ -7011 \\ -1581 \\ -312 \\ -722 \\ 633 \\ 754 \\ 233 \\ -452 \\ -1238 \\ -253 \\ 340 \\ -126 \\ 242 \\ -1883 \\ -126 \\ 242 \\ -1883 \\ -1626 \\ 242 \\ -1883 \\ -1626 \\ 242 \\ -1883 \\ -1626 \\ 242 \\ -1883 \\ -126 \\ 242 \\ -1883 \\ -126 \\ 242 \\ -1883 \\ -126 \\ 242 \\ -1883 \\ -458 \\ -4093 \\ 9998 \\ -3159 \\ -3111 \\ -7595.0005 \\ -7176 \\ -8080.0005 \\ -7932 \\ -7292 \\ -8062.0005 \\ -4604 \\ -5596 \\ -5795 \\ -3423 \\ \end{array}$ | $\begin{array}{c} y\\ 3559\\ 2445\\ 1868\\ 1278\\ 813\\ 1320\\ 2309\\ 4351\\ 4491\\ 4018\\ 3075\\ 3836\\ 3303\\ 2336\\ 2927\\ 2702\\ 1838\\ 1309\\ 1071\\ 173\\ 634\\ 476\\ 680\\ 993\\ 1400\\ 2243\\ 2794\\ 2146\\ 3158\\ 3653\\ 3896\\ 4191\\ 3551\\ 3492\\ 4493\\ 4035\\ 4804\\ 4549\\ \end{array}$ | $\begin{array}{c} z\\ -1588.9999\\ -2523\\ -3340\\ -3963\\ -4662\\ -4539\\ -3816\\ -1477\\ -1275\\ -684\\ -1423\\ -1657\\ -2369\\ 662\\ 200\\ -107.0000\\ -776\\ -1502\\ -560\\ -1492.0001\\ -2168\\ -2236\\ -1074\\ -1976.0001\\ -2168\\ -2236\\ -1074\\ -1976.0001\\ -1273\\ -393.0000\\ -107.0000\\ 447\\ -4362\\ -4925\\ -4539\\ -2552\\ -2085\\ -3022\\ -1227\\ -1195\\ -1441\\ -2898\end{array}$ | U(eq)<br><br>29<br>34<br>35<br>43<br>58<br>67<br>60<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65 |  |
| H(33B) $-5220$ $3741$ $-4727$ $126$ $H(33C)$ $-4333$ $4275$ $-4237$ $126$ $H(35A)$ $-7039$ $1491$ $-1988$ $214$ $H(35B)$ $-7815$ $1184$ $-1521$ $214$ $H(35C)$ $-7669$ $1974$ $-1553.0001$ $214$ $H(36A)$ $-9295$ $1169$ $-3726$ $204$ $H(36B)$ $-8948$ $643$ $-2985$ $204$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H(32A)<br>H(32B)<br>H(32C)<br>H(33A)                                                                                                                                                                                                                                                                                                                                                                                           | -3423<br>-3537<br>-4019<br>-5518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4549<br>4623<br>5184<br>4516                                                                                                                                                                                                                                                                           | -2898<br>-1999<br>-2681<br>-4784                                                                                                                                                                                                                                                                                                                                                                       | 111<br>111<br>111<br>126                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H (33A)<br>H (33B)<br>H (33C)<br>H (35A)<br>H (35B)<br>H (35C)<br>H (36A)<br>H (36B)                                                                                                                                                                                                                                                                                                                                           | -5518<br>-5220<br>-4333<br>-7039<br>-7815<br>-7669<br>-9295<br>-8948                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4516<br>3741<br>4275<br>1491<br>1184<br>1974<br>1169<br>643                                                                                                                                                                                                                                            | -4784<br>-4727<br>-4237<br>-1988<br>-1521<br>-1553.0001<br>-3726<br>-2985                                                                                                                                                                                                                                                                                                                              | 126<br>126<br>126<br>214<br>214<br>214<br>204<br>204                                                            |  |

# **4**a

Table 1. Crystal data for 4a

| Compound          | 4a                                                                     |
|-------------------|------------------------------------------------------------------------|
| Molecular formula | C <sub>33</sub> H <sub>43</sub> ClIrN <sub>2</sub> Ru,F <sub>6</sub> P |
| Molecular weight  | 941.38                                                                 |
| Crystal habit     | Orange Plate                                                           |

|                                             | Onerhistry 2011                    |
|---------------------------------------------|------------------------------------|
| Crystal dimensions(mm)                      | 0.24x0.18x0.12                     |
| Crystal system                              | monoclinic                         |
| Space group                                 | $P2_1/c$                           |
| a(Å)                                        | 8.671(1)                           |
| b(Å)                                        | 13.989(1)                          |
| c(Å)                                        | 28.862(1)                          |
| $\alpha(^{\circ})$                          | 90.00                              |
| β(°)                                        | 105.194(2)                         |
| γ(°)                                        | 90.00                              |
| $V(A^3)$                                    | 3378.5(5)                          |
| Z                                           | 4                                  |
| $d(g-cm^{-3})$                              | 1.851                              |
| F(000)                                      | 1848                               |
| $\mu(\text{cm}^{-1})$                       | 4.568                              |
| Absorption corrections                      | multi-scan; 0.4069 min, 0.6102 max |
| Diffractometer                              | KappaCCD                           |
| X-ray source                                | ΜοΚα                               |
| $\lambda(\text{Å})$                         | 0.71069                            |
| Monochromator                               | graphite                           |
| T (K)                                       | 150.0(1)                           |
| Scan mode                                   | phi and omega scans                |
| Maximum θ                                   | 30.02                              |
| HKL ranges                                  | -12 12 ; -19 18 ; -31 40           |
| Reflections measured                        | 29565                              |
| Unique data                                 | 9531                               |
| Rint                                        | 0.0298                             |
| Reflections used                            | 7714                               |
| Criterion                                   | $I > 2\sigma I$ )                  |
| Refinement type                             | Fsqd                               |
| Hydrogen atoms                              | constr                             |
| Parameters refined                          | 454                                |
| Reflections / parameter                     | 16                                 |
| wR2                                         | 0.0704                             |
| R1                                          | 0.0314                             |
| Weights a, b                                | 0.0378 ; 0.0000                    |
| GoF                                         | 1.023                              |
| difference peak / hole (e Å <sup>-3</sup> ) | 1.624(0.118) / -1.549(0.118)       |

| Table 2.   | Atomic   | Coordin | ates | (A | x   | 10′ | ^4) | and | equivalent | isotropic |
|------------|----------|---------|------|----|-----|-----|-----|-----|------------|-----------|
| displaceme | ent para | ameters | (A^2 | х  | 10' | `3) | for | 4a  |            |           |

| tom                    | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | У                | Z             | U(eq)                 |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|-----------------------|
| Ir(1)                  | 8450(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1379(1)         | -1163(1)      | 26(1)                 |
| Ru(1)                  | 7935(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4272(1)         | -1522(1)      | 25(1)                 |
| Cl(1)                  | 8766(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1371(1)         | -1960(1)      | 35(1)                 |
| N(1)                   | 6036(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1695(2)         | -1467(1)      | 30(1)                 |
| N(2)                   | 10850(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4923(2)         | -515(1)       | 33(1)                 |
| C(1)                   | 4964(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1058(2)         | -1718(1)      | 36(1)                 |
| C(2)                   | 3354(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1248(3)         | -1854(2)      | 43(1)                 |
| C(2)                   | 2809(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2104(3)         | -1728(2)      | $\frac{1}{16(1)}$     |
| C(J)                   | 3891(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2704(3)          | -1/88(2)      | $\frac{1}{40(1)}$     |
| C(4)                   | 5510(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2565(2)          | 1366(1)       | $\frac{40(1)}{30(1)}$ |
| C(5)                   | 5020(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2200(2)          | 1120(1)       | 26(1)                 |
| C(0)                   | 0000(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | -1130(1)      | 20(1)                 |
| C(7)                   | 0602(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | -1003(1)      | 24(1)                 |
| C(0)                   | 9092(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -34/1(2)         | -933(1)       | 20(1)                 |
| C(9)                   | 9532(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4388(2)         | -739(1)       | 28(1)<br>20(1)        |
| C(10)                  | 7955(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4/38(2)         | -789(1)       | 29(1)                 |
| C(II)                  | 6610(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4151(2)         | -977(1)       | 31(1)                 |
| C(12)                  | 10654(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5932(2)         | -425(1)       | 39(1)                 |
| C(13)                  | 12437(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4594(2)         | -510(2)       | 45(1)                 |
| C(14)                  | 8544(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4284(2)         | -2217(1)      | 32(1)                 |
| C(15)                  | 6853(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4150(2)         | -2297(1)      | 36(1)                 |
| C(16)                  | 6241(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4977(2)         | -2107(1)      | 35(1)                 |
| C(17)                  | 7553(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5606(2)         | -1920(1)      | 38(1)                 |
| C(18)                  | 8974(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5176(2)         | -1979(1)      | 34(1)                 |
| C(19)                  | 9645(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3665(2)         | -2405(2)      | 51(1)                 |
| C(20)                  | 5910(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3321(3)         | -2558(2)      | 52(1)                 |
| C(21)                  | 4519(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5171(3)         | -2123(2)      | 54(1)                 |
| C(22)                  | 7412(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6596(2)         | -1717(2)      | 52(1)                 |
| C(23)                  | 10609(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5627(3)         | -1852(2)      | 52(1)                 |
| C(24A)                 | 9421(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1134(3)         | -408(2)       | 33(1)                 |
| C(25A)                 | 10632(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -927(3)          | -645(2)       | 31(1)                 |
| C(26A)                 | 10079(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -118(4)          | -943(3)       | 41(1)                 |
| C(27a)                 | $\frac{1}{2}$ $\frac{1}$ | 135(5)           | _915(3)       | 38(1)                 |
| C(28A)                 | 8107(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -500(4)          | -579(2)       | 38(1)                 |
| C(29A)                 | 9560(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _1858(3)         | _11(2)        | 62(2)                 |
| C(2)A)                 | 12272(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1374(4)          | 537(3)        | 67(2)                 |
| C(30A)                 | 12272(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 202(5)           | 1251(2)       | $\frac{0}{26}(2)$     |
| $C(32\lambda)$         | 11000(10)<br>7520(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 961(4)           | -12JI(J)      | 70(2)                 |
| C(3ZA)                 | (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 901(4)<br>E20(E) | -11/4(3)      | 79(3)                 |
| C(33A)                 | 05/2(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -530(5)          | -424(3)       | /⊥(∠)<br>>>(1)        |
| C(24B)                 | 8740(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1000(10)        |               | 33(1)<br>21(1)        |
| C(25B)                 | 10270(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1030(10)        | -521(7)       | $3 \perp (\perp)$     |
| C(26B)                 | TUZAN(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3/0(20)         | -900(LU)      | 4⊥(⊥)<br>20(1)        |
| C(Z/B)                 | 8830(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160(20)          | -IUIU(IU)     | 38(1)                 |
| C(28B)                 | 7860(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -290(20)         | -735(6)       | 38(1)                 |
| C(29B)                 | 8430(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1590(10)        | -17(6)        | 62(2)                 |
| C(30B)                 | 11680(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1630(10)        | -263(8)       | 67(2)                 |
| C(31B)                 | 11640(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -20(20)          | -1090(10)     | 76(2)                 |
| C(32B)                 | 8410(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1020(10)         | -1330(10)     | 79(3)                 |
| C(33B)                 | 6270(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30(20)           | -670(10)      | 71(2)                 |
| P(1)                   | 4595(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -7215(1)         | -717(1)       | 41(1)                 |
| F(1)                   | 4660(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -7630(2)         | -1226(1)      | 67(1)                 |
| F(2)                   | 4481(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6165(2)         | -932(1)       | 84(1)                 |
| F(3)                   | 4529(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6791(2)         | -209(1)       | 66(1)                 |
| - (2)<br>F(4)          | 4714(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -8265(2)         | -506(1)       | 76(1)                 |
| - ()<br>Fr (           | 2705(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -7296(2)         | -874(1)       | 68(1)                 |
| - ( <i>J</i> )<br>F(6) | 6/97 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _7110(2)         | -565(1)       | 71/1)                 |
|                        | 042/(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - / エエラ ( ム /    | - J U J ( T ) | / _ ( _ )             |

| Table 3. Bond lengths (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and angles                                                                                                                                                                                                                                                                                                                                                                                                                    | (deg) for 4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ir (1) -C (7) $Ir (1) -C (28B)$ $Ir (1) -C (24A)$ $Ir (1) -C (24B)$ $Ir (1) -C (25A)$ $Ir (1) -C (16)$ $Ru (1) -C (11)$ $Ru (1) -C (15)$ $Ru (1) -C (10)$ $Ru (1) -C (8)$ $Ru (1) -C (7)$ $N (1) -C (5)$ $N (2) -C (13)$ $C (1) -C (2)$ $C (3) -C (4)$ $C (5) -C (6)$ $C (6) -C (7)$ $C (8) -C (9)$ $C (10) -C (11)$ $C (14) -C (15)$ $C (15) -C (16)$ $C (16) -C (17)$ $C (17) -C (18)$ $C (18) -C (23)$ $C (24A) -C (25A)$ $C (26A) -C (27A)$ $C (27A) -C (28A)$ $C (24B) -C (28B)$ $C (22B) -C (28B)$ $C (22B) -C (28B)$ $C (22B) -C (23B)$ $C (22B) -C (23B)$ $C (22B) -C (23B)$ $C (22B) -C (23B)$ $C (22B) -C (33B)$ $P (1) -F (1)$ $P (1) -F (6)$                                                    | $\begin{array}{c} 2.058(3)\\ 2.11(2)\\ 2.149(5)\\ 2.16(2)\\ 2.176(5)\\ 2.232(8)\\ 2.165(3)\\ 2.183(3)\\ 2.195(4)\\ 2.210(3)\\ 2.259(3)\\ 2.344(3)\\ 1.354(4)\\ 1.448(4)\\ 1.373(5)\\ 1.385(5)\\ 1.470(4)\\ 1.427(4)\\ 1.422(4)\\ 1.422(4)\\ 1.422(4)\\ 1.425(2)\\ 1.426(2)\\ 1.426(2)\\ 1.426(2)\\ 1.426(2)\\ 1.426(2)\\ 1.426(2)\\ 1.425(2)\\ 1.425(2)\\ 1.425(2)\\ 1.425(2)\\ 1.510(2)\\ 1.594(3)\\ 1.597(2)\\ \end{array}$ | Ir (1) -N(1) $Ir (1) -C (26B)$ $Ir (1) -C (25B)$ $Ir (1) -C (27B)$ $Ir (1) -C (27B)$ $Ir (1) -C (17)$ $Ru (1) -C (17)$ $Ru (1) -C (18)$ $Ru (1) -C (14)$ $Ru (1) -C (1)$ $N (2) -C (9)$ $N (1) -C (1)$ $N (2) -C (9)$ $N (2) -C (12)$ $C (2) -C (3)$ $C (4) -C (5)$ $C (6) -C (11)$ $C (7) -C (8)$ $C (9) -C (10)$ $C (14) -C (18)$ $C (14) -C (18)$ $C (14) -C (18)$ $C (14) -C (18)$ $C (14) -C (21)$ $C (15) -C (20)$ $C (16) -C (21)$ $C (27A) -C (28A)$ $C (24B) -C (22B)$ $C (25B) -C (30B)$ $C (26B) -C (31B)$ $C (27B) -C (32B)$ $P (1) -F (4)$ $P (1) -F (3)$                                                                                                                                          | 2.094(2<br>2.12(3)<br>2.15(2)<br>2.170(3)<br>2.246(7)<br>2.172(3)<br>2.246(3)<br>2.232(3)<br>2.232(3)<br>2.325(3)<br>1.353(4)<br>1.378(4)<br>1.453(4)<br>1.453(4)<br>1.420(4)<br>1.420(4)<br>1.420(4)<br>1.420(4)<br>1.420(4)<br>1.420(4)<br>1.420(4)<br>1.420(4)<br>1.503(5)<br>1.507(4)<br>1.521(5)<br>1.521(5)<br>1.521(5)<br>1.521(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.510(2)<br>1.595(3) |                                                                                                                                                                                                          |
| C(7) - Ir(1) - N(1) $N(1) - Ir(1) - C(28B)$ $N(1) - Ir(1) - C(24B)$ $C(28B) - Ir(1) - C(24A)$ $C(28B) - Ir(1) - C(25B)$ $C(28B) - Ir(1) - C(25B)$ $C(24A) - Ir(1) - C(25B)$ $C(26B) - Ir(1) - C(24B)$ $C(26B) - Ir(1) - C(24B)$ $C(25B) - Ir(1) - C(24B)$ $C(25B) - Ir(1) - C(28A)$ $C(25B) - Ir(1) - C(28A)$ $C(25B) - Ir(1) - C(25A)$ $C(24A) - Ir(1) - C(25A)$ $C(24A) - Ir(1) - C(25A)$ $C(24B) - Ir(1) - C(27B)$ $C(24B) - Ir(1) - C(27B)$ $C(24B) - Ir(1) - C(27B)$ $C(25A) - Ir(1) - C(27B)$ $N(1) - Ir(1) - C(27B)$ | 77.7(1)<br>91.8(5)<br>150.3(5)<br>93.5(1)<br>51.7(4)<br>99.3(4)<br>64.3(6)<br>23.9(4)<br>108.3(4)<br>65.8(7)<br>38.6(2)<br>96.9(1)<br>65.3(7)<br>54.6(4)<br>104.7(1)<br>71.7(5)<br>38.51(8)<br>52.4(4)<br>162.2(7)<br>38.5(4)<br>63.2(8)<br>61.2(7)<br>105.9(2)                                                                                                                                                               | $\begin{array}{c} C(7) - Ir(1) - C(28B) \\ C(7) - Ir(1) - C(26B) \\ C(28B) - Ir(1) - C(26B) \\ C(28B) - Ir(1) - C(24A) \\ C(26B) - Ir(1) - C(24A) \\ C(26B) - Ir(1) - C(25B) \\ C(26B) - Ir(1) - C(25B) \\ C(26B) - Ir(1) - C(24B) \\ C(28B) - Ir(1) - C(24B) \\ C(28B) - Ir(1) - C(24B) \\ C(28B) - Ir(1) - C(28A) \\ C(28B) - Ir(1) - C(28A) \\ C(28B) - Ir(1) - C(28A) \\ C(24A) - Ir(1) - C(28A) \\ C(24B) - Ir(1) - C(28A) \\ C(24B) - Ir(1) - C(25A) \\ C(26B) - Ir(1) - C(25A) \\ C(25B) - Ir(1) - C(25A) \\ C(25B) - Ir(1) - C(25A) \\ C(25B) - Ir(1) - C(25A) \\ C(26B) - Ir(1) - C(25A) \\ C(26B) - Ir(1) - C(25A) \\ C(26B) - Ir(1) - C(25B) \\ C(26B) - Ir(1) - C(27B) \\ C(26B) - Ir(1) - C(27B) \\ C(28A) - Ir(1) - C(27A) \\ C(28B) - Ir(1) - C(27A) \\ C(28B) - Ir(1) - C(27A) \\ \end{array}$ | <ul> <li>3)</li> <li>3)</li> <li>3)</li> <li>3)</li> <li>3)</li> <li>4)</li> <li>4)</li> <li>4)</li> <li>4)</li> <li>5)</li> <li>3)</li> <li>3)</li> <li>3)</li> <li>4)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                | 129.8(5) 131.1(5) 64.9(8) 122.8(1) 57.7(6) 146.6(4) 39.0(3) 97.9(4) 39.0(2) 16.2(3) 117.8(2) 14.3(4) 38.54(8) 24.8(4) 160.6(1) 28.2(5) 14.8(4) 64.7(2) 111.9(6) 38.5(4) 64.2(8) 47.9(6) 155.0(2) 27.6(6) |

| Supplementary Material (ESI) for Chem              | ical Communications  |                                                    |                      |
|----------------------------------------------------|----------------------|----------------------------------------------------|----------------------|
| This journal is (c) The Royal Society of $(2,27)$  |                      | $\alpha(24\pi)$ $\pi_{\alpha}(1)$ $\alpha(27\pi)$  | (2, 4)               |
| C(20B) - Ir(I) - C(27A)<br>C(25B) - Ir(I) - C(27A) | 43.4(0)              | C(24A) - Ir(1) - C(27A)<br>C(24B) = Ir(1) - C(27A) | 03.4(Z)<br>57 3(A)   |
| C(23B) = II(I) = C(27A)<br>C(28A) = Ir(1) = C(27A) | 37 8(1)              | C(24B) - II(I) - C(27A)<br>C(25A) - Tr(1) - C(27A) | 57.5(4)              |
| C(27B) - Tr(1) - C(27A)                            | 11.0(5)              | C(7) - Tr(1) - C(26A)                              | 141.2(1)             |
| N(1) - Ir(1) - C(26A)                              | 140.4(1)             | C(28B) - Ir(1) - C(26A)                            | 59.7(6)              |
| C(26B)-Ir(1)-C(26A)                                | 10.1(5)              | C(24A) - Ir(1) - C(26A)                            | 62.5(2)              |
| C(25B)-Ir(1)-C(26A)                                | 46.7(5)              | C(24B)-Ir(1)-C(26A)                                | 67.8(4)              |
| C(28A)-Ir(1)-C(26A)                                | 62.6(2)              | C(25A)-Ir(1)-C(26A)                                | 37.6(1)              |
| C(27B) - Ir(1) - C(26A)                            | 29.1(6)              | C(27A) - Ir(1) - C(26A)                            | 37.1(1)              |
| C(16) - Ru(1) - C(17)                              | 38.4(1)              | C(16) - Ru(1) - C(11)                              | 102.7(1)             |
| C(17) - Ru(1) - C(11)<br>C(17) - Ru(1) - C(12)     | 114.3(1)             | C(16) - Ru(1) - C(18)                              | 64.3(1)              |
| C(17) - Ru(1) - C(16)<br>C(16) - Ru(1) - C(15)     | 30.1(1)<br>38 5(1)   | C(11) - Ru(1) - C(10)<br>C(17) - Ru(1) - C(15)     | 149.0(1)             |
| $C(11) - R_{11}(1) - C(15)$                        | 124.3(1)             | $C(18) - B_{11}(1) - C(15)$                        | 64.1(1)              |
| C(16) - Ru(1) - C(14)                              | 64.0(1)              | C(17) - Ru(1) - C(14)                              | 63.3(1)              |
| C(11) - Ru(1) - C(14)                              | 162.3(1)             | C(18)-Ru(1)-C(14)                                  | 37.9(1)              |
| C(15)-Ru(1)-C(14)                                  | 38.1(1)              | C(16)-Ru(1)-C(10)                                  | 116.5(1)             |
| C(17)-Ru(1)-C(10)                                  | 102.4(1)             | C(11)-Ru(1)-C(10)                                  | 37.5(1)              |
| C(18) - Ru(1) - C(10)                              | 120.4(1)             | C(15) - Ru(1) - C(10)                              | 153.3(1)             |
| C(14) - Ru(1) - C(10)                              | 157.7(1)             | C(16) - Ru(1) - C(6)                               | 114.0(1)             |
| C(17) - Ru(1) - C(6)<br>C(18) - Pu(1) - C(6)       | 144.0(1)<br>172 6(1) | C(11) - Ru(1) - C(6)<br>C(15) - Ru(1) - C(6)       | 37.3(1)<br>109 8(1)  |
| C(14) - Ru(1) - C(6)                               | 134.7(1)             | C(10) = Ru(1) = C(0)<br>C(10) = Ru(1) = C(6)       | 67.0(1)              |
| C(16) - Ru(1) - C(8)                               | 177.2(1)             | C(17) - Ru(1) - C(8)                               | 143.5(1)             |
| C(11) - Ru(1) - C(8)                               | 78.4(1)              | C(18) - Ru(1) - C(8)                               | 115.9(1)             |
| C(15)-Ru(1)-C(8)                                   | 138.7(1)             | C(14)-Ru(1)-C(8)                                   | 114.4(1)             |
| C(10)-Ru(1)-C(8)                                   | 65.9(1)              | C(6)-Ru(1)-C(8)                                    | 65.3(1)              |
| C(16) - Ru(1) - C(9)                               | 146.7(1)             | C(17) - Ru(1) - C(9)                               | 115.1(1)             |
| C(11) - Ru(1) - C(9)                               | 66.3(1)              | C(18) - Ru(1) - C(9)                               | 108.2(1)             |
| C(15) - Ru(1) - C(9)<br>C(10) - Ru(1) - C(9)       | 109.3(1)<br>36 5(1)  | C(14) - Ru(1) - C(9)<br>C(6) - Ru(1) - C(9)        | 131.3(1)<br>77 3(1)  |
| C(8) - Ru(1) - C(9)                                | 36.1(1)              | C(16) - Ru(1) - C(7)                               | 142.6(1)             |
| C(17) - Ru(1) - C(7)                               | 178.9(1)             | C(11) - Ru(1) - C(7)                               | 66.1(1)              |
| C(18) - Ru(1) - C(7)                               | 141.2(1)             | C(15) - Ru(1) - C(7)                               | 116.7(1)             |
| C(14)-Ru(1)-C(7)                                   | 116.6(1)             | C(10)-Ru(1)-C(7)                                   | 77.3(1)              |
| C(6) - Ru(1) - C(7)                                | 36.2(1)              | C(8) - Ru(1) - C(7)                                | 35.5(1)              |
| C(9) - Ru(1) - C(7)                                | 64.1(1)              | C(1) - N(1) - C(5)                                 | 119.2(3)             |
| C(1) - N(1) - Ir(1)<br>C(0) - N(2) - C(12)         | 123.8(2)<br>120 1(2) | C(5) - N(1) - Ir(1)<br>C(9) - N(2) - C(12)         | 110.8(2)             |
| C(9) - N(2) - C(13)<br>C(13) - N(2) - C(12)        | 120.1(3)<br>117 5(2) | C(9) - N(2) - C(12)<br>N(1) - C(1) - C(2)          | 129.3(3)<br>122 0(3) |
| C(3) - C(2) - C(1)                                 | 119.3(3)             | C(2) - C(3) - C(4)                                 | 119.6(3)             |
| C(3) - C(4) - C(5)                                 | 119.1(3)             | N(1) - C(5) - C(4)                                 | 120.7(3)             |
| N(1) - C(5) - C(6)                                 | 113.0(2)             | C(4) - C(5) - C(6)                                 | 126.3(3)             |
| C(11)-C(6)-C(7)                                    | 120.6(3)             | C(11)-C(6)-C(5)                                    | 124.2(3)             |
| C(7) - C(6) - C(5)                                 | 115.0(3)             | C(11) - C(6) - Ru(1)                               | 69.4(2)              |
| C(7) - C(6) - Ru(1)                                | /6.2(2)<br>117 7(2)  | C(5) - C(6) - Ru(1)                                | 123.8(2)             |
| C(6) - C(7) - C(0)<br>C(6) - C(7) - Tr(1)          | 113 1(2)             | C(8) - C(7) - H(1)<br>C(8) - C(7) - BH(1)          | 120.2(2)             |
| C(6) - C(7) - Ru(1)                                | 67.6(2)              | Ir(1) - C(7) - Ru(1)                               | 142.7(2)             |
| C(7) - C(8) - C(9)                                 | 122.5(3)             | C(7) - C(8) - Ru(1)                                | 75.6(2)              |
| C(9)-C(8)-Ru(1)                                    | 74.5(2)              | N(2)-C(9)-C(8)                                     | 121.4(3)             |
| N(2) - C(9) - C(10)                                | 121.2(3)             | C(8)-C(9)-C(10)                                    | 117.5(3)             |
| N(2) - C(9) - Ru(1)                                | 134.7(2)             | C(8) - C(9) - Ru(1)                                | 69.4(2)              |
| C(10) - C(9) - Ru(1)<br>C(11) - C(10) - Ru(1)      | 6/.3(2)              | C(11) - C(10) - C(9)<br>C(0) - C(10) - By(1)       | 120.8(3)             |
| C(11) - C(10) - Ru(1)<br>C(10) - C(11) - C(6)      | 119 7(3)             | C(10) - C(11) - Ru(1)                              | 70.2(2)<br>72 3(2)   |
| C(6) - C(11) - Ru(1)                               | 73.1(2)              | C(18) - C(14) - C(15)                              | 108.7(3)             |
| C(18) - C(14) - C(19)                              | 124.8(3)             | C(15) - C(14) - C(19)                              | 126.0(3)             |
| C(18)-C(14)-Ru(1)                                  | 70.4(2)              | C(15)-C(14)-Ru(1)                                  | 70.6(2)              |
| C(19)-C(14)-Ru(1)                                  | 131.0(2)             | C(14)-C(15)-C(16)                                  | 107.2(3)             |
| C(14) - C(15) - C(20)                              | 125.5(3)             | C(16) - C(15) - C(20)                              | 127.2(3)             |
| C(14) - C(15) - Ru(1)                              | 71.3(2)              | C(16) - C(15) - Ru(1)                              | 69.6(2)              |
| C(20) - C(15) - Ru(1)<br>C(17) - C(16) - C(21)     | ⊥∠/.⊥(3)<br>125 0/2) | C(17) - C(16) - C(15)<br>C(15) - C(16) - C(21)     | 10/.7(3)             |
| C(17) = C(16) = C(21)<br>C(17) = C(16) = Ru(1)     | 123.0(3)<br>71 0(2)  | C(15) = C(16) = C(21)<br>C(15) = C(16) = Ru(1)     | ±∠0.3(3)<br>71 8(2)  |
| C(21) - C(16) - Ru(1)                              | 124.7(3)             | C(18) - C(17) - C(16)                              | 108.9(3)             |
| C(18) - C(17) - C(22)                              | 126.2(3)             | C(16) - C(17) - C(22)                              | 124.8(3)             |
|                                                    |                      |                                                    |                      |

| Supplementary Material (ESI) for Chemical    | Communications |                                           |                        |
|----------------------------------------------|----------------|-------------------------------------------|------------------------|
| $C(18) = C(17) = P_{11}(1)$                  | 71 5(2)        | $C(16) = C(17) = P_{11}(1)$               | 70 6(2)                |
| C(22) = C(17) = Ru(1)                        | 126 6(3)       | C(17) - C(18) - C(14)                     | 107 6(3)               |
| C(17) = C(18) = C(23)                        | 125.7(3)       | C(11) = C(18) = C(23)                     | 126 5(3)               |
| $C(17) = C(18) = B_{11}(1)$                  | $70 \ 4(2)$    | $C(14) - C(18) - B_{11}(1)$               | 71 7(2)                |
| $C(23) = C(18) = B_{11}(1)$                  | 127 - 3(3)     | $C(28\Delta) = C(24\Delta) = C(25\Delta)$ | 109 3(3)               |
| $C(28\lambda) = C(24\lambda) = C(29\lambda)$ | 125 2(1)       | C(25A) = C(24A) = C(29A)                  | $125 \Lambda(\Lambda)$ |
| C(28A) = C(24A) = Tr(1)                      | 71 5(3)        | C(25a) = C(24a) = Tr(1)                   | 71 8(3)                |
| C(29A) - C(24A) - Tr(1)                      | 126 5(3)       | C(24A) - C(25A) - C(26A)                  | 106 1(3)               |
| C(24A) - C(25A) - C(30A)                     | 126.0(4)       | C(26A) - C(25A) - C(30A)                  | 127 1(4)               |
| C(24A) - C(25A) - Tr(1)                      | 69.7(2)        | C(26A) - C(25A) - Tr(1)                   | 73.9(3)                |
| C(30A) - C(25A) - Tr(1)                      | 128 6(4)       | C(27A) - C(26A) - C(25A)                  | 1097(3)                |
| C(27A) - C(26A) - C(31A)                     | 125.0(4)       | C(25A) - C(26A) - C(31A)                  | 125 2(4)               |
| C(27A) - C(26A) - Tr(1)                      | 70.9(4)        | C(25A) - C(26A) - Tr(1)                   | 68.5(3)                |
| C(31A) - C(26A) - Tr(1)                      | 125.9(6)       | C(26A) - C(27A) - C(28A)                  | 107.1(3)               |
| C(26A) - C(27A) - C(32A)                     | 125.6(5)       | C(28A) - C(27A) - C(32A)                  | 127.2(5)               |
| C(26A) - C(27A) - Tr(1)                      | 72.0(4)        | C(28A) - C(27A) - Tr(1)                   | 68.8(4)                |
| C(32A) - C(27A) - Tr(1)                      | 127.1(6)       | C(24A) - C(28A) - C(27A)                  | 107.7(3)               |
| C(24A) - C(28A) - C(33A)                     | 124.5(4)       | C(27A) - C(28A) - C(33A)                  | 127.8(4)               |
| C(24A) - C(28A) - Tr(1)                      | 69.9(3)        | C(27A) - C(28A) - Tr(1)                   | 73.4(4)                |
| C(33A) - C(28A) - Tr(1)                      | 121.6(4)       | C(25B) - C(24B) - C(28B)                  | 105(1)                 |
| C(25B) - C(24B) - C(29B)                     | 120(2)         | C(28B) - C(24B) - C(29B)                  | 134(2)                 |
| C(25B) - C(24B) - Ir(1)                      | 71(1)          | C(28B) - C(24B) - Ir(1)                   | 69(1)                  |
| C(29B) - C(24B) - Ir(1)                      | 129(1)         | C(24B) - C(25B) - C(26B)                  | 109(1)                 |
| C(24B) - C(25B) - C(30B)                     | 127(2)         | C(26B) - C(25B) - C(30B)                  | 124(2)                 |
| C(24B) - C(25B) - Ir(1)                      | 71(1)          | C(26B) - C(25B) - Ir(1)                   | 69(1)                  |
| C(30B) - C(25B) - Ir(1)                      | 128(1)         | C(27B) - C(26B) - C(25B)                  | 109(1)                 |
| C(27B) - C(26B) - C(31B)                     | 119(2)         | C(25B) - C(26B) - C(31B)                  | 131(2)                 |
| C(27B) - C(26B) - Ir(1)                      | 74(2)          | C(25B) - C(26B) - Ir(1)                   | 72(1)                  |
| C(31B) - C(26B) - Ir(1)                      | 131(2)         | C(26B) - C(27B) - C(28B)                  | 106(1)                 |
| C(26B) - C(27B) - C(32B)                     | 127(2)         | C(28B) - C(27B) - C(32B)                  | 127(2)                 |
| C(26B) - C(27B) - Ir(1)                      | 68(2)          | C(28B) - C(27B) - Ir(1)                   | 67(1)                  |
| C(32B) - C(27B) - Ir(1)                      | 131(2)         | C(24B) -C(28B) -C(27B)                    | 111(1)                 |
| C(24B) - C(28B) - C(33B)                     | 118(2)         | C(27B) -C(28B) -C(33B)                    | 129(2)                 |
| C(24B) - C(28B) - Ir(1)                      | 72(1)          | C(27B) - C(28B) - Ir(1)                   | 74(2)                  |
| C(33B) - C(28B) - Ir(1)                      | 131(2)         | F(4) - P(1) - F(5)                        | 90.1(2)                |
| F(4) - P(1) - F(2)                           | 179.5(2)       | F(5) - P(1) - F(2)                        | 90.0(2)                |
| F(4) - P(1) - F(1)                           | 90.1(2)        | F(5) - P(1) - F(1)                        | 89.6(1)                |
| F(2) - P(1) - F(1)                           | 89.4(2)        | F(4) - P(1) - F(3)                        | 90.3(2)                |
| F(5) - P(1) - F(3)                           | 90.3(1)        | F(2) - P(1) - F(3)                        | 90.1(2)                |
| F(1) - P(1) - F(3)                           | 179.6(2)       | F(4) - P(1) - F(6)                        | 90.8(1)                |
| F(5) - P(1) - F(6)                           | 179.0(2)       | F(2) - P(1) - F(6)                        | 89.1(2)                |
| F(1) - P(1) - F(6)                           | 90.0(1)        | F(3) - P(1) - F(6)                        | 90.0(1)                |

| Table | 4. | Anisotropic | displacement | parameters | (A^2 | х | 10^3) | for | 4a |
|-------|----|-------------|--------------|------------|------|---|-------|-----|----|
|-------|----|-------------|--------------|------------|------|---|-------|-----|----|

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                     |
|-------------------------------------------------------------------------------------------------------------|
| F(1) $69(2)$ $80(2)$ $58(2)$ $-18(1)$ $27(1)$ $5(1)$ $F(2)$ $119(2)$ $46(1)$ $87(3)$ $14(2)$ $26(2)$ $5(1)$ |

The anisotropic displacement factor exponent takes the form 2 pi^2  $[h^2a^*^2U(11) + \ldots + 2hka^*b^*U(12)]$ 

Table 5. Hydrogen Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for 4a

| atom             | X              | У                   | Z                  | U(eq)      |
|------------------|----------------|---------------------|--------------------|------------|
| н(1)<br>н(2)     | 5335           | -461.0000           | -1802<br>-2033     | 43         |
| H(2)             | 1694           | -2232               | -1806              | 56         |
| н(4)             | 3529           | -3384               | -1408              | 48         |
| H(8)             | 10712          | -3274.9998          | -961.9999          | 31         |
| Н(10)<br>Н(11)   | 7803<br>5564   | -5375<br>-4386      | -695<br>-1001 0001 | 35<br>37   |
| H(12A)           | 9884           | -6007               | -233               | 59         |
| н(12в)           | 11686          | -6203               | -251               | 59         |
| H(12C)           | 10261          | -6266.0005          | -732               | 59         |
| H(13A)<br>H(13P) | 12571          | -4616               | -837               | 67         |
| H(13C)           | 12580          | -3935.9998          | -390               | 67         |
| H(19A)           | 10742          | -3747               | -2207              | 76         |
| H(19B)           | 9326           | -2994               | -2396              | 76         |
| H(19C)           | 9590<br>6581   | -3847               | -2737              | 76         |
| H(20B)           | 4972           | -3212.0002          | -2436              | 79         |
| H(20C)           | 5564           | -3465               | -2902              | 79         |
| H(21A)           | 4004           | -5511               | -2420              | 81         |
| H(21B)           | 3965           | -4564               | -2113              | 81<br>81   |
| H(22A)           | 7259           | -7070.9995          | -1975              | 78         |
| н(22В)           | 6496           | -6612               | -1578              | 78         |
| H(22C)           | 8391           | -6743.9995          | -1468              | 78         |
| H(23A)<br>H(23B) | 10756<br>10710 | -5990               | -2127<br>-1578     | 78         |
| H(23C)           | 11425          | -5126               | -1767              | 78         |
| H(29A)           | 9898           | -1536.0001          | 301                | 94         |
| H(29B)           | 10346          | -2345               | -34                | 94         |
| H(29C)<br>H(30A) | 8517<br>13036  | -2162               | -43<br>-310        | 94<br>100  |
| H(30B)           | 12607          | -1435               | -835               | 100        |
| H(30C)           | 12239          | -2009               | -396               | 100        |
| H(31A)           | 10266          | 554                 | -1560              | 114        |
| н(З1С)           | 11495          | 961                 | -1088              | 114        |
| H(32A)           | 7914           | 1559                | -1005.9999         | 118        |
| H(32B)           | 6408           | 864                 | -1181              | 118        |
| H(32C)           | 7639           | 996                 | -1503              | 118        |
| H(33B)           | 5712           | -236.0000           | -673               | 106        |
| H(33C)           | 6714           | -179                | -122               | 106        |
| H(29D)           | 8881           | -2230               | -25                | 94         |
| H(29E)<br>H(29E) | 7280           | -1636               | -56.0000           | 94         |
| H(30D)           | 11355          | -2076               | -46                | 100        |
| H(30E)           | 12529          | -1210               | -78                | 100        |
| H(30F)           | 12088          | -1987               | -499               | 100        |
| H(31D)<br>H(31E) | 12444          | ⊥4 <i>3</i><br>-523 | -1432<br>-1059     | ⊥⊥4<br>114 |
| H(31F)           | 12120          | 549                 | -914               | 114        |
| H(32D)           | 9262           | 1499                | -1232              | 118        |
| H(32E)           | 7402           | 1292                | -1297              | 118        |
| н(з∠ғ)<br>н(з∠ғ) | &>∪4<br>5758   | o∠y<br>-512         | -1001<br>-552      | 106        |
| H(33E)           | 5590           | 256                 | -973               | 106        |
| H(33F)           | 6442           | 547                 | -430               | 106        |

## 5b

Table 1. Crystal data for 5b

| Compound                                    | 5b                                                                                                   |
|---------------------------------------------|------------------------------------------------------------------------------------------------------|
| Molecular formula                           | C <sub>30</sub> H <sub>36</sub> ClCrIrN <sub>2</sub> O <sub>3</sub> ,C <sub>3</sub> H <sub>6</sub> O |
| Molecular weight                            | 810.34                                                                                               |
| Crystal habit                               | Orange Needle                                                                                        |
| Crystal dimensions(mm)                      | 0.34x0.04x0.02                                                                                       |
| Crystal system                              | monoclinic                                                                                           |
| Space group                                 | $P2_1/c$                                                                                             |
| a(Å)                                        | 10.649(1)                                                                                            |
| b(Å)                                        | 15.812(1)                                                                                            |
| c(Å)                                        | 21.131(1)                                                                                            |
| α(°)                                        | 90.00                                                                                                |
| β(°)                                        | 107.397(3)                                                                                           |
| γ(°)                                        | 90.00                                                                                                |
| $V(Å^3)$                                    | 3395.3(4)                                                                                            |
| Z                                           | 4                                                                                                    |
| $d(g-cm^{-3})$                              | 1.585                                                                                                |
| F(000)                                      | 1616                                                                                                 |
| $\mu(\text{cm}^{-1})$                       | 4.351                                                                                                |
| Absorption corrections                      | multi-scan; 0.3193 min, 0.9180 max                                                                   |
| Diffractometer                              | KappaCCD                                                                                             |
| X-ray source                                | ΜοΚα                                                                                                 |
| $\lambda(\text{Å})$                         | 0.71069                                                                                              |
| Monochromator                               | graphite                                                                                             |
| T (K)                                       | 150.0(1)                                                                                             |
| Scan mode                                   | phi and omega scans                                                                                  |
| Maximum θ                                   | 29.95                                                                                                |
| HKL ranges                                  | -12 14 ; -22 20 ; -24 29                                                                             |
| Reflections measured                        | 26792                                                                                                |
| Unique data                                 | 9667                                                                                                 |
| Rint                                        | 0.0494                                                                                               |
| Reflections used                            | 6935                                                                                                 |
| Criterion                                   | $I > 2\sigma I$ )                                                                                    |
| Refinement type                             | Fsqd                                                                                                 |
| Hydrogen atoms                              | constr                                                                                               |
| Parameters refined                          | 391                                                                                                  |
| Reflections / parameter                     | 17                                                                                                   |
| wR2                                         | 0.0624                                                                                               |
| R1                                          | 0.0495                                                                                               |
| Weights a, b                                | 0.0095 ; 4.6460                                                                                      |
| GoF                                         | 1.127                                                                                                |
| difference peak / hole (e Å <sup>-3</sup> ) | 0.943(0.193) / -0.940(0.193)                                                                         |

| Table 2.   | Atomic   | Coordin | ates | (Z | ХA  | 10′ | ^4) | and | equivalent | isotropic |
|------------|----------|---------|------|----|-----|-----|-----|-----|------------|-----------|
| displaceme | ent para | ameters | (A^2 | х  | 10′ | `3) | for | 5b  |            |           |

| atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                                                                                                                                                                                                                                                                                                                                                                                                                   | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U(eq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| atom<br><br>Ir(1)<br>Cr(1)<br>Cl(1)<br>O(1)<br>O(2)<br>O(3)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)<br>C(5)<br>C(6)<br>C(7)<br>C(8)<br>C(9)<br>C(10)<br>C(11)<br>C(12)<br>C(12)<br>C(11)<br>C(12)<br>C(11)<br>C(12)<br>C(11)<br>C(12)<br>C(11)<br>C(12)<br>C(11)<br>C(12)<br>C(11)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C(22)<br>C | $\begin{array}{c} x\\ 3505(1)\\ 244(1)\\ 3559(1)\\ -539(4)\\ 2106(3)\\ -1654(3)\\ 3947(4)\\ -1877(4)\\ 1674(4)\\ 471(4)\\ -754(4)\\ 471(4)\\ -737(4)\\ 447(4)\\ 1650(4)\\ 2921(4)\\ 3139(4)\\ 4402(4)\\ 5428(4)\\ 5158(4)\\ -1866(5)\\ -3143(4)\\ 4631(5)\\ 3890(6)\\ 4078(5)\\ 6088(5)\\ 4428(5)\\ 5286(5)\\ 428(5)\\ 5286(5)\\ 4559(5)\\ 3240(5)\\ 3187(5)\\ 4865(6)\\ 6728(5)\\ 5046(7)\\ 2192(6)\\ \end{array}$ | $\begin{array}{c} y\\ -5334(1)\\ -3865(1)\\ -6041(1)\\ -2067(3)\\ -3075(3)\\ -4033(3)\\ -4257(3)\\ -5513(3)\\ -4257(3)\\ -5513(3)\\ -5305(4)\\ -5087(3)\\ -4417(3)\\ -4012(3)\\ -4417(3)\\ -4012(3)\\ -4417(3)\\ -4012(3)\\ -3872(3)\\ -3206(3)\\ -3206(3)\\ -3970(3)\\ -6086(4)\\ -5159(4)\\ -5159(4)\\ -2171(3)\\ -1384(4)\\ -2415(4)\\ -1951(4)\\ -5110(3)\\ -5688(4)\\ -6421(4)\\ -6318(4)\\ -5520(3)\\ -4293(4)\\ -5573(5)\\ -7194(4)\\ -6993(4)\\ \end{array}$ | $\begin{array}{c} z\\ -3025(1)\\ -3482(1)\\ -4023(1)\\ -3803(2)\\ -2282(2)\\ -2695(2)\\ -3500(2)\\ -4069(2)\\ -3577(2)\\ -4069(2)\\ -3577(2)\\ -4056(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4496(2)\\ -4596(2)\\ -3793(2)\\ -3526(2)\\ -4449(2)\\ -4559(2)\\ -3526(2)\\ -4449(2)\\ -4559(2)\\ -5428(2)\\ -4546(3)\\ -1974(2)\\ -2176(2)\\ -2421(2)\\ -2375(2)\\ -2067(2)\\ -1632(2)\\ -2080(3)\\ -2686(3)\\ -2532(3)\\ \end{array}$ | U(eq)<br>16(1)<br>19(1)<br>27(1)<br>49(1)<br>43(1)<br>35(1)<br>18(1)<br>25(1)<br>18(1)<br>20(1)<br>21(1)<br>21(1)<br>20(1)<br>19(1)<br>18(1)<br>20(1)<br>18(1)<br>20(1)<br>18(1)<br>23(1)<br>31(1)<br>23(1)<br>31(1)<br>29(1)<br>24(1)<br>35(1)<br>31(1)<br>43(2)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>24(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>29(1)<br>26(1)<br>26(1)<br>24(1)<br>26(1)<br>29(1)<br>26(1)<br>26(1)<br>24(1)<br>26(1)<br>26(1)<br>24(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26(1)<br>26 |
| C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6728(5)                                                                                                                                                                                                                                                                                                                                                                                                             | -5573(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2080(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5046(7)                                                                                                                                                                                                                                                                                                                                                                                                             | -7194(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2686(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2192(6)                                                                                                                                                                                                                                                                                                                                                                                                             | -6993(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2532(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2081(6)                                                                                                                                                                                                                                                                                                                                                                                                             | -5215(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1825(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -251(5)                                                                                                                                                                                                                                                                                                                                                                                                             | -2773(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3688(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1416(5)                                                                                                                                                                                                                                                                                                                                                                                                             | -3415(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2746(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -924(4)                                                                                                                                                                                                                                                                                                                                                                                                             | -3963(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3012(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| O(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 505(5)                                                                                                                                                                                                                                                                                                                                                                                                              | -2609(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -548(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -252(7)                                                                                                                                                                                                                                                                                                                                                                                                             | -3183(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -698(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1581(7)                                                                                                                                                                                                                                                                                                                                                                                                            | -3141(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -630(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140(10)                                                                                                                                                                                                                                                                                                                                                                                                             | -3961(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -979(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 149(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

U(eq) is defined as 1/3 the trace of the Uij tensor.

| Table                                                                                                                               | 3. Bond lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (A) | and angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (deg) for 5b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                     | Ir (1) -C (1)  Ir (1) -C (21)  Ir (1) -C (18)  Ir (1) -C (19)  Cr (1) -C (29)  Cr (1) -C (2)  Cr (1) -C (2)  Cr (1) -C (2)  Cr (1) -C (3)  0 (2) -C (29)  N (1) -C (11)  N (2) -C (12)  C (1) -C (6)  C (2) -H (2)  C (4) -C (5)  C (5) -C (6)  C (6) -C (7)  C (8) -C (9)  C (10) -C (11)  C (11) -H (11)  C (12) -H (12B)  C (13) -H (13A)  C (13) -H (13A)  C (13) -H (13A)  C (14) -C (16)  C (15) -H (15A)  C (15) -H (15A)  C (16) -H (16B)  C (17) -H (17A)  C (17) -H (17A)  C (17) -H (17A)  C (19) -C (20)  C (20) -C (21)  C (22) -C (27)  C (23) -H (23B)  C (24) -H (24A)  C (24) -H (24A)  C (25) -H (25B)  C (26) -H (26C)  C (27) -H (27B)  O (4) -C (31)  C (33) -H (33A)  C (33) -H (33A)  C (33) -H (33C) |     | 2.046(4)<br>2.150(5)<br>2.171(4)<br>2.257(4)<br>1.815(5)<br>1.823(5)<br>2.224(4)<br>2.305(5)<br>2.359(5)<br>1.165(5)<br>1.333(5)<br>1.366(6)<br>1.460(6)<br>1.427(6)<br>0.9500<br>1.407(6)<br>1.413(6)<br>1.457(6)<br>1.393(6)<br>1.400(6)<br>1.377(7)<br>0.9500<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.98 | Ir (1) -N (1) $Ir (1) -C (22)$ $Ir (1) -C (20)$ $Ir (1) -C (1)$ $Cr (1) -C (28)$ $Cr (1) -C (2)$ $Cr (1) -C (2)$ $O (3) -C (30)$ $N (1) -C (7)$ $N (2) -C (13)$ $C (1) -C (2)$ $C (2) -C (3)$ $C (3) -C (4)$ $C (4) -H (4)$ $C (5) -H (5)$ $C (7) -C (8)$ $C (8) -H (8)$ $C (9) -C (14)$ $C (10) -H (10)$ $C (12) -H (12A)$ $C (12) -H (12A)$ $C (12) -H (12A)$ $C (12) -H (12B)$ $C (14) -C (17)$ $C (14) -C (17)$ $C (14) -C (15)$ $C (15) -H (15B)$ $C (16) -H (16A)$ $C (16) -H (16A)$ $C (16) -H (16C)$ $C (17) -H (17B)$ $C (18) -C (22)$ $C (18) -C (22)$ $C (18) -C (23)$ $C (20) -C (24)$ $C (20) -C (25)$ $C (21) -C (26)$ $C (23) -H (23A)$ $C (23) -H (23A)$ $C (25) -H (25A)$ $C (26) -H (26B)$ $C (27) -H (27C)$ $C (31) -C (32)$ $C (32) -H (32A)$ $C (32) -H (32B)$ $C (33) -H (33B)$ | 2.101(4)<br>2.170(4)<br>2.233(5)<br>2.402(1)<br>1.820(6)<br>2.201(4)<br>2.260(4)<br>2.321(5)<br>1.163(6)<br>1.173(5)<br>1.373(5)<br>1.460(6)<br>1.404(6)<br>1.411(6)<br>0.9500<br>0.9500<br>1.529(6)<br>0.9500<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.98 |
| C(1)-<br>N(1)-<br>C(1)-<br>C(21)<br>C(1)-<br>C(21)<br>C(1)-<br>C(21)<br>C(18)<br>N(1)-<br>C(22)<br>C(20)<br>N(1)-<br>C(22)<br>C(20) | -Ir(1)-N(1)<br>-Ir(1)-C(21)<br>-Ir(1)-C(22)<br>-Ir(1)-C(18)<br>-Ir(1)-C(20)<br>-Ir(1)-C(20)<br>-Ir(1)-C(20)<br>-Ir(1)-C(20)<br>-Ir(1)-C(19)<br>-Ir(1)-C(19)<br>-Ir(1)-C(19)<br>-Ir(1)-C1(1)<br>-Ir(1)-C1(1)<br>-Ir(1)-C1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 78.1(2)  169.5(2)  132.5(2)  126.1(2)  64.6(2)  142.2(2)  38.5(2)  62.9(2)  109.0(2)  63.5(2)  36.4(2)  83.7(1)  143.8(2)  90.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} C(1) - Ir(1) - C(21) \\ C(1) - Ir(1) - C(22) \\ C(21) - Ir(1) - C(22) \\ N(1) - Ir(1) - C(18) \\ C(22) - Ir(1) - C(18) \\ N(1) - Ir(1) - C(20) \\ C(22) - Ir(1) - C(20) \\ C(22) - Ir(1) - C(19) \\ C(21) - Ir(1) - C(19) \\ C(18) - Ir(1) - C(19) \\ C(1) - Ir(1) - C(11) \\ C(21) - Ir(1) - C1(1) \\ C(18) - Ir(1) - C1(1) \\ C(19) - Ir(1) - C1(1) \\ C(19) - Ir(1) - C1(1) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $107.3(2) \\ 100.3(2) \\ 38.6(2) \\ 105.0(2) \\ 38.5(2) \\ 138.7(2) \\ 63.5(2) \\ 163.2(2) \\ 63.4(2) \\ 38.0(2) \\ 85.3(1) \\ 105.4(2) \\ 148.3(1) \\ 110.3(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Supplementary Material (ESI) for Chemical      | Communications       |                                                    |                      |
|------------------------------------------------|----------------------|----------------------------------------------------|----------------------|
| This journal is (c) The Royal Society of Che   | 0000(2)              | $C(20) = C^{-1}(1) = C(20)$                        | 00 = (2)             |
| C(30) - Cr(1) - C(28)                          | 90.9(2)              | C(30) - Cr(1) - C(29)                              | 88.3(2)              |
| C(28) - Cr(1) - C(29)                          | 88 6(2)              | C(29) = Cr(1) = C(5)                               | 142.0(2)<br>128 5(2) |
| C(30) - Cr(1) - C(6)                           | 158.8(2)             | C(28) - Cr(1) - C(6)                               | 109.6(2)             |
| C(29) - Cr(1) - C(6)                           | 98.8(2)              | C(5) - Cr(1) - C(6)                                | 37.2(2)              |
| C(30) - Cr(1) - C(4)                           | 106.7(2)             | C(28) - Cr(1) - C(4)                               | 97.0(2)              |
| C(29) - Cr(1) - C(4)                           | 164.7(2)             | C(5) - Cr(1) - C(4)                                | 36.8(2)              |
| C(6) - Cr(1) - C(4)                            | 66.2(2)              | C(30) - Cr(1) - C(2)                               | 94.0(2)              |
| C(28) - Cr(1) - C(2)                           | 161.2(2)             | C(29) - Cr(1) - C(2)                               | 113.4(2)             |
| C(5) - Cr(1) - C(2)                            | 76.6(2)              | C(6) - Cr(1) - C(2)                                | 64.8(2)              |
| C(4) - Cr(1) - C(2)                            | 64.3(2)              | C(30) - Cr(1) - C(1)                               | 123.7(2)             |
| C(28) - Cr(1) - C(1)                           | 145.4(2)             | C(29) - Cr(1) - C(1)                               | 93.2(2)              |
| C(5) - Cr(1) - C(1)                            | 65.8(2)              | C(6) - Cr(1) - C(1)                                | 36.5(2)              |
| C(4) - CL(1) - C(1)<br>C(30) - Cr(1) - C(3)    | 70.7(2)              | C(2) = CI(1) = C(1)<br>C(28) = Cr(1) = C(3)        | 33.3(2)<br>126 9(2)  |
| C(29) - Cr(1) - C(3)                           | 147 9(2)             | C(20) - CI(1) - C(3)                               | 120.9(2)             |
| C(6) - Cr(1) - C(3)                            | 77.0(2)              | C(4) - Cr(1) - C(3)                                | 35.5(2)              |
| C(2) - Cr(1) - C(3)                            | 35.8(2)              | C(1) - Cr(1) - C(3)                                | 64.3(2)              |
| C(11) - N(1) - C(7)                            | 117.8(4)             | C(11) - N(1) - Ir(1)                               | 124.8(3)             |
| C(7) - N(1) - Ir(1)                            | 117.1(3)             | C(3)-N(2)-C(13)                                    | 118.7(4)             |
| C(3) - N(2) - C(12)                            | 119.4(4)             | C(13) - N(2) - C(12)                               | 117.4(4)             |
| C(2) - C(1) - C(6)                             | 118.1(4)             | C(2) - C(1) - Ir(1)                                | 126.2(4)             |
| C(6) - C(1) - Ir(1)                            | 115.5(3)             | C(2) - C(1) - Cr(1)                                | 71.7(3)              |
| C(6) - C(1) - Cr(1)                            | 68.1(3)              | Ir(1) - C(1) - Cr(1)                               | 135.8(2)             |
| C(1) - C(2) - C(3)<br>C(3) - C(2) - Cr(1)      | 122.0(4)<br>7/ 1(3)  | C(1) = C(2) = CI(1)<br>C(1) = C(2) = H(2)          | 118 6                |
| C(3) - C(2) - H(2)                             | 118 6                | Cr(1) = C(2) = H(2)                                | 126 3                |
| N(2) - C(3) - C(4)                             | 122.7(4)             | N(2) - C(3) - C(2)                                 | 120.1(4)             |
| C(4) - C(3) - C(2)                             | 117.2(4)             | N(2) - C(3) - Cr(1)                                | 132.2(3)             |
| C(4) - C(3) - Cr(1)                            | 68.4(3)              | C(2) - C(3) - Cr(1)                                | 70.1(3)              |
| C(5)-C(4)-C(3)                                 | 121.0(4)             | C(5) - C(4) - Cr(1)                                | 69.3(2)              |
| C(3) - C(4) - Cr(1)                            | 76.1(3)              | C(5) - C(4) - H(4)                                 | 119.5                |
| C(3) - C(4) - H(4)                             | 119.5                | Cr(1) - C(4) - H(4)                                | 127.1                |
| C(4) - C(5) - C(6)                             | 120.7(4)             | C(4) - C(5) - Cr(1)                                | /3.9(2)              |
| C(6) - C(5) - CI(1)                            | 72.5(2)<br>110 7     | C(4) = C(5) = H(5)<br>$C_{rr}(1) = C(5) = H(5)$    | 126 0                |
| C(5) - C(6) - C(1)                             | 120.0(4)             | C(5) - C(6) - C(7)                                 | 120.0<br>124.6(4)    |
| C(1) - C(6) - C(7)                             | 115.4(4)             | C(5) - C(6) - Cr(1)                                | 70.5(2)              |
| C(1) - C(6) - Cr(1)                            | 75.4(2)              | C(7) - C(6) - Cr(1)                                | 126.2(3)             |
| N(1) - C(7) - C(8)                             | 120.9(4)             | N(1) - C(7) - C(6)                                 | 113.2(4)             |
| C(8)-C(7)-C(6)                                 | 125.9(4)             | C(7)-C(8)-C(9)                                     | 121.6(4)             |
| C(7)-C(8)-H(8)                                 | 119.2                | С(9)–С(8)–Н(8)                                     | 119.2                |
| C(8) - C(9) - C(10)                            | 116.1(4)             | C(8) - C(9) - C(14)                                | 121.0(4)             |
| C(10) - C(9) - C(14)                           | 122.8(4)             | C(11) - C(10) - C(9)                               | 120.0(4)             |
| C(11) - C(10) - H(10)<br>N(1) - C(11) - C(10)  | 120.0<br>123 6(4)    | C(9) - C(10) - H(10)<br>N(1) - C(11) - H(11)       | 120.0<br>118 2       |
| C(10) - C(11) - H(11)                          | 118.2                | N(2) - C(12) - H(12A)                              | 109.5                |
| N(2) - C(12) - H(12B)                          | 109.5                | H(12A) - C(12) - H(12B)                            | 109.5                |
| N(2) - C(12) - H(12C)                          | 109.5                | H(12A) -C(12) -H(12C)                              | 109.5                |
| H(12B)-C(12)-H(12C)                            | 109.5                | N(2)-C(13)-H(13A)                                  | 109.5                |
| N(2)-C(13)-H(13B)                              | 109.5                | H(13A)-C(13)-H(13B)                                | 109.5                |
| N(2) - C(13) - H(13C)                          | 109.5                | H(13A) -C(13) -H(13C)                              | 109.5                |
| H(13B) - C(13) - H(13C)                        | 109.5                | C(17) - C(14) - C(9)                               | 112.4(4)             |
| C(17) - C(14) - C(16)<br>C(17) - C(14) - C(15) | 108.9(4)<br>108.8(5) | C(9) - C(14) - C(16)<br>C(9) - C(14) - C(15)       | 109.1(4)<br>108 5(4) |
| C(16) - C(14) - C(15)                          | 100.0(5)<br>109.1(4) | C(14) = C(14) = C(15)<br>C(14) = C(15) = H(15a)    | 109 5                |
| C(14) - C(15) - H(15B)                         | 109.5                | H(15A) - C(15) - H(15B)                            | 109.5                |
| C(14) - C(15) - H(15C)                         | 109.5                | H(15A) -C(15) -H(15C)                              | 109.5                |
| H(15B)-C(15)-H(15C)                            | 109.5                | C(14)-C(16)-H(16A)                                 | 109.5                |
| C(14)-C(16)-H(16B)                             | 109.5                | H(16A)-C(16)-H(16B)                                | 109.5                |
| C(14) - C(16) - H(16C)                         | 109.5                | H(16A)-C(16)-H(16C)                                | 109.5                |
| H(16B) - C(16) - H(16C)                        | 109.5                | C(14) - C(17) - H(17A)                             | 109.5                |
| C(14) - C(17) - H(170)                         | 109.5<br>100 5       | H(I/A) - C(I/) - H(I/B)<br>H(17A) - C(17) - H(17C) | 109.5                |
| H(17B) = C(17) = H(17C)                        | 109.5                | C(22) - C(18) - C(19)                              | 109.5                |
| C(22) - C(18) - C(23)                          | 127.0(5)             | C(19) - C(18) - C(23)                              | 124.1(5)             |
| C(22) - C(18) - Ir(1)                          | 70.7(2)              | C(19) - C(18) - Ir(1)                              | 74.2(3)              |

| Supplementary Material (ESI) for Chemical    | Communications |                       |          |
|----------------------------------------------|----------------|-----------------------|----------|
| This journal is (c) The Royal Society of Che | mistry 2011    |                       |          |
| C(23) - C(18) - Ir(1)                        | 128.3(4)       | C(20)-C(19)-C(18)     | 107.7(4) |
| C(20)-C(19)-C(24)                            | 125.4(5)       | C(18)-C(19)-C(24)     | 126.6(6) |
| C(20) - C(19) - Ir(1)                        | 70.9(3)        | C(18) - C(19) - Ir(1) | 67.8(2)  |
| C(24) - C(19) - Ir(1)                        | 131.4(3)       | C(19)-C(20)-C(21)     | 108.8(5) |
| C(19)-C(20)-C(25)                            | 126.6(5)       | C(21)-C(20)-C(25)     | 124.6(6) |
| C(19) - C(20) - Ir(1)                        | 72.7(3)        | C(21)-C(20)-Ir(1)     | 67.6(3)  |
| C(25) - C(20) - Ir(1)                        | 125.7(3)       | C(22)-C(21)-C(20)     | 107.6(4) |
| C(22)-C(21)-C(26)                            | 126.7(5)       | C(20)-C(21)-C(26)     | 125.1(6) |
| C(22) - C(21) - Ir(1)                        | 71.5(3)        | C(20)-C(21)-Ir(1)     | 73.9(3)  |
| C(26) - C(21) - Ir(1)                        | 126.9(3)       | C(21)-C(22)-C(18)     | 107.6(4) |
| C(21)-C(22)-C(27)                            | 125.6(5)       | C(18)-C(22)-C(27)     | 126.5(5) |
| C(21) - C(22) - Ir(1)                        | 69.9(2)        | C(18)-C(22)-Ir(1)     | 70.8(2)  |
| C(27) - C(22) - Ir(1)                        | 129.3(3)       | C(18)-C(23)-H(23A)    | 109.5    |
| C(18)-C(23)-H(23B)                           | 109.5          | Н(23А)-С(23)-Н(23В)   | 109.5    |
| С(18)-С(23)-Н(23С)                           | 109.5          | H(23A)-C(23)-H(23C)   | 109.5    |
| H(23B)-C(23)-H(23C)                          | 109.5          | C(19)-C(24)-H(24A)    | 109.5    |
| C(19)-C(24)-H(24B)                           | 109.5          | Н(24А)-С(24)-Н(24В)   | 109.5    |
| C(19)-C(24)-H(24C)                           | 109.5          | H(24A)-C(24)-H(24C)   | 109.5    |
| H(24B)-C(24)-H(24C)                          | 109.5          | C(20)-C(25)-H(25A)    | 109.5    |
| С(20)-С(25)-Н(25В)                           | 109.5          | Н(25А)-С(25)-Н(25В)   | 109.5    |
| С(20)-С(25)-Н(25С)                           | 109.5          | Н(25А)-С(25)-Н(25С)   | 109.5    |
| H(25B)-C(25)-H(25C)                          | 109.5          | C(21)-C(26)-H(26A)    | 109.5    |
| С(21)-С(26)-Н(26В)                           | 109.5          | Н(26А)-С(26)-Н(26В)   | 109.5    |
| С(21)-С(26)-Н(26С)                           | 109.5          | H(26A)-C(26)-H(26C)   | 109.5    |
| H(26B)-C(26)-H(26C)                          | 109.5          | C(22)-C(27)-H(27A)    | 109.5    |
| С(22)-С(27)-Н(27В)                           | 109.5          | Н(27А)-С(27)-Н(27В)   | 109.5    |
| С(22)-С(27)-Н(27С)                           | 109.5          | Н(27A)-С(27)-Н(27С)   | 109.5    |
| Н(27В)-С(27)-Н(27С)                          | 109.5          | O(1) - C(28) - Cr(1)  | 178.0(5) |
| O(2) - C(29) - Cr(1)                         | 175.0(5)       | O(3) - C(30) - Cr(1)  | 178.3(4) |
| O(4)-C(31)-C(32)                             | 122.4(8)       | O(4)-C(31)-C(33)      | 119.2(7) |
| C(32)-C(31)-C(33)                            | 118.4(8)       | C(31)-C(32)-H(32A)    | 109.5    |
| С(31)-С(32)-Н(32В)                           | 109.5          | Н(32А)-С(32)-Н(32В)   | 109.5    |
| С(31)-С(32)-Н(32С)                           | 109.5          | H(32A)-C(32)-H(32C)   | 109.5    |
| H(32B)-C(32)-H(32C)                          | 109.5          | C(31)-C(33)-H(33A)    | 109.5    |
| С(31)-С(33)-Н(33В)                           | 109.5          | H(33A)-C(33)-H(33B)   | 109.5    |
| C(31)-C(33)-H(33C)                           | 109.5          | H(33A)-C(33)-H(33C)   | 109.5    |
| H(33B)-C(33)-H(33C)                          | 109.5          |                       |          |

| Table 4. | Anisotropic | displacement | parameters | (A^2 x | 10^3) | for | 5b |
|----------|-------------|--------------|------------|--------|-------|-----|----|
|----------|-------------|--------------|------------|--------|-------|-----|----|

| atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U23                                                                                                                                                                                                                                                                                                                                                                                                                                              | U13                                                                                                                                                                                                                                                                                                                                                                                           | U12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ir (1)<br>Cr (1)<br>Cr (1)<br>O(1)<br>O(2)<br>O(3)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)<br>C(2)<br>C(3)<br>C(4)<br>C(5)<br>C(6)<br>C(7)<br>C(3)<br>C(4)<br>C(2)<br>C(10)<br>C(11)<br>C(12)<br>C(10)<br>C(11)<br>C(12)<br>C(11)<br>C(12)<br>C(11)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(13)<br>C(14)<br>C(15)<br>C(16)<br>C(17)<br>C(16)<br>C(17)<br>C(16)<br>C(17)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(12)<br>C(22)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(22)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(23)<br>C(2 | $19(1) \\ 16(1) \\ 33(1) \\ 62(3) \\ 32(2) \\ 32(2) \\ 32(2) \\ 23(2) \\ 23(2) \\ 24(2) \\ 18(2) \\ 20(2) \\ 19(2) \\ 21(2) \\ 16(2) \\ 22(2) \\ 18(2) \\ 20(2) \\ 19(2) \\ 21(2) \\ 16(2) \\ 22(2) \\ 18(2) \\ 20(2) \\ 33(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 23(3) \\ 22(3) \\ 19(2) \\ 54(3) \\ 42(4) \\ 54(5) \\ 96(8) \\ $ | 15 (1)<br>19 (1)<br>27 (1)<br>24 (3)<br>47 (3)<br>35 (3)<br>19 (3)<br>27 (3)<br>16 (3)<br>16 (3)<br>23 (3)<br>24 (3)<br>22 (3)<br>18 (3)<br>20 (3)<br>27 (3)<br>19 (3)<br>28 (3)<br>20 (3)<br>27 (3)<br>19 (3)<br>28 (3)<br>26 (3)<br>31 (4)<br>29 (4)<br>23 (3)<br>22 (4)<br>28 (4)<br>45 (5)<br>25 (3)<br>37 (4)<br>24 (3)<br>26 (3)<br>37 (4)<br>24 (3)<br>26 (3)<br>37 (4)<br>23 (4)<br>33 (4)<br>91 (7)<br>37 (5)<br>31 (4)<br>60 (5)<br>23 (4)<br>25 (3)<br>20 (3)<br>117 (6)<br>89 (7)<br>120 (10)<br>160 (10) | 18 (1)         23 (1)         24 (1)         64 (3)         44 (2)         48 (2)         20 (2)         26 (2)         17 (2)         24 (2)         18 (2)         21 (2)         20 (2)         21 (2)         20 (2)         21 (2)         20 (2)         21 (2)         25 (2)         24 (2)         31 (3)         38 (3)         21 (2)         25 (3)         38 (3)         21 (2)         20 (2)         13 (2)         21 (2)         20 (2)         17 (2)         23 (2)         25 (3)         39 (3)         49 (4)         55 (4)         38 (3)         33 (3)         33 (3)         33 (3)         33 (3)         33 (3)         33 (3)         33 (3)         33 (3)         33 (3)         33 (3)         33 (3)         33 (3)         33 (3) | $\begin{array}{c} 1 (1) \\ -1 (1) \\ -4 (1) \\ 7 (2) \\ -14 (2) \\ 1 (2) \\ 2 (2) \\ -2 (2) \\ -2 (2) \\ -4 (2) \\ -5 (2) \\ -6 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -2 (2) \\ -3 (2) \\ -3 (4) \\ -3 0 (4) \\ -2 0 (6) \\ -1 20 (10) \end{array}$ | 9(1)<br>8(1)<br>12(1)<br>23(2)<br>0(2)<br>28(2)<br>9(2)<br>10(2)<br>12(2)<br>12(2)<br>7(2)<br>9(2)<br>10(2)<br>12(2)<br>7(2)<br>9(2)<br>7(2)<br>9(2)<br>7(2)<br>9(2)<br>7(2)<br>12(2)<br>7(2)<br>9(2)<br>7(2)<br>12(2)<br>11(2)<br>8(2)<br>15(2)<br>15(2)<br>15(2)<br>15(2)<br>15(2)<br>15(2)<br>15(2)<br>17(2)<br>-7(3)<br>8(2)<br>33(3)<br>13(2)<br>11(2)<br>4(2)<br>27(3)<br>7(4)<br>29(7) | $1(1) \\ 0(1) \\ 5(1) \\ 12(2) \\ -6(2) \\ -1(2) \\ -1(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -2(2) \\ -3(2) \\ 3(2) \\ 0(2) \\ -2(2) \\ -3(2) \\ -3(2) \\ -3(2) \\ -5(3) \\ -5(3) \\ -15(3) \\ 2(2) \\ 3(2) \\ 17(3) \\ -5(2) \\ 9(2) \\ -5(3) \\ -15(3) \\ 2(2) \\ 3(2) \\ 17(3) \\ -5(2) \\ 9(2) \\ -5(3) \\ -1(3) \\ 33(4) \\ -21(3) \\ 23(4) \\ 5(3) \\ -1(2) \\ -3(2) \\ -25(4) \\ -3(4) \\ -7(5) \\ 10(8) \\ 0 \\ -1 \\ 0 \\ -7(5) \\ 10(8) \\ 0 \\ -1 \\ -1 \\ -1 \\ -7(5) \\ 10(8) \\ 0 \\ -1 \\ -1 \\ -1 \\ -7(5) \\ 10(8) \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

The anisotropic displacement factor exponent takes the form 2 pi^2  $[h^2a^*^2U(11) + \ldots + 2hka^*b^*U(12)]$ 

Table 5. Hydrogen Coordinates (A x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for 5b

| atom                    | x             | У          | Z                 | U(eq)      |
|-------------------------|---------------|------------|-------------------|------------|
| Н(2)                    | 469           | -5718      | -3251             | 24         |
| H(4)                    | -1538         | -4238      | -4805             | 25         |
| H(5)                    | 438           | -3568      | -4786             | 24         |
| H(8)                    | 2411          | -2949      | -4655             | 24         |
| H(10)                   | 6311          | -3129      | -3721             | 28         |
| H(11)                   | 5874          | -4236      | -3113             | 28         |
| H(12A)                  | -1259         | -6555      | -3517             | 47         |
| H(12B)                  | -2754.0002    | -6310      | -3591.0002        | 47         |
| H(12C)                  | -1579         | -5779      | -3104             | 47         |
| H(13A)                  | -3215         | -4577      | -4304             | 44         |
| H(13B)                  | -3856         | -5501.0005 | -4377             | 44         |
| H(13C)                  | -3210         | -5161      | -4922             | 44         |
| H(15A)                  | 4246          | -1221      | -4092.0002        | 53         |
| H(15B)                  | 2952          | -1516      | -4658             | 53         |
| H(15C)                  | 4003          | -916       | -4841             | 53         |
| H(16A)                  | 4201          | -1944      | -5705             | 46         |
| H(16B)                  | 3138          | -2542      | -5531             | 46         |
| H(16C)                  | 4543          | -2915      | -5517             | 46         |
| H(17A)                  | 6450          | -1797      | -40'/'/           | 65         |
| H(17B)                  | 6184          | -1474.0001 | -4823             | 65         |
| H(17C)                  | 6563          | -2442      | -4641             | 65         |
| H(23A)                  | 4099          | -3930      | -1675             | 72         |
| H(23B)                  | 5472          | -4013.0002 | -1834             | 72         |
| H(23C)                  | 5314          | -4399      | -1162             | 72         |
| H(24A)                  | 7230          | -5797      | -1646             | 82         |
| H(24B)                  | 6922          | -4970      | -2103             | 82         |
| H(24C)                  | 6975          | -5878.0005 | -2429             | 82         |
| H(25A)                  | 5703          | -7028      | -2903             | 81         |
| H(25B)                  | 4306          | - 7474     | -3009.0002        | 81         |
| H(25C)                  | 5445          | - / 583    | -2321             | 81         |
| H(26A)                  | 1401          | -6///      | -2442             | 79         |
| H(26B)                  | 2515          | - 7492     | -2256             | 79         |
| H(20C)                  | 1980          | -7149      | -3001<br>1414     | 79         |
| H(Z/A)                  | 2105          | -5511      | -1414             | 69         |
| H(Z/B)                  | 1240<br>0170  | -5329      | -2102             | 69         |
| H(Z/C)                  | 21/3<br>1E02  | -4005      | -1740             | 120        |
| п(ЗZА)<br>ц(ЗЭр)        | -T333<br>2301 | -3423      | -220              | 126        |
| П(ЗZВ)<br>П(ЗСС)        | -ZZUI<br>1020 | -3422      | -1010.0001        | 126        |
| ロ (ンZC)<br>ロ (ンス)       | -T020         | -2040      | -010<br>1421 0000 | 100<br>102 |
| רו (אככ) (AC)<br>ארי בי | -404<br>101   | -4003      | -1421.9999<br>601 | 223        |
| п(ззс)<br>п(зэр)        | 1030          | -4440      | 1000              | ∠∠⊃<br>२२३ |
| 11(22C)                 | T032          | -2022      | -1009             | 223        |

## **Computational details**

#### Theoretical and Computational details.

Geometry optimization and ground singlet state electronic structure determination were performed by using the methods of the Density Functional Theory (DFT). The Becke<sup>3</sup>-Perdew<sup>4, 5</sup> (BP86) and the Perdew-Burke-Ernzerhof<sup>6</sup> (PBE) GGA functionals as well as the Tao-Perdew-Staroverov-Scuseria (TPSS) metaGGA functional<sup>7</sup> implemented in the Amsterdam Density Functional package<sup>8, 9</sup> (abbr. ADF, version 2009.01) were used. Opposed to a similar functional that is typically termed BP86, the implementation in ADF employs the Vosko-Wilk-Nusair parametrization for the LDA correlation energy part.<sup>10</sup> The PBE functional in ADF200 employs the PW92 parametrization of the LDA correlation energy part. In calculations carried out with the ADF package, scalar relativistic effects were treated within the Zeroth Order Regular Approximation (ZORA).<sup>11, 12</sup> As a consequence, in all cases ad hoc all-electron TZP (ZORA for Ir, Ru, Cr) and DZP (ZORA for remaining main group elements) basis sets were used. <sup>13</sup> Geometry optimizations by energy gradient minimization were carried out in all cases without symmetry constraint. Integration grid accuracy spanned 5 to 6, energy gradient convergence criterion was set to  $10^{-3}$  au and tight SCF convergence criteria ( $10^{-7}$  au) was used. Wiberg bond indices for ADF-optimized geometries (using all electron TZP basis sets) were computed with the GENNBO 5.0 extension of ADF<sup>14</sup>. Representations of molecular structures and orbitals were drawn using *ADFview* v09. Solvation by acetone was accounted for using the COSMO<sup>15-17</sup> procedure with Klamt's values of van der Waals radii for atoms. Thermodynamic data were computed from the statistical data, namely internal energy and entropy, generated by vibrational frequency calculations. The latter were computed by analytical integration and by two point numerical differentiation for geometries optimized respectively in the gas phase and in acetonitrile (COSMO).<sup>8</sup>

# Coulomb potential maps for the following models drawn over the SCF electron density isosurface

**III**, charge  $2+ (0.035 \text{ e/bohr}^3)$ 



**IV**, charge  $1 + (0.025 \text{ e/bohr}^3)$ 



V, neutral (0.025 e/bohr<sup>3</sup>)



#### Dimethylaniline at TPSS/TZP

Geometry CYCLE 2

Energy gradients wrt nuclear displacements

| At | tom | Cartes    | ian (a.u./a | angstrom) |
|----|-----|-----------|-------------|-----------|
|    |     | Х         | Y           | Z         |
| 1  | с   | 0.000061  | 0.000034    | 0.000063  |
| 2  | С   | 0.000017  | 0.000234    | -0.000011 |
| 3  | С   | -0.000031 | 0.000230    | 0.000129  |
| 4  | С   | -0.000024 | 0.000117    | 0.000512  |
| 5  | С   | 0.00003   | -0.000273   | 0.000358  |
| 6  | С   | 0.000020  | -0.000265   | -0.000526 |
| 7  | Н   | 0.000052  | -0.000123   | 0.000025  |
| 8  | Н   | -0.000012 | -0.000059   | 0.000085  |
| 9  | Н   | -0.000008 | -0.000016   | 0.000047  |
| 10 | Н   | 0.000028  | 0.000052    | -0.000045 |
| 11 | Н   | -0.000002 | -0.000081   | 0.000323  |
| 12 | N   | -0.000071 | -0.000011   | -0.000357 |
| 13 | С   | -0.000025 | 0.000157    | -0.000022 |
| 14 | Н   | 0.000030  | -0.000057   | 0.000036  |
| 15 | Н   | 0.000014  | 0.000143    | -0.000263 |
| 16 | Н   | 0.000013  | 0.000048    | 0.000066  |
| 17 | С   | -0.000027 | -0.000164   | -0.000568 |
| 18 | Н   | -0.000019 | -0.000129   | 0.000084  |
| 19 | Н   | -0.000062 | 0.000101    | 0.000062  |
| 20 | Н   | 0.000043  | 0.000060    | 0.000000  |

Geometry Convergence after Step 2

| current energy           | -4.46      | 173895 Hartree |   |
|--------------------------|------------|----------------|---|
| abs of energy change     | 0.00085923 | 0.00100000     | Т |
| constrained gradient max | 0.00056789 | 0.00100000     | т |
| constrained gradient rms | 0.00017157 | 0.00066667     | Т |
| gradient max             | 0.00056789 |                |   |
| gradient rms             | 0.00017157 |                |   |
| cart. step max           | 0.00472343 | 0.01000000     | Т |
| cart. step rms           | 0.00134636 | 0.00666667     | Т |
|                          |            |                |   |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:           | -3.343971421350849 | -90.9941  | -2098.37 | -8779.60  |
|---------------------------------|--------------------|-----------|----------|-----------|
| Kinetic Energy:                 | 4.089879086778282  | 111.2913  | 2566.44  | 10737.98  |
| Coulomb (Steric+OrbInt) Energy: | -1.120168257182293 | -30.4813  | -702.92  | -2941.00  |
| XC Energy:                      | -4.087476743146226 | -111.2259 | -2564.93 | -10731.67 |
|                                 |                    |           |          |           |
| Total Bonding Energy:           | -4.461737334901086 | -121.4101 | -2799.78 | -11714.29 |

List of All Frequencies:

#### Intensities

| Frequency   | Dipole Strem | ngth | Absorption | Intensity | (degeneracy | not | counted) |
|-------------|--------------|------|------------|-----------|-------------|-----|----------|
| cm-1        | 1e-40 esu2   | cm2  | km/mole    |           |             |     |          |
|             |              |      |            |           |             |     |          |
| 71.170682   | 0.53945      | 50   | 0.009623   |           |             |     |          |
| 125.433169  | 235.60825    | 54   | 7.407659   |           |             |     |          |
| 165.169300  | 87.30478     | 30   | 3.614477   |           |             |     |          |
| 177.130409  | 0.15383      | 34   | 0.006830   |           |             |     |          |
| 274.913468  | 106.56860    | 06   | 7.343505   |           |             |     |          |
| 277.732443  | 4.03523      | 33   | 0.280914   |           |             |     |          |
| 393.924809  | 8.69858      | 35   | 0.858895   |           |             |     |          |
| 411.713420  | 0.74593      | 33   | 0.076979   |           |             |     |          |
| 458.950062  | 39.30625     | 53   | 4.521735   |           |             |     |          |
| 503.808753  | 89.52628     | 33   | 11.305619  |           |             |     |          |
| 535.707394  | 10.81850     | )7   | 1.452690   |           |             |     |          |
| 618.989182  | 0.10330      | )9   | 0.016029   |           |             |     |          |
| 687.767916  | 115.12135    | 57   | 19.846132  |           |             |     |          |
| 737.366324  | 60.96405     | 55   | 11.267698  |           |             |     |          |
| 744.243867  | 193.01585    | 56   | 36.006949  |           |             |     |          |
| 802.264469  | 0.0056       | 50   | 0.001138   |           |             |     |          |
| 855.365551  | 10.09136     | 54   | 2.163614   |           |             |     |          |
| 938.509513  | 59.79686     | 50   | 14.066794  |           |             |     |          |
| 950.819163  | 0.14473      | 39   | 0.034496   |           |             |     |          |
| 968.782400  | 0.47936      | 58   | 0.116405   |           |             |     |          |
| 990.732566  | 56.34612     | 27   | 13.992605  |           |             |     |          |
| 1037.348063 | 36.61359     | 90   | 9.520174   |           |             |     |          |
| 1057.231174 | 67.97506     | 54   | 18.013481  |           |             |     |          |
| 1093.751290 | 3.86196      | 55   | 1.058778   |           |             |     |          |
| 1111.696424 | 5.82650      | 01   | 1.623574   |           |             |     |          |
| 1130.507282 | 207.86203    | L 4  | 58.901529  |           |             |     |          |
| 1165.323242 | 3.87146      | 51   | 1.130835   |           |             |     |          |
| 1171.656701 | 50.9266      | 73   | 14.956286  |           |             |     |          |
| 1197.210463 | 33.62425     | 54   | 10.090234  |           |             |     |          |
| 1230.244559 | 94.36484     | 12   | 29.099112  |           |             |     |          |
| 1335.536258 | 436.17922    | 24   | 146.015422 |           |             |     |          |
| 1337.923208 | 1.16483      | 39   | 0.390639   |           |             |     |          |

| This jou |                | oyul coolety of chem  | 100 2011  |        |        |         |         |
|----------|----------------|-----------------------|-----------|--------|--------|---------|---------|
|          | 1352.025998    | 16.752875             | 5.67743   | 9      |        |         |         |
|          | 1431.132647    | 3.597788              | 1.29060   | 6      |        |         |         |
|          | 1466.317808    | 8.661951              | 3.18362   | 5      |        |         |         |
|          | 1467.160875    | 30.004734             | 11.03432  | C      |        |         |         |
|          | 1486.238686    | 10.958496             | 4.08241   | 9      |        |         |         |
|          | 1490.447034    | 53.964032             | 20.16039  | 4      |        |         |         |
|          | 1509.028106    | 10.878394             | 4.11471   | 9      |        |         |         |
|          | 1516.411329    | 58.134711             | 22.09686  | 2      |        |         |         |
|          | 1526.395986    | 199.038277            | 76.15210  | 1      |        |         |         |
|          | 1581.298098    | 19.560849             | 7.75317   | 4      |        |         |         |
|          | 1615.888314    | 289.047110            | 117.07334 | Э      |        |         |         |
|          | 2924.345177    | 91.001587             | 66.70458  | 3      |        |         |         |
|          | 2932.536364    | 145.792591            | 107.16597 | 7      |        |         |         |
|          | 3029.810080    | 32.768020             | 24.88534  | 5      |        |         |         |
|          | 3031.880659    | 41.643051             | 31.64701  | 3      |        |         |         |
|          | 3076.779073    | 4.167205              | 3.21380   | 3      |        |         |         |
|          | 3084.360893    | 46.170352             | 35.69492  | 2      |        |         |         |
|          | 3112.744244    | 4.422184              | 3.45031   | 2      |        |         |         |
|          | 3120.059620    | 13.423257             | 10.49781  | 4      |        |         |         |
|          | 3143.571790    | 28.845712             | 22.72912  | 5      |        |         |         |
|          | 3156.985146    | 11.884645             | 9.40452   | 4      |        |         |         |
|          | 3161.321618    | 0.235452              | 0.18657   | 3      |        |         |         |
| Tomp     |                |                       |           | Tranel | Potat  | Wibrat  | Total   |
|          |                |                       |           |        |        |         |         |
|          |                |                       |           |        |        |         |         |
| 298.15   | Entropy (cal/m | ole-K):               |           | 40.288 | 28.798 | 21.756  | 90.842  |
|          | Internal Energ | y (Kcal/mole):        |           | 0.889  | 0.889  | 110.624 | 112.401 |
|          | Constant Volum | e Heat Capacity (cal/ | mole-K):  | 2.981  | 2.981  | 27.451  | 33.412  |
|          |                |                       |           |        |        |         |         |

## TS-dimethylaniline at TPSS

Geometry CYCLE 11

Energy gradients wrt nuclear displacements

| At | tom | Cartesian (a.u./a |           | angstrom) |  |
|----|-----|-------------------|-----------|-----------|--|
|    |     | Х                 | Y         | Z         |  |
| 1  | с   | -0.000007         | 0.000306  | 0.000050  |  |
| 2  | С   | -0.000181         | 0.000050  | -0.000075 |  |
| 3  | С   | 0.000023          | 0.000061  | 0.000065  |  |
| 4  | С   | -0.000179         | 0.000062  | -0.000008 |  |
| 5  | С   | 0.000575          | -0.00008  | -0.000201 |  |
| 6  | С   | -0.000332         | -0.000463 | 0.000360  |  |
| 7  | Н   | -0.000143         | 0.000032  | -0.000097 |  |
| 8  | Н   | 0.000129          | -0.000012 | 0.000054  |  |
| 9  | Н   | -0.000085         | -0.000003 | -0.000128 |  |
| 10 | Н   | 0.000015          | -0.000058 | 0.000108  |  |
| 11 | Н   | -0.000040         | 0.000201  | -0.000126 |  |
| 12 | Ν   | 0.000627          | 0.000548  | 0.000381  |  |
| 13 | С   | -0.000213         | -0.000632 | -0.000346 |  |
| 14 | Н   | 0.000071          | -0.000079 | 0.000132  |  |
| 15 | Н   | -0.000183         | 0.000257  | -0.000242 |  |
| 16 | Н   | 0.000013          | -0.000048 | 0.000061  |  |
| 17 | С   | -0.000224         | -0.000562 | -0.000323 |  |
| 18 | Н   | -0.000026         | -0.000022 | 0.000431  |  |
| 19 | Н   | 0.000265          | 0.000049  | 0.000114  |  |
| 20 | Н   | -0.000104         | 0.000320  | -0.000210 |  |

Geometry Convergence after Step 11

| current energy           | -4.45      | 630430 Hartree |   |
|--------------------------|------------|----------------|---|
| abs of energy change     | 0.00001941 | 0.00100000     | Т |
| constrained gradient max | 0.00063171 | 0.00100000     | Т |
| constrained gradient rms | 0.00024662 | 0.00066667     | Т |
| gradient max             | 0.00063171 |                |   |
| gradient rms             | 0.00024662 |                |   |
| cart. step max           | 0.00665736 | 0.01000000     | Т |
| cart. step rms           | 0.00206888 | 0.00666667     | Т |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:           | -3.295092313594319 | -89.6640  | -2067.70 | -8651.26  |
|---------------------------------|--------------------|-----------|----------|-----------|
| Kinetic Energy:                 | 4.083285281999387  | 111.1118  | 2562.30  | 10720.66  |
| Coulomb (Steric+OrbInt) Energy: | -1.185039709411491 | -32.2466  | -743.62  | -3111.32  |
| XC Energy:                      | -4.059456109426393 | -110.4634 | -2547.35 | -10658.10 |
|                                 |                    |           |          |           |
| Total Bonding Energy:           | -4.456302850432816 | -121.2622 | -2796.37 | -11700.02 |

List of All Frequencies:

#### Intensities

| Frequency<br>cm-1 | Dipole Strength<br>1e-40 esu2 cm2 | Absorption<br>km/mole | Intensity | (degeneracy | not | counted) |
|-------------------|-----------------------------------|-----------------------|-----------|-------------|-----|----------|
| -56.847230        | 19.848424                         | -0.282822             |           |             |     |          |
| 129.137959        | 17.627052                         | 0.570574              |           |             |     |          |
| 189.630191        | 24.107891                         | 1.145895              |           |             |     |          |
| 243.455355        | 2.659260                          | 0.162277              |           |             |     |          |
| 250.756399        | 10.145588                         | 0.637687              |           |             |     |          |
| 317.820701        | 1.532537                          | 0.122088              |           |             |     |          |
| 322.456958        | 1.992864                          | 0.161075              |           |             |     |          |
| 409.041648        | 0.277914                          | 0.028494              |           |             |     |          |
| 440.992967        | 18.592868                         | 2.055210              |           |             |     |          |
| 523.195355        | 35.266588                         | 4.624932              |           |             |     |          |
| 548.198649        | 108.765862                        | 14.945438             |           |             |     |          |
| 616.826631        | 0.040219                          | 0.006218              |           |             |     |          |
| 697.700282        | 176.261291                        | 30.825059             |           |             |     |          |
| 740.575061        | 23.665585                         | 4.393032              |           |             |     |          |
| 773.163438        | 70.395533                         | 13.642516             |           |             |     |          |
| 838.102630        | 0.680510                          | 0.142958              |           |             |     |          |
| 915.781551        | 0.220049                          | 0.050511              |           |             |     |          |
| 926.249029        | 120.706259                        | 28.024355             |           |             |     |          |
| 969.075050        | 0.195831                          | 0.047568              |           |             |     |          |
| 985.547135        | 0.083201                          | 0.020553              |           |             |     |          |
| 1004.063245       | 1.062102                          | 0.267304              |           |             |     |          |
| 1027.797666       | 29.005467                         | 7.472494              |           |             |     |          |
| 1032.999534       | 54.234623                         | 14.042836             |           |             |     |          |
| 1074.374606       | 23.360891                         | 6.291051              |           |             |     |          |
| 1092.566906       | 31.018321                         | 8.494629              |           |             |     |          |
| 1136.614487       | 103.779111                        | 29.566587             |           |             |     |          |
| 1159.617156       | 29.061148                         | 8.447058              |           |             |     |          |
| 1163.711871       | 16.172791                         | 4.717463              |           |             |     |          |
| 1175.042152       | 11.918078                         | 3.510247              |           |             |     |          |
| 1181.937251       | 57.344775                         | 16.988942             |           |             |     |          |
| 1284.675368       | 55.169013                         | 17.765060             |           |             |     |          |

| Supplementary Material (ESI) for Chemical Communications |
|----------------------------------------------------------|
| This journal is (c) The Royal Society of Chemistry 2011  |

| 11110 100 |                 | yul coolety of offerin | 50 y 2011  |        |        |         |
|-----------|-----------------|------------------------|------------|--------|--------|---------|
|           | 1305.305117     | 1.062117               | 0.347506   |        |        |         |
|           | 1331.017374     | 0.448348               | 0.149581   |        |        |         |
|           | 1423.636501     | 6.889056               | 2.458311   |        |        |         |
|           | 1450.214615     | 4.684715               | 1.702917   |        |        |         |
|           | 1456.810713     | 0.347466               | 0.126880   |        |        |         |
|           | 1480.083701     | 21.955603              | 8.145349   |        |        |         |
|           | 1492.778540     | 31.362244              | 11.734932  |        |        |         |
|           | 1494.161107     | 10.017287              | 3.751679   |        |        |         |
|           | 1498.893609     | 45.655833              | 17.153200  |        |        |         |
|           | 1511.429594     | 30.593570              | 11.590339  |        |        |         |
|           | 1589.896428     | 5.364372               | 2.137794   |        |        |         |
|           | 1604.130974     | 59.669807              | 23.992336  |        |        |         |
|           | 2883.999060     | 54.322057              | 39.268959  |        |        |         |
|           | 2892.051929     | 161.840677             | 117.319943 |        |        |         |
|           | 3015.697809     | 37.907073              | 28.654058  |        |        |         |
|           | 3018.305049     | 74.113564              | 56.071077  |        |        |         |
|           | 3076.455112     | 16.345395              | 12.604455  |        |        |         |
|           | 3078.378111     | 27.264551              | 21.037706  |        |        |         |
|           | 3107.703139     | 4.988822               | 3.886115   |        |        |         |
|           | 3117.362477     | 2.022152               | 1.580081   |        |        |         |
|           | 3126.402039     | 15.471591              | 12.124333  |        |        |         |
|           | 3137.443035     | 18.142348              | 14.267484  |        |        |         |
|           | 3148.416680     | 13.657833              | 10.778345  |        |        |         |
| Temp      |                 |                        |            | Transl | Rotat  | Vibrat  |
|           |                 |                        |            |        |        |         |
| 298.15    | Entropy (cal/mo | le-K):                 |            | 40.288 | 28.780 | 16.911  |
|           | Internal Energy | (Kcal/mole):           |            | 0.889  | 0.889  | 109.535 |
|           | Constant Volume | Heat Capacity (cal/    | mole-K):   | 2.981  | 2.981  | 25.377  |
|           |                 |                        |            |        |        |         |

Total

85.979 111.312 31.339

### dimethylaniline BP86/TZP,DZP

Geometry CYCLE 7 =====

Energy gradients wrt nuclear displacements

| Atom | Cartesi   | an (a.u./a | angstrom) |  |
|------|-----------|------------|-----------|--|
|      | Х         | Y          | Z         |  |
|      |           |            |           |  |
| 1 C  | -0.000080 | 0.000220   | -0.000044 |  |
| 2 C  | -0.000066 | -0.000179  | -0.000005 |  |
| 3 C  | 0.000039  | 0.000201   | -0.000035 |  |
| 4 C  | -0.000059 | -0.000345  | -0.000015 |  |
| 5 C  | -0.000001 | 0.000079   | 0.000060  |  |
| 6 C  | 0.000046  | -0.000043  | 0.000131  |  |
| 7 н  | -0.000051 | 0.000004   | -0.000002 |  |
| 8 H  | 0.000057  | 0.000048   | 0.000079  |  |
| 9 H  | -0.000039 | 0.000241   | -0.000015 |  |
| 10 H | 0.000018  | 0.000040   | -0.000036 |  |
| 11 H | 0.000017  | -0.000041  | -0.000129 |  |
| 12 N | 0.000065  | 0.000299   | -0.000118 |  |
| 13 C | -0.000229 | -0.000189  | 0.000502  |  |
| 14 H | -0.000028 | 0.000076   | -0.000092 |  |
| 15 H | 0.000164  | 0.000023   | 0.000086  |  |
| 16 н | -0 000020 | -0 000190  | -0 000097 |  |
| 17 C | -0.000024 | -0 000182  | -0 000225 |  |
| 18 H | -0.000061 | -0 000140  | 0.000066  |  |
| 19 H | 0 000288  | 0 000015   | -0 000137 |  |
| 20 H | -0.000036 | 0.000063   | 0.000026  |  |
|      |           |            |           |  |
|      |           |            |           |  |

| Geometry | Convergence | after | Sten | 7 |
|----------|-------------|-------|------|---|

| Geometry Convergence after Step | 7          |                 |   |
|---------------------------------|------------|-----------------|---|
|                                 |            |                 |   |
| current energy                  | -4.3       | 5612063 Hartree | 9 |
| abs of energy change            | 0.00000111 | 0.00100000      | Т |
| constrained gradient max        | 0.00050201 | 0.00100000      | Т |
| constrained gradient rms        | 0.00013843 | 0.00066667      | Т |
| gradient max                    | 0.00050201 |                 |   |
| gradient rms                    | 0.00013843 |                 |   |
| cart. step max                  | 0.00472666 | 0.01000000      | т |
| cart. step rms                  | 0.00160111 | 0.00666667      | Т |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:<br>Kinetic Energy:<br>Coulomb (Steric+OrbInt) Energy:<br>VC Energy: | -3.317534128118646<br>4.050633218134081<br>-1.140504850833189<br>-3.048704248737393 | -90.2747<br>110.2233<br>-31.0347 | -2081.78<br>2541.81<br>-715.68<br>-2477.85 | -8710.18<br>10634.94<br>-2994.40 |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------|----------------------------------|
| XC Energy:                                                                                | -3.948/04248/3/393                                                                  | -107.4497                        | -24/7.85                                   | -10367.32                        |
| Total Bonding Energy:                                                                     |                                                                                     |                                  |                                            |                                  |

List of All Frequencies:

#### Intensities

| Frequency   | Dipole Strength | Absorption | Intensity | (degeneracy | not | counted) |
|-------------|-----------------|------------|-----------|-------------|-----|----------|
|             |                 |            |           |             |     |          |
| 87.094894   | 0.174279        | 0.003805   |           |             |     |          |
| 120.869054  | 318.720191      | 9.656123   |           |             |     |          |
| 158.131655  | 32.720133       | 1.296916   |           |             |     |          |
| 177.599785  | 0.456986        | 0.020343   |           |             |     |          |
| 268,936120  | 66.595159       | 4.489209   |           |             |     |          |
| 279.319801  | 2.815455        | 0.197119   |           |             |     |          |
| 394.570973  | 2,904976        | 0.287307   |           |             |     |          |
| 411.852010  | 0.704667        | 0.072745   |           |             |     |          |
| 461.867804  | 45.140397       | 5.225900   |           |             |     |          |
| 503.431775  | 105.229403      | 13.278707  |           |             |     |          |
| 538.610365  | 6.725428        | 0.907973   |           |             |     |          |
| 615.993964  | 0.475445        | 0.073410   |           |             |     |          |
| 682.679284  | 169.171058      | 28.948153  |           |             |     |          |
| 733.111289  | 235.282054      | 43.235131  |           |             |     |          |
| 737.092458  | 14.208048       | 2.625031   |           |             |     |          |
| 786.428020  | 0.038240        | 0.007538   |           |             |     |          |
| 839.740634  | 14.097131       | 2.967249   |           |             |     |          |
| 930.150241  | 0.074848        | 0.017451   |           |             |     |          |
| 937.743187  | 47.518360       | 11.169235  |           |             |     |          |
| 948.212221  | 1.573823        | 0.374058   |           |             |     |          |
| 977.883062  | 52.818336       | 12.946421  |           |             |     |          |
| 1025.062092 | 48.331429       | 12.418178  |           |             |     |          |
| 1046.389982 | 64.051693       | 16.799728  |           |             |     |          |
| 1081.354891 | 5.668834        | 1.536526   |           |             |     |          |
| 1093.510823 | 3.318895        | 0.909692   |           |             |     |          |
| 1108.213408 | 145.139136      | 40.316795  |           |             |     |          |
| 1150.955948 | 3.816765        | 1.101114   |           |             |     |          |
| 1153.425949 | 35.567773       | 10.283109  |           |             |     |          |
| 1181.933495 | 37.553849       | 11.125654  |           |             |     |          |
| 1227.689729 | 95.120654       | 29.271267  |           |             |     |          |
| 1322.683295 | 10.343764       | 3.429356   |           |             |     |          |

| joun |             | Troyal Obciety of Offernistry | 2011       |
|------|-------------|-------------------------------|------------|
|      | 1326.799488 | 399.397713                    | 132.827788 |
|      | 1337.606012 | 13.497116                     | 4.525299   |
|      | 1399.294943 | 1.146820                      | 0.402238   |
|      | 1435.571611 | 18.917577                     | 6.807199   |
|      | 1440.874196 | 0.061111                      | 0.022071   |
|      | 1444.569392 | 26.212891                     | 9.491424   |
|      | 1449.009454 | 48.829556                     | 17.735036  |
|      | 1470.606336 | 4.520426                      | 1.666303   |
|      | 1484.782711 | 32.320239                     | 12.028613  |
|      | 1496.011667 | 324.009985                    | 121.498648 |
|      | 1559.860462 | 20.785592                     | 8.126924   |
|      | 1598.044763 | 320.275199                    | 128.289266 |
| 2    | 2881.417910 | 107.938675                    | 77.958129  |
| 1    | 2889.445156 | 161.727454                    | 117.132193 |
| 1    | 2986.744032 | 40.406310                     | 30.249992  |
| 1    | 2988.164520 | 40.848403                     | 30.595507  |
|      | 3043.489264 | 3.198451                      | 2.439998   |
|      | 3049.959565 | 42.800822                     | 32.720826  |
|      | 3087.124676 | 5.014602                      | 3.880330   |
|      | 3092.686446 | 14.426387                     | 11.183341  |
|      | 3114.657938 | 27.178309                     | 21.218313  |
|      | 3124.018269 | 17.727860                     | 13.881870  |
|      | 3128.616835 | 0.584468                      | 0.458344   |

| Temp   |                                                                                                      | Transl                   | Rotat                    | Vibrat                      | Total                       |
|--------|------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-----------------------------|-----------------------------|
| 298.15 | Entropy (cal/mole-K):<br>Internal Energy (Kcal/mole):<br>Constant Volume Heat Capacity (cal/mole-K): | 40.288<br>0.889<br>2.981 | 28.810<br>0.889<br>2.981 | 21.642<br>109.267<br>27.807 | 90.740<br>111.045<br>33.769 |
| *****  | ****                                                                                                 | *****                    | *****                    | *****                       | *****                       |

### TS-dimethylaniline BP86/TZP,DZP

Geometry CYCLE 11

Energy gradients wrt nuclear displacements

| Atom  | Cartesi   | ian (a.u./a | angstrom) |
|-------|-----------|-------------|-----------|
|       | Х         | Y           | Z         |
|       |           |             |           |
| 1 C   | 0.000228  | -0.000128   | -0.000340 |
| 2 C   | -0.000084 | 0.000193    | -0.000126 |
| 3 C   | 0.000070  | -0.000039   | -0.000062 |
| 4 C   | 0.000026  | -0.000082   | 0.000052  |
| 5 C   | -0.000074 | -0.000035   | -0.000065 |
| 6 C   | 0.000031  | 0.000088    | 0.000124  |
| 7 н   | -0.000023 | -0.000115   | 0.000103  |
| 8 н   | -0.000067 | 0.000038    | 0.000062  |
| 9 H   | 0.000021  | -0.000056   | 0.000060  |
| 10 H  | 0 000006  | 0 000047    | -0 000081 |
| 11 H  | 0 000090  | -0 000123   | 0 000031  |
| 12 N  | -0.000678 | -0.000640   | 0.000850  |
| 13 C  | 0.000134  | 0.000863    | -0.000856 |
| 14 11 | 0.000154  | 0.0000000   | 0.0000000 |
| 15 11 | 0.000100  | 0.000104    | 0.000132  |
| 15 H  | 0.000029  | -0.000150   | 0.000188  |
| 16 H  | 0.000154  | -0.000083   | 0.000118  |
| 17 C  | 0.000646  | 0.000658    | 0.000116  |
| 18 H  | -0.000137 | -0.000049   | -0.000131 |
| 19 H  | -0.000178 | -0.000203   | -0.000192 |
| 20 H  | -0.000041 | 0.000002    | 0.000015  |
|       |           |             |           |

Geometry Convergence after Step 11

| current energy           | -4.34      | 788809 Hartree |   |
|--------------------------|------------|----------------|---|
| abs of energy change     | 0.00000149 | 0.00100000     | Т |
| constrained gradient max | 0.00086327 | 0.00100000     | Т |
| constrained gradient rms | 0.00027850 | 0.00066667     | Т |
| gradient max             | 0.00086327 |                |   |
| gradient rms             | 0.00027850 |                |   |
| cart. step max           | 0.00978050 | 0.01000000     | Т |
| cart. step rms           | 0.00342448 | 0.00666667     | Т |
|                          |            |                |   |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:           | -3.273078161609319 | -89.0650  | -2053.89 | -8593.47  |
|---------------------------------|--------------------|-----------|----------|-----------|
| Kinetic Energy:                 | 4.031535746909071  | 109.7037  | 2529.83  | 10584.80  |
| Coulomb (Steric+OrbInt) Energy: | -1.184225312222722 | -32.2244  | -743.11  | -3109.18  |
| XC Energy:                      | -3.922120351292322 | -106.7263 | -2461.17 | -10297.53 |
| Total Bonding Energy:           | -4.347888078215292 | -118.3121 | -2728.34 | -11415.38 |

List of All Frequencies:

#### Intensities

| $\begin{array}{ccc} cm-1 & 1e-40 \ esu2 \ cm2 & km/mole \\ \hline & & \\ & \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Frequency   | Dipole Strength | Absorption | Intensity | (degeneracy | not | counted) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|------------|-----------|-------------|-----|----------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cm-1        | 1e-40 esu2 cm2  | km/mole    |           |             |     |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                 |            |           |             |     |          |
| 134.535484 $22.923724$ $0.773037$ $194.529064$ $29.582437$ $1.442436$ $247.961176$ $4.833085$ $0.300390$ $257.344050$ $11.237694$ $0.724885$ $322.71200$ $0.351087$ $0.028399$ $327.045579$ $3.134272$ $0.256935$ $406.560843$ $0.135373$ $0.013795$ $445.040918$ $21.943660$ $2.447863$ $525.912476$ $30.898197$ $4.073096$ $546.532873$ $118.223504$ $16.195643$ $613.907926$ $0.649524$ $0.099949$ $691.709388$ $222.209883$ $38.526993$ $740.080961$ $24.861957$ $4.612035$ $765.460154$ $73.634166$ $41.27979$ $821.055070$ $0.816000$ $0.167935$ $899.419873$ $0.237061$ $0.056404$ $965.909311$ $0.202564$ $0.005947$ $992.013081$ $0.301578$ $0.74989$ $1014.430498$ $36.58934$ $9.245098$ $1023.637576$ $45.166128$ $11.588765$ $1060.861742$ $31.362417$ $8.33622$ $1073.601502$ $24.933400$ $6.709694$ $1121.877687$ $90.324739$ $25.399800$ $1137.875537$ $38.534780$ $10.990709$ $1147.906521$ $2.179276$ $0.627042$ $1157.854666$ $11.442186$ $3.320788$ $174.519919$ $64.576272$ $19.011283$ $1267.709171$ $51.380774$ $16.326698$ | -59.540700  | 15.658033       | -0.233684  |           |             |     |          |
| 194.529064 $29.582437$ $1.442436$ $247.961176$ $4.833085$ $0.300390$ $257.344050$ $11.237694$ $0.724885$ $322.712000$ $0.351087$ $0.028399$ $327.045579$ $3.134272$ $0.256935$ $406.560843$ $0.135373$ $0.013795$ $445.040918$ $21.943660$ $2.447863$ $525.912476$ $30.898197$ $4.073096$ $546.532873$ $118.223504$ $16.195643$ $613.907926$ $0.649524$ $0.099949$ $691.709388$ $222.209883$ $38.526993$ $740.080961$ $24.861957$ $4.612035$ $765.460154$ $73.634166$ $14.127979$ $821.055070$ $0.816000$ $0.167935$ $899.419873$ $0.237061$ $0.05647$ $949.237843$ $0.237061$ $0.05547$ $992.013081$ $0.301578$ $0.074889$ $1024.63284$ $9.245098$ $1023.637576$ $45.166128$ $11.588765$ $1060.861742$ $31.362417$ $8.339622$ $1073.601502$ $24.933400$ $6.709694$ $1127.875537$ $38.534780$ $10.990709$ $1147.906521$ $2.179276$ $0.627042$ $1147.906521$ $2.179276$ $0.627042$ $1147.906521$ $2.179276$ $0.627042$ $1147.904524$ $1.380774$ $16.326698$ $1267.709171$ $51.380774$ $16.326698$ $1267.709171$ $51.380774$ $16.326698$            | 134.535484  | 22.923724       | 0.773037   |           |             |     |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 194.529064  | 29.582437       | 1.442436   |           |             |     |          |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 247.961176  | 4.833085        | 0.300390   |           |             |     |          |
| 322,712000 $0.351087$ $0.028399$ $327.045579$ $3.134272$ $0.2569935$ $406.560843$ $0.135373$ $0.013795$ $445.040918$ $21.943660$ $2.447863$ $525.912476$ $30.898197$ $4.073096$ $546.532873$ $118.223504$ $16.195643$ $613.907926$ $0.649524$ $0.099949$ $691.709388$ $222.209883$ $38.526993$ $740.080961$ $24.861957$ $4.612035$ $765.460154$ $73.634166$ $14.127979$ $821.055070$ $0.816000$ $0.167935$ $899.419873$ $0.237061$ $0.05647$ $949.237843$ $0.237061$ $0.05547$ $992.013081$ $0.301578$ $0.074989$ $1014.430498$ $36.358934$ $9.245098$ $1023.637576$ $45.166128$ $11.588765$ $1060.861742$ $31.362417$ $8.339622$ $1073.601502$ $24.933400$ $6.709694$ $1127.875537$ $38.534780$ $10.990709$ $1147.906521$ $2.179276$ $0.627042$ $1157.854696$ $11.442186$ $3220788$ $174.519919$ $64.576272$ $19.011283$ $1267.709171$ $51.380774$ $16.326698$ $1267.709171$ $51.380774$ $16.326698$                                                                                                                                             | 257.344050  | 11.237694       | 0.724885   |           |             |     |          |
| 327.045579 $3.134272$ $0.256935$ $406.560843$ $0.135373$ $0.013795$ $445.040918$ $21.943660$ $2.447863$ $525.912476$ $30.898197$ $4.073096$ $546.532873$ $118.223504$ $16.195643$ $613.907926$ $0.649524$ $0.099949$ $691.709388$ $222.209883$ $38.526993$ $740.080961$ $24.861957$ $4.612035$ $765.460154$ $73.634166$ $14.127979$ $821.055070$ $0.816000$ $0.167335$ $899.419873$ $0.866041$ $0.195245$ $925.790337$ $120.406288$ $27.940867$ $949.237843$ $0.237061$ $0.056404$ $965.909311$ $0.024564$ $0.005947$ $992.013081$ $0.301578$ $0.74989$ $1014.430498$ $36.358934$ $9.245098$ $1023.637576$ $45.166128$ $11.588765$ $1060.861742$ $31.362417$ $8.339622$ $1073.601502$ $24.933400$ $6.709694$ $1127.875537$ $38.534780$ $10.990709$ $1147.906521$ $2.179276$ $0.627042$ $1157.854696$ $11.442186$ $3.20788$ $1174.519919$ $64.576272$ $19.011283$ $1267.709171$ $51.380774$ $16.326698$ $1282.354092$ $1.776642$ $0.571130$                                                                                                        | 322.712000  | 0.351087        | 0.028399   |           |             |     |          |
| 406.5608430.1353730.013795 $445.040918$ 21.9436602.447863 $525.912476$ 30.8981974.073096 $546.532873$ 118.22350416.195643 $613.907926$ 0.6495240.099949 $691.709388$ 222.20988338.526993 $740.080961$ 24.8619574.612035 $765.460154$ 73.63416614.127979 $821.055070$ 0.8160000.167935 $899.419873$ 0.8660410.195245 $925.790337$ 120.40628827.940867 $949.237843$ 0.2370610.056404 $965.909311$ 0.0245640.005947 $992.013081$ 0.3015780.74889 $1024.637576$ 45.16612811.583765 $1060.861742$ 31.3624178.339622 $1073.601502$ 24.9334006.709694 $1121.877687$ 90.32473925.399800 $1137.875537$ 38.53478010.990709 $1147.906521$ 2.1792760.627042 $1157.854696$ 11.4421863.320788 $174.519919$ 64.57627219.011283 $1267.709171$ 51.38077416.326698 $1267.709171$ 51.38077416.326698                                                                                                                                                                                                                                                                 | 327.045579  | 3.134272        | 0.256935   |           |             |     |          |
| 445.040918 $21.943660$ $2.447863$ $525.912476$ $30.898197$ $4.073096$ $546.532873$ $118.223504$ $16.195643$ $613.907926$ $0.649524$ $0.099949$ $691.709388$ $222.209883$ $38.526993$ $740.080961$ $24.861957$ $4.612035$ $765.460154$ $73.634166$ $14.127979$ $821.055070$ $0.816000$ $0.167935$ $899.419873$ $0.286041$ $0.195245$ $925.790337$ $120.406288$ $27.940867$ $949.237843$ $0.237061$ $0.056404$ $965.909311$ $0.024564$ $0.005947$ $992.013081$ $0.301578$ $0.074989$ $1014.430498$ $36.358934$ $9.245098$ $1023.637576$ $45.166128$ $11.588765$ $1060.861742$ $31.362417$ $8.339622$ $1073.601502$ $24.933400$ $6.709694$ $1128.77687$ $90.324739$ $25.399800$ $1137.875537$ $38.534780$ $10.990709$ $1147.906521$ $2.179276$ $0.627042$ $1157.854696$ $11.442186$ $3.220788$ $174.519919$ $64.576272$ $19.011283$ $1267.709171$ $51.380774$ $16.326698$ $1282.354092$ $1.776422$ $0.571130$                                                                                                                                        | 406.560843  | 0.135373        | 0.013795   |           |             |     |          |
| 525.912476 $30.898197$ $4.073096$ $546.532873$ $118.223504$ $16.195643$ $613.907926$ $0.649524$ $0.099949$ $691.709388$ $222.209883$ $38.526993$ $740.080961$ $24.861957$ $4.612035$ $765.460154$ $73.634166$ $14.127979$ $821.055070$ $0.816000$ $0.167935$ $999.419873$ $0.866041$ $0.195245$ $925.790337$ $120.406288$ $27.940867$ $949.237843$ $0.237061$ $0.056404$ $965.909311$ $0.024564$ $0.005947$ $992.013081$ $0.301578$ $0.74989$ $1024.637576$ $45.166128$ $11.588765$ $1060.861742$ $31.362417$ $8.339622$ $1073.601502$ $24.933400$ $6.709694$ $1127.875537$ $38.534780$ $10.990709$ $1147.906521$ $2.179276$ $0.627042$ $1157.854696$ $11.442186$ $3.220788$ $1174.519919$ $64.576272$ $19.011283$ $1267.709171$ $51.380774$ $16.326698$ $1282.354092$ $1.776422$ $0.571130$                                                                                                                                                                                                                                                      | 445.040918  | 21.943660       | 2.447863   |           |             |     |          |
| 546.532873 $118.223504$ $16.195643$ $613.907926$ $0.649524$ $0.099949$ $691.709388$ $222.209883$ $38.526993$ $740.080961$ $24.861957$ $4.612035$ $765.460154$ $73.634166$ $14.127979$ $821.055070$ $0.816000$ $0.167935$ $899.419873$ $0.866041$ $0.195245$ $925.790337$ $120.406288$ $27.940867$ $949.237843$ $0.237061$ $0.056404$ $965.909311$ $0.024564$ $0.0074989$ $1014.430498$ $36.358934$ $9.245098$ $1023.637576$ $45.166128$ $11.588765$ $1060.861742$ $31.362417$ $8.339622$ $1073.601502$ $24.933400$ $6.709694$ $1121.877687$ $90.324739$ $25.399800$ $1137.875537$ $38.534780$ $10.990709$ $1147.906521$ $2.179276$ $0.627042$ $1157.854696$ $11.442186$ $3.20788$ $1174.519919$ $64.576272$ $19.011283$ $1267.709171$ $51.380774$ $16.326698$ $1282.354092$ $1.776422$ $0.571130$                                                                                                                                                                                                                                                 | 525.912476  | 30.898197       | 4.073096   |           |             |     |          |
| 613.907926 $0.649524$ $0.099949$ $691.709388$ $222.209883$ $38.526993$ $740.080961$ $24.861957$ $4.612035$ $765.460154$ $73.634166$ $14.127979$ $821.055070$ $0.816000$ $0.167935$ $899.419873$ $0.866041$ $0.195245$ $925.790337$ $120.406288$ $27.940867$ $949.237843$ $0.237061$ $0.056404$ $965.909311$ $0.024564$ $0.005947$ $992.013081$ $0.301578$ $0.074989$ $1024.637576$ $45.166128$ $11.588765$ $1060.861742$ $31.362417$ $8.339622$ $1073.601502$ $24.933400$ $6.709694$ $1127.875537$ $38.534780$ $10.990709$ $1147.906521$ $2.179276$ $0.627042$ $1157.854696$ $11.442186$ $3.20788$ $1174.519919$ $64.576272$ $19.011283$ $1267.709171$ $51.380774$ $16.326698$ $1282.354092$ $1.77642$ $0.571130$                                                                                                                                                                                                                                                                                                                                 | 546.532873  | 118.223504      | 16.195643  |           |             |     |          |
| 691.709388       222.209883       38.526993         740.080961       24.861957       4.612035         765.460154       73.634166       14.127979         821.055070       0.816000       0.167935         899.419873       0.866041       0.195245         925.790337       120.406288       27.940867         949.237843       0.237061       0.055404         925.013081       0.301578       0.74989         1014.430498       36.358934       9.245098         1023.637576       45.166128       11.588765         1060.861742       31.362417       8.339622         1073.601502       24.933400       6.709694         1121.877687       90.324739       25.399800         1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.85466       11.442186       3.20788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326698         1282.354092       1.776842       0.571130                                                         | 613.907926  | 0.649524        | 0.099949   |           |             |     |          |
| 740.080961 $24.861957$ $4.612035$ $765.460154$ $73.634166$ $14.127979$ $821.055070$ $0.816000$ $0.167935$ $899.419873$ $0.866041$ $0.195245$ $925.790337$ $120.406288$ $27.940867$ $949.237843$ $0.237061$ $0.056404$ $965.909311$ $0.024564$ $0.005947$ $992.013081$ $0.301578$ $0.74989$ $1014.430498$ $36.358934$ $9.245098$ $1023.637576$ $45.166128$ $11.588765$ $1060.861742$ $31.362417$ $8.339622$ $1073.601502$ $24.933400$ $6.709694$ $1121.877687$ $90.324739$ $25.399800$ $1137.875537$ $38.534780$ $10.990709$ $1147.906521$ $2.179276$ $0.627042$ $1157.854696$ $11.442186$ $3.20788$ $1174.519919$ $64.576272$ $19.011283$ $1267.709171$ $51.380774$ $16.326698$ $1282.354092$ $1.77642$ $0.571130$                                                                                                                                                                                                                                                                                                                                | 691.709388  | 222.209883      | 38.526993  |           |             |     |          |
| 765.460154       73.634166       14.127979         821.055070       0.816000       0.167935         899.419873       0.866041       0.195245         925.790337       120.406288       27.940867         949.237843       0.237061       0.056404         965.909311       0.024564       0.05947         992.013081       0.301578       0.074989         1014.430498       36.358934       9.245098         1023.637576       45.166128       11.588765         1060.861742       31.362417       8.339622         1073.601502       24.933400       6.709694         1121.877687       90.324739       25.399800         1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.854696       11.442186       3.20788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326098         1282.354092       1.776842       0.571130                                                                                                             | 740.080961  | 24.861957       | 4.612035   |           |             |     |          |
| 821.055070       0.816000       0.167935         899.419873       0.866041       0.195245         925.790337       120.406288       27.940867         949.237843       0.237061       0.056404         965.909311       0.024564       0.005947         992.013081       0.301578       0.74989         1014.430498       36.358934       9.245098         1023.637576       45.166128       11.588765         1060.861742       31.362417       8.339622         1073.601502       24.933400       6.709694         1121.877687       90.324739       25.399800         1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.854666       11.442186       3.320788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326698         1282.354092       1.776842       0.571130                                                                                                                                                               | 765.460154  | 73.634166       | 14.127979  |           |             |     |          |
| 899.419873       0.866041       0.195245         925.790337       120.406288       27.940867         949.237843       0.237061       0.056404         965.909311       0.024564       0.005947         992.013081       0.301578       0.074989         1014.430498       36.358934       9.245098         1023.637576       45.166128       11.588765         1060.861742       31.362417       8.339622         1073.601502       24.933400       6.709694         1121.877687       90.324739       25.399800         1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.854696       11.442186       3.20788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326698         1282.354092       1.776842       0.571130                                                                                                                                                                                                                | 821.055070  | 0.816000        | 0.167935   |           |             |     |          |
| 925.790337       120.406288       27.940867         949.237843       0.237061       0.056404         965.909311       0.024564       0.05947         992.013081       0.301578       0.074989         1014.430498       36.358934       9.245098         1023.637576       45.166128       11.588765         1060.861742       31.362417       8.339622         1073.601502       24.933400       6.709694         1121.877687       90.324739       25.399800         1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.854696       11.442186       3.320788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326098         1282.354092       1.77642       0.571130                                                                                                                                                                                                                                                                  | 899.419873  | 0.866041        | 0.195245   |           |             |     |          |
| 949.237843       0.237061       0.056404         965.909311       0.024564       0.005947         992.013081       0.301578       0.74989         1014.430498       36.358934       9.245098         1023.637576       45.166128       11.583765         1060.861742       31.362417       8.339622         1073.601502       24.933400       6.709694         1121.877687       90.324739       25.399800         1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.854696       11.442186       3.320788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326698         1282.354092       1.776842       0.571130                                                                                                                                                                                                                                                                                                                     | 925.790337  | 120.406288      | 27.940867  |           |             |     |          |
| 965.909311       0.024564       0.005947         992.013081       0.301578       0.074989         1014.430498       36.358934       9.245098         1023.637576       45.166128       11.588765         1060.861742       31.362417       8.339622         1073.601502       24.933400       6.709694         1121.877687       90.324739       25.399800         1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.854696       11.442186       3.320788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326698         1282.354092       1.776842       0.571130                                                                                                                                                                                                                                                                                                                                                                     | 949.237843  | 0.237061        | 0.056404   |           |             |     |          |
| 992.013081         0.301578         0.074989           1014.430498         36.358934         9.245098           1023.637576         45.166128         11.588765           1060.861742         31.362417         8.339622           1073.601502         24.933400         6.709694           112.877687         90.324739         25.399800           1137.875537         38.534780         10.990709           1147.906521         2.179276         0.627042           1157.854696         11.442186         3.320788           1174.519919         64.576272         19.011283           1267.709171         51.380774         16.326698           1282.354092         1.776642         0.571130                                                                                                                                                                                                                                                                                                                                                 | 965.909311  | 0.024564        | 0.005947   |           |             |     |          |
| 1014.43049836.3589349.2450981023.63757645.16612811.5887651060.86174231.3624178.3396221073.60150224.9334006.7096941121.87768790.32473925.3998001137.87553738.53478010.9907091147.9065212.1792760.6270421157.85469611.4421863.3207881174.51991964.57627219.0112831267.70917151.38077416.3266981282.3540921.776420.571130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 992.013081  | 0.301578        | 0.074989   |           |             |     |          |
| 1023.637576       45.166128       11.588765         1060.861742       31.362417       8.339622         1073.601502       24.933400       6.709694         1121.877687       90.324739       25.399800         1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.854696       11.442186       3.320788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326698         1282.354092       1.776842       0.571130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1014.430498 | 36.358934       | 9.245098   |           |             |     |          |
| 1060.861742       31.362417       8.339622         1073.601502       24.933400       6.709694         1121.877687       90.324739       25.399800         1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.854696       11.442186       3.320788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326698         1282.354092       1.776642       0.571130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1023.637576 | 45.166128       | 11.588765  |           |             |     |          |
| 1073.601502       24.933400       6.709694         1121.877687       90.324739       25.399800         1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.854696       11.442186       3.320788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326698         1282.354092       1.776842       0.571130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1060.861742 | 31.362417       | 8.339622   |           |             |     |          |
| 1121.877687       90.324739       25.399800         1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.854696       11.442186       3.320788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326698         1282.354092       1.776842       0.571130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1073.601502 | 24,933400       | 6.709694   |           |             |     |          |
| 1137.875537       38.534780       10.990709         1147.906521       2.179276       0.627042         1157.854696       11.442186       3.320788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326698         1282.354092       1.776642       0.571130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1121.877687 | 90.324739       | 25.399800  |           |             |     |          |
| 1147.906521       2.179276       0.627042         1157.854696       11.442186       3.320788         1174.519919       64.576272       19.011283         1267.709171       51.380774       16.326698         1282.354092       1.776842       0.571130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1137.875537 | 38.534780       | 10.990709  |           |             |     |          |
| 1157.854696         11.442186         3.320788           1174.519919         64.576272         19.011283           1267.709171         51.380774         16.326698           1282.354092         1.776842         0.571130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1147.906521 | 2.179276        | 0.627042   |           |             |     |          |
| 1174.519919         64.576272         19.011283           1267.709171         51.380774         16.326698           1282.354092         1.776642         0.571130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1157.854696 | 11.442186       | 3.320788   |           |             |     |          |
| 1267.709171 51.380774 16.326698<br>1282.354092 1.776842 0.571130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1174.519919 | 64.576272       | 19.011283  |           |             |     |          |
| 1282.354092 1.776842 0.571130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1267.709171 | 51.380774       | 16.326698  |           |             |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1282.354092 | 1.776842        | 0.571130   |           |             |     |          |

| journal is (0) The Ro | yai boolety of offerin | 100 2011   |
|-----------------------|------------------------|------------|
| 1321.992089           | 0.813804               | 0.269666   |
| 1389.035260           | 1.623266               | 0.565173   |
| 1413.771309           | 0.464063               | 0.164450   |
| 1433.926301           | 1.289539               | 0.463489   |
| 1436.229796           | 23.711258              | 8.536043   |
| 1447.864248           | 42.896206              | 15.567712  |
| 1450.766270           | 21.150001              | 7.691055   |
| 1464.967412           | 4.868596               | 1.787762   |
| 1480.637399           | 83.651330              | 31.045570  |
| 1570.930655           | 5.464874               | 2.151866   |
| 1586.590635           | 58.181268              | 23.138017  |
| 2841.402482           | 68.126959              | 48.521009  |
| 2849.215047           | 180.726256             | 129.069775 |
| 2979.175412           | 58.599238              | 43.758872  |
| 2980.469965           | 47.402298              | 35.412959  |
| 3036.317424           | 14.840895              | 11.294976  |
| 3038.123532           | 30.044249              | 22.879412  |
| 3079.077069           | 6.418546               | 4.953764   |
| 3088.123807           | 0.289969               | 0.224452   |
| 3095.661456           | 16.813728              | 13.046546  |
| 3104.923596           | 23.574034              | 18.346909  |
| 3115.937347           | 14.878208              | 11.620302  |
|                       |                        |            |

| Temp   |                                                                                                      | Transl                   | Rotat                    | Vibrat                      | Total                       |
|--------|------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-----------------------------|-----------------------------|
| 298.15 | Entropy (cal/mole-K):<br>Internal Energy (Kcal/mole):<br>Constant Volume Heat Capacity (cal/mole-K): | 40.288<br>0.889<br>2.981 | 28.787<br>0.889<br>2.981 | 16.772<br>108.146<br>25.693 | 85.848<br>109.923<br>31.654 |
| *****  | ****                                                                                                 | *****                    | *****                    | *****                       | *****                       |

v

GEOMETRY UPDATE \*\*\* 19 \*\*\*

\*\*\* Using NEW gradient routines \*\*\*

Energy gradients wrt nuclear displacements

| Atom  | Cartesian                               | (a.u./a | angstrom)  |
|-------|-----------------------------------------|---------|------------|
|       | Х                                       | Y       | Z          |
| 1 C   | 0 000045 0                              | 000005  | -0.000011  |
| 2 H   | -0.000026 0                             | .000024 | -0.000050  |
| 3 C   | 0.000019 0                              | .000053 | 0.000016   |
| 4 H   | 0.000055 0                              | .000029 | -0.000039  |
| 5 C   | 0.000035 0                              | .000028 | -0.000010  |
| 6 н   | 0.000079 0                              | .000038 | 0.000028   |
| 7 C   | 0.000064 0                              | .000037 | 0.000026   |
| 8 н   | 0.000052 0                              | .000006 | 0.000006   |
| 9 C   | 0.000040 -0                             | .000011 | -0.000002  |
| 10 C  | 0.000145 -0                             | .000041 | 0.000179   |
| 11 C  | -0.000048 0                             | .000025 | -0.000143  |
| 12 C  | -0.000061 -0                            | .000078 | 0.000028   |
| 13 H  | -0.000015 0                             | .000007 | -0.000006  |
| 14 C  | -0.000001 0                             | .000016 | -0.000009  |
| 15 N  | 0.000039 -0                             | .000024 | 0.000025   |
| 16 C  | -0.000054 0                             | .000018 | -0.000016  |
| 17 H  | 0.000011 -0                             | .000042 | -0.000013  |
| 18 C  | -0.000110 -0                            | .000041 | -0.000084  |
| 19 H  | 0.000024 -0                             | .000035 | -0.000035  |
| 20 C  | -0.000304 0                             | .000410 | 0.000087   |
| 21 C  | -0.000151 0                             | .000161 | 0.000117   |
| 22 C  | 0.000069 -0                             | .000718 | 0.000238   |
| 23 C  | -0.000014 -0                            | .000003 | -0.000096  |
| 24 C  | 0.000026 0                              | .000192 | -0.000072  |
| 25 C  | -0.000231 0                             | .0001/9 | -0.000029  |
| 20 C  | -0.000126 -0                            | .000028 | -0.000109  |
| 29 1  | -0.000045 0                             | 0000030 | -0.0000037 |
| 20 H  | 0.0000000000000000000000000000000000000 | 0000024 | 0.000065   |
| 30 H  | 0.000010 0                              | 000058  | 0.000041   |
| 31 H  | -0.000081 0                             | 000082  | 0 000000   |
| 32 H  | -0.000071 -0                            | .000006 | -0.000048  |
| 33 N  | -0.000105 0                             | .000186 | -0.000135  |
| 34 Ir | 0.000107 -0                             | .000603 | 0.000355   |
| 35 O  | 0.000237 -0                             | .000448 | -0.000098  |
| 36 O  | -0.000151 0                             | .000090 | -0.000069  |
| 37 O  | -0.000199 0                             | .000301 | 0.000013   |
| 38 Cr | 0.000637 0                              | .000222 | -0.000333  |
| 39 Cl | -0.000182 -0                            | .000045 | -0.000140  |
| 40 C  | 0.000026 -0                             | .000016 | 0.000053   |
| 41 H  | 0.000091 -0                             | .000010 | 0.000047   |
| 42 H  | 0.000018 -0                             | .000057 | 0.000073   |
| 43 H  | 0.000065 -0                             | .000027 | 0.000056   |
| 44 C  | -0.000011 -0                            | .000031 | 0.000031   |
| 45 H  | 0.000039 -0                             | .000022 | 0.000020   |
| 46 H  | 0.000029 -0                             | .000018 | 0.000063   |
| 4 / H | -0.000025 0                             | .000007 | 0.000023   |

#### Geometry Convergence Tests

Energy old : -11.18096267 -11.18096759 new :

Convergence tests: (Energies in hartree, Gradients in hartree/angstr or radian, Lengths in angstrom, Angles in degrees)

| Item                                                                                 | Value                                                               | Criterion                                                          | Conv.                           | Ratio                                                              |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|
| change in energy<br>gradient max<br>gradient rms<br>cart. step max<br>cart. step rms | -0.00000493<br>0.00069375<br>0.00014202<br>0.00275662<br>0.00085481 | 0.00100000<br>0.00100000<br>0.00066667<br>0.01000000<br>0.00666667 | YES<br>YES<br>YES<br>YES<br>YES | 0.06240439<br>0.65663607<br>0.91490827<br>1.00738279<br>1.01977222 |
| prediction dE :                                                                      | -0.00000327                                                         |                                                                    |                                 |                                                                    |

Geometry CONVERGED

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:           | -10.250530134594040 | -278.9311 | -6432.31 | -26912.76 |
|---------------------------------|---------------------|-----------|----------|-----------|
| Kinetic Energy:                 | 12.347216971911195  | 335.9849  | 7748.00  | 32417.61  |
| Coulomb (Steric+OrbInt) Energy: | -2.989579188181153  | -81.3506  | -1875.99 | -7849.14  |
| XC Energy:                      | -10.288078926245573 | -279.9529 | -6455.87 | -27011.35 |
|                                 |                     |           |          |           |
| Supplementary Material (ESI) for Chemical Communications |
|----------------------------------------------------------|
| This journal is (c) The Royal Society of Chemistry 2011  |

| Total Bonding Energy: | -11.180971277109572 | -304.2497 | -7016.17 | -29355.64 |
|-----------------------|---------------------|-----------|----------|-----------|

List of All Frequencies:

| Frequency<br>cm-1        | Dipole Strength<br>1e-40 esu2 cm2 | Absorption Intensity (degeneracy not counted)<br>km/mole<br> |
|--------------------------|-----------------------------------|--------------------------------------------------------------|
| 22.526084                | 303.763406                        | 1.715139                                                     |
| 39.528106                | 174.181636                        | 1.725784                                                     |
| 52.358456                | 145.668845                        | 1.911752                                                     |
| 54.342642                | 135.153582                        | 1.840969                                                     |
| 61.863210                | 253.620925                        | 3.932743                                                     |
| 66.906939                | 220.473893                        | 3.697485                                                     |
| 72.709035                | 69.660475                         | 1.269559                                                     |
| 82.764916                | 44.19/08/                         | 0.916892                                                     |
| 86.6994/0                | 26.324279                         | 0.006438                                                     |
| 106 337348               | 85 373837                         | 2 275562                                                     |
| 112.855868               | 29.483046                         | 0.834016                                                     |
| 121.159940               | 81.674703                         | 2.480417                                                     |
| 124.743722               | 21.287056                         | 0.665599                                                     |
| 136.824807               | 135.208923                        | 4.637119                                                     |
| 156.578599               | 73.448296                         | 2.882652                                                     |
| 165.205991               | 46.419930                         | 1.922243                                                     |
| 166.940887               | 0.585776                          | 0.024512                                                     |
| 194.941824               | 50 359470                         | 2.715299                                                     |
| 237 332548               | 14 094216                         | 0.838448                                                     |
| 246.449589               | 42.208430                         | 2.607386                                                     |
| 253.298016               | 54.851728                         | 3.482573                                                     |
| 283.154094               | 29.891649                         | 2.121538                                                     |
| 296.622938               | 14.478900                         | 1.076511                                                     |
| 303.252901               | 223.471633                        | 16.986560                                                    |
| 314.869556               | 114.805281                        | 9.060885                                                     |
| 338 811071               | 20 366545                         | 1 720634                                                     |
| 370.843598               | 33.047794                         | 3.071930                                                     |
| 379.257729               | 56.004762                         | 5.323993                                                     |
| 421.290635               | 3.927828                          | 0.414775                                                     |
| 433.516459               | 40.840891                         | 4.437914                                                     |
| 435.860110               | 56.887405                         | 6.215003                                                     |
| 458.775861               | 5.929847                          | 0.681902                                                     |
| 471.365207               | 13.362321                         | 1.578765                                                     |
| 483.292//2               | 101.919828                        | 1 040009                                                     |
| 409.933099               | 40 124481                         | 5 019072                                                     |
| 511.340865               | 123.164083                        | 15.786020                                                    |
| 531.156144               | 3.667965                          | 0.488344                                                     |
| 538.153771               | 233.783845                        | 31.535444                                                    |
| 544.638108               | 101.066948                        | 13.797336                                                    |
| 553.020628               | 34.125251                         | 4.730372                                                     |
| 565.347504               | 43.010912                         | 6.094979                                                     |
| 5/4.048213               | 39.585765                         | 0 409535                                                     |
| 634.896000               | 226.900567                        | 36.109065                                                    |
| 647.001983               | 86.919231                         | 14.096119                                                    |
| 647.448978               | 383.577081                        | 62.249558                                                    |
| 656.015058               | 78.974918                         | 12.986169                                                    |
| 669.789327               | 50.811330                         | 8.530546                                                     |
| 696.196018               | 437.544766                        | /6.354054                                                    |
| 720 671134               | 98 320686                         | 28.977023                                                    |
| 745.475266               | 181.875837                        | 33.984925                                                    |
| 774.203560               | 75.954242                         | 14.739585                                                    |
| 781.151379               | 203.983813                        | 39.940085                                                    |
| 796.059899               | 69.536572                         | 13.875131                                                    |
| 799.003052               | 36.623008                         | 7.334669                                                     |
| 799.526567               | 5.108666                          | 1.023808                                                     |
| 821 884530               | 1/.4//049                         | S. 565697<br>8. 024198                                       |
| 830.592490               | 8.524073                          | 1.774652                                                     |
| 834.461550               | 158.594484                        | 33.172063                                                    |
| 873.103442               | 4.083842                          | 0.893743                                                     |
| 882.057806               | 10.985766                         | 2.428877                                                     |
| 894.236151               | 24.069828                         | 5.395147                                                     |
| 909.229004               | 0.758777                          | 0.172928                                                     |
| 937.322177               | 0.276386                          | 0.064936                                                     |
| 940.11/082               | 32.010393                         | 21.824741 7.991547                                           |
| 990.126818               | 19.656076                         | 4.878269                                                     |
| 998.937470               | 71.564985                         | 17.919132                                                    |
| 1013.060106              | 112.314837                        | 28.520059                                                    |
| 1039.386732              | 44.480091                         | 11.588331                                                    |
| 1041.347516              | 12.560037                         | 3.278421                                                     |
| 1046.306618              | 6.260333                          | 1.641854                                                     |
| 1053 55/1<br>1053 55/024 | 54.004021<br>58 543977            | 0.900099<br>15 459981                                        |
| 1093 312761              | 1.283536                          | 0.351747                                                     |
| 1093.853822              | 41.771623                         | 11.452985                                                    |
| 1106.806658              | 4.443809                          | 1.232836                                                     |
| 1110.247068              | 116.195602                        | 32.336082                                                    |
| 1127.278609              | 3.598291                          | 1.016730                                                     |
| 1156.697901              | 32.552453                         | 9.438038                                                     |
| TT03.0/0T/T              | JI.JJZ414                         | 10.000/20                                                    |

| Supplementary Material<br>This journal is (c) The Ro | (ESI) for Chemical C<br>oyal Society of Chem | Communications |
|------------------------------------------------------|----------------------------------------------|----------------|
| 1222 094437                                          | 86 982564                                    | 26 644958      |
| 1225 097677                                          | 54 464568                                    | 16 724874      |
| 1233 378598                                          | 0 365030                                     | 0 112850       |
| 1272 701032                                          | 2 828845                                     | 0 902430       |
| 1293 352598                                          | 15 871253                                    | 5 145247       |
| 1313 7/1695                                          | 65 312077                                    | 21 507381      |
| 1221 770161                                          | 10 070264                                    | 6 265062       |
| 1226 225217                                          | 219.070204                                   | 72 152572      |
| 1220.2253517                                         | 210.400020                                   | 2 001642       |
| 1350.230240                                          | 0.2300/9                                     | 2.091043       |
| 1339.292418                                          | 15.000000                                    | 4.031898       |
| 13/8.238396                                          | 13.933227                                    | 5.504432       |
| 1387.335546                                          | 18.650013                                    | 6.485429       |
| 1400.625343                                          | 41.656615                                    | 14.624601      |
| 1404.211517                                          | 104./13955                                   | 36.856591      |
| 1419.883617                                          | 17.488925                                    | 6.224349       |
| 1430.076042                                          | 68.812707                                    | 24.666404      |
| 1442.18/36/                                          | 2.598289                                     | 0.939263       |
| 1448.093230                                          | 10.944263                                    | 3.9/24/4       |
| 1454.94/9/4                                          | 168.//9368                                   | 61.552386      |
| 1459.311695                                          | 129.648880                                   | 47.423642      |
| 1467.663931                                          | 11.109377                                    | 4.086904       |
| 1486.418929                                          | 113.429365                                   | 42.261489      |
| 1501.543125                                          | 141.560796                                   | 53.279345      |
| 1535.576102                                          | 1172.138459                                  | 451.157655     |
| 1548.924916                                          | 34.362118                                    | 13.340999      |
| 1595.279167                                          | 149.302028                                   | 59.700844      |
| 1870.936583                                          | 1658.800796                                  | ///.913614     |
| 1874.858944                                          | 1642.850363                                  | 772.048667     |
| 1932.908678                                          | 2382.712683                                  | 1154.412665    |
| 2936.737413                                          | 53.632937                                    | 39.479784      |
| 2942.171525                                          | 62.387723                                    | 46.009254      |
| 3021.909875                                          | 20.894663                                    | 15.826867      |
| 3025.069263                                          | 15.603563                                    | 11.831428      |
| 3072.519815                                          | 1.373849                                     | 1.058063       |
| 3079.917185                                          | 23.647505                                    | 18.255866      |
| 3127.603810                                          | 3.386989                                     | 2.655239       |
| 3130.305103                                          | 2.520855                                     | 1.977938       |
| 3145.131329                                          | 0.503413                                     | 0.396864       |
| 3152.321144                                          | 1.651332                                     | 1.304797       |
| 3168.322369                                          | 0.119193                                     | 0.094659       |
| 3172.318928                                          | 3.772359                                     | 2.999632       |
| 3172.601560                                          | 0.833094                                     | 0.662503       |
| 3174.711849                                          | 0.884845                                     | 0.704125       |
| 3175.493834                                          | 2.438783                                     | 1.941166       |
| 3183.477070                                          | 0.872749                                     | 0.696417       |
| 3188.419800                                          | 1.441654                                     | 1.152165       |
| 3198.424258                                          | 3.420506                                     | 2.742234       |

| Temp   |                                                                                                      | Transl                   | Rotat                    | Vibrat                        | Total                         |
|--------|------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-------------------------------|-------------------------------|
| 298.15 | Entropy (cal/mole-K):<br>Internal Energy (Kcal/mole):<br>Constant Volume Heat Capacity (cal/mole-K): | 45.185<br>0.889<br>2.981 | 36.144<br>0.889<br>2.981 | 105.431<br>226.847<br>101.271 | 186.760<br>228.625<br>107.233 |
| ****   | ****                                                                                                 | * * * * * * * * * * * *  | ******                   | * * * * * * * * * * *         | *****                         |





Geometry CYCLE 65

Energy gradients wrt nuclear displacements

| Atom  | Cartesi<br>X | ian (a.u./a<br>Y | angstrom)<br>Z |
|-------|--------------|------------------|----------------|
| 1 C   | 0.000093     | 0.000006         | 0.000096       |
| 2 H   | -0.000014    | -0.000005        | -0.000005      |
| 3 C   | -0.000004    | 0.000011         | -0.000008      |
| 4 H   | 0.000006     | 0.000007         | 0.000013       |
| 5 C   | -0.000029    | -0.000005        | 0.000002       |
| 6 Н   | 0.000000     | -0.000009        | 0.000005       |
| 7 C   | -0.000009    | -0.000006        | 0.000030       |
| 8 H   | 0.000013     | 0.000007         | 0.000005       |
| 9 C   | -0.000015    | 0.000002         | -0.000043      |
| 10 C  | -0.000195    | -0.000069        | 0.000042       |
| 11 C  | 0.000049     | -0.000083        | 0.000172       |
| 12 C  | 0.000038     | 0.000166         | 0.000166       |
| 13 H  | -0.000001    | 0.000018         | -0.000013      |
| 14 C  | 0.000202     | 0.000010         | 0.000050       |
| 15 N  | -0.000151    | 0.000017         | 0.000087       |
| 16 C  | 0.000059     | -0.000005        | 0.000047       |
| 17 H  | -0.000007    | 0.000011         | -0.000001      |
| 18 C  | 0.000049     | 0.000036         | 0.000047       |
| 19 H  | -0.000033    | 0.000012         | -0.000032      |
| 20 C  | -0.000045    | 0.000119         | 0.000045       |
| 21 C  | -0.000078    | -0.000041        | -0.000038      |
| 22 C  | 0.00011/     | -0.000356        | 0.000366       |
| 23 C  | -0.000110    | 0.000032         | 0.000051       |
| 24 C  | 0.000028     | 0.000020         | 0.000047       |
| 25 C  | -0.000018    | -0.000013        | -0.000002      |
| 20 C  | 0.000187     | 0.000038         | -0.000036      |
| 27 0  | 0.000040     | -0.000048        | -0.000091      |
| 20 11 | 0.000000     | 0.000012         | 0.000007       |
| 20 H  | -0.000003    | -0.0000013       | -0.000010      |
| 30 H  | 0.000000     | 0.000015         | 0.000002       |
| 32 H  | 0.000016     | 0.000020         | -0 000012      |
| 33 N  | -0.000201    | 0 0000000        | -0 000145      |
| 34 Tr | 0.000117     | -0.000056        | 0.000123       |
| 35 0  | 0.000045     | -0.000037        | -0.000077      |
| 36 0  | -0.000074    | 0.000026         | -0.000166      |
| 37 0  | -0.000149    | 0.000022         | -0.000007      |
| 38 Cr | -0.000031    | -0.000100        | -0.000564      |
| 39 Cl | 0.000000     | 0.000027         | -0.000077      |

| 40 | С | 0.000005  | -0.000009 | -0.000037 |
|----|---|-----------|-----------|-----------|
| 41 | н | -0.000004 | 0.000025  | -0.000003 |
| 42 | Н | 0.000016  | -0.000006 | -0.000006 |
| 43 | Н | -0.000024 | -0.000021 | -0.00014  |
| 44 | С | 0.000084  | 0.000212  | -0.000081 |
| 45 | Η | 0.000055  | -0.000007 | -0.000011 |
| 46 | Н | -0.000019 | -0.000056 | 0.000040  |
| 47 | Η | -0.000041 | -0.000011 | 0.000027  |
|    |   |           |           |           |

-----Geometry Convergence after Step 65

| current energy           | -11.27     | 434073 Hartree |   |
|--------------------------|------------|----------------|---|
| abs of energy change     | 0.00000454 | 0.00100000     | Т |
| constrained gradient max | 0.00056447 | 0.00100000     | т |
| constrained gradient rms | 0.00009250 | 0.00066667     | Т |
| gradient max             | 0.00056447 |                |   |
| gradient rms             | 0.00009250 |                |   |
| cart. step max           | 0.00620827 | 0.01000000     | Т |
| cart. step rms           | 0.00175878 | 0.00666667     | Т |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above) \_\_\_\_

| Electrostatic Energy:           | -10.192832711128343 | -277.3611 | -6396.10 | -26761.28 |
|---------------------------------|---------------------|-----------|----------|-----------|
| Kinetic Energy:                 | 10.085509623764992  | 274.4407  | 6328.75  | 26479.50  |
| Coulomb (Steric+OrbInt) Energy: | -0.864038087507424  | -23.5117  | -542.19  | -2268.53  |
| XC Energy:                      | -10.302979557120729 | -280.3583 | -6465.22 | -27050.47 |
|                                 | 11 074240721001504  |           |          | 20        |

List of All Frequencies:

Intensities

\_\_\_\_\_

| F  | Frequency I<br>cm-1     | Dipole Strength<br>1e-40 esu2 cm2 | Absorption<br>km/mole | Intensity | (degeneracy | not | counted) |
|----|-------------------------|-----------------------------------|-----------------------|-----------|-------------|-----|----------|
| -6 | 50 127086               | 15 086930                         | _0 261416             |           |             |     |          |
| 2  | 26 642271               | 67 476662                         | 0.450612              |           |             |     |          |
| 3  | 25 805556               | 225 2/1079                        | 2 021519              |           |             |     |          |
| 5  | 53.0033330<br>54 173049 | 125 847114                        | 1 708853              |           |             |     |          |
| 5  | 50 495451               | 215 150000                        | 3 262036              |           |             |     |          |
| 7  | 75 597212               | 110 745318                        | 2 098224              |           |             |     |          |
| ,  | 10.466325               | 40 754436                         | 0 821991              |           |             |     |          |
| 8  | A 018844                | 3 679193                          | 0.021991              |           |             |     |          |
| 9  | 94 970553               | 5 319345                          | 0 126627              |           |             |     |          |
| 10 | 5 846663                | 6 333968                          | 0 168047              |           |             |     |          |
| 10 | 9 213439                | 10 101774                         | 0 276536              |           |             |     |          |
| 11 | 5 387150                | 104 835129                        | 3 032092              |           |             |     |          |
| 11 | 6.708743                | 5.469756                          | 0.160011              |           |             |     |          |
| 12 | 23.331412               | 4.827077                          | 0.149223              |           |             |     |          |
| 13 | 39.075219               | 13.749406                         | 0.479305              |           |             |     |          |
| 15 | 57.522483               | 72.629154                         | 2.867686              |           |             |     |          |
| 18 | 38.201590               | 31.959520                         | 1.507654              |           |             |     |          |
| 20 | 1.381009                | 8.566296                          | 0.432404              |           |             |     |          |
| 22 | 4.969374                | 65.303303                         | 3.682448              |           |             |     |          |
| 22 | 28.127539               | 3.687570                          | 0.210861              |           |             |     |          |
| 23 | 35.374780               | 18.304025                         | 1.079903              |           |             |     |          |
| 23 | 39.364701               | 34.626555                         | 2.077531              |           |             |     |          |
| 26 | 50.174510               | 86.916027                         | 5.668168              |           |             |     |          |
| 27 | 72.490694               | 24.551263                         | 1.676886              |           |             |     |          |
| 28 | 30.407513               | 18.167054                         | 1.276886              |           |             |     |          |
| 28 | 35.220699               | 170.381374                        | 12.180952             |           |             |     |          |
| 30 | 01.633206               | 105.936194                        | 8.009430              |           |             |     |          |
| 31 | 2.352789                | 13.289769                         | 1.040497              |           |             |     |          |
| 33 | 33.242745               | 90.127231                         | 7.528263              |           |             |     |          |
| 35 | 52.601903               | 67.794219                         | 5.991773              |           |             |     |          |
| 38 | 34.858334               | 33.707042                         | 3.251619              |           |             |     |          |
| 40 | 3.576368                | 11.819752                         | 1.195672              |           |             |     |          |
| 40 | )7.478733               | 5.367573                          | 0.548228              |           |             |     |          |
| 42 | 25.542210               | 32.366491                         | 3.452362              |           |             |     |          |
| 43 | 36.536301               | 44.213334                         | 4.837842              |           |             |     |          |
| 44 | 16.845653               | 1.368958                          | 0.153330              |           |             |     |          |
| 47 | 74.793466               | 53.836512                         | 6.407074              |           |             |     |          |
| 48 | 31.802270               | 2.975957                          | 0.359396              |           |             |     |          |
| 49 | 97.834974               | 9.450408                          | 1.179272              |           |             |     |          |
| 50 | 0.970752                | 32.516225                         | 4.083105              |           |             |     |          |
| 50 | 08.821702               | 140.733419                        | 17.949028             |           |             |     |          |
| 53 | 33.470263               | 100.479137                        | 13.435820             |           |             |     |          |
| 54 | 16.439636               | 218.912684                        | 29.984112             |           |             |     |          |
| 55 | 56.273298               | 11.779659                         | 1.642476              |           |             |     |          |
| 56 | 56.163241               | 46.421922                         | 6.587837              |           |             |     |          |
| 56 | 57.456036               | 51.784191                         | 7.365589              |           |             |     |          |
| 58 | 39.546497               | 46.123611                         | 6.815841              |           |             |     |          |
| 63 | 30.456821               | 518.915660                        | 82.003086             |           |             |     |          |
| 64 | 11.169838               | 202.867768                        | 32.603499             |           |             |     |          |
| 64 | 19.862558               | 13.578857                         | 2.211886              |           |             |     |          |
| 66 | 58.199142               | 55.393625                         | 9.277774              |           |             |     |          |
| 67 | 79.418046               | 156.032957                        | 26.572443             |           |             |     |          |
| 69 | 01.406235               | 255.294641                        | 44.243865             |           |             |     |          |
| 71 | 2.570358                | 28.186909                         | 5.034464              |           |             |     |          |
| 71 | 16.553028               | 149.528159                        | 26.856499             |           |             |     |          |
| 73 | 38.600510               | 339.638302                        | 62.878813             |           |             |     |          |

| Supplementary Material<br>This journal is (c) The Ro | (ESI) for Chemical C<br>oyal Society of Chem | ommunications<br>istry 2011 |
|------------------------------------------------------|----------------------------------------------|-----------------------------|
| 744.211183                                           | 217.621285                                   | 40.595289                   |
| 756.030636                                           | 254.561551                                   | 48.240330                   |
| 776.122360                                           | 31.723266                                    | 6.171435                    |
| 799.303531                                           | 51.726068                                    | 10.363329                   |
| 803.856405                                           | 26.328398                                    | 5.304946                    |
| 810.743447                                           | 8.104650                                     | 1.647008                    |
| 812.560582                                           | 51.501158                                    | 10.489404                   |
| 835.761240                                           | 5.612030                                     | 1.175656                    |
| 842.717493                                           | 0.683815                                     | 0.144444                    |
| 847.014160                                           | 1.236667                                     | 0.262556                    |
| 865.987531                                           | 12.754888                                    | 2.768639                    |
| 884.128454                                           | 4.295072                                     | 0.951840                    |
| 917.717633                                           | 0.240354                                     | 0.055289                    |
| 933.290660                                           | 246.049207                                   | 57.559493                   |
| 943.100287                                           | 0.333488                                     | 0.078834                    |
| 962.860201                                           | 37.138581                                    | 8.963273                    |
| 994.369318                                           | 34.115474                                    | 8.503098                    |
| 1002.914758                                          | 41.033516                                    | 10.315275                   |
| 1014.027069                                          | 55.551750                                    | 14.119696                   |
| 1031.014879                                          | 30.569530                                    | 7.900085                    |
| 1034.282674                                          | 26.203717                                    | 6.793291                    |
| 1035.385681                                          | 16.146078                                    | 4.190321                    |
| 1044.230670                                          | 5.525302                                     | 1.446207                    |
| 1050.577959                                          | 15.745308                                    | 4.146269                    |
| 10/8.92/8/4                                          | 10.853990                                    | 2.935350                    |
| 1093.14/053                                          | 34./36095                                    | 9.51/824                    |
| 1110.006457                                          | 23.405272                                    | 0.455576                    |
| 1122.606234                                          | 0.2009/3                                     | 1.746069                    |
| 1120 446115                                          | 12 527525                                    | 2 062502                    |
| 1156 580082                                          | 12 437264                                    | 3.605509                    |
| 1180 303405                                          | 11 011295                                    | 12 133103                   |
| 1195 224449                                          | 32 906810                                    | 9 858556                    |
| 1228 614623                                          | 0 063724                                     | 0 019624                    |
| 1259.296643                                          | 27.512454                                    | 8.684313                    |
| 1274.417821                                          | 39.119177                                    | 12.496247                   |
| 1293.028728                                          | 23.583308                                    | 7.643477                    |
| 1306.216115                                          | 31.023140                                    | 10.157313                   |
| 1323.478479                                          | 34.367347                                    | 11.400948                   |
| 1331.248372                                          | 2.661683                                     | 0.888165                    |
| 1339.912524                                          | 10.023253                                    | 3.366380                    |
| 1365.323047                                          | 8.906170                                     | 3.047926                    |
| 1385.967300                                          | 18.704434                                    | 6.497939                    |
| 1398.442913                                          | 10.208133                                    | 3.578237                    |
| 1400.250341                                          | 90.254120                                    | 31.677492                   |
| 1423.31/696                                          | 10.233959                                    | 3.651099                    |
| 1423.009238                                          | 8.0/2302                                     | 3.098960                    |
| 1433.733089                                          | 79.137079                                    | 20.44/030                   |
| 1440.033792                                          | 17 230548                                    | 6 236403                    |
| 1449 217180                                          | 24 449483                                    | 8 881396                    |
| 1456 648310                                          | 162 010022                                   | 59 152712                   |
| 1467 447821                                          | 96 683061                                    | 35 562406                   |
| 1474 938600                                          | 19 702795                                    | 7 284166                    |
| 1500 971340                                          | 428 104924                                   | 161 064821                  |
| 1555.591785                                          | 20.368444                                    | 7.942031                    |
| 1591.765081                                          | 136.803216                                   | 54.582491                   |
| 1886.773509                                          | 1531.713491                                  | 724.394889                  |
| 1895.052135                                          | 1403.484073                                  | 666.663566                  |
| 1946.647834                                          | 2455.252787                                  | 1198.013394                 |
| 2866.472915                                          | 102.914432                                   | 73.943873                   |
| 2883.840156                                          | 84.273118                                    | 60.916974                   |
| 2996.881200                                          | 35.661073                                    | 26.788105                   |
| 3006.588548                                          | 37.997581                                    | 28.635714                   |
| 3052.971881                                          | 12.823352                                    | 9.813015                    |
| 3075.268644                                          | 12.346326                                    | 9.516974                    |
| 3124.630719                                          | 2.863258                                     | 2.242525                    |
| 3128.917464                                          | 1.084989                                     | 0.850937                    |
| 3138.219871                                          | 2.671113                                     | 2.101133                    |
| 3139.498409                                          | 2.077071                                     | 1.634518                    |
| 3145.123339                                          | 0.383374                                     | 0.302230                    |
| 3155.2824//                                          | 1./1/284                                     | 1.358183                    |
| 3100.13/886                                          | U.463128                                     | U.36684/                    |
| 3171 108600                                          | 1.//0392                                     | 1.400000<br>0 660375        |
| 3182 556403                                          | 2.443881                                     | 1 949550                    |
| 3184.081492                                          | 0.212235                                     | 0.169387                    |
| 3200.251131                                          | 2.271526                                     | 1.822132                    |
|                                                      |                                              |                             |

| Temp   |                                                                                                      | Transl                   | Rotat                    | Vibrat                       | Total                         |
|--------|------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|------------------------------|-------------------------------|
| 298.15 | Entropy (cal/mole-K):<br>Internal Energy (Kcal/mole):<br>Constant Volume Heat Capacity (cal/mole-K): | 45.185<br>0.889<br>2.981 | 36.168<br>0.889<br>2.981 | 99.981<br>225.008<br>100.097 | 181.333<br>226.785<br>106.059 |
| *****  |                                                                                                      | *****                    | ****                     | *******                      | ******                        |

## TS2-V

Geometry CYCLE 41

Energy gradients wrt nuclear displacements

| Atom                                                                        | Cartesian (a.u./angstrom)<br>X Y Z |
|-----------------------------------------------------------------------------|------------------------------------|
| 1 C<br>2 H<br>3 C<br>4 H<br>5 C<br>6 H<br>7 C<br>8 H<br>9 C<br>10 C<br>11 C |                                    |
| 12 C                                                                        | -0.000244 0.000105 -0.000237       |
| 13 H                                                                        | 0.000063 -0.00003 0.000157         |
| 14 C                                                                        | -0.000366 0.00032 -0.000080        |
| 15 N                                                                        | -0.000102 -0.00038 -0.000037       |
| 16 C                                                                        | 0.00019 -0.00212 0.000004          |
| 17 H                                                                        | 0.000023 -0.00002 0.000050         |
| 18 C                                                                        | 0.000155 0.000241 -0.000087        |
| 19 H                                                                        | 0.000014 0.00025 -0.00006          |
| 20 C                                                                        | -0.000098 0.000117 0.000338        |
| 21 C                                                                        | 0.000599 -0.000346 0.000370        |
| 22 C                                                                        | 0.000174 -0.00042 0.000990         |
| 23 C                                                                        | 0.000151 0.000116 0.00048          |
| 24 C                                                                        | -0.000234 -0.00082 -0.00029        |
| 25 C                                                                        | -0.000105 -0.000233 0.000423       |
| 27 C                                                                        | 0.000105 -0.000333 0.000423        |
| 28 H                                                                        | 0.000106 -0.000148 -0.000195       |
| 29 H                                                                        | 0.000040 0.000064 0.000011         |
| 30 H                                                                        | 0.000021 0.000055 0.000009         |
| 31 H                                                                        | 0.000046 0.000138 -0.00019         |
| 32 H                                                                        | 0.000023 0.000037 -0.000116        |
| 32 H                                                                        | 0.000072 0.000086 -0.00018         |
| 33 N                                                                        | -0.000219 -0.00045 -0.000489       |
| 34 Ir                                                                       | 0.000017 0.000851 0.000901         |
| 35 0                                                                        | 0.000115 -0.000855 -0.000471       |
| 36 0                                                                        | 0.000016 0.000365 -0.000533        |
| 37 0                                                                        | -0.000352 0.00009 -0.000482        |
| 38 Cr                                                                       | -0.000078 0.000144 0.000591        |
| 39 Cl                                                                       | -0.000038 -0.00017 0.000163        |
| 40 C                                                                        | 0.000046 0.00018 -0.000147         |
| 41 H                                                                        | 0.000050 -0.00008 0.000008         |
| 42 H                                                                        | -0.000077 -0.000119 0.000102       |
| 43 H                                                                        | 0.000018 0.000040 0.000026         |
| 44 C                                                                        | 0.000258 0.000174 0.000126         |
| 45 H                                                                        | -0.000042 0.00018 -0.000023        |
| 46 H                                                                        | -0.000007 0.000026 0.000031        |
| 47 H                                                                        | -0.000067 0.00007 0.000015         |

Geometry Convergence after Step 41

| current energy           | -11.        | 16485526 Hartree | 9 |
|--------------------------|-------------|------------------|---|
| energy change            | -0.00000776 | 0.00100000       | Т |
| constrained gradient max | 0.00099011  | 0.00100000       | Т |
| constrained gradient rms | 0.00027313  | 0.00066667       | Т |
| gradient max             | 0.00099011  |                  |   |
| gradient rms             | 0.00027313  |                  |   |
| cart. step max           | 0.00563994  | 0.01000000       | Т |
| cart. step rms           | 0.00175992  | 0.00666667       | Т |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:           | -10.214278627581541 | -277.9447 | -6409.56 | -26817.58 |
|---------------------------------|---------------------|-----------|----------|-----------|
| Kinetic Energy:                 | 12.292409724899045  | 334.4935  | 7713.60  | 32273.72  |
| Coulomb (Steric+OrbInt) Energy: | -2.981608285363222  | -81.1337  | -1870.99 | -7828.21  |
| XC Energy:                      | -10.261378066994137 | -279.2263 | -6439.11 | -26941.24 |
| Total Bonding Energy:           | -11.164855255039855 | -303.8112 | -7006.05 | -29313.32 |

List of All Frequencies:

| Frequency<br>cm-1 | Dipole Strength<br>1e-40 esu2 cm2 | Absorption :<br>km/mole | Intensity | (degeneracy | not | counted) |
|-------------------|-----------------------------------|-------------------------|-----------|-------------|-----|----------|
|                   |                                   |                         |           |             |     |          |
| -62.737230        | 21.288613                         | -0.334773               |           |             |     |          |
| 21.269003         | 64.445652                         | 0.343573                |           |             |     |          |
| 37.675295         | 248.141748                        | 2.343336                |           |             |     |          |

| Supplementary Material     | (ESI) for Chemical Co  | ommunications         |
|----------------------------|------------------------|-----------------------|
|                            |                        | 1 C00C00              |
| 52.769643                  | 231 930998             | 3 751381              |
| 67.593743                  | 14.876354              | 0.252047              |
| 81.571263                  | 32.081638              | 0.655952              |
| 84.940319                  | 7.629489               | 0.162438              |
| 92.661573                  | 3.921289               | 0.091077              |
| 108.011/39                 | 9.080097               | 0.245833              |
| 116.116898                 | 41.982779              | 1.221925              |
| 121.523200                 | 84.035053              | 2.559751              |
| 127.797913                 | 7.447778               | 0.238577              |
| 146.381310                 | 24.706888              | 0.906529              |
| 195.640513                 | 64.658844<br>12 13/992 | 2.589494              |
| 206.119828                 | 18.900759              | 0.976511              |
| 228.232129                 | 73.131823              | 4.183707              |
| 229.678573                 | 21.229560              | 1.222192              |
| 236.592635                 | 15.489151              | 0.918559              |
| 247.486846                 | 20.109251              | 1.24/458              |
| 282.149142                 | 6.231179               | 0.440684              |
| 284.682220                 | 21.000844              | 1.498564              |
| 303.198155                 | 221.801457             | 16.856563             |
| 320.437776                 | 32.437063              | 2.605333              |
| 330.964092                 | 69.885379              | 5./9/560              |
| 374.805447                 | 66.372816              | 6.235542              |
| 381.976673                 | 31.136187              | 2.981126              |
| 403.120123                 | 10.074766              | 1.017999              |
| 412.918610                 | 8.239304               | 0.852772              |
| 433.601954                 | 25.390080              | 2.759519              |
| 4457.808860                | 2.789071               | 0.320053              |
| 482.180627                 | 51.992595              | 6.283901              |
| 486.518651                 | 5.006964               | 0.610593              |
| 504.409324                 | 13.051694              | 1.650168              |
| 512.869/91                 | 84.0/3//2              | 10.808010<br>6.200710 |
| 538.581378                 | 94.445250              | 12.749981             |
| 551.234040                 | 100.565655             | 13.895167             |
| 552.536761                 | 102.328736             | 14.172186             |
| 566.761047                 | 57.444554              | 8.160691              |
| 567.413188                 | 48.491397              | 6.896/14<br>7 048804  |
| 634.491854                 | 463.447266             | 73.706272             |
| 645.554495                 | 173.365434             | 28.052624             |
| 650.988535                 | 19.381991              | 3.162640              |
| 670.245473                 | 67.412039              | 11.325292             |
| 695.218125                 | 309.223764             | 53.885513             |
| 713.987729                 | 24.574276              | 4.397943              |
| 720.490830                 | 220.187103             | 39.764764             |
| 749.267890                 | 147.810134             | 27.759996             |
| 789.349079                 | 2/1.9/5865             | 53.811803             |
| 803.350876                 | 24.026221              | 4.838033              |
| 805.195371                 | 3.926097               | 0.792392              |
| 815.845382                 | 21.599085              | 4.416938              |
| 820.349646                 | 10.597639              | 2.179145              |
| 834 247067                 | 51 778896              | 28.489/44             |
| 869.958558                 | 10.135920              | 2.210242              |
| 881.075814                 | 3.318503               | 0.732881              |
| 883.874166                 | 5.000979               | 1.107959              |
| 904.753435                 | 27.300444              | 6.191245              |
| 933 761915                 | 262 919067             | 61 536998             |
| 939.101483                 | 0.415975               | 0.097917              |
| 965.929872                 | 34.597818              | 8.376689              |
| 992.869842                 | 29.803827              | 7.417242              |
| 1003.676069                | 38.400536              | 9.660707              |
| 1011./16052                | 65.025945<br>29.345043 | 16.490103<br>7 582451 |
| 1034.060286                | 45.623023              | 11.825186             |
| 1041.067042                | 10.997202              | 2.869716              |
| 1045.009482                | 7.066255               | 1.850920              |
| 1051.439391                | 19.457327              | 5.127970              |
| 1095 598141                | 34 744490              | 3.389329<br>9.541470  |
| 1101.478875                | 11.637956              | 3.213150              |
| 1115.849615                | 3.242410               | 0.906884              |
| 1122.551516                | 187.087432             | 52.641586             |
| 1157 820368                | 11 005571              | 3.549918<br>3 193977  |
| 1179.292828                | 39.883139              | 11.789328             |
| 1197.178448                | 52.633404              | 15.794228             |
| 1232.921629                | 0.061829               | 0.019108              |
| 1263.845680                | 26.931693              | 8.531704              |
| 12/4.5029/1<br>1289 355674 | 40.283083<br>17 962404 | 12.868906<br>5 80517/ |
| 1303.590218                | 29.903856              | 9.771165              |
| 1329.810866                | 32.776497              | 10.925227             |
| 1333.971058                | 2.407764               | 0.805079              |
| 1341.568487                | 4.113193               | 1.383152              |
| 1386.870779                | 17.599593              | 2.400008<br>6.118102  |
| 1398.268781                | 10.288722              | 3.606037              |
| 1399.821986                | 101.609789             | 35.652208             |
| 1424.194302                | 10.804602              | 3.857057              |

| his jou | rnal is (c) The Ro | oyal Society of Chem  | nistry 2011 |        |        |         |         |
|---------|--------------------|-----------------------|-------------|--------|--------|---------|---------|
|         | 1426.423252        | 8.238860              | 2.94573     | 4      |        |         |         |
|         | 1435.321958        | 76.354391             | 27.47017    | 4      |        |         |         |
|         | 1440.610215        | 37.563568             | 13.56411    | 3      |        |         |         |
|         | 1445.020459        | 29.286076             | 10.60750    | 5      |        |         |         |
|         | 1450.007592        | 24.507094             | 8.90717     | 9      |        |         |         |
|         | 1456.174351        | 161.668350            | 59.00875    | 5      |        |         |         |
|         | 1468.627257        | 106.480746            | 39.19771    | 4      |        |         |         |
|         | 1475.749019        | 25.448260             | 9.41344     | 7      |        |         |         |
|         | 1503.596414        | 435.196416            | 164.01918   | 9      |        |         |         |
|         | 1550.522033        | 21.008594             | 8.16494     | 0      |        |         |         |
|         | 1594.968518        | 105.994278            | 42.37528    | 2      |        |         |         |
|         | 1881.137155        | 1532.864385           | 722.77357   | 4      |        |         |         |
|         | 1892.237974        | 1442.022931           | 683.95257   | В      |        |         |         |
|         | 1944.354446        | 2441.959422           | 1190.12328  | 0      |        |         |         |
|         | 2867.307713        | 104.787125            | 75.31132    | 6      |        |         |         |
|         | 2885.096266        | 81.020078             | 58.59101    | 7      |        |         |         |
|         | 2996.795620        | 36.913821             | 27.72836    | 1      |        |         |         |
|         | 3005.061680        | 37.818779             | 28.48649    | 2      |        |         |         |
|         | 3052.645805        | 12.696468             | 9.71488     | 0      |        |         |         |
|         | 3074.241405        | 13.443974             | 10.35961    | 7      |        |         |         |
|         | 3125.336404        | 2.375118              | 1.86063     | D      |        |         |         |
|         | 3130.714881        | 1.122503              | 0.88086     | 5      |        |         |         |
|         | 3138.862562        | 3.084055              | 2.42645     | 6      |        |         |         |
|         | 3140.666792        | 1.509727              | 1.18849     | В      |        |         |         |
|         | 3145.217407        | 0.384140              | 0.30284     | 4      |        |         |         |
|         | 3156.360719        | 1.374695              | 1.08760     | 5      |        |         |         |
|         | 3167.417787        | 0.466484              | 0.37035     | 7      |        |         |         |
|         | 3173.674395        | 1.540882              | 1.22577     | 3      |        |         |         |
|         | 3178.773058        | 0.833771              | 0.66433     | 1      |        |         |         |
|         | 3187.079414        | 1.421342              | 1.13545     | 4      |        |         |         |
|         | 3191.128828        | 2.477626              | 1.98179     | 3      |        |         |         |
|         | 3202.423240        | 2.503636              | 2.00968     | 5      |        |         |         |
| ſemp    |                    |                       |             | Transl | Rotat  | Vibrat  | Total   |
|         |                    |                       |             |        |        |         |         |
| 98.15   | Entropy (cal/m     | ole-K):               |             | 45.185 | 36.162 | 98.884  | 180.232 |
|         | Internal Energy    | y (Kcal/mole):        |             | 0.889  | 0.889  | 225.601 | 227.379 |
|         | Constant Volume    | e Heat Capacity (cal, | /mole-K):   | 2.981  | 2.981  | 99.181  | 105.143 |

II

Geometry CYCLE 9 \_\_\_\_\_

Energy gradients wrt nuclear displacements

| Atom   | Cartes    | ian (a.u./a | angstrom) |
|--------|-----------|-------------|-----------|
|        | Х         | У           | Z         |
| 1 C    | -0 000009 | 0 000111    | 0.000016  |
| 2 4    | 0.000000  | -0 000044   | -0.000010 |
| 3 0    | 0.000011  | -0 000084   | 0 000052  |
| 4 H    | 0 000071  | 0 000022    | 0 000000  |
| 5 C    | -0.000050 | -0.000024   | -0.000081 |
| 6 н    | 0.000058  | 0.000072    | 0.000021  |
| 7 C    | -0.000064 | -0.000043   | 0.000025  |
| 8 H    | 0.000027  | 0.000058    | 0.000028  |
| 9 C    | -0.000052 | 0.000100    | 0.000011  |
| 10 C   | 0.000035  | 0.000120    | 0.000086  |
| 11 C   | 0.000324  | -0.000339   | -0.000290 |
| 12 C   | -0.000159 | 0.000135    | -0.000044 |
| 13 H   | -0.000015 | -0.000102   | -0.000078 |
| 14 C   | -0.000030 | -0.000039   | 0.000098  |
| 15 N   | 0.000167  | -0.000159   | 0.000530  |
| 16 C   | 0.000017  | -0.000129   | -0.000014 |
| 17 H   | -0.000015 | 0.000140    | 0.000012  |
| 18 C   | 0.000011  | -0.000017   | -0.000068 |
| 19 H   | -0.000022 | 0.000080    | 0.000039  |
| 20 Cl  | 0.000050  | 0.000035    | -0.000247 |
| 21 C   | -0.000063 | -0.000053   | -0.000177 |
| 22 C   | -0.000163 | -0.000281   | -0.000053 |
| 23 C   | -0.000247 | 0.000178    | -0.000052 |
| 24 C   | 0.000249  | 0.000134    | -0.000253 |
| 25 C   | 0.000197  | -0.000149   | 0.000121  |
| 26 H   | -0.000028 | -0.000009   | -0.000026 |
| 27 H   | -0.00004/ | 0.000020    | -0.000008 |
| 28 H   | -0.000006 | -0.000051   | 0.000047  |
| 29 H   | 0.000020  | -0.000004   | 0.000059  |
| 30 H   | 0.000053  | 0.000034    | -0.000026 |
| 31 N   | -0.000196 | -0.000216   | -0.000088 |
| 32 IF  | -0.000080 | 0.000312    | 0.000923  |
| 33 C   | -0.000010 | 0.000309    | -0.000094 |
| 25 11  | -0.000074 | 0.000010    | -0.000102 |
| 36 н   | -0 000099 | -0 000026   | 0.000049  |
| 37 C   | 0 000085  | -0 000149   | -0 000277 |
| 38 H   | -0.000003 | 0 000027    | -0 000070 |
| 30 H   | 0 000037  | 0 000027    | -0 000032 |
| 40 H   | -0 000084 | 0 000012    | 0 000043  |
| -10 11 | 5.000004  |             | 5.000045  |

| Geometry Convergence after Step | 9           |                 |   |
|---------------------------------|-------------|-----------------|---|
| current energy                  | -9.1        | 2330744 Hartree |   |
| energy change                   | -0.00000207 | 0.00100000      | Т |
| constrained gradient max        | 0.00092536  | 0.00100000      | Т |
| constrained gradient rms        | 0.00015069  | 0.00066667      | т |
| gradient max                    | 0.00092536  |                 |   |
| gradient rms                    | 0.00015069  |                 |   |
| cart. step max                  | 0.00951725  | 0.01000000      | Т |
| cart. step rms                  | 0.00221713  | 0.00666667      | Т |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:           | -8.117518802494171 | -220.8889 | -5093.82 | -21312.54 |
|---------------------------------|--------------------|-----------|----------|-----------|
| Kinetic Energy:                 | 10.300182031559117 | 280.2822  | 6463.46  | 27043.12  |
| Coulomb (Steric+OrbInt) Energy: | -2.676159899475039 | -72.8220  | -1679.32 | -7026.26  |
| XC Energy:                      | -8.629809850124204 | -234.8291 | -5415.29 | -22657.56 |
| Total Bonding Energy:           | -9.123306520534296 | -248.2578 | -5724.96 | -23953.24 |

List of All Frequencies:

#### Intensities \_\_\_\_\_

| Frequency<br>cm-1 | Dipole Strength<br>1e-40 esu2 cm2 | Absorption<br>km/mole | Intensity | (degeneracy | not | counted) |
|-------------------|-----------------------------------|-----------------------|-----------|-------------|-----|----------|
| 30.679474         | 38.698702                         | 0.297593              |           |             |     |          |
| 46.733893         | 105.326892                        | 1.233813              |           |             |     |          |
| 54.995554         | 215.603390                        | 2.972085              |           |             |     |          |
| 61.871945         | 53.447284                         | 0.828891              |           |             |     |          |
| 92.763343         | 2.435172                          | 0.056622              |           |             |     |          |
| 105.815217        | 11.981492                         | 0.317788              |           |             |     |          |
| 116.279662        | 17.672813                         | 0.515095              |           |             |     |          |
| 132.238733        | 44.765637                         | 1.483821              |           |             |     |          |

| 14.2. 63660         10.22847         0.35734           118.556675         10.22847         0.233603           124.556675         3.24289         1.843259           124.79566         3.341289         1.843259           124.573639         12.985461         0.747301           225.570129         6.713160         0.41128           226.70129         6.713160         0.41128           227.31732127         20.17971         1.605066           323.547081         2.4405117         2.064445           323.547081         2.4405117         2.064445           323.547081         4.232866         4.80529           443.708521         1.013639         1.58851           443.708521         1.032866         4.80529           444.768521         1.038583         1.187708           465.764398         4.063897         4.644535           567.732091         5.76520         0.948477           75.49.78828         3.063897         4.444535           567.732091         1.576520         0.948477           75.49.78837         2.628770         1.4445369           762.66655         1.3.976432         2.6313329           763.76652         2.778214                                                                       | Supplementary Material     | (ESI) for Chemical Co<br>oval Society of Chemi | ommunications<br>strv 2011 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|----------------------------|
| 119.50575         5.22440         0.233805           124.179669         3.341269         1.843825           228.595639         12.085461         0.747301           248.071862         60.523254         3.763378           250.57102         31.967761         2.316141           306.101223         224.09031         1.7.19362           317.321679         20.179971         1.605066           313.343902         2.665281         0.240677           343.33916         42.23866         4.855290           443.778521         10.1639         1.598551           444.778521         10.1539         1.576538           54.493891         40.03631         0.576338           54.493891         40.13316         1.766773           55.482765         28.059306         3.766175           54.798828         3.062897         4.644321           651.442309         1.40706         4.644321           654.58702         2.289570         4.44420           722.260477         4.070525         0.736996           727.76640         8.938018         17.195296           727.76640         8.938018         17.195296           767.766805         2.5.057941                                                                           | 142 628480                 | 10 229847                                      | 0 365724                   |
| 199.534463         3.536233         0.159543           224.593639         12.985461         0.747301           246.071862         60.522254         3.763378           255.270129         6.713160         0.421128           289.051102         3.967761         2.316141           306.101223         224.090913         17.193622           317.321679         20.179971         1.605066           323.547081         25.460517         2.06645           313.034662         56.373847         5.45221           449.623914         40.538563         4.199551           449.623914         40.538563         4.199559           545.732091         51.643981         0.576538           547.732091         51.643987         4.64521           557.732091         51.6476754         2.623970         4.46521           653.164769         5.765202         0.943877           654.58702         62.283570         1.4.44521           767.666605         139.376832         4.206733           658.85702         62.283579         1.4262147           737.58662         7.057734         2.6254476           737.58662         2.627771         64.636999           767                                                                | 178 505675                 | 5 225450                                       | 0.303724                   |
| 214.179669         34.341269         1.84362           228.051102         31.967761         2.31641           306.101223         224.09913         1.1.60508           317.321679         20.179971         1.60508           323.547081         22.60217         2.06643           335.343907         2.862233         0.240676           373.04662         53.738477         3.65217           444.778511         15.01565         1.598551           443.023914         44.038553         4.187763           444.778521         15.01565         1.598551           544.798528         34.063897         4.64358           544.493891         4.0133116         5.176379           555.77.732091         51.955184         7.392936           577.732091         51.955184         7.392936           577.732091         52.65202         0.943877           544.365837         24.887223         4.206733           557.732091         52.622657         1.444920           715.492029         149.576734         26.82547           72.56642         26.178214         66.336499           73.35662         36.7178124         16.03261           74.66421         35.836                                                                | 189.534483                 | 3.358233                                       | 0.159543                   |
| 222,533639         12.985461         0.747301           246,071862         66,532254         3.763378           250.270129         6.713160         0.421128           289,051102         24.4999913         17.193622           317.5770817         20.173971         1.605086           333.547081         23.480517         2.066445           333.547081         23.480517         2.066445           333.547081         23.480517         2.066445           433.338916         44.338866         4.805290           444.623914         10.338583         1.187708           446.623914         1.338586         4.605290           447.78521         5.10439864         4.605290           447.623914         1.338586         4.605290           448.623914         1.332936         5.766378           514.493981         40.139116         5.176579           515.482705         28.658376         4.6632847           517.81164         31.780706         4.56331           513.937982         26.177224         4.664386           514.93983         34.89529         0.736946           515.94779         5.65528         0.75694           515.94779         5.95                                                                | 214.179669                 | 34.341269                                      | 1.843625                   |
| 248.071862         60.52224         3.76337           259.051102         31.967761         2.31641           316.101223         224.090913         17.193622           317.321679         20.173971         1.605068           323.547060         22.640517         2.066445           323.344622         32.373847         5.45921           423.33916         44.338563         1.187708           443.33916         44.338563         1.187708           466.064398         4.002631         5.76537           534.62765         28.053306         3.76175           549.798528         34.063877         4.64358           577.732091         51.951144         7.32236           512.913038         31.990509         4.746321           653.164769         5.765222         0.943877           715.482029         14.8376734         26.62244           715.482029         14.3376732         26.93303           767.73201         51.947632         26.93329           768.00018         101.267929         20.00129           715.482029         14.357652         26.93329           768.00018         101.267939         20.00129           768.00018         101.26                                                                | 229.593639                 | 12.985461                                      | 0.747301                   |
| 200.2/0129         6.113160         0.42128           280.2/0129         6.113160         0.42128           305.101223         224.090913         17.193622           317.321679         20.179971         1.605066           335.440007         2.65523         2.04645           373.044662         58.778647         5.459217           373.044662         58.778647         5.459217           373.044662         58.778647         5.96557           444.0523914         10.335583         1.187708           444.0523914         10.335583         1.187708           454.798828         34.063897         4.645358           557.732091         51.959539         4.76622           557.732091         51.959599         4.766321           653.164769         5.76520         0.43677           674.365837         4.807223         4.206783           698.858702         82.289570         14.414820           715.492029         149.576754         26.825447           722.26047         4.070925         0.736969           747.706640         139.376432         26.82547           747.706640         139.376432         26.813329           747.706640                                                                         | 248.071862                 | 60.523254                                      | 3.763378                   |
| 289.051102         21.80/01         21.80/01         21.81/01           333.541001         25.405517         11.03622           333.541001         25.405517         12.066445           333.04682         53.375847         5.45923           443.333916         44.239866         4.805520           444.623914         10.535583         1.817708           446.06398         4.03651         5.76537           535.482765         28.053306         3.766175           549.798528         34.063897         4.64358           577.732091         51.95184         7.32236           51.919308         31.990509         4.74621           653.164769         5.765222         0.943877           644.85870         24.887223         4.206733           51.913038         31.990509         4.746221           763.76640         89.33018         17.15526           772.76640         89.33018         17.15526           788.000018         101.267929         20.002129           788.000018         101.267929         20.00229           788.000018         101.267929         20.00229           788.000018         101.267929         20.00229           787.066685                                                                | 250.270129                 | 6.713160                                       | 0.421128                   |
| 317.321679         20.179971         1.60502           335.343907         2.662233         0.240675           337.044682         58.375847         5.459217           424.778521         15.013639         1.598551           433.338916         44.2339866         4.805230           444.623914         10.338583         1.187708           446.623914         10.338583         1.187708           446.623914         10.338583         1.187708           446.623914         10.338583         1.187708           445.623914         1.33916         5.176579           535.752.81164         31.780706         4.563331           591.913038         31.990509         4.746321           653.164769         5.765220         0.933877           674.365837         4.691223         1.267839           715.4859702         2.2.88570         14.414820           715.492029         1.4357734         26.625447           722.260477         4.070225         0.736469           747.766465         26.73724         26.625447           722.260477         4.070225         0.364969           747.766465         2.579611         5.053528           806.687226         <                                                            | 289.051102                 | 224 000013                                     | 2.310141                   |
| 323.5470e1         22.480517         2.06648           333.04662         58.375847         5.459217           424.778521         15.013639         1.598551           433.33916         44.239866         4.805290           449.623914         10.538583         1.187708           446.62064398         4.903631         0.576538           514.493891         40.139116         5.176379           535.482765         28.053306         3.766175           547.732091         51.951184         7.392386           577.31038         31.990509         4.746321           653.164769         5.765202         0.943877           674.365877         24.887223         4.206733           589.577         280.285702         82.386570         14.414920           715.492029         149.576754         26.825447           72.56640         89.38018         17.152296           73.736662         25.13257         6.336999           74.732569         32.245731         1.400261           757.066805         1.39.76632         22.01329           789.22705         81.67171         1.400261           789.226705         2.33736         0.221997           780.666                                                                | 317.321679                 | 20.179971                                      | 1.605086                   |
| 335.343907         2.662283         0.246676           373.094662         58.375847         5.455217           424.778521         15.013639         1.598551           433.38916         44.238866         4.805290           444.623914         10.338583         1.187708           445.623914         10.338583         1.187708           445.623916         2.8053306         3.766175           543.422765         28.053306         3.766175           544.798828         34.063897         4.694358           557.732091         51.951184         7.329236           572.811614         31.780706         4.553331           591.913038         31.999509         4.746321           653.164769         5.765202         0.943877           767.4365837         24.887223         4.206783           777.22.260477         4.070925         0.736969           777.731662         36.37741         16.43261           806.687226         12.887714         16.403261           806.687226         12.887714         16.403261           805.599633         154.772579         32.026152           805.69263         154.772579         32.026152           805.69263                                                                 | 323.547081                 | 25.480517                                      | 2.066445                   |
| 373.094682         58.375847         5.45921           423.338916         44.239866         4.805290           449.064398         4.903651         0.576538           514.493891         40.13916         5.176379           535.482765         28.059306         3.766175           549.798628         34.063897         4.64358           577.732091         51.951184         7.32936           511.913038         31.930509         4.746321           653.164769         5.765222         0.943877           644.65837         24.887223         4.206783           656.65870         28.28753         14.44820           722.460407         4.070925         26.736999           737.336692         362.178214         66.396999           747.336635         22.67178214         16.403661           748.00018         101.267329         20.001229           798.200018         101.267329         20.002129           798.242705         81.87714         16.403261           804.583635         25.057941         5.053828           805.68726         1.287736         0.229977           818.33219         9.84290         1.904394           825.529633         1                                                                | 335.343907                 | 2.863283                                       | 0.240676                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 373.094682                 | 58.375847                                      | 5.459217                   |
| 413139.14         41133653         1187739           44564399         4133653         1187739           51546399         4133653         1187739           51543599         4133653         1187739           51543599         4133653         1187739           51543599         4133653         1187169           515735091         51951184         7392395           517811614         3195019         4143630           515516754         4414820         7154765           56888702         52285754         4144820           71542629         362178214         66395899           76270640         8293618         17195296           77766665         139976832         2.6032329           78800018         11287329         2.6032329           78800018         11287336         553587           606687224         128739         32026152           60569726         128736         153589           606687224         128736         1535899           767066615         19979431         16003241           799242105         <                                                                                                                                                                                              | 424.//8521                 | 15.013639                                      | 1.598551                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 449.623914                 | 10.538583                                      | 1.187708                   |
| 514.493891         40.139116         5.176379           535.482765         28.053306         3.766175           549.798828         34.063897         4.694358           577.811614         31.780706         4.563331           591.913038         31.990509         4.746321           653.164769         5.765202         0.943877           674.365837         24.887223         4.207833           698.58702         82.289570         14.14280           715.492029         149.576754         26.836999           762.76040         89.338018         17.19529           776.760640         89.338018         17.19529           788.000018         101.267929         20.002129           799.242705         81.879174         16.063261           806.687226         1.285736         0.255997           818.332919         9.284230         1.904394           821.29496         6.770448         1.91153           825.529633         154.772579         32.026152           805.13769         0.32363         0.215353           905.137717         127.001696         9.378363           905.137217         127.001696         9.378263           905.137217         <                                                            | 469.064398                 | 4.903631                                       | 0.576538                   |
| 533.482765         22.053306         3.766175           549.798828         34.063897         4.694358           567.732091         51.951184         7.392336           572.811614         31.790509         4.746321           653.164769         5.75520         0.943877           674.365837         24.887223         4.206783           679.858702         82.289570         14.414920           715.492029         149.576754         26.825470           72.260477         4.070925         0.736996           737.336692         362.178214         66.936999           767.066805         139.976832         26.913329           788.00018         101.267929         20.002129           799.242705         81.879174         16.403261           806.68726         1.285736         0.259977           818.332919         9.242200         1.904334           824.049636         6.870648         1.419153           825.529633         154.772579         32.026152           872.483070         6.429177         1.406017           872.483070         6.429177         1.406017           872.48070         0.32363         0.211533           931.924551         <                                                            | 514.493891                 | 40.139116                                      | 5.176379                   |
| 543. 988/28         34.05397         4.09435           577. 312091         51.951184         7.392936           577. 811614         31.780706         4.563031           591.913038         31.990509         4.746321           653.164769         5.765202         0.943877           674.365837         24.887223         4.206783           698.58702         82.289570         14.414920           715.492029         143.576754         26.835999           762.760640         89.33018         17.195296           767.066005         139.976832         26.013329           788.000018         101.267929         20.002129           799.242705         81.879174         16.0403261           806.687226         1.285736         0.2559977           818.332919         9.284290         1.904394           824.049636         6.870648         1.419153           825.529633         154.77279         32.026152           872.483070         6.429177         1.406017           876.526651         2.5.13156         4.946291           986.642600         3.94664         0.877855           997.11677         127.010496         30.278250           986.642646                                                               | 535.482765                 | 28.059306                                      | 3.766175                   |
| 307.11161         31.30103         31.390509         4.746321           653.164766         5.765202         0.643877           674.365837         24.887223         4.206783           698.658702         82.285570         14.414920           715.492029         143.576754         26.623467           72.260477         4.070925         0.736986           73.336692         362.178214         66.936999           767.066605         139.976832         26.913329           788.00018         101.267929         20.002129           799.242705         81.879174         16.403261           806.687226         1.285736         0.259977           816.332919         9.284290         1.904394           824.049636         6.870648         1.419153           807.525651         22.513156         4.946291           808.643280         3.948684         0.879545           905.139769         0.32363         0.211533           931.924551         0.131885         0.030807           951.137217         127.001696         30.278250           966.065522         40.55819         9.18019           977.11617         51.246746         12.60448           1                                                                | 549.798828                 | 34.063897                                      | 4.694358                   |
| 531         531         591         513         541         553         544         5653         74         365837         24         887223         4         206783           698         58670         62         229570         14         144200           715         492029         149         576754         26         825447           722.266477         4.070925         0.736986         737.336692         362.178214         66.336999           762.760640         89.938018         17.195296         767.066805         139.976832         26.013329           788.000018         101.267929         20.002129         79.242705         81.879174         16.03261           806.687226         1.285736         0.2559977         81.63280         5.94848         1.415153           825.529633         154.772579         32.026152         872.483070         6.429177         1.406017           876.526851         22.513156         4.946291         966.068522         40.958019         9.918019           9951.37217         127.001696         30.278250         9051.39769         0.32363         0.211533           931.924551         0.131885         0.030807         951.317217         12.040879       | 572 811614                 | 31 780706                                      | 4 563031                   |
| 653.164769         5.765202         0.943877           654.858702         82.289570         14.414920           715.42029         14.57675         26.825447           722.260477         4.070925         0.736996           737.336692         362.178214         66.936999           762.760640         89.38018         17.195296           767.066805         139.976832         26.913329           788.00018         101.267329         20.002129           799.242705         81.879174         16.403251           806.687226         1.285736         0.259977           818.332919         9.284290         1.904394           824.049636         6.870648         1.419153           825.529633         154.772579         32.20153           817.283070         6.429177         1.406017           872.483070         6.429177         1.406017           872.483070         6.429177         1.406017           951.137217         127.00169         0.0278250           956.066522         40.958019         9.918019           988.64464         20.518207         5.084611           914.540966         201.514471         51.245294           1039.994318                                                                  | 591.913038                 | 31.990509                                      | 4.746321                   |
| 674.35837         24.887223         4.206783           688.858702         82.289570         144.14283           715.492029         149.576754         26.828447           722.260477         4.070925         0.736996           737.336692         362.178214         66.936999           767.066805         139.976832         26.913329           789.242705         81.879174         16.403261           806.687226         1.285736         0.259977           818.332919         9.284290         1.90334           824.049636         6.870648         1.61153           825.529633         154.772579         32.026152           872.483070         6.429177         1.406017           876.52851         22.513156         4.946291           88.64260         3.948684         0.879845           905.137207         12.801485         0.030807           911.137217         127.001696         30.278250           948.64464         20.518207         5.084611           97.711617         51.189072         12.801485           104.540986         201.514471         51.28284           1033.994318         4.511039         1.175941           104.50926                                                                     | 653.164769                 | 5.765202                                       | 0.943877                   |
| 698.89702         82.29970         14.414920           712.260477         4.070925         0.736996           772.260477         4.070925         0.736996           772.760640         89.398018         17.195296           762.760640         89.398018         17.195296           767.066805         13.9.376832         26.913329           798.00018         101.267929         20.002129           799.242705         81.879174         16.403261           804.583635         25.057941         5.053528           806.687226         1.285736         0.259977           818.32919         9.284290         1.904334           825.529633         154.772579         32.026152           872.483070         6.429177         1.406017           876.526851         22.1513156         4.94628           905.139769         0.932263         0.211533           931.924551         0.131885         0.030807           951.137217         127.001696         30.278250           946.066522         40.558019         9.918019           946.06552         40.155056         10.579307           104.4749741         6.086175         1.593803           1052.398018                                                                 | 674.365837                 | 24.887223                                      | 4.206783                   |
| 113.42.023         143.30.034         28.82444           722.260477         4.070325         0.736986           737.336692         362.178214         66.936999           767.066805         139.976832         26.913329           799.242705         81.879174         16.403261           806.687226         1.285736         0.259977           818.332919         9.284290         1.904394           824.049636         6.870648         1.419153           825.529633         154.772579         32.026152           872.48307         6.429177         1.406017           876.52861         22.513156         4.946291           88.64280         3.948684         0.879545           905.137217         127.001696         30.278250           966.068552         40.958019         9.918019           988.644646         20.518207         2.0804811           97.711617         51.189077         2.801485           1014.540986         201.514471         51.245244           1039.994318         45.11039         1.175941           104.540986         201.514471         51.245234           104.540986         201.514471         51.245676           104.540986                                                             | 698.858702                 | 82.289570                                      | 14.414920                  |
| 777.338.662         362.178214         66.336999           762.760640         89.338018         17.195296           776.066805         133.976332         26.913329           788.000018         101.267929         20.002129           799.242705         81.879174         16.403261           804.533625         25.057941         5.053528           806.687226         1.285736         0.259977           818.332919         9.2424290         1.904394           824.049636         6.429177         1.406017           876.526851         22.513156         4.946291           88.64280         3.948664         0.879545           905.139769         0.932363         0.211533           911.92451         0.13186         0.30807           911.137217         127.001696         30.27250           966.666522         40.959019         9.918019           988.644646         20.1514471         51.245261           1039.994318         4.511039         1.175941           1044.502941         3.649705         8.776122           1044.749741         6.282667         15.40705           105.195667         1.519020         0.420805           1105.195667                                                                  | 722 260477                 | 4 070925                                       | 0 736996                   |
| 762.760640         89.938018         17.192266           767.066805         139.976832         26.913329           789.00018         101.267929         20.002129           799.242705         81.879174         16.403261           804.58365         25.057941         5.053528           806.687226         1.285736         0.259977           818.332919         9.244290         1.904394           824.049636         6.870648         1.419153           825.529633         154.772579         32.202152           872.483070         6.429177         1.406017           876.52681         22.513156         4.946231           905.139769         0.9322363         0.271533           911.924551         0.131885         0.030807           951.137277         127.011696         30.278250           966.066522         40.958019         9.918019           918.64464         20.1514471         51.245284           103.994318         4.511039         1.175941           104.509266         20.514471         51.245284           103.999318         40.105056         10.579307           1055.39267         104.144938         27.580301           1052.398018                                                             | 737.336692                 | 362.178214                                     | 66.936999                  |
| 767.066805         139.976832         26.913329           799.242705         81.879174         16.403261           804.583635         25.057941         5.053528           806.687226         1.285736         0.259977           818.32219         9.284290         1.904334           824.049636         6.470648         1.419153           825.529633         154.772579         32.026152           876.526851         22.513156         4.946291           886.43280         3.948684         0.879545           905.139769         0.332263         0.211533           931.924551         0.131865         0.030807           951.137217         127.001696         30.278250           966.068522         40.959019         9.918019           988.644646         20.518207         5.084611           997.711617         51.189072         12.801485           1044.540986         20.1514471         51.245281           1044.502941         3.649705         8.776122           1044.749741         6.086175         1.593803           1052.398018         40.105056         10.579307           1056.532267         104.144938         27.580311           1042.806563 <td>762.760640</td> <td>89.938018</td> <td>17.195296</td> | 762.760640                 | 89.938018                                      | 17.195296                  |
| 788.000018 $101.2c7929$ $20.002129$ $799.242705$ $81.879174$ $16.403261$ $804.583635$ $25.057941$ $5.033528$ $806.667226$ $1.285736$ $0.259977$ $818.332919$ $9.284290$ $1.904394$ $824.049636$ $6.870648$ $1.419153$ $825.529633$ $154.772579$ $32.026152$ $872.483070$ $6.429177$ $1.406017$ $876.526851$ $22.513156$ $4.946291$ $888.643280$ $3.948664$ $0.879545$ $905.139769$ $0.932363$ $0.211533$ $931.924551$ $0.131885$ $0.030807$ $951.137217$ $127.001696$ $30.278250$ $966.068522$ $40.958019$ $9.918019$ $988.644664$ $02.518207$ $5.084611$ $997.711617$ $51.189072$ $12.801485$ $1014.540986$ $201.514471$ $51.245244$ $1039.994318$ $4.511039$ $1.175941$ $1040.502941$ $33.649705$ $8.77580301$ $1055.532267$ $104.144938$ $27.580301$ $1052.398018$ $40.10555$ $10.579307$ $105.195676$ $1.519021$ $0.420805$ $1105.195656$ $67.635376$ $19.753146$ $1223.259950$ $0.034102$ $0.001542$ $1233.259950$ $0.334102$ $0.001542$ $1233.259950$ $0.334102$ $0.47413$ $1233.259950$ $0.334102$ $0.010542$ $1233.259950$ $0.334102$ $0.010542$ $1233.259950$ $0.335116$ $12.53628$ $1333.308693$ <td>767.066805</td> <td>139.976832</td> <td>26.913329</td>                                                                         | 767.066805                 | 139.976832                                     | 26.913329                  |
| 799.42/05         81.8/91/4         16.403261           804.583635         25.057941         5.053528           806.687226         1.285736         0.259977           818.332919         9.284290         1.904394           824.049636         6.870648         1.419153           825.529633         154.772579         32.026152           872.483070         6.429177         1.406017           876.526851         22.513156         4.946291           888.643280         3.948664         0.879545           905.137217         127.001696         30.278250           966.068522         40.958019         9.918019           988.644646         20.518207         5.084611           104.502941         3.649705         8.776122           1044.749741         6.086175         1.593803           1055.532267         104.144938         27.580301           102.2.080563         56.246676         15.407005           103.58520         43.616748         12.04322           104.4749741         6.086175         1.593803           105.532267         104.144938         27.580301           102.2806563         56.24676         15.407005           105.129745                                                              | 788.000018                 | 101.267929                                     | 20.002129                  |
| 004.03030         2.03034         0.03037           818.332919         9.284290         1.904394           824.049636         6.870648         1.419153           825.529633         154.772579         32.026152           872.483070         6.429177         1.406017           876.526851         22.513156         4.946231           886.643280         3.948664         0.879545           905.139769         0.932363         0.211533           931.924551         0.131885         0.030807           956.068522         40.958019         9.918019           988.644646         20.518207         5.084611           997.711617         51.189072         12.801485           1044.540986         201.514471         51.245284           1039.994318         4.511039         1.175941           1040.502941         3.649705         8.77580301           1052.398018         40.105056         10.579307           1055.532267         104.144938         27.580301           1092.806563         56.246676         15.407005           1105.185566         7.635376         19.753146           1232.729840         0.323102         0.0101542           1233.259595                                                            | /99.242/05<br>804 583635   | 81.8/91/4<br>25.0579/1                         | 16.403261                  |
| 818.32219         9.28420         1.904394           824.049636         6.870648         1.419153           825.529633         154.772579         32.026152           872.483070         6.429177         1.406017           876.526651         22.513156         4.946291           888.643280         3.948684         0.879545           905.139769         0.932363         0.211553           931.924551         0.131885         0.030807           951.137217         127.001696         30.278250           966.068522         40.958019         9.918019           97.711617         5.188072         12.801445           1039.994318         4.511039         1.175941           1040.502941         33.649705         8.776122           1044.749741         6.06675         1.53803           1052.398018         40.105056         10.579307           1055.652267         104.144938         27.580301           1092.806563         56.246676         15.407005           1101.568520         43.616748         12.043227           1105.156566         7.651366         19.753146           1232.722840         236.725756         73.145738           1233.259350                                                            | 806.687226                 | 1.285736                                       | 0.259977                   |
| 824.049636         6.870648         1.419153           825.529633         154.772579         32.026152           872.483070         6.429177         1.406017           876.526851         22.513156         4.946231           888.643280         3.948664         0.879545           905.139769         0.932363         0.211533           931.924551         0.131885         0.030807           951.137217         127.001696         30.278250           966.068522         40.958019         9.918019           988.644646         20.518207         5.084611           997.711617         51.189072         12.801485           1014.540986         20.514471         51.245284           1033.994318         4.511039         1.775913           1040.502941         33.649705         8.776122           1044.749741         6.066175         1.539303           1052.38018         40.105056         10.5739307           1055.6520         43.616748         12.043227           1105.195667         1.519021         0.420805           1105.195656         67.635376         19.753146           1223.722840         236.725786         73.145734           1234.26279 <td>818.332919</td> <td>9.284290</td> <td>1.904394</td>  | 818.332919                 | 9.284290                                       | 1.904394                   |
| 825.529633         154.772579         322.026152           872.483070         6.429177         1.406017           876.526851         22.513156         4.946291           888.643280         3.948684         0.879545           905.139769         0.932363         0.211533           931.924551         0.131885         0.030807           956.068522         40.958019         9.918019           988.644646         20.518207         5.084611           997.711617         51.189072         12.801485           1014.540986         201.514471         51.245284           1033.994318         4.511039         1.175941           1040.502941         33.649705         8.776122           1044.749741         6.086175         1.538033           1052.398018         40.105056         10.579307           1056.532267         104.144938         27.580301           1092.806563         56.246676         15.407005           1101.568520         43.616748         12.043227           1105.1556667         1.519021         0.420805           1105.1556667         1.539303         123.2722440         23.725756         73.145738           1232.722840         26.75756                                                    | 824.049636                 | 6.870648                                       | 1.419153                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 825.529633                 | 154.772579                                     | 32.026152                  |
| 888.643280         3.948644         0.879545           905.139769         0.932363         0.211533           931.924551         0.131885         0.030807           951.137217         127.001696         30.278250           966.066522         40.958019         9.918019           988.644646         20.518207         5.084611           997.711617         51.189072         12.801485           1039.994318         4.511039         1.175941           1040.502941         33.649705         8.776122           1044.749741         6.086175         1.593803           1052.398018         40.105056         10.579307           1056.532267         104.14938         27.580301           1092.805563         56.246676         15.407005           1105.195667         1.519021         0.420805           1105.195667         1.519021         0.420805           1105.195566         67.63576         73.145738           1232.722840         236.725756         73.145738           1233.259950         0.034102         0.010542           1242.635636         24.694478         7.661689           1275.062076         14.186578         4.534058           1337.30869                                                       | 872.483070                 | 6.429177                                       | 1.406017                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 888.643280                 | 3.948684                                       | 0.879545                   |
| 931.924551         0.131885         0.030807           951.137217         127.001696         30.278250           966.068522         40.958019         9.918019           988.644646         20.518207         5.084611           997.711617         51.189072         12.801485           1014.540986         201.514471         51.245284           1039.994318         4.511039         1.175941           1040.502941         33.649705         8.776122           1044.749741         6.086175         1.593003           1055.33267         104.144938         27.580301           1052.806563         56.246676         15.407005           1105.195667         1.519021         0.420805           1105.195667         1.519021         0.420805           1150.129745         0.232968         0.067162           1153.495259         121.350298         35.086070           1165.156566         67.635376         19.753146           1232.722840         236.725756         73.145738           1233.259950         0.034102         0.001542           1242.63563         24.4694478         7.691689           1275.062076         14.186578         4.5330803           13                                                       | 905.139769                 | 0.932363                                       | 0.211533                   |
| 951.137217         127.001696         30.278250           966.068522         40.958019         9.918019           988.644646         20.518207         5.084611           997.711617         51.189072         12.801485           1014.540986         201.514471         51.245284           1039.994318         4.511039         1.175941           1040.502941         33.649705         8.776122           1044.749741         6.086175         1.593803           1052.398018         40.105056         10.579307           1056.532267         104.144938         27.580301           1092.806563         56.246676         15.407005           1101.568520         43.616748         12.043227           1105.195667         1.519021         0.420805           1106.737918         3.461857         0.960355           1205.129745         0.232968         0.067162           1153.495259         121.350298         35.086070           1242.635636         24.694478         7.691689           1232.722840         23.725756         73.145738           1233.259950         0.034102         0.010542           1242.635636         24.694478         7.691689                                                                  | 931.924551                 | 0.131885                                       | 0.030807                   |
| 966.068522         40.958019         9.918019         9.918019           998.644646         20.518207         5.084611           197.711617         51.189072         12.801485           1014.540986         201.514471         51.245284           1039.994318         4.511039         1.175941           1040.502941         33.649705         8.776122           1044.749741         6.086175         1.533803           1052.398018         40.105056         10.579307           1056.532267         104.144938         27.580301           1022.806553         56.246676         15.407005           1101.568520         43.616748         12.043227           1105.195667         1.519021         0.420805           1150.129745         0.232968         0.067152           1153.495259         121.350298         35.086070           1165.156566         67.635376         19.753146           1232.722840         236.725756         73.145738           1233.259595         0.034102         0.010542           1242.635636         24.694478         7.691689           1275.062076         14.186578         4.534058           1330.523759         42.736712         14.252853                                              | 951.137217                 | 127.001696                                     | 30.278250                  |
| 398.044494         20.318207         12.801485           1014.540986         201.514471         51.245284           1039.994318         4.511039         1.175941           1040.502941         33.649705         8.776122           1044.749741         6.086175         1.593803           1052.398018         40.105056         10.579307           1056.532267         104.144938         27.580301           1092.806563         56.246676         15.407005           1101.568520         43.616748         12.043227           1105.195667         1.519021         0.420805           1166.737918         3.461857         0.420805           1153.495259         121.350298         35.086070           1153.495259         121.350298         35.086070           1153.495259         121.350298         35.086070           1155.156566         67.633376         19.753146           1223.259950         0.034102         0.010542           1242.635636         24.694478         7.691689           1275.062076         14.186578         4.534058           1295.324245         62.491991         20.289947           1384.926976         202.187344         67.653388                                                         | 966.068522                 | 40.958019                                      | 9.918019                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 997.711617                 | 51.189072                                      | 12.801485                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1014.540986                | 201.514471                                     | 51.245284                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1039.994318                | 4.511039                                       | 1.175941                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1040.502941                | 33.649705                                      | 8.776122                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1044.749741                | 40 105056                                      | 10 579307                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1056.532267                | 104.144938                                     | 27.580301                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1092.806563                | 56.246676                                      | 15.407005                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1101.568520                | 43.616748                                      | 12.043227                  |
| 1100.1737916 $3.461837$ $0.38033$ 1150.129745 $0.232968$ $0.067162$ 1153.495259121.350298 $35.086070$ 1165.156566 $67.635376$ $19.753146$ 1232.722840 $236.725756$ $73.145738$ 1233.259950 $0.034102$ $0.010542$ 1242.635636 $24.694478$ $7.691689$ 1275.062076 $14.186578$ $4.534058$ 1295.324245 $62.491991$ $20.289947$ 1328.408790 $126.631306$ $42.164883$ 1330.523759 $42.736712$ $14.252853$ 1334.926976 $202.187344$ $67.653388$ 1337.308693 $15.924738$ $5.338043$ 1352.117347 $551.834743$ $187.025789$ 1386.165006 $18.501595$ $6.428389$ 1397.069704 $10.111076$ $3.540736$ 1411.663131 $29.148475$ $10.313949$ 1417.846679 $205.753124$ $73.122963$ 1423.777648 $29.349245$ $10.474111$ 1438.017413 $19.057886$ $6.869371$ 1447.658050 $58.571899$ $21.253642$ 1460.373379 $503.609102$ $184.346777$ 1463.878424 $34.463720$ $12.645769$ 1472.526480 $158.294788$ $58.426221$ 1494.603706 $15.615949$ $118.239631$ 1534.861294 $27.773624$ $49.157345$ 1540.767894 $247.853748$ $95.217845$ 1540.767894 $247.853748$ $95.217845$ 1540.767894 $247.853748$ $92.842621$ 2948.425476 $27.3119$                                                                                                                                      | 1105.195667                | 1.519021                                       | 0.420805                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1150 129745                | 0 232968                                       | 0.960355                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1153.495259                | 121.350298                                     | 35.086070                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1165.156566                | 67.635376                                      | 19.753146                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1232.722840                | 236.725756                                     | 73.145738                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1233.259950                | 0.034102                                       | 0.010542                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1242.035030                | 24.094478                                      | 4 534058                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1295.324245                | 62.491991                                      | 20.289947                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1328.408790                | 126.631306                                     | 42.164883                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1330.523759                | 42.736712                                      | 14.252853                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1334.926976                | 202.187344                                     | 67.653388                  |
| 1386.165006         18.501595         6.428389           1397.069704         10.111076         3.540736           1411.663131         29.148475         10.313949           1417.846679         205.753124         73.122963           1423.777648         29.349245         10.474111           1435.173538         103.735263         37.317187           1438.017413         19.057886         6.869371           1447.658050         58.571899         21.253642           1440.373379         503.609102         184.346777           1463.878424         34.463720         12.645769           1472.526480         158.294788         58.426221           1494.603706         315.615949         118.239631           1534.861294         127.773624         49.157345           1540.767894         247.853748         95.721783           1585.916201         1648.506841         655.313417           1594.943144         73.506408         29.386541           2916.716045         96.424350         70.495101           2925.200718         181.77250         133.278877           2988.425476         27.311946         20.458470           20987.5213984         32.092759         24.761898                                     | 1352 117347                | 13.924/38                                      | 3.338043<br>187 025789     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1386.165006                | 18.501595                                      | 6.428389                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1397.069704                | 10.111076                                      | 3.540736                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1411.663131                | 29.148475                                      | 10.313949                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1417.846679                | 205.753124                                     | 73.122963                  |
| 1438.017413         190.57886         6.869371           14438.017413         19.057886         6.869371           1447.658050         58.571899         21.253642           1460.373379         503.609102         184.346777           1463.878424         34.463720         12.645769           1472.526480         158.294788         58.426221           1494.603706         315.615949         118.239631           1534.861294         127.773624         49.157345           1540.767894         247.853748         95.721783           1585.916201         1648.506841         655.313417           1594.943144         73.506408         29.386541           2916.716045         96.424350         70.495101           2925.200718         181.772250         133.278877           2982.175855         35.049469         26.199486           2988.425476         27.311946         20.458470           3068.675716         1.951175         1.508089           3110.253274         12.521918         9.762132           3122.722436         2.636619         2.063758           3142.139094         2.188810         1.723898           3147.756889         2.560874         2.020540                                               | 1423.///648                | 29.349245                                      | 10.4/4111                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1438.017413                | 19.057886                                      | 6.869371                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1447.658050                | 58.571899                                      | 21.253642                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1460.373379                | 503.609102                                     | 184.346777                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1463.878424                | 34.463720                                      | 12.645769                  |
| 1494.003703         110.1294         110.1294           1534.861294         127.773624         49.157345           1540.767894         247.853748         95.721783           1585.916201         1648.506841         655.31347           1594.943144         73.506408         29.386541           2916.716045         96.424350         70.495101           2925.200718         181.772250         133.278877           2982.175855         35.049469         26.199486           2988.425476         27.311946         20.458470           3068.675716         1.951175         1.500809           3078.213984         32.092759         24.761898           3110.253274         12.521918         9.762132           3122.722436         2.636619         2.063758           3142.139094         2.188810         1.723988           3147.756889         2.560874         2.020540           3152.076444         8.967066         7.084761           3159.20160         9.711628         7.609419           3165.428030         0.858815         0.681413                                                                                                                                                                                 | 1472.526480                | 158.294/88                                     | 38.426221<br>118 239631    |
| 1540.767894         247.853748         95.721783           1585.916201         1648.506841         655.313417           1594.943144         73.506408         29.386541           2916.716045         96.424350         70.495101           2925.200718         181.772250         133.278877           2982.175855         35.049469         26.199486           2988.425476         27.311946         20.458470           3068.675716         1.951175         1.500809           3078.213984         32.092759         24.761898           3110.253274         12.521918         9.762132           3122.722436         2.636619         2.063758           3142.139094         2.188810         1.723898           3147.75689         2.560874         2.020540           3152.076444         8.967066         7.084761           3159.20160         9.711628         7.690419           3165.42030         0.858815         0.681413                                                                                                                                                                                                                                                                                                     | 1534.861294                | 127.773624                                     | 49.157345                  |
| 1585.916201         1648.506841         655.313417           1594.943144         73.506408         29.386541           2916.716045         96.424350         70.495101           2925.200718         181.772250         133.278877           2982.175855         35.049469         26.199486           2988.425476         27.311946         20.458470           3068.675716         1.951175         1.500809           3078.213984         32.092759         24.761898           3110.253274         12.521918         9.762132           3122.722436         2.636619         2.063758           3142.139094         2.188810         1.723898           3147.75689         2.560874         2.020540           3152.076444         8.967066         7.084761           3159.20160         9.711628         7.690419           3165.428030         0.858815         0.681413                                                                                                                                                                                                                                                                                                                                                               | 1540.767894                | 247.853748                                     | 95.721783                  |
| 1594.943144         73.506408         29.386541           2916.716045         96.424350         70.495101           2925.200718         181.772250         133.278877           2982.175855         35.049469         26.199486           2988.425476         27.311946         20.458470           3068.675716         1.951175         1.500809           3078.213984         32.092759         24.761898           3110.253274         12.521918         9.762132           3122.722436         2.636619         2.063758           3142.139094         2.188810         1.723898           3147.756889         2.560874         2.020540           3152.076444         8.967066         7.084761           3159.20160         9.711628         7.690419           3165.428030         0.858815         0.681413                                                                                                                                                                                                                                                                                                                                                                                                                           | 1585.916201                | 1648.506841                                    | 655.313417                 |
| 2916./16045         96.424350         70.495101           2925.200718         181.772250         133.278877           2982.175855         35.049469         26.199486           2988.425476         27.311946         20.458470           3068.675716         1.951175         1.500809           3078.213984         32.092759         24.761898           3110.253274         12.521918         9.762132           3122.722436         2.636619         2.063758           3142.139094         2.188810         1.723898           3147.756889         2.560874         2.020540           3152.076444         8.967066         7.084761           3159.220160         9.711628         7.60419           3165.428030         0.858815         0.681413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1594.943144                | 73.506408                                      | 29.386541                  |
| 2922.175855         35.049469         26.199486           2982.175855         35.049469         26.199486           2988.425476         27.311946         20.458470           3068.675716         1.951175         1.500809           3078.213984         32.092759         24.761898           3110.253274         12.521918         9.762132           3122.722436         2.636619         2.063758           3142.139094         2.188810         1.723898           3147.756889         2.560874         2.02540           3152.076444         8.967066         7.084761           3159.220160         9.711628         7.60419           3165.428030         0.858815         0.681413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2916./16045                | 96.424350<br>181 772250                        | /0.495101                  |
| 2988.425476         27.311946         20.458470           3068.675716         1.951175         1.500809           3078.213984         32.092759         24.761898           3110.253274         12.521918         9.762132           3122.722436         2.636619         2.063758           3142.139094         2.188810         1.723898           3147.756889         2.560874         2.020540           3152.076444         8.967066         7.084761           3159.220160         9.711628         7.690419           3165.42030         0.858815         0.681413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2982.175855                | 35.049469                                      | 26.199486                  |
| 3068.675716         1.951175         1.500809           3078.213984         32.092759         24.761898           3110.253274         12.521918         9.762132           3122.722436         2.636619         2.063758           3142.139094         2.188810         1.723898           3147.75689         2.560874         2.020540           3152.076444         8.967066         7.084761           3159.220160         9.711628         7.690419           3165.42030         0.858815         0.681415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2988.425476                | 27.311946                                      | 20.458470                  |
| 3078.213984         32.092759         24.761898           3110.253274         12.521918         9.762132           3122.722436         2.636619         2.063758           3142.139094         2.188810         1.723898           3147.75689         2.560874         2.020540           3152.076444         8.967066         7.084761           3152.076440         9.711628         7.690419           3155.20160         9.711628         7.690419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3068.675716                | 1.951175                                       | 1.500809                   |
| 3110.2532/4         12.521918         9.762132           3122.722436         2.636619         2.063758           3142.139094         2.188810         1.723898           3147.756889         2.560874         2.020540           3159.20160         9.711628         7.084761           3159.220160         0.858815         0.685815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3078.213984                | 32.092759                                      | 24.761898                  |
| 3122.722430         2.030019         2.053019         2.05378           3142.139094         2.188810         1.723898           3147.756889         2.560874         2.020540           3152.076444         8.967066         7.084761           3159.220160         9.711628         7.694419           3165.428030         0.858815         0.681413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3110.253274                | 12.521918                                      | 9./62132                   |
| 3147.756889         2.560874         2.020540           3152.076444         8.967066         7.084761           3159.220160         9.711628         7.690419           3165.428030         0.858815         0.681413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3142.139094                | 2.188810                                       | 1.723898                   |
| 3152.076444         8.967066         7.084761           3159.220160         9.711628         7.690419           3165.428030         0.858815         0.681413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3147.756889                | 2.560874                                       | 2.020540                   |
| 3159.220160 9.711628 7.690419<br>3165.428030 0.858815 0.681413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3152.076444                | 8.967066                                       | 7.084761                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3159.220160<br>3165.428030 | 9.711628<br>0.858815                           | 7.690419                   |

| is journal is (c) the Roy | a society of chemis | suy 2011 |
|---------------------------|---------------------|----------|
| 3167.405972               | 0.313921            | 0.249231 |
| 3168.035837               | 2.124218            | 1.686814 |
| 3179.316852               | 0.290840            | 0.231775 |
| 3185.141006               | 0.085358            | 0.068148 |
| 3195.396009               | 4.714462            | 3.776025 |
|                           |                     |          |

| Temp   |                                                                                                      | Transl                   | Rotat                    | Vibrat                      | Total                        |
|--------|------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-----------------------------|------------------------------|
| 298.15 | Entropy (cal/mole-K):<br>Internal Energy (Kcal/mole):<br>Constant Volume Heat Capacity (cal/mole-K): | 44.456<br>0.889<br>2.981 | 34.845<br>0.889<br>2.981 | 67.969<br>204.183<br>72.175 | 147.270<br>205.960<br>78.136 |
| *****  | ******                                                                                               | *****                    | *******                  | ********                    | ******                       |

# TS2-II

Geometry CYCLE 40

Energy gradients wrt nuclear displacements

| Atom        | Cartes:<br>X | lan (a.u./a<br>Y | angstrom)<br>Z |
|-------------|--------------|------------------|----------------|
| 1 0         | 0 000000     | 0 000002         | 0.00000        |
| 2 1         | -0.000003    | -0.000002        | -0.000003      |
| 3 C         | -0.000004    | -0.000002        | -0.0000014     |
| 1 U         | 0.000000     | -0.000002        | -0.000014      |
| - 11<br>5 C | 0.000001     | -0.000001        | 0.000005       |
| 6 4         | 0.000002     | 0.000001         | 0.000000       |
| 7 0         | 0.000000     | -0 000000        | -0 000004      |
| , с<br>8 н  | -0.000003    | -0.000002        | 0 000000       |
| 9 C         | 0.0000059    | 0.000002         | -0.0000000     |
| 10 C        | 0.000033     | -0.000052        | -0.000020      |
| 11 C        | -0.000067    | 0 000128         | 0 000030       |
| 12 C        | -0.000034    | -0.000031        | -0.000034      |
| 13 H        | 0.000007     | 0.000006         | 0.000008       |
| 14 C        | 0.000030     | 0.000018         | 0.000052       |
| 15 N        | -0.000019    | -0.000011        | -0.000036      |
| 16 C        | 0.000003     | 0.000002         | -0.000006      |
| 17 H        | -0.000008    | 0.000003         | -0.000004      |
| 18 C        | 0.000007     | 0.000000         | -0.000008      |
| 19 H        | 0.000000     | -0.000002        | 0.000004       |
| 20 H        | -0.000003    | 0.000009         | -0.000003      |
| 21 H        | -0.000004    | 0.000003         | -0.000002      |
| 22 C        | 0.000003     | 0.000010         | 0.000005       |
| 23 C        | -0.000089    | -0.000250        | 0.000244       |
| 24 C        | -0.000056    | 0.000039         | -0.000027      |
| 25 C        | -0.000091    | 0.000083         | -0.000034      |
| 26 C        | 0.000115     | 0.00003          | -0.000012      |
| 27 C        | -0.000216    | -0.000240        | 0.000342       |
| 28 H        | -0.000007    | 0.000002         | -0.000009      |
| 29 H        | 0.000020     | 0.000020         | 0.000016       |
| 30 H        | -0.000001    | 0.000021         | 0.000025       |
| 31 H        | -0.000022    | 0.000000         | 0.000024       |
| 32 H        | -0.000004    | -0.000012        | -0.000011      |
| 33 N        | 0.000017     | -0.000011        | 0.000105       |
| 34 Ir       | 0.000316     | 0.000276         | -0.000697      |
| 35 H        | -0.000002    | -0.000004        | 0.000008       |
| 36 H        | -0.000001    | 0.000004         | -0.000004      |
| 3/H         | -0.000002    | 0.000002         | -0.000003      |
| 38 H        | 0.000005     | -0.000007        | -0.000002      |
| 39 CI       | 0.000013     | 0.000001         | 0.000080       |
| 40 C        | 0.000011     | -0.000017        | 0.000017       |

Geometry Convergence after Step 40

| current energy           | -9.1        | .1308579 Hartree | e |
|--------------------------|-------------|------------------|---|
| energy change            | -0.00000113 | 0.00100000       | Т |
| constrained gradient max | 0.00069708  | 0.00100000       | Т |
| constrained gradient rms | 0.00009621  | 0.00066667       | Т |
| gradient max             | 0.00069708  |                  |   |
| gradient rms             | 0.00009621  |                  |   |
| cart. step max           | 0.00229228  | 0.01000000       | Τ |
| cart. step rms           | 0.00074277  | 0.00666667       | Т |
|                          |             |                  |   |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| -233.9899 | -5395.94              | -22576.60                               |
|-----------|-----------------------|-----------------------------------------|
| 33        | -73.8568<br>-233.9899 | -73.8568 -1703.18<br>-233.9899 -5395.94 |

List of All Frequencies:

| Frequency<br>cm-1 | Dipole Strength<br>1e-40 esu2 cm2 | Absorption<br>km/mole | Intensity | (degeneracy | not | counted) |
|-------------------|-----------------------------------|-----------------------|-----------|-------------|-----|----------|
|                   |                                   |                       |           |             |     |          |
| -70.383936        | 26.145372                         | -0.461261             |           |             |     |          |
| 36.799091         | 56.230527                         | 0.518665              |           |             |     |          |
| 49.480215         | 231.685371                        | 2.873481              |           |             |     |          |
| 54.620204         | 142.816135                        | 1.955279              |           |             |     |          |
| 88.484277         | 3.122836                          | 0.069262              |           |             |     |          |
| 106.736005        | 19.389686                         | 0.518752              |           |             |     |          |
| 117.493021        | 22.775080                         | 0.670734              |           |             |     |          |
| 124.665830        | 20.203235                         | 0.631315              |           |             |     |          |
| 133.832418        | 27.049260                         | 0.907392              |           |             |     |          |
| 174.469193        | 7.861537                          | 0.343799              |           |             |     |          |
| 204.853312        | 14.079753                         | 0.722963              |           |             |     |          |

| Supplementary Material (ESI) for Chemical Communications |                         |                       |  |  |
|----------------------------------------------------------|-------------------------|-----------------------|--|--|
| This journal is (c) The Re                               | oyal Society of Chemi   | stry 2011             |  |  |
| 226.419949                                               | 4.830232                | 0.274133              |  |  |
| 233.909249                                               | 4 850692                | 3.618993              |  |  |
| 261.220481                                               | 7.668013                | 0.502074              |  |  |
| 264.608364                                               | 9.852469                | 0.653472              |  |  |
| 279.782167                                               | 32.413560               | 2.273133              |  |  |
| 304.629559                                               | 80 660626               | 14.629903<br>6.296927 |  |  |
| 333.833802                                               | 1.068688                | 0.089425              |  |  |
| 366.814269                                               | 38.428546               | 3.533282              |  |  |
| 371.056210                                               | 48.322548               | 4.494357              |  |  |
| 427.244254                                               | 7.807801                | 0.836148              |  |  |
| 435.917910                                               | 24.268986               | 2.651761              |  |  |
| 443.407899                                               | 35.451969               | 3.940233              |  |  |
| 516.434382                                               | 21.824870               | 2.825172              |  |  |
| 550.380203                                               | 32.896239               | 4.538237              |  |  |
| 565.098836                                               | 31.120123               | 4.408022              |  |  |
| 568.514531                                               | 45.658938               | 6.506470              |  |  |
| 623.487365                                               | 49.216967               | 2 005740              |  |  |
| 672.333010                                               | 13.285189               | 2.238877              |  |  |
| 712.511853                                               | 129.436593              | 23.116775             |  |  |
| 720.768434                                               | 147.766064              | 26.696144             |  |  |
| 757 130825                                               | 158.662924              | 28./14109 30.449723   |  |  |
| 763.747142                                               | 166.880191              | 31.947175             |  |  |
| 791.978438                                               | 110.719388              | 21.979363             |  |  |
| 799.375296                                               | 42.205469               | 8.456634              |  |  |
| 810.701063                                               | 40.838384               | 0.290040<br>9 715559  |  |  |
| 819.543762                                               | 21.757346               | 4.469471              |  |  |
| 826.551080                                               | 147.590044              | 30.577701             |  |  |
| 834.021968                                               | 11.372711               | 2.377495              |  |  |
| 875.830930                                               | 4.664112                | 1.023923              |  |  |
| 878.850055                                               | 25.601896               | 5.639817              |  |  |
| 908.303504                                               | 0.560118                | 0.127523              |  |  |
| 910.530219                                               | 0.445807                | 0.101746              |  |  |
| 936.869956                                               | 0.813340                | 0.190998              |  |  |
| 966.558586                                               | 41.436779               | 10.039041             |  |  |
| 989.805528                                               | 28.666718               | 7.112232              |  |  |
| 1020 370460                                              | 69.394102<br>27.592340  | 1/.488588             |  |  |
| 1030.297388                                              | 40.300500               | 10.407612             |  |  |
| 1039.446497                                              | 11.440314               | 2.980699              |  |  |
| 1042.613193                                              | 24.044365               | 6.283688              |  |  |
| 1052.595450                                              | 54.326276               | 14.333409             |  |  |
| 1076.569120                                              | 19.105538               | 5.155601              |  |  |
| 1092.756584                                              | 51.897127               | 14.214933             |  |  |
| 1104.792762                                              | 5.469941                | 1.514752              |  |  |
| 1133.591929                                              | 148.638471              | 42.234372             |  |  |
| 1141.091644                                              | 23.004313               | 6.579727              |  |  |
| 1155.169557                                              | 11.239661               | 3.254446              |  |  |
| 1224 057741                                              | 42.49108/<br>41 675521  | 12.521/26             |  |  |
| 1233.836970                                              | 0.054684                | 0.016912              |  |  |
| 1259.926790                                              | 14.482447               | 4.573675              |  |  |
| 1276.312084                                              | 87.116374               | 27.869857             |  |  |
| 1308.533971                                              | 85.106673               | 27.914296             |  |  |
| 1319.653370                                              | 33.609572               | 11.117341             |  |  |
| 1330.748046                                              | 8.433358                | 2.813030              |  |  |
| 1372 238188                                              | 1.585934                | 12 332038             |  |  |
| 1385.998133                                              | 17.582720               | 6.108390              |  |  |
| 1394.434374                                              | 1.048392                | 0.366437              |  |  |
| 1415.020972                                              | 93.869145               | 33.293834             |  |  |
| 1421.443820                                              | 2.201868                | 1 208294              |  |  |
| 1435.556960                                              | 30.328953               | 10.913296             |  |  |
| 1442.254268                                              | 52.364119               | 18.930135             |  |  |
| 1448.777481                                              | 62.875405               | 22.832873             |  |  |
| 1450.072857                                              | 283.843092              | 104.015646            |  |  |
| 1470.272006                                              | 10.771107               | 3.969503              |  |  |
| 1537.283556                                              | 104.036863              | 40.088453             |  |  |
| 1548.182768                                              | 96.004406<br>394 657912 | 37.200092             |  |  |
| 1593.062409                                              | 99.057549               | 39.554731             |  |  |
| 2847.170151                                              | 89.208693               | 63.664696             |  |  |
| 2864.352668                                              | 101.685480              | 73.006832             |  |  |
| 2900.999439 2989.116224                                  | 20.048154               | 15.020876             |  |  |
| 3045.910913                                              | 19.340606               | 14.766085             |  |  |
| 3052.392380                                              | 19.306164               | 14.771154             |  |  |
| 3109.294533                                              | 1 6492430               | 12.853594             |  |  |
| 3124.691964                                              | 1.365439                | 1.069443              |  |  |
| 3136.064903                                              | 5.215937                | 4.100110              |  |  |
| 3142.733535                                              | 1.297503                | 1.022102              |  |  |
| 3148.//4//2<br>3165.629912                               | 2.123816<br>0.506928    | 1.6/6241              |  |  |
| 3168.121509                                              | 0.517752                | 0.411152              |  |  |
| 3170.038500                                              | 1.573488                | 1.250277              |  |  |

| journal is (c) the Roya | a Society of Chemis | 50 y 2011 |
|-------------------------|---------------------|-----------|
| 3178.883953             | 0.466909            | 0.372036  |
| 3185.790819             | 0.012266            | 0.009795  |
| 3195.876316             | 3.886203            | 3.113103  |

| Temp   |                                                                                                      | Transl                   | Rotat                    | Vibrat                      | Total                        |
|--------|------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-----------------------------|------------------------------|
| 298.15 | Entropy (cal/mole-K):<br>Internal Energy (Kcal/mole):<br>Constant Volume Heat Capacity (cal/mole-K): | 44.456<br>0.889<br>2.981 | 34.799<br>0.889<br>2.981 | 64.837<br>203.566<br>71.904 | 144.092<br>205.344<br>77.866 |
| ****** | *****                                                                                                | *****                    | ******                   | ******                      | ******                       |

## TS1-II

Geometry CYCLE 30

Energy gradients wrt nuclear displacements

| Atom                                                                                                                                                                                                                                                                                         | Cartes.<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ian (a.u./a<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | angstrom)<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 C<br>2 H<br>3 C<br>4 H<br>5 C<br>6 H<br>7 C<br>8 H<br>7 C<br>10 C<br>11 C<br>13 H<br>14 C<br>17 H<br>16 C<br>17 H<br>18 C<br>19 H<br>20 H<br>21 H<br>22 C<br>23 C<br>24 C<br>25 C<br>26 C<br>27 C<br>28 H<br>29 H<br>30 H<br>31 H<br>32 H<br>33 N<br>34 II<br>35 H<br>36 H<br>37 H<br>38 H | x<br>0.000014<br>0.000010<br>0.000028<br>0.000010<br>0.000028<br>0.000005<br>0.000075<br>0.000075<br>0.000029<br>0.000029<br>0.000029<br>0.000012<br>0.000012<br>0.000012<br>0.000012<br>0.000012<br>0.000012<br>0.000012<br>0.000012<br>0.000012<br>0.000029<br>0.000012<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000029<br>0.000009<br>0.000029<br>0.000029<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.000009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.000009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.00009<br>0.000009<br>0.000000000 | Y<br>0.000011<br>0.000028<br>-0.00004<br>0.000028<br>-0.00004<br>0.000028<br>-0.00004<br>-0.000017<br>-0.0000107<br>-0.0000107<br>-0.0000107<br>-0.0000107<br>-0.0000107<br>-0.000010<br>0.000002<br>0.000001<br>0.000002<br>0.000001<br>0.000002<br>0.000001<br>0.000002<br>0.000001<br>0.000002<br>0.000001<br>0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.000028<br>-0.00008<br>-0.00008<br>-0.00008<br>-0.00028<br>-0.00008<br>-0.00008<br>-0.00008<br>-0.00008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.00008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>-0.0008<br>- | Z<br>-0.000087<br>0.00020<br>0.000038<br>-0.00011<br>0.000052<br>-0.00001<br>-0.000047<br>0.00016<br>-0.000016<br>0.00016<br>0.000019<br>0.000019<br>0.000019<br>0.000019<br>0.000013<br>0.000013<br>0.000013<br>0.000009<br>-0.000009<br>-0.000009<br>-0.000009<br>-0.000009<br>-0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.0000151<br>0.000017<br>0.000017<br>0.000017<br>0.000017<br>0.000017<br>0.000017<br>0.000017<br>0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018<br>-0.000018 |
| 40 C                                                                                                                                                                                                                                                                                         | -0.000008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Geometry Convergence after Step 30

| 00000027 | 0011101901100 | arcor | ocop | 00 |
|----------|---------------|-------|------|----|
|          |               |       |      |    |

| current energy           | -9.11       | 314048 Hartree | 9 |
|--------------------------|-------------|----------------|---|
| energy change            | -0.00000955 | 0.00100000     | т |
| constrained gradient max | 0.00097515  | 0.00100000     | Т |
| constrained gradient rms | 0.00015998  | 0.00066667     | Т |
| gradient max             | 0.00097515  |                |   |
| gradient rms             | 0.00015998  |                |   |
| cart. step max           | 0.00580950  | 0.01000000     | Т |
| cart. step rms           | 0.00190657  | 0.00666667     | Т |
|                          |             |                |   |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:           | -8.068336467598352 | -219.5506 | -5062.96 | -21183.41 |
|---------------------------------|--------------------|-----------|----------|-----------|
| Kinetic Energy:                 | 10.257201732876013 | 279.1127  | 6436.49  | 26930.28  |
| Coulomb (Steric+OrbInt) Energy: | -2.703885129227857 | -73.5765  | -1696.71 | -7099.05  |
| XC Energy:                      | -8.598120732408098 | -233.9668 | -5395.40 | -22574.36 |
| Total Bonding Energy:           | -9.113140596358294 | -247.9812 | -5718.58 | -23926.55 |

List of All Frequencies:

| Frequency<br>cm-1 | Dipole Strength<br>1e-40 esu2 cm2 | Absorption 3 km/mole | Intensity | (degeneracy | not | counted) |
|-------------------|-----------------------------------|----------------------|-----------|-------------|-----|----------|
|                   |                                   |                      |           |             |     |          |
| -62.999543        | 4.480100                          | -0.070746            |           |             |     |          |
| 34.145302         | 35.820576                         | 0.306578             |           |             |     |          |
| 50.607078         | 270.796335                        | 3.435043             |           |             |     |          |
| 55.099454         | 126.027074                        | 1.740561             |           |             |     |          |
| 91.742596         | 3.581405                          | 0.082357             |           |             |     |          |
| 105.059095        | 22.965363                         | 0.604763             |           |             |     |          |
| 117.447590        | 21.669508                         | 0.637927             |           |             |     |          |
| 127.315322        | 34.498459                         | 1.100927             |           |             |     |          |
| 142.295889        | 13.343215                         | 0.475917             |           |             |     |          |
| 192.745410        | 6.426426                          | 0.310479             |           |             |     |          |
| 202.186790        | 22.420447                         | 1.136253             |           |             |     |          |
| 207.632993        | 0.999646                          | 0.052026             |           |             |     |          |
|                   |                                   |                      |           |             |     |          |

| Supplementary Material     | (ESI) for Chemical Co  | ommunications          |
|----------------------------|------------------------|------------------------|
| This journal is (c) The R  | oyal Society of Chemi  | stry 2011              |
| 231.780643                 | 16.425740              | 0.954290               |
| 251.969034                 | 8.507139               | 0.537290               |
| 259.554737                 | 12.123888              | 0.788767               |
| 279.617590                 | 54.228854              | 3.800782               |
| 307.386367                 | 130.972386             | 10.091191              |
| 335.467524                 | 3.507916               | 0.294970               |
| 366.908185                 | 31.586336              | 2.904924               |
| 398.044399                 | 7.597329               | 0.758002               |
| 431.381714                 | 4.039022               | 0.436733               |
| 441.153024                 | 45.684781              | 5.051715               |
| 518.584871                 | 22.409763              | 2.912964               |
| 523.283390                 | 12.900517              | 1.692085               |
| 550.196911                 | 27.085727              | 3.735397               |
| 568.830906                 | 35.144336              | 5.010910               |
| 622.804261                 | 53.197172              | 8.304590               |
| 653.079506                 | 9.315876               | 1.524993               |
| 711.999217                 | 136.293377             | 24.323851              |
| 717.193440                 | 21.685033              | 3.898293               |
| 720.815420                 | 277.424683             | 50.124175              |
| 766.918603                 | 196.429920             | 37.760261              |
| 789.903504                 | 42.474082              | 8.409615               |
| 794.151286                 | 82.801390              | 16.482343              |
| 810.696306                 | 5.765179               | 1.171518               |
| 819.617693                 | 11.724782              | 2.408763               |
| 826.383155                 | 137.939817             | 28.572561              |
| 872.654623                 | 37.892933              | 8.288552               |
| 875.668486                 | 7.209235               | 1.582366               |
| 881.690579                 | 14.863531              | 3.284856               |
| 909.164611                 | 0.673499               | 0.153482               |
| 936.154585                 | 0.442400               | 0.103810               |
| 938.013499                 | 364.694734             | 85.746549              |
| 990.640539                 | 27.872167              | 6.920937               |
| 1004.846604                | 61.018720              | 15.368834              |
| 1020.085445                | 24.554443              | 6.278338               |
| 1039.116694                | 17.973349              | 4.681353               |
| 1042.038123                | 15.761517              | 4.116799               |
| 1046.103808                | 14.476776              | 3.795987               |
| 1077.619433                | 18.705766              | 5.052647               |
| 1093.048970                | 50.001131              | 13.699273              |
| 1127 520498                | 3.881915<br>184 176858 | 1.0/5133               |
| 1130.362758                | 3.802310               | 1.077317               |
| 1143.119136                | 25.732622              | 7.373159               |
| 1174.653248                | 42.740495              | 3.533438               |
| 1215.232890                | 46.842633              | 14.268519              |
| 1233.915194                | 0.054013               | 0.016706               |
| 1275.923865                | 27.365833              | 8.752084               |
| 1289.993435                | 29.822986              | 9.643101               |
| 1311.389079                | 88.107274              | 28.961523              |
| 1331.050470                | 8.739583               | 2.915838               |
| 1337.599484                | 0.863964               | 0.289667               |
| 1372.541803                | 29.171955              | 10.036197              |
| 1394.523864                | 1.842967               | 0.644201               |
| 1415.477049                | 71.988708              | 25.541434              |
| 1423.239980                | 11.541114              | 4.117219               |
| 1426.387132                | 23.709445              | 8.532608               |
| 1444.829864                | 106.709065             | 38.645247              |
| 1448.964484                | 25.115560              | 9.121761               |
| 1463.338976                | 298.409947             | 109.455177             |
| 1470.507095                | 34.195475              | 12.604158              |
| 1528.216063                | 59.885286              | 22.939448              |
| 1577.375743                | 490.779790             | 194.043857             |
| 1593.010499                | 116.646411             | 46.576633              |
| 2851.815088                | 70.534398              | 50.419716              |
| 2986.730212                | 80.421780              | 60.207106              |
| 2988.709799                | 16.498048              | 12.359315              |
| 3046.443135                | 20.799034              | 15.882334<br>15.731654 |
| 3104.244187                | 10.220686              | 7.952689               |
| 3123.883531                | 8.498438               | 6.654448               |
| 3124.510510<br>3125.837973 | U.16/594<br>8.691036   | U.131256<br>6.809513   |
| 3142.536979                | 1.060082               | 0.835022               |
| 3148.743389                | 2.298149               | 1.813817               |
| 3166.091750<br>3168.084786 | U.612447<br>0.612297   | 0.486038<br>0.486224   |
| 3169.986235                | 1.774543               | 1.410009               |
| 3179.478104                | 0.387455               | 0.308785               |

### Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011 3185.515228 0.141381 0.112888

|        | 3195.878720                                                           | 3.774547                         | 3.02366  | 2                        |                          |                             |                              |
|--------|-----------------------------------------------------------------------|----------------------------------|----------|--------------------------|--------------------------|-----------------------------|------------------------------|
| Temp   |                                                                       |                                  |          | Transl                   | Rotat                    | Vibrat                      | Total                        |
| 298.15 | Entropy (cal/mole-K)<br>Internal Energy (Kcal<br>Constant Volume Heat | :<br>L/mole):<br>Capacity (cal/m | mole-K): | 44.456<br>0.889<br>2.981 | 34.874<br>0.889<br>2.981 | 64.816<br>203.576<br>71.894 | 144.146<br>205.353<br>77.856 |

#### IV

Geometry CYCLE 7

| Energ                                                                                                                                                                                                                           | y gra                                                 | dients wrt<br>=======                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nuclear d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | isplacements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                                                                                                                                                                                                                               | tom                                                   | Cartes:<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ian (a.u./<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | angstrom)<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1<br>2<br>3<br>4<br>4<br>5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br>10<br>11<br>12<br>2<br>13<br>13<br>14<br>15<br>16<br>16<br>17<br>18<br>8<br>9<br>9<br>20<br>21<br>22<br>23<br>24<br>22<br>23<br>24<br>25<br>5<br>26<br>6<br>27 | СНСНСНССССНСИСНСНССССССНН                             | X<br>-0.00043<br>0.00040<br>0.00052<br>-0.00050<br>0.000121<br>0.000121<br>0.000196<br>0.000196<br>0.000147<br>-0.000147<br>-0.000147<br>0.000132<br>0.0000132<br>0.000008<br>0.000132<br>0.000088<br>0.000125<br>0.000125<br>0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000155<br>-0.000055<br>-0.000055<br>-0.00055<br>-0.00055<br>-0.00055<br>-0.00055<br>-0.00055 | Y<br>0.0000077<br>-0.000024<br>0.00005<br>-0.00005<br>0.000005<br>-0.000006<br>0.000101<br>0.000121<br>0.000022<br>-0.000274<br>-0.000017<br>0.000153<br>0.000013<br>0.000041<br>-0.000013<br>0.000012<br>0.000012<br>0.000012<br>0.000012<br>0.000012<br>0.000012<br>0.000012<br>0.000012<br>0.0000148<br>0.000002<br>0.0000148<br>0.000002<br>-0.0000148<br>0.000002<br>-0.0000148<br>0.000002<br>-0.0000148<br>0.000002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.00002<br>-0.000002<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.0000<br>-0.0000<br>-0.00000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.00000<br>-0.0000<br>-0.0000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.0000000<br>-0.000000<br>-0.000000<br>-0.0000000<br>-0.000000<br>-0.0000000<br>-0.0000000000 | $\begin{array}{c} z\\ -0.000070\\ -0.000055\\ 0.000094\\ 0.000047\\ -0.000083\\ -0.000083\\ 0.000053\\ 0.000036\\ -0.000111\\ 0.000348\\ -0.000071\\ 0.000012\\ -0.000117\\ 0.000021\\ -0.000021\\ -0.000021\\ 0.000022\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.000052\\ -0.00005\\ -0.00005\\ -0.0005\\ -0.00005\\ -0.0005\\ -0.00005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.0005\\ -0.000$ |
| 282<br>29<br>300<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>45<br>46<br>45<br>51                                                                                        | н<br>нн N Ir<br>С нн нС нн R С С С С С н н н н<br>н н | 0.00010<br>-0.00005<br>-0.00008<br>0.00045<br>-0.000245<br>-0.000245<br>-0.00009<br>0.00004<br>-0.00004<br>-0.000043<br>0.000044<br>-0.000043<br>0.000134<br>0.000152<br>-0.000152<br>-0.000152<br>-0.000152<br>-0.000152<br>-0.000152<br>-0.000152<br>-0.000152<br>-0.000152<br>-0.00002<br>0.000052<br>-0.00002<br>0.00002<br>0.000020<br>-0.00026<br>-0.00026<br>-0.00026<br>-0.00026<br>-0.00026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00030<br>0.00037<br>-0.00093<br>-0.00098<br>0.000370<br>-0.00098<br>0.00023<br>0.000023<br>0.000042<br>-0.000042<br>-0.000042<br>-0.000042<br>-0.000042<br>-0.000042<br>-0.000099<br>0.000093<br>-0.000091<br>-0.000079<br>0.000012<br>0.000023<br>0.000012<br>-0.000055<br>-0.000011<br>-0.000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -0.00055\\ -0.00008\\ 0.00020\\ 0.00107\\ -0.00166\\ 0.00022\\ -0.00030\\ 0.00009\\ -0.000030\\ 0.00009\\ -0.000020\\ -0.000020\\ -0.000015\\ 0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000012\\ -0.000019\\ 0.000019\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.00015\\ -0.000015\\ -0.000015\\ -0.000015\\ -0.000015\\ -0.000015\\ -0.000015\\ -0.000015\\ -0.000015\\ -0.000015\\ -0.0000015\\ -0.000015\\ -0.000015\\ -0.00001\\ -0.00001\\ -0.000000\\ $ |

Commetry Convergence after Stop 7

Geometry Convergence after Step 7

| current energy           | -11.484    | 437019 Hartree |   |
|--------------------------|------------|----------------|---|
| abs of energy change     | 0.00000311 | 0.00100000     | Т |
| constrained gradient max | 0.00036978 | 0.00100000     | Т |
| constrained gradient rms | 0.00009132 | 0.00066667     | Т |
| gradient max             | 0.00036978 |                |   |
| gradient rms             | 0.00009132 |                |   |
| cart. step max           | 0.00895224 | 0.01000000     | Т |
| cart. step rms           | 0.00229212 | 0.00666667     | т |

Number of elements of the density matrix on this node (used, total): 35923 264628

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| XC Energy:                      | -10.707400426287801 | -291.3632 | -6719.00 | -28112.28 |
|---------------------------------|---------------------|-----------|----------|-----------|
| Coulomb (Steric+OrbInt) Energy: | -2.692056743742128  | -73.2546  | -1689.29 | -7067.99  |
| Kinetic Energy:                 | 12.646203372343393  | 344.1207  | 7935.61  | 33202.60  |
| Electrostatic Energy:           | -10.731117243576886 | -292.0086 | -6733.88 | -28174.54 |

List of All Frequencies:

\_\_\_\_\_

| Frequency   | Dipole Strength | n Absorption | Intensity | (degeneracy | not | counted) |
|-------------|-----------------|--------------|-----------|-------------|-----|----------|
| cm-1        | le-40 esu2 cm2  | 2 km/mole    |           |             |     |          |
|             |                 |              |           |             |     |          |
| 34.981966   | 177.324048      | 1.554855     |           |             |     |          |
| 49.865766   | 188.461418      | 2.355608     |           |             |     |          |
| 54.624282   | 171.918297      | 2.353889     |           |             |     |          |
| 59.404928   | 117.416684      | 1.748358     |           |             |     |          |
| 70 351648   | 0 389687        | 0.006872     |           |             |     |          |
| 80 511578   | 5/ 221300       | 1 094226     |           |             |     |          |
| 80.311378   | J4.221355       | 1.054220     |           |             |     |          |
| 94.4/90//   | 27.489441       | 0.650998     |           |             |     |          |
| 108.844115  | 49.600766       | 1.353229     |           |             |     |          |
| 122.515121  | 34.655042       | 1.064227     |           |             |     |          |
| 125.656998  | 35.506807       | 1.118346     |           |             |     |          |
| 135.045121  | 88.259722       | 2,987580     |           |             |     |          |
| 144 921108  | 89 784541       | 3 261454     |           |             |     |          |
| 156 325331  | 18 758296       | 1 010530     |           |             |     |          |
| 160 204252  | 107 204622      | 0 275046     |           |             |     |          |
| 109.294333  | 197.304022      | 0.3/3940     |           |             |     |          |
| 192.841355  | 84.416333       | 4.080419     |           |             |     |          |
| 224.415003  | 34.191226       | 1.923289     |           |             |     |          |
| 239.224284  | 35.348297       | 2.119590     |           |             |     |          |
| 248.660374  | 115.292120      | 7.185951     |           |             |     |          |
| 263.724583  | 156.575057      | 10.350260    |           |             |     |          |
| 282 523509  | 3 199119        | 0 226549     |           |             |     |          |
| 208 455763  | 12 788078       | 0.956673     |           |             |     |          |
| 206.455705  | 170 144459      | 12 060465    |           |             |     |          |
| 306.431631  | 1/0.144458      | 13.069465    |           |             |     |          |
| 324.829455  | 4.260283        | 0.3468/4     |           |             |     |          |
| 331.658652  | 46.689902       | 3.881435     |           |             |     |          |
| 343.713829  | 17.077794       | 1.471319     |           |             |     |          |
| 359.956010  | 43.516281       | 3.926262     |           |             |     |          |
| 373.253831  | 143.903656      | 13.463382    |           |             |     |          |
| 377.288753  | 230.471193      | 21.795587    |           |             |     |          |
| 381 172644  | 32 175305       | 3 074132     |           |             |     |          |
| 201 250022  | 115 271275      | 11 214610    |           |             |     |          |
| JJI.2J0033  | 113.3/12/3      | 11.314013    |           |             |     |          |
| 437.093413  | 21.623920       | 2.372370     |           |             |     |          |
| 441.982385  | 9.848/39        | 1.091098     |           |             |     |          |
| 468.544525  | 113.110652      | 13.284109    |           |             |     |          |
| 486.872378  | 51.951272       | 6.340002     |           |             |     |          |
| 513.231690  | 68.468161       | 8.808059     |           |             |     |          |
| 528.735617  | 54.289362       | 7.195010     |           |             |     |          |
| 552 304382  | 44 442893       | 6 152603     |           |             |     |          |
| 563 842931  | 38 649510       | 5 462359     |           |             |     |          |
| 565 620202  | 12 252201       | 1 992104     |           |             |     |          |
| 500.028285  | 13.232201       | 1.002134     |           |             |     |          |
| 568./19638  | 8.86/961        | 1.264154     |           |             |     |          |
| 572.453777  | 16.475765       | 2.364090     |           |             |     |          |
| 581.486176  | 177.880624      | 25.926632    |           |             |     |          |
| 639.244864  | 95.566523       | 15.312676    |           |             |     |          |
| 650.376959  | 41.957061       | 6.839877     |           |             |     |          |
| 666.247391  | 17.615817       | 2,941822     |           |             |     |          |
| 717 022652  | 22 851878       | 4 107077     |           |             |     |          |
| 729 719766  | 147 056370      | 26 8978/1    |           |             |     |          |
| 725.710700  | 147.050570      | 20.057041    |           |             |     |          |
| /55.416314  | 247.112322      | 46.790623    |           |             |     |          |
| 791.891595  | 81.666062       | 16.210090    |           |             |     |          |
| 795.444691  | 186.059342      | 37.097064    |           |             |     |          |
| 804.488508  | 11.328595       | 2.284410     |           |             |     |          |
| 811.144287  | 121.164246      | 24.634892    |           |             |     |          |
| 816.771332  | 154.226337      | 31.574545    |           |             |     |          |
| 820.021624  | 29.265360       | 6.015299     |           |             |     |          |
| 820 991617  | 23 259246       | 4 786438     |           |             |     |          |
| 822 313270  | 98 715520       | 20 347020    |           |             |     |          |
| 022.010270  | 03.005010       | 17 047020    |           |             |     |          |
| 020.773077  | 83.223813       | 17.24/300    |           |             |     |          |
| 832.372145  | 22.406661       | 4.6/4905     |           |             |     |          |
| 839.43944/  | 116.891892      | 24.595284    |           |             |     |          |
| 840.918245  | 29.847665       | 6.291326     |           |             |     |          |
| 847.263335  | 3.471213        | 0.737187     |           |             |     |          |
| 867.543991  | 4.619105        | 1.004448     |           |             |     |          |
| 878.763390  | 4.852401        | 1.068825     |           |             |     |          |
| 890.508229  | 6.008052        | 1.341065     |           |             |     |          |
| 892.726913  | 12.778975       | 2.859517     |           |             |     |          |
| 895 128650  | 15 274220       | 3 427067     |           |             |     |          |
| 808 52/53/  | 5 /31317        | 1 223244     |           |             |     |          |
| 020.021034  | 1 500/04        | U 366000     |           |             |     |          |
| JZU.J0022/  | 1.309424        | 0.300920     |           |             |     |          |
| 935.470216  | 94.926108       | 22.238388    |           |             |     |          |
| 950.409811  | 0.060646        | 0.01444/     |           |             |     |          |
| 971.349481  | 37.292425       | 9.079757     |           |             |     |          |
| 989.881148  | 60.104308       | 14.913059    |           |             |     |          |
| 990.635279  | 47.335297       | 11.753764    |           |             |     |          |
| 991.514068  | 7.576858        | 1.883068     |           |             |     |          |
| 992.898096  | 61.873614       | 15.398848    |           |             |     |          |
| 1012 278407 | 36 207255       | 9 186998     |           |             |     |          |
| 1030 //7525 | 22 259704       | 5 CB3UC4     |           |             |     |          |
| 1044 000725 | 1 00400         | 0.003004     |           |             |     |          |
| 1044.002/35 | 1.600468        | 0.418819     |           |             |     |          |
| 1046.648866 | 29.779959       | /.812/37     |           |             |     |          |
| 1047.979904 | 34.615276       | 9.092825     |           |             |     |          |
| 1049.105095 | 6.370427        | 1.675196     |           |             |     |          |
| 1050.361984 | 11.038184       | 2.906128     |           |             |     |          |
| 1053.750831 | 26.233058       | 6.928910     |           |             |     |          |
| 1090.577887 | 2.686029        | 0.734252     |           |             |     |          |
| 1096 168660 | 31 259263       | 8 588833     |           |             |     |          |
| 1104 406000 | 27 02/70/       | 7 730000     |           |             |     |          |
| 1105 001054 | 21.324/34       | 7.720333     |           |             |     |          |
| 1111.000004 | 100 64639/      | 3.225/62     |           |             |     |          |
| 1111.839244 | 128.646127      | 35.852281    |           |             |     |          |
| 1120.033465 | 2.765465        | 0.776385     |           |             |     |          |
| 1161.139498 | 45.274106       | 13.176873    |           |             |     |          |
| 1163.141613 | 11.057151       | 3.223695     |           |             |     |          |
| 1211.046231 | 91.937265       | 27.908107    |           |             |     |          |
| 1218.057226 | 41.751058       | 12.747154    |           |             |     |          |
| 1235 448751 | 0 108841        | 0 033705     |           |             |     |          |

| Supplementary Material (<br>This journal is (c) The Ro | (ESI) for Chemical C<br>oyal Society of Chem | ommunications<br>histry 2011 |
|--------------------------------------------------------|----------------------------------------------|------------------------------|
| 1006 177056                                            | 0 070540                                     | 0 024220                     |
| 1230.177030                                            | 0.070348                                     | 1 047630                     |
| 12/2.101430                                            | 6.10/84/                                     | 1.947639                     |
| 1286.348472                                            | 3.529783                                     | 1.138111                     |
| 1300.821580                                            | 34.658192                                    | 11.300605                    |
| 1332.762185                                            | 182.892832                                   | 61.098059                    |
| 1334.712076                                            | 9.399784                                     | 3.144731                     |
| 1342.209001                                            | 3.092484                                     | 1.040413                     |
| 1351.101187                                            | 3.776348                                     | 1.278904                     |
| 1355.330866                                            | 6.421706                                     | 2.181594                     |
| 1358.661938                                            | 7.268622                                     | 2.475378                     |
| 1368.645335                                            | 2.834498                                     | 0.972401                     |
| 1390.537899                                            | 23.971981                                    | 8.355353                     |
| 1397.768583                                            | 144.243594                                   | 50.537049                    |
| 1405.202779                                            | 4.837361                                     | 1.703827                     |
| 1406.177371                                            | 37.509237                                    | 13.220760                    |
| 1407 464221                                            | 15 088408                                    | 5 323029                     |
| 1423 393494                                            | 10 389940                                    | 3 706945                     |
| 1432 734342                                            | 112 999802                                   | 40 580877                    |
| 1//1 02000                                             | 6 /35030                                     | 2 326129                     |
| 1441.520500                                            | 11 119070                                    | 4 026710                     |
| 1440.303109                                            | 100 005400                                   | 4.030710                     |
| 1451.834069                                            | 100.985423                                   | 36.749695                    |
| 1461.244621                                            | 125.3//256                                   | 45.921890                    |
| 1463.925071                                            | 7.812389                                     | 2.866690                     |
| 1481.788370                                            | 132.056183                                   | 49.048191                    |
| 1491.551347                                            | 58.379175                                    | 21.826004                    |
| 1538.603816                                            | 1067.186536                                  | 411.571423                   |
| 1554.611682                                            | 6.188206                                     | 2.411375                     |
| 1596.096299                                            | 54.362307                                    | 21.748787                    |
| 2936.631495                                            | 55.548820                                    | 40.888611                    |
| 2941.973076                                            | 54.920979                                    | 40.500001                    |
| 3033.033271                                            | 15.826685                                    | 12.032205                    |
| 3035.681360                                            | 9.846145                                     | 7.492047                     |
| 3082.192185                                            | 1.080216                                     | 0.834542                     |
| 3088.989776                                            | 7.857376                                     | 6.083760                     |
| 3125.873221                                            | 2.215598                                     | 1.735963                     |
| 3133.493870                                            | 1.293574                                     | 1.016011                     |
| 3147.230046                                            | 2.010971                                     | 1.586399                     |
| 3147.519274                                            | 1.680839                                     | 1.326089                     |
| 3152.601104                                            | 0.883606                                     | 0.698242                     |
| 3153.783494                                            | 4.627109                                     | 3.657797                     |
| 3158.833117                                            | 0.179279                                     | 0.141950                     |
| 3165.123192                                            | 0.074570                                     | 0.059160                     |
| 3167.893481                                            | 0.659812                                     | 0.523925                     |
| 3172.437642                                            | 0.760943                                     | 0.605094                     |
| 3174.720739                                            | 1.135115                                     | 0.903282                     |
| 3174.802739                                            | 0.245262                                     | 0.195175                     |
| 3176.665449                                            | 0.682764                                     | 0.543651                     |
| 3182 617265                                            | 4 056830                                     | 3 236304                     |
| 3188 678531                                            | 1 906924                                     | 1 524130                     |
| 3188 803828                                            | 2 103330                                     | 1 681176                     |
| 3108 505604                                            | 1 712101                                     | 1 372706                     |
| 3130.303004                                            | 1 · / 1                                      | 1.3/2/00                     |

| Temp   |                                             | Transl | Rotat  | Vibrat  | Total   |
|--------|---------------------------------------------|--------|--------|---------|---------|
|        |                                             |        |        |         |         |
| 298.15 | Entropy (cal/mole-K):                       | 45.330 | 36.105 | 88.929  | 170.364 |
|        | Internal Energy (Kcal/mole):                | 0.889  | 0.889  | 261.060 | 262.837 |
|        | Constant Volume Heat Capacity (cal/mole-K): | 2.981  | 2.981  | 95.890  | 101.852 |
|        |                                             |        |        |         |         |

# ESI

\*\*\*\*\*

# TS1-IV

Geometry CYCLE 25

Energy gradients wrt nuclear displacements

| Atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cartesian<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (a.u./a<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ingstrom)<br>Z                     |                                                                                             |                                                          |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|
| Atom<br>1 C<br>2 H<br>3 C<br>4 H<br>5 C<br>6 H<br>7 C<br>8 H<br>9 0 C<br>11 C<br>13 H<br>14 C<br>13 H<br>14 C<br>15 C<br>13 H<br>14 C<br>17 H<br>19 H<br>20 C<br>22 C<br>23 C<br>24 C<br>25 C<br>24 C<br>25 C<br>24 C<br>25 C<br>24 C<br>25 C<br>24 C<br>27 H<br>28 H<br>30 H<br>31 N<br>32 N<br>33 C<br>34 H<br>30 H<br>30 H<br>31 N<br>32 C<br>24 C<br>25 C<br>24 C<br>25 C<br>24 C<br>25 C<br>24 C<br>25 C<br>24 C<br>25 C<br>24 C<br>25 C<br>24 C<br>27 H<br>29 H<br>30 H<br>31 N<br>31 N<br>32 N<br>33 C<br>34 H<br>36 H<br>37 C<br>37 C<br>44 C<br>25 C<br>44 C<br>27 C<br>28 H<br>27 H<br>29 H<br>20 C<br>24 C<br>25 C<br>24 C<br>25 C<br>24 C<br>25 C<br>26 H<br>27 H<br>28 H<br>30 H<br>31 N<br>32 N<br>33 C<br>34 H<br>36 H<br>37 C<br>26 C<br>27 C<br>28 C<br>27 H<br>29 H<br>20 C<br>28 C<br>29 C<br>20 C<br>24 C<br>25 C<br>24 C<br>25 C<br>24 C<br>25 C<br>26 H<br>30 H<br>31 N<br>32 N<br>32 C<br>33 C<br>34 H<br>37 C<br>37 C<br>3 | Cartesian<br>X<br>-0.000106 -0.<br>0.00004 -0.<br>0.000055 0.<br>0.000006 0.<br>-0.000025 0.<br>0.000025 0.<br>0.000025 0.<br>0.000025 0.<br>-0.000128 -0.<br>0.000023 0.<br>-0.000128 -0.<br>0.000029 -0.<br>0.000029 -0.<br>0.000029 -0.<br>0.000029 -0.<br>0.000029 -0.<br>0.000029 -0.<br>0.000029 -0.<br>0.000029 0.<br>0.000021 0.<br>0.000012 0.<br>0.000002 0.<br>0.000002 0.<br>0.000002 0.<br>0.000002 0.<br>0.000003 0.<br>0.000003 0.<br>0.000001 0.<br>0.000007 0.<br>0.000000 0.<br>0.0000000 0.<br>0.000000 0.<br>0.0000000 0.<br>0.0000000 0.<br>0.00000000 | (a.u./a<br>Y<br>Y<br>000075<br>00003<br>000040<br>000028<br>000023<br>000040<br>000023<br>000005<br>000016<br>000016<br>000012<br>000016<br>000013<br>000012<br>000013<br>000013<br>000013<br>000013<br>000013<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000001<br>000000 | Angstrom)<br>Z<br><br><br><br><br> | -<br>604<br>1995<br>5470<br>530797<br>843<br>4671<br>39896<br>58199930<br>2108971<br>564320 |                                                          |             |
| 48 H<br>49 H<br>50 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000035 -0.<br>-0.000010 -0.<br>-0.000023 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000008<br>.000015<br>.000018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.00000<br>0.00001<br>0.00003     | 8 8 8                                                                                       |                                                          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.000004 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.00000                           | -                                                                                           |                                                          |             |
| Geometry Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nvergence afte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                 |                                                                                             |                                                          |             |
| current ene<br>abs of ener<br>constrained<br>gradient ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rgy<br>gy change<br>gradient max<br>gradient rms<br>x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00<br>0.00<br>0.00<br>0.00       | -11.46<br>001437<br>041533<br>008718<br>041533                                              | 684707 Hartree<br>0.00100000<br>0.00100000<br>0.00066667 | T<br>T<br>T |
| cart. step<br>cart. step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | max<br>rms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                               | 744534<br>252766                                                                            | 0.01000000<br>0.00666667                                 | T<br>T      |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:           | -10.701576987020477 | -291.2047 | -6715.34 | -28096.99 |
|---------------------------------|---------------------|-----------|----------|-----------|
| Kinetic Energy:                 | 12.618572850690242  | 343.3688  | 7918.27  | 33130.06  |
| Coulomb (Steric+OrbInt) Energy: | -2.698666559238063  | -73.4345  | -1693.44 | -7085.35  |
| XC Energy:                      | -10.685174533770104 | -290.7584 | -6705.05 | -28053.92 |
| Total Bonding Energy:           | -11.466845229338402 | -312.0287 | -7195.55 | -30106.20 |

List of All Frequencies:

| Frequency<br>cm-1 | Dipole Strength<br>1e-40 esu2 cm2 | Absorption Intensity (degeneracy not counte km/mole | d) |
|-------------------|-----------------------------------|-----------------------------------------------------|----|
|                   |                                   |                                                     |    |
| -97.337607        | 38.865142                         | -0.948242                                           |    |
| 34.896247         | 57.589986                         | 0.503737                                            |    |
| -97.337607        | 38.865142                         | -0.948242                                           |    |
| 34.896247         | 57.589986                         | 0.503737                                            |    |

| Supplementary Material     | (ESI) for Chemical Co | mmunications          |
|----------------------------|-----------------------|-----------------------|
| This journal is (c) The R  |                       |                       |
| 55.658226                  | 198.572798            | 2.770302              |
| 75.258608                  | 113.444689            | 2.140023              |
| 94.553572                  | 44.111224             | 1.045454              |
| 101.909500                 | 15.118749             | 0.386197              |
| 111.454191                 | 30.699791             | 0.857650              |
| 123.919014                 | 60.749421             | 1.886940              |
| 153.070050                 | 37.348652             | 1.432990              |
| 175.344711                 | 90.238968             | 3.966111              |
| 191.163440                 | 15.073124             | 0.722248              |
| 199.854200                 | 26.198441             | 1.312402              |
| 213.460/64                 | 0.112313              | 0.530133              |
| 220.775274                 | 4.124228              | 0.239694              |
| 243.765764                 | 186.543259            | 11.398044             |
| 253.449864                 | 50.757062             | 3.224531              |
| 274.266475                 | 62.501541             | 4.296764              |
| 284.221146                 | 35.123778             | 2.502279              |
| 322.530941                 | 16.693512             | 1.349575              |
| 331.685234                 | 27.575930             | 2.292632              |
| 344.019763                 | 4.528203              | 0.390470              |
| 367.842288                 | 45.848334             | 4.227302              |
| 3/3.015/94                 | /6.44/432             | /.14//31              |
| 384.980501                 | 33.247982             | 3.208353              |
| 393.890761                 | 49.130394             | 4.850697              |
| 407.947200                 | 89.749329             | 9.177264              |
| 441.907918                 | 15.393308             | 1.705068              |
| 448.41/02/                 | 63.136214             | 7.096410              |
| 516.009735                 | 46.376106             | 5.998329              |
| 522.242816                 | 67.249214             | 8.803143              |
| 552.341336                 | 41.807784             | 5.788190              |
| 559.734101                 | 53.112104             | 7.451665              |
| 569 410564                 | 33.5385/4             | 4./423/5              |
| 572.662058                 | 5.148983              | 0.739091              |
| 610.814783                 | 26.353404             | 4.034822              |
| 647.237017                 | 24.311649             | 3.944172              |
| 666.422002                 | 23.817744             | 3.978579              |
| 685.377108<br>713 351458   | 20./14/19 22.440457   | 3.558662<br>4 012484  |
| 730.580318                 | 156.787170            | 28.711545             |
| 757.408000                 | 204.611671            | 38.845289             |
| 793.261034                 | 54.332040             | 10.803145             |
| 796.580933                 | 187.115154            | 37.360866             |
| 819 774602                 | 3 127301              | 0 642602              |
| 820.439659                 | 5.389114              | 1.108261              |
| 821.602424                 | 23.547291             | 4.849319              |
| 825.531865                 | 438.419395            | 90.719714             |
| 828.441090                 | 76.347222             | 15.853784             |
| 842.771681                 | 103.736871            | 21.913974             |
| 845.544835                 | 19.254072             | 4.080725              |
| 845.921346                 | 6.920782              | 1.467450              |
| 854.866500                 | 23.740345             | 5.087019              |
| 895.269804                 | 3.685/21              | 0.827093              |
| 897.828044                 | 25.913002             | 5.831617              |
| 902.217935                 | 5.924440              | 1.339790              |
| 904.314955                 | 30.635824             | 6.944282              |
| 907.915851                 | 1.182990              | 0.269218              |
| 931 450408                 | 238 824813            | 0.448646<br>55 759292 |
| 951.614717                 | 0.066920              | 0.015962              |
| 971.845523                 | 35.900003             | 8.745201              |
| 991.574970                 | 32.283236             | 8.023811              |
| 991.981743                 | 20.748354             | 5.158998              |
| 995.447021                 | 23.356662             | 18 230773             |
| 1008.897846                | 34.048445             | 8.610385              |
| 1027.619985                | 36.093889             | 9.297031              |
| 1032.637850                | 42.249628             | 10.935761             |
| 1045.095762                | 1.684690              | 0.441321              |
| 1047.042977                | 4 396628              | 1 156780              |
| 1051.017856                | 20.658899             | 5.442461              |
| 1053.018946                | 10.212704             | 2.695597              |
| 1078.635187                | 9.359487              | 2.530491              |
| 1095.521564<br>1097 080833 | 8.091080<br>29 444468 | 2.386/28<br>8 NG6930  |
| 1106.975915                | 27.610262             | 7.661023              |
| 1111.012699                | 0.749888              | 0.208830              |
| 1120.722852                | 201.272505            | 56.540644             |
| 1138.941129                | 8.928426              | 2.548909              |
| 1177 789498                | 5.909606<br>38 099730 | 1./23221<br>11 247802 |
| 1195.535073                | 42.452612             | 12.721690             |
| 1235.383105                | 0.529025              | 0.163816              |
| 1236.802298                | 0.041122              | 0.012748              |
| 1262.454673                | 22.762658             | 7.203057              |
| 12/1.419/3/                | 40.114/80<br>5.173970 | 1.661652              |
| 1298.555973                | 35.554872             | 11.572784             |
| 1320.881229                | 14.895420             | 4.931677              |
| 1336.581333                | 4.884929              | 1.636559              |

| Supplementary Material (ESI) for Chemical Communications<br>This journal is (c) The Royal Society of Chemistry 2011 |            |            |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|------------|------------|--|--|--|
| 1242 220264                                                                                                         | 2 056226   | 1 020227   |  |  |  |
| 1342.320204                                                                                                         | 5.050550   | 1.020337   |  |  |  |
| 1340.235469                                                                                                         | 5.0/9100   | 1.916389   |  |  |  |
| 1360./140/9                                                                                                         | 14.394814  | 4.909655   |  |  |  |
| 1364.010301                                                                                                         | 1.498/58   | 0.512421   |  |  |  |
| 1383.031699                                                                                                         | 138.598943 | 48.04/426  |  |  |  |
| 1391.163934                                                                                                         | 26.378942  | 9.198431   |  |  |  |
| 1399.419472                                                                                                         | 9.967778   | 3.496426   |  |  |  |
| 1406.277276                                                                                                         | 16.581714  | 5.844918   |  |  |  |
| 1407.700096                                                                                                         | 27.851800  | 9.827464   |  |  |  |
| 1423.755719                                                                                                         | 12.406948  | 4.427703   |  |  |  |
| 1426.668784                                                                                                         | 11.620211  | 4.155423   |  |  |  |
| 1434.359362                                                                                                         | 73.470116  | 26.414766  |  |  |  |
| 1440.840592                                                                                                         | 24.840762  | 8.971373   |  |  |  |
| 1447.012844                                                                                                         | 39.657060  | 14.383712  |  |  |  |
| 1451.432872                                                                                                         | 56.454966  | 20.538900  |  |  |  |
| 1457.576322                                                                                                         | 127.531968 | 46.593833  |  |  |  |
| 1466.403950                                                                                                         | 26.718930  | 9.820888   |  |  |  |
| 1476.964854                                                                                                         | 28.870622  | 10.688195  |  |  |  |
| 1494.131922                                                                                                         | 345.794191 | 129.504455 |  |  |  |
| 1555.067946                                                                                                         | 6.075022   | 2.367965   |  |  |  |
| 1596.263407                                                                                                         | 33.188901  | 13.279310  |  |  |  |
| 2881.264695                                                                                                         | 55.585936  | 40.144509  |  |  |  |
| 2887.096420                                                                                                         | 105.084757 | 76.046474  |  |  |  |
| 3013.311839                                                                                                         | 17.551399  | 13.256653  |  |  |  |
| 3020.011556                                                                                                         | 20.563854  | 15.566507  |  |  |  |
| 3063.433677                                                                                                         | 7.288020   | 5.596237   |  |  |  |
| 3087.471132                                                                                                         | 12.587290  | 9.741217   |  |  |  |
| 3115.390324                                                                                                         | 1.274415   | 0.995180   |  |  |  |
| 3126.355458                                                                                                         | 0.521816   | 0.408916   |  |  |  |
| 3127.781127                                                                                                         | 1.466229   | 1.149519   |  |  |  |
| 3134.481407                                                                                                         | 1.466633   | 1.152299   |  |  |  |
| 3147.384183                                                                                                         | 2.251421   | 1.776170   |  |  |  |
| 3154.260097                                                                                                         | 4.114219   | 3.252842   |  |  |  |
| 3160.564265                                                                                                         | 0.048641   | 0.038534   |  |  |  |
| 3166.744096                                                                                                         | 0.139451   | 0.110691   |  |  |  |
| 3168.724411                                                                                                         | 0.612679   | 0.486626   |  |  |  |
| 3172.358212                                                                                                         | 0.811492   | 0.645274   |  |  |  |
| 3176.002867                                                                                                         | 0.497781   | 0.396276   |  |  |  |
| 3176.246190                                                                                                         | 0.560523   | 0.446258   |  |  |  |
| 3177.170957                                                                                                         | 3.094330   | 2.464253   |  |  |  |
| 3182.428971                                                                                                         | 4.834662   | 3.856585   |  |  |  |
| 3189.378386                                                                                                         | 4.067111   | 3.251398   |  |  |  |
| 3189.467719                                                                                                         | 1.724812   | 1.378917   |  |  |  |
| 3198.859035                                                                                                         | 1.415275   | 1.134786   |  |  |  |
| 5250.005000                                                                                                         | 1.1102.00  | 1.101.00   |  |  |  |

| Temp   |                                             | Transl | Rotat  | Vibrat  | Total   |
|--------|---------------------------------------------|--------|--------|---------|---------|
|        |                                             |        |        |         |         |
| 298.15 | Entropy (cal/mole-K):                       | 45.330 | 36.113 | 81.871  | 163.314 |
|        | Internal Energy (Kcal/mole):                | 0.889  | 0.889  | 259.886 | 261.663 |
|        | Constant Volume Heat Capacity (cal/mole-K): | 2.981  | 2.981  | 93.756  | 99.717  |
|        |                                             |        |        |         |         |

# TS2-IV

Geometry CYCLE 62

Energy gradients wrt nuclear displacements

| Atom         | Cartesi<br>X | an (a.u./a<br>Y | angstrom)<br>Z |
|--------------|--------------|-----------------|----------------|
| 1 0          |              |                 |                |
| 10           | 0.000055     | 0.000014        | 0.000002       |
| 2 п<br>3 С   | -0.000004    | -0.000089       | 0.000021       |
| 4 H          | 0.000022     | -0.000014       | 0.000020       |
| 5 0          | 0.000053     | 0.000045        | -0.000015      |
| 6 н          | 0.000012     | 0.000035        | -0.000011      |
| 7 C          | -0.000085    | -0.000136       | 0.000042       |
| 8 H          | 0.000039     | 0.000078        | 0.000019       |
| 9 C          | 0.000179     | 0.000267        | -0.000086      |
| 10 C         | -0.000183    | -0.000733       | 0.000286       |
| 11 C         | 0.000303     | 0.000206        | 0.000123       |
| 12 C         | -0.000087    | -0.000127       | 0.000043       |
| 13 H         | 0.000062     | 0.000060        | -0.000010      |
| 14 C         | -0.000300    | -0.000094       | 0.000206       |
| 15 N         | -0.000113    | 0.000083        | -0.000410      |
| 16 C         | 0.000002     | 0.000169        | 0.000009       |
| 1/ H<br>10 G | 0.000005     | -0.0000//       | 0.000039       |
| 10 U         | 0.000161     | 0.000607        | -0.000199      |
| 19 H         | -0.0000058   | -0.0000111      | -0.0000003     |
| 20 C1        | 0.000109     | 0.000079        | 0.0000145      |
| 22 C         | 0.0001032    | 0.000031        | -0.000053      |
| 23 C         | 0.000091     | 0.000007        | -0.000027      |
| 24 C         | 0.000071     | 0.000010        | -0.000063      |
| 25 C         | 0.000050     | 0.000030        | -0.000027      |
| 26 H         | -0.000013    | 0.000005        | 0.000005       |
| 27 H         | 0.000057     | 0.000061        | 0.000035       |
| 28 H         | 0.00008      | 0.000030        | 0.000004       |
| 29 H         | -0.000092    | -0.000045       | -0.000017      |
| 30 H         | -0.000110    | -0.000051       | -0.000034      |
| 31 N         | 0.000195     | 0.000087        | -0.000072      |
| 32 Ir        | -0.000844    | -0.000119       | 0.000453       |
| 33 C         | -0.000404    | -0.000448       | 0.0005/3       |
| 24 H         | -0.000097    | 0.000207        | -0.000313      |
| 35 н<br>36 н | 0.000140     | -0.0000101      | -0.000033      |
| 37 C         | 0.000232     | -0.000138       | 0.0000173      |
| 38 H         | 0.000181     | 0.000089        | 0.000255       |
| 39 H         | 0.000006     | 0.000222        | -0.000195      |
| 40 H         | 0.000056     | -0.000113       | -0.000027      |
| 41 Ru        | 0.000270     | -0.000261       | -0.000876      |
| 42 C         | -0.000086    | -0.000128       | 0.000043       |
| 43 C         | 0.000092     | 0.000150        | 0.000088       |
| 44 C         | 0.000070     | 0.000173        | 0.000133       |
| 45 C         | 0.000011     | 0.000133        | 0.000119       |
| 46 C         | -0.000190    | -0.000017       | 0.000099       |
| 47 H         | -0.000028    | -0.000002       | 0.000032       |
| 48 H         | -0.000079    | -0.000007       | 0.000025       |
| 49 H         | -0.000068    | -0.000029       | -0.000011      |
| 50 H         | -0.000022    | -0.000048       | 0.000016       |
| 21 H         | -0.000028    | 0.000023        | 0.000040       |

-----Geometry Convergence after Step 62

\_\_\_\_\_

| current energy           | -11.46      | 704846 Hartree | 9 |
|--------------------------|-------------|----------------|---|
| energy change            | -0.00001040 | 0.00100000     | Т |
| constrained gradient max | 0.00087621  | 0.00100000     | Т |
| constrained gradient rms | 0.00018627  | 0.00066667     | Т |
| gradient max             | 0.00087621  |                |   |
| gradient rms             | 0.00018627  |                |   |
| cart. step max           | 0.00523537  | 0.01000000     | Т |
| cart. step rms           | 0.00135406  | 0.00666667     | Т |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| ve Fuerdy:                      | -10.0049216181/3301 | -290.7313 | -0/04.89 | -28033.26 |
|---------------------------------|---------------------|-----------|----------|-----------|
| Coulomb (Steric+OrbInt) Energy: | -2.708304865198770  | -73.6967  | -1699.49 | -7110.65  |
| Kinetic Energy:                 | 12.627798232256140  | 343.6199  | 7924.06  | 33154.28  |
| Electrostatic Energy:           | -10.701620493014072 | -291.2059 | -6715.37 | -28097.10 |

List of All Frequencies:

#### Intensities

Frequency cm-1 Dipole Strength 1e-40 esu2 cm2 Absorption Intensity (degeneracy not counted) km/mole

| journal is (c) The Roy   | al Society of Chem       | istry 2011            |
|--------------------------|--------------------------|-----------------------|
| -81.170651               | 25.404491                | -0.516877             |
| 36.042691                | 69.106876                | 0.624333              |
| 55.616574                | 1 841412                 | 2.652228              |
| 76.692639                | 87.223881                | 1.676746              |
| 91.939283                | 69.434914                | 1.600137              |
| 102.864961               | 11.938167                | 0.307810              |
| 124 333012               | 2/./1//26                | 0.//358/<br>2.378/01  |
| 128.182403               | 43.461519                | 1.396405              |
| 153.094233               | 19.065838                | 0.731632              |
| 172.843324               | 48.722179                | 2.110850              |
| 1/9.294358               | 88.626317<br>18.478197   | 3.982973              |
| 228.978324               | 3.422594                 | 0.196439              |
| 236.488565               | 5.320879                 | 0.315407              |
| 243.147559               | 23.629290                | 1.440120              |
| 245.340410               | 84 828018                | 9.8/8633              |
| 266.962597               | 6.185289                 | 0.413893              |
| 298.123955               | 109.919383               | 8.213896              |
| 307.192788               | 132.896340               | 10.232980             |
| 322.620301               | 12.623637                | 1.020832              |
| 343.547242               | 5.352024                 | 0.460874              |
| 368.531678               | 45.164174                | 4.172026              |
| 371.319900               | 75.325391                | 7.010802              |
| 385 162970               | 57 084427                | 5 511125              |
| 395.800947               | 65.133465                | 6.461883              |
| 415.219396               | 95.968225                | 9.988107              |
| 442.513443               | 12.824351                | 1.422460              |
| 451.990811<br>455.827934 | 34.186361                | 20.451662             |
| 512.817664               | 24.398436                | 3.136195              |
| 521.831795               | 110.451203               | 14.447046             |
| 552.205292               | 40.173494                | 5.560556              |
| 563.201527               | 31.338176                | 4.424005              |
| 568.913063               | 9.573449                 | 1.365188              |
| 571.616404               | 3.670279                 | 0.525874              |
| 613.213602               | 22.258/00                | 3.421288              |
| 664.204307               | 11.319442                | 1.884537              |
| 686.877886               | 24.491024                | 4.216621              |
| 715.972704               | 35.856279                | 6.434870              |
| 757 708388               | 157.476279<br>205.861191 | 28.847619             |
| 794.138906               | 71.037235                | 14.140364             |
| 796.617168               | 229.140123               | 45.753980             |
| 806.432076               | 10.556511                | 2.133862              |
| 820.961344               | 3.509611                 | 0.722204              |
| 821.753069               | 60.714180                | 12.505744             |
| 825.029109               | 408.271683               | 84.429963             |
| 828.049993               | /8.530104<br>9.371571    | 1 953280              |
| 842.382611               | 109.294928               | 23.077431             |
| 845.200710               | 6.857241                 | 1.452738              |
| 846.325088               | 15.327318                | 3.251483              |
| 855.922395               | 21.908288                | 4.700249              |
| 895.590067               | 5.267058                 | 1.182376              |
| 896.676011               | 6.032579                 | 1.355866              |
| 897.833869               | 17.099975                | 3.848305              |
| 913.991304               | 4.283795                 | 2.567234              |
| 921.916502               | 3.474605                 | 0.802925              |
| 929.063312               | 120.302394               | 28.015453             |
| 951.843438               | 0.069699                 | 0.016629              |
| 991.992149               | 29.193089                | 7.258825              |
| 993.115907               | 21.301086                | 5.302489              |
| 994.468283               | 13.331079                | 3.323030              |
| 995.664866               | 79.879662                | 19.935516             |
| 1028.387987              | 36.957001                | 9.526465              |
| 1033.620496              | 38.752963                | 10.040240             |
| 1045.072846              | 1.768198                 | 0.463186              |
| 1048.299973              | 0.993102<br>5 502762     | 1 448233              |
| 1052.766958              | 21.436976                | 5.656839              |
| 1053.107364              | 11.092030                | 2.927937              |
| 1079.362356              | 2.392129                 | 0.647187              |
| 1096.969789              | 28.460673                | J.0∠∠/08<br>7.825605  |
| 1106.571121              | 26.453373                | 7.337337              |
| 1109.134177              | 4.047809                 | 1.125336              |
| 1123.301226              | 199.956601<br>16 774270  | 56.300215<br>4 787601 |
| 1163.119782              | 5.941936                 | 1.732330              |
| 1182.432767              | 40.401894                | 11.974469             |
| 1200.889313              | 46.588714                | 14.023673             |
| 1236.842256              | U.U65450<br>0 415804     | 0.020291              |
| 1261.296986              | 18.009937                | 5.693871              |
| 1271.806363              | 57.945635                | 18.472250             |
| 1280.103555              | 4.369578                 | 1.402047              |

| Supplementary Material (ESI) for Chemical Communications<br>This journal is (c) The Royal Society of Chemistry 2011 |            |            |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|------------|------------|--|--|--|
| 1208 612210                                                                                                         | 29 7/0777  | 9 680769   |  |  |  |
| 1317 156222                                                                                                         | 11 494172  | 3 701535   |  |  |  |
| 1225 050070                                                                                                         | 5 701026   | 1 000202   |  |  |  |
| 1341 675633                                                                                                         | 3.701920   | 1.909303   |  |  |  |
| 1341.073032                                                                                                         | 2.030343   | 0.034200   |  |  |  |
| 1343.074017                                                                                                         | 11 747070  | 0.02/00/   |  |  |  |
| 1360.592949                                                                                                         | 11.747072  | 4.006230   |  |  |  |
| 1363.556077                                                                                                         | 3.225/52   | 1.102509   |  |  |  |
| 1380.079917                                                                                                         | 134.5/9095 | 46.554312  |  |  |  |
| 1391.199012                                                                                                         | 25.094753  | 8.750850   |  |  |  |
| 1398.798106                                                                                                         | 8.634132   | 3.027274   |  |  |  |
| 1407.083289                                                                                                         | 17.890409  | 6.309837   |  |  |  |
| 1408.173432                                                                                                         | 23.367353  | 8.247907   |  |  |  |
| 1423.560885                                                                                                         | 12.741259  | 4.546388   |  |  |  |
| 1425.292011                                                                                                         | 19.674865  | 7.029002   |  |  |  |
| 1435.172196                                                                                                         | 46.028687  | 16.558106  |  |  |  |
| 1443.335329                                                                                                         | 44.215184  | 15.996197  |  |  |  |
| 1448.590052                                                                                                         | 96.406277  | 35.004903  |  |  |  |
| 1451.286586                                                                                                         | 34.394485  | 12.511808  |  |  |  |
| 1459.445997                                                                                                         | 104.318378 | 38.161631  |  |  |  |
| 1470.822265                                                                                                         | 52.111144  | 19.211836  |  |  |  |
| 1478.211805                                                                                                         | 50.560250  | 18.733717  |  |  |  |
| 1491.759465                                                                                                         | 287.261991 | 107.412553 |  |  |  |
| 1554.835686                                                                                                         | 6.058860   | 2.361312   |  |  |  |
| 1595.944405                                                                                                         | 34.302770  | 13.722240  |  |  |  |
| 2880.758810                                                                                                         | 50.912799  | 36.763084  |  |  |  |
| 2885.915556                                                                                                         | 80.171361  | 57.993717  |  |  |  |
| 3011.281905                                                                                                         | 22.389830  | 16.899750  |  |  |  |
| 3016.072697                                                                                                         | 20.991669  | 15.869631  |  |  |  |
| 3059.810646                                                                                                         | 8.092760   | 6.206822   |  |  |  |
| 3074.105752                                                                                                         | 13.461000  | 10.372280  |  |  |  |
| 3114.065947                                                                                                         | 1.083267   | 0.845554   |  |  |  |
| 3121.313685                                                                                                         | 2.156983   | 1.687572   |  |  |  |
| 3133 569399                                                                                                         | 1 381876   | 1 085392   |  |  |  |
| 3135 683746                                                                                                         | 0 307690   | 0 241838   |  |  |  |
| 3147 224382                                                                                                         | 2 117140   | 1 670149   |  |  |  |
| 3153 804674                                                                                                         | 4 358028   | 3 445108   |  |  |  |
| 3160 017002                                                                                                         | 0 087541   | 0 069339   |  |  |  |
| 3166 683963                                                                                                         | 0.225449   | 0 178949   |  |  |  |
| 3168 516112                                                                                                         | 0.692/79   | 0.1/0949   |  |  |  |
| 3172 050906                                                                                                         | 0.884746   | 0.703456   |  |  |  |
| 2175 005241                                                                                                         | 0.603222   | 0.703430   |  |  |  |
| 2176 252070                                                                                                         | 2 107070   | 1 677500   |  |  |  |
| 3176 7/8016                                                                                                         | 2.10/0/9   | 1 669094   |  |  |  |
| 3182 173387                                                                                                         | 2.050000   | 2 82/251   |  |  |  |
| 3180 135730                                                                                                         | 3 492440   | 2 701772   |  |  |  |
| 2100 2075/7                                                                                                         | 1 247292   | 2.131113   |  |  |  |
| 3109.30/34/                                                                                                         | 1.24/282   | 0.99/126   |  |  |  |
| 2120.043037                                                                                                         | 1.430190   | 1.10/314   |  |  |  |

| Temp     |                                             | Transl | Rotat   | Vibrat   | Total   |
|----------|---------------------------------------------|--------|---------|----------|---------|
|          |                                             |        |         |          |         |
| 298.15   | Entropy (cal/mole-K):                       | 45.330 | 36.081  | 81.370   | 162.780 |
|          | Internal Energy (Kcal/mole):                | 0.889  | 0.889   | 259.883  | 261.661 |
|          | Constant Volume Heat Capacity (cal/mole-K): | 2.981  | 2.981   | 93.665   | 99.626  |
|          |                                             |        |         |          |         |
| ******** | ***************************************     | ****** | ******* | ******** | ******* |

# ESI

### III

Geometry CYCLE 20

Energy gradients wrt nuclear displacements

| Atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cartesi<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an (a.u./a<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | angstrom)<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1 C<br>2 H<br>3 C<br>4 H<br>5 C<br>6 H<br>7 C<br>8 H<br>9 C<br>10 C<br>11 C<br>12 C<br>13 H<br>14 C<br>15 N<br>16 C<br>17 H<br>18 C<br>19 H<br>20 Cl<br>21 C<br>22 C<br>23 C<br>24 C<br>25 C<br>26 H<br>27 H<br>28 H<br>29 H<br>20 Cl<br>21 C<br>22 C<br>23 C<br>24 C<br>25 C<br>26 H<br>27 H<br>28 H<br>29 H<br>30 H<br>31 N<br>32 IF<br>33 C<br>34 H<br>35 H<br>36 H<br>37 C<br>38 H<br>39 H<br>30 H<br>31 N<br>32 IF<br>33 C<br>34 H<br>35 H<br>36 H<br>37 C<br>38 H<br>39 H<br>30 H<br>31 N<br>32 IF<br>33 C<br>34 H<br>35 H<br>36 H<br>37 C<br>38 H<br>39 H<br>30 C<br>38 H<br>30 H<br>31 N<br>32 IF<br>33 C<br>34 H<br>35 H<br>36 H<br>37 C<br>38 H<br>30 H<br>31 N<br>32 IF<br>33 C<br>34 H<br>35 H<br>36 H<br>37 C<br>38 H<br>30 C<br>30 C<br>40 | x<br>0.000082<br>0.000104<br>0.000104<br>0.000014<br>0.000013<br>0.000087<br>0.000087<br>0.000021<br>0.000021<br>0.000038<br>0.000214<br>0.000430<br>0.0000430<br>0.000016<br>0.000016<br>0.000016<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.000146<br>0.0000140<br>0.000018<br>0.000018<br>0.000018<br>0.0000018<br>0.0000018<br>0.0000010<br>0.0000018<br>0.0000010<br>0.0000010<br>0.0000010<br>0.0000010<br>0.0000010<br>0.0000010<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.000001<br>0.0000000<br>0.0000000000 | Y           0.000216           0.000031           -0.000031           -0.000033           -0.00013           -0.000031           -0.000033           -0.000033           -0.000033           -0.000033           -0.000033           -0.000031           -0.000032           -0.000032           -0.000032           -0.000032           -0.000032           -0.000032           -0.000032           -0.000033           -0.000048           -0.000028           -0.000028           -0.000032           -0.000048           -0.000059           -0.000023           -0.000024           -0.000035           -0.000041           -0.000042           -0.000041           -0.000041           -0.000042           -0.000042           -0.000042           0.000041           0.000042           0.000042           0.000144           -0.000045           0.000042           0.000042           0.000042 | Z<br>0.000020<br>-0.00030<br>0.000083<br>0.00009<br>-0.000075<br>-0.0000843<br>-0.0000843<br>-0.000084<br>-0.000084<br>-0.000084<br>-0.000084<br>-0.0000122<br>0.000122<br>0.00011<br>-0.000023<br>0.000030<br>0.000030<br>0.000036<br>-0.000023<br>0.0000191<br>-0.000023<br>0.0000191<br>-0.000023<br>0.0000191<br>-0.000023<br>0.0000191<br>-0.000023<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000036<br>0.000005<br>0.000005<br>0.000005<br>0.000005<br>0.000005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.00005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0.0005<br>0 |                                                                                                   |                                                                    |
| 51 H -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.000014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.000023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |                                                                    |
| current energy<br>constrained of<br>gradient max<br>gradient max<br>cart. step m<br>cart. step r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | vergence a<br>gy<br>y change<br>gradient m<br>gradient r<br>ax<br>ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0005<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -11.116021<br>00291 0.0<br>84345 0.0<br>84345 0.0<br>84345<br>16076 0.0<br>42116 0.0<br>52811 0.0 | 95 Hartree<br>0100000<br>0100000<br>0066667<br>01000000<br>0666667 |
| Summary of Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onding Ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ergy (energ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gy terms a:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | re taken from                                                                                     | the energy                                                         |
| Electrostat<br>Kinetic Ene<br>Coulomb (St<br>XC Energy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tic Energy<br>ergy:<br>teric+OrbI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt) Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -10.883<br>13.398<br>7: -3.123<br>-10.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1796876753072<br>8480784897288<br>3682559614579<br>9025772584714                                  | 2 -296<br>364<br>9 -84<br>1 -285                                   |

Intensities

Total Bonding Energy: List of All Frequencies:

| Frequency<br>cm-1 | Dipole Strength<br>1e-40 esu2 cm2 | Absorption Intensity (degeneracy not cour<br>km/mole | nted) |
|-------------------|-----------------------------------|------------------------------------------------------|-------|
|                   |                                   |                                                      |       |
| 12.849866         | 0.00000                           | 0.000000                                             |       |
| 26.246493         | 247.893084                        | 1.630849                                             |       |
| 38.844212         | 75.337488                         | 0.733526                                             |       |

-11.116024424055077

T T T

T T

-296.1088 364.5912 -84.9997 -285.9651

-302.4824

-----

from the energy decomposition above)

-6828.43 8407.67 -1960.14 -6594.51

-6975.41

\_\_\_\_\_

-28570.15 35177.71 -8201.23

-27591.44

-29185.12

\_\_\_\_\_

| Supplementary Material     | (ESI) for Chemical Co | ommunications         |
|----------------------------|-----------------------|-----------------------|
| This journal is (c) The R  | oyal Society of Chemi | stry 2011             |
| 48.885114                  | 156.264263            | 1.914760              |
| 63.949464                  | 45.051146             | 0.722139              |
| 66.244464                  | 39.794994             | 0.660779              |
| 80.770905                  | 47.542758             | 0.962537              |
| 98.829152<br>105.803894    | 50.198384             | 1.243520              |
| 118.734299                 | 140.620986            | 4.185086              |
| 120.520544                 | 31.801380             | 0.960694              |
| 126.887491                 | 53.464002             | 1.700428              |
| 155.394324                 | 113.851138            | 4.434561              |
| 202.255264                 | 120.430374            | 6.105397              |
| 219.074869                 | 203.283912            | 11.162813             |
| 249.802828                 | 46.286628             | 2.898217              |
| 263.499362                 | 231.777203            | 15.308349             |
| 275.919979                 | 8.406106              | 0.581375              |
| 287.107092                 | 10.847694             | 0.780655              |
| 327 422338                 | 188 771660            | 15 492559             |
| 333.143277                 | 31.613648             | 2.639877              |
| 337.561081                 | 76.718082             | 6.491248              |
| 342.402190                 | 75.815955             | 6.506916              |
| 367.701800                 | 21.933431             | 2.021531              |
| 369.761687                 | 44.216366             | 4.098105              |
| 380.447106                 | 111.642280            | 10.646358             |
| 433.3/3/13                 | 35.293532             | 3.833856              |
| 465.391108                 | 42.350045             | 4.940262              |
| 483.928454                 | 59.124735             | 7.171804              |
| 508.293285                 | 172.436884            | 21.969623             |
| 528.378527                 | 42.052943             | 5.569544              |
| 550.038007                 | 3.798567              | 0.523710              |
| 552.457815                 | 41.693633             | 5.773603              |
| 557.682163                 | 33.289957             | 4.653482              |
| 560.154956                 | 43.424160             | 6.09/021<br>19 742270 |
| 628.416518                 | 156.172383            | 24.599705             |
| 649.499131                 | 110.858874            | 18.047918             |
| 660.438791<br>715.242603   | 13.054337             | 2.161053              |
| 728.878331                 | 115.650446            | 21.129072             |
| 759.404457                 | 246.086802            | 46.842443             |
| 787.412853                 | 19.043620             | 3.758634              |
| 809.564991<br>815 893391   | /2.5/1261             | 14./26328<br>2 313759 |
| 817.924623                 | 4.464094              | 0.915218              |
| 818.582068                 | 25.459080             | 5.223757              |
| 830.508169                 | 109.584031            | 22.812309             |
| 840.301452                 | 67.899405             | 14.301420             |
| 846.710272                 | 273.909967            | 58.132732             |
| 852.783654                 | 40.055929             | 8.562168              |
| 855.272329                 | 15.1269/3             | 3.242907<br>7 346980  |
| 867.751969                 | 32.500192             | 7.069026              |
| 894.852401                 | 34.531062             | 7.745321              |
| 902.466662                 | 10.212893             | 2.310245              |
| 908.464275                 | 8.051886              | 1.833511              |
| 914.317884                 | 8.459200              | 1.938673              |
| 919.628792                 | 5.918040              | 1.364170              |
| 928.513104                 | 45.632900             | 1 487884              |
| 959.757904                 | 0.157086              | 0.037790              |
| 976.337203                 | 31.550300             | 7.721140              |
| 989.522239                 | 21.237453             | 5.267518              |
| 992.327428                 | 120.982616            | 30.146981             |
| 997.346341                 | 47.800089             | 11.949584             |
| 1010.301119                | 27.986744             | 7.087307              |
| 1034.983330                | 49.513637             | 12.845063             |
| 1048.728736                | 1.007818              | 0.264925              |
| 1053.391845                | 10.661173             | 2.814965              |
| 1054.321376                | 2.507285              | 0.662605              |
| 1054.970433                | 18.67/667             | 4.939022              |
| 1075.373523                | 2.169117              | 0.584683              |
| 1098.817472                | 5.251970              | 1.446525              |
| 1100.125783                | 13.085817             | 3.608455              |
| 1116.607314                | 31.553095             | 8.831216              |
| 1120.264968                | 66.471369             | 18.665234             |
| 1162.630460                | 58.164791             | 16.950400             |
| 1191.236785                | 17.629802             | 5.264094              |
| 1198.626579                | 123.767950            | 37.185204             |
| 1238.716056                | 0.160942              | 0.049971              |
| 1239.372692                | 0.158336              | 0.049188              |
| 1280.644866                | 34.185097             | 10.973460             |
| 1303.316034                | 13.495638             | 4.408808              |
| 1315.327615                | 1.754405              | 0.578418              |
| 1333.96/00/<br>1338.946163 | 5.877504<br>55.793280 | 1.965242<br>18.725054 |

| 1342.233126     | 0.500055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 3.528365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.187079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1345.204963     | 3.660286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.234189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1346.731949     | 6.361466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.147417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1351.379766     | 4.563532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.545812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1391.689979     | 47.509249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.572909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1394.365918     | 38.770450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.550511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1401.232364     | 41.982817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.745510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1403.645241     | 61.016299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.467491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1407.557211     | 26.998912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.525557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1426.773668     | 20.265322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.247474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1428.562680     | 155.404595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.646932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1440.249185     | 18.378921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.634920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1448.928677     | 28.211532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.245939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1451.080909     | 15.812903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5./51502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1456.11/600     | 29.998689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.949059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1409.434072     | 108.426555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.933926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14/3.113308     | 38.321333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 000759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1557 064538     | 0 678224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 264703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1586 9635/3     | 1134 900752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 151 112980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1593 205465     | 19 605/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 929354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2076 580683     | 10 173026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 590095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2979 108503     | 6 775914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 059788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3069 352445     | 0 731887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 563078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3075 940829     | 0 774747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.597332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3106.165634     | 1.465239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.140804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3111.539969     | 1.917138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.495226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3136.648669     | 1.807080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.420762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3140.834129     | 1.352308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.064630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3147.255615     | 5.096571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.020575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3150.234343     | 0.819480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.647082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3154.984864     | 22.326078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.655816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3158.849467     | 6.440375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.099389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3170.126853     | 0.914685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.726819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3171.044902     | 2.503555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.989929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3172.660345     | 2.842930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.260830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3178.534021     | 2.378520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.895011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3179.870849     | 3.168224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.525244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3183.742790     | 14.236644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.361186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3185.898106     | 23.802131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.007534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3187.698851     | 20.393914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.295059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3188.904349     | 11.840237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.464114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3198.653739     | 4.857750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.894758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3198.778408     | 4.549096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.647433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ansl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rotat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vibrat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Entropy (cal/mc | ole-K):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92.745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 174.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Internal Energy | (Kcal/mole):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 261.602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 263.379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Constant Volume | Heat Capacity (cal/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mole-K): 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101.876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | 1346.731949<br>1351.379766<br>1391.68979<br>1394.365918<br>1401.232364<br>1403.645241<br>1407.557211<br>1426.773668<br>1440.249185<br>1440.249185<br>1440.249185<br>1440.249185<br>1440.249185<br>1440.249185<br>1440.249185<br>1440.249185<br>1440.249185<br>1440.249185<br>1440.249185<br>1440.249185<br>1450.2039<br>1455.117600<br>1460.434072<br>1473.115308<br>1484.952039<br>1557.064538<br>1586.963543<br>1593.205465<br>2976.589683<br>2979.108503<br>3069.352445<br>3075.940829<br>3166.648669<br>3136.648669<br>3140.834129<br>3147.255615<br>3150.234343<br>3154.984864<br>3158.849467<br>3170.126853<br>3171.044902<br>3172.660345<br>3178.534021<br>3179.870849<br>3185.898166<br>3188.904349<br>3198.778408<br>Entropy (cal/mcc<br>Internal Energy | 1346.731949       6.361466         1351.63979       4.563532         1394.365918       38.770450         1401.232364       41.982817         1403.645241       61.016299         1407.557211       26.998912         1428.562680       155.404595         1440.249185       18.378921         1444.928677       28.211532         1445.080909       15.812903         1475.115308       38.251553         1484.952039       31.973056         1557.064538       0.678224         1586.963543       1134.900752         1583.205465       19.605415         2979.108503       6.775914         3069.352445       0.731887         3075.940829       0.774747         3154.984864       22.326078         3147.255615       5.096571         3150.234343       0.819480         3154.984864       22.326078         3170.126853       0.914685         3170.126853       0.914685         3170.126853       0.914685         3170.24290       2.53555         3172.660345       2.842930         3178.780849       3.168224         3187.69851       20.339314 | 1346.731949 6.361466 2.147417<br>1351.379766 4.563532 1.545812<br>1391.68979 47.509249 16.572909<br>1394.365918 38.770450 13.550511<br>1401.232364 41.982817 14.745510<br>1403.645241 61.016299 21.467491<br>1407.557211 26.998912 9.525557<br>1426.773668 20.265322 7.247474<br>1428.562680 155.404595 55.646932<br>1440.249185 18.378921 6.634920<br>1444.928677 28.211532 10.245939<br>1451.080909 15.812903 5.751502<br>1456.117600 29.998689 10.949059<br>1463.43072 108.426535 33.935926<br>1473.115308 38.521553 14.223897<br>1484.952039 31.973056 11.900758<br>1557.064538 0.678224 0.264703<br>1586.963543 1134.900752 451.442980<br>1593.205465 19.605415 7.829354<br>2976.589683 10.173026 7.590095<br>2979.108503 6.775914 5.053788<br>3065.352445 0.731887 0.563078<br>3075.940829 0.774747 0.597332<br>3166.165634 1.465239 1.40804<br>3111.539969 1.917138 1.495226<br>3136.648669 1.807080 1.420762<br>3140.834129 1.352308 1.064630<br>3147.255615 5.096571 4.020575<br>3150.23433 0.819480 0.647082<br>3154.94864 22.326078 17.655816<br>3154.94864 22.326078 17.655816<br>3154.984864 22.326078 17.655816<br>3154.984864 22.326078 17.655816<br>3158.894067 6.440375 5.099389<br>3170.126853 0.914685 0.726819<br>3170.126853 0.914685 0.726819<br>3172.660345 2.842930 2.260830<br>3178.534021 2.378520 1.895011<br>3179.870849 3.168224 2.525244<br>3183.742790 14.236644 11.361186<br>3185.898106 23.802131 19.007534<br>3198.778408 4.549096 3.647433<br>3198.778408 4.549096 3.647433<br>3198.778408 4.549096 3.647433 | 1346.731949 6.361466 2.147417<br>1351.379766 4.563532 1.545812<br>1394.365918 38.770450 13.550511<br>1401.232364 41.982817 14.745510<br>1407.557211 26.998912 9.525557<br>1426.773668 20.265322 7.247474<br>1428.562680 155.404595 55.6466932<br>1440.249185 18.378921 6.634920<br>1444.249185 18.378921 6.634920<br>1446.249185 18.378921 6.634920<br>1451.080909 15.812903 5.751502<br>1456.117600 29.998689 10.949059<br>1463.44072 108.426535 33.935926<br>1473.115308 38.521553 14.223897<br>1484.952039 31.973056 11.900758<br>1557.064538 0.678224 0.264703<br>1586.963543 1134.900752 451.422980<br>1593.205465 19.605415 7.829354<br>2976.589683 10.173026 7.590095<br>2979.108503 6.775914 5.059788<br>3065.352445 0.731887 0.563078<br>3075.940829 0.774747 0.597332<br>3166.165634 1.465239 1.140804<br>3111.539969 1.917138 1.495226<br>3136.648669 1.807080 1.420762<br>3140.834129 1.352308 1.064630<br>3147.255615 5.096571 4.020575<br>3150.234343 0.819480 0.647082<br>3154.984864 22.326078 17.655816<br>3154.94864 22.326078 17.655816<br>3154.94864 22.326078 17.655816<br>3154.94864 22.326078 17.655816<br>3154.984864 22.326078 17.655816<br>3158.894067 6.440375 5.099389<br>3170.126853 0.914685 0.726819<br>3170.126853 0.914685 0.726819<br>3170.44902 2.55355 1.989929<br>3172.660345 2.842930 2.260830<br>3178.534021 2.378520 1.895011<br>3179.87408 4.549096 3.647433<br>PERIMARENTER PROFERING A.549096 3.647433<br>PERIM | 1346.731949       6.361466       2.147417         1351.63979       4.563532       1.545812         1391.68979       4.503522       1.545812         1391.68979       4.50322       1.672909         1344.365918       38.770450       13.550511         1401.232364       41.982817       14.745510         1403.645241       6.1016299       21.467491         1426.773668       20.265322       7.247474         1428.562680       155.404595       55.646932         1444.928677       28.11532       10.245939         1445.6117600       29.998689       10.949059         1445.6117600       29.998689       10.949059         1444.928677       28.51553       14.223897         1445.6117600       29.998689       10.949059         1443.925039       31.973056       11.900758         1557.064538       0.678224       0.264703         1586.963543       1134.900752       451.442980         1593.205465       19.605415       7.829354         2979.108503       6.77914       5.059788         3069.352445       0.731887       0.563078         3075.940829       0.774747       0.597332         316.165634 | 1346.731949 6.361466 2.147417 1351.37976 4.56352 1.545812 1391.68977 47.509249 16.572909 1394.365918 38.770450 13.550511 1401.232364 41.982817 14.745510 1403.645241 61.016299 21.467491 1426.773668 20.26532 7.247474 1428.562680 15.404595 55.646932 1440.249185 18.378921 6.634920 1448.928677 28.211532 10.245939 1440.249185 18.378921 6.634920 1448.928677 28.211532 10.245939 1449.434072 108.42653 39.35926 1443.40909 15.81290 5.51502 1456.117600 29.998689 10.949059 1469.434072 108.42653 39.35926 1443.405203 31.973056 11.900758 1557.06453 0.67824 0.264703 1566.66354 1134.900752 451.142280 1553.205465 19.60545 7.829354 2976.589683 10.173026 7.590095 2979.108503 6.775914 5.059788 3069.35245 0.73187 0.65374 1.46529 1.140804 3111.53996 1.917138 1.495226 3136.64666 1.80708 1.4020575 3196.16534 1.6450 3147.255615 5.096571 4.020575 3198.74464 2.326078 1.664630 3147.255615 5.096571 4.020575 3198.74464 2.326078 1.664630 3147.255615 5.096571 4.020575 3198.74464 2.326078 1.664630 3147.255615 5.096571 4.020575 3198.74464 2.326078 1.664630 3147.255615 5.096571 4.020575 3198.74464 2.326078 1.664630 3147.255615 5.096571 4.020575 3198.74464 2.326078 1.664630 3147.255615 5.096571 4.020575 3198.74464 2.326078 1.664630 3147.255615 5.096571 4.020575 3198.74464 2.326078 3156.24842 2.326078 1.664630 3147.255615 5.09555 1.98929 3170.12685 0.914865 0.726819 3171.64902 2.50355 1.98929 3170.12685 0.91486 0.647082 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84864 2.326078 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.84896 3154.8489 3154.84896 3154.8489 3154.8489 3154.84896 3154.8489 3154.8489 3154.8489 3154.8489 3154.8489 31 |

174.783 263.379 101.876

# TS1-III

Geometry CYCLE 41 \_\_\_\_\_

Energy gradients wrt nuclear displacements

| Atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cartesian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (a.u./an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ngstrom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Atom<br>1 C<br>2 H<br>3 C<br>4 H<br>5 C<br>6 H<br>7 C<br>6 H<br>9 C<br>10 C<br>11 C<br>12 C<br>13 H<br>14 C<br>15 N<br>16 C<br>13 H<br>14 C<br>15 N<br>16 C<br>17 H<br>18 C<br>19 H<br>20 Cl<br>21 C<br>22 C<br>24 C<br>25 C<br>24 C<br>25 C<br>26 H<br>20 Cl<br>21 C<br>22 C<br>24 C<br>25 C<br>26 H<br>20 Cl<br>21 C<br>22 C<br>23 C<br>24 C<br>25 C<br>26 H<br>20 Cl<br>21 C<br>22 C<br>23 C<br>24 C<br>25 C<br>26 H<br>30 H<br>30 H<br>30 H<br>31 N<br>32 II<br>33 C<br>34 H<br>35 H<br>37 C<br>38 H<br>39 H<br>30 H<br>30 H<br>31 N<br>32 II<br>33 C<br>34 H<br>35 H<br>37 C<br>38 H<br>39 H<br>30 H<br>30 H<br>30 H<br>30 H<br>31 N<br>32 C<br>34 H<br>35 H<br>37 C<br>38 H<br>39 H<br>30 H | Cartesian<br>X<br>0.000067 0<br>0.000007 0<br>0.000009 -0<br>0.0000031 0<br>0.000029 -0<br>0.00001 0<br>0.000020 -0<br>0.000143 -0<br>0.000143 -0<br>0.000143 -0<br>0.000150 -0<br>0.0000150 -0<br>0.000037 0<br>0.000039 -0<br>0.000038 -0<br>0.000036 -0<br>0.000036 -0<br>0.000036 -0<br>0.000036 -0<br>0.000036 -0<br>0.000015 0<br>0.000015 0<br>0.000015 0<br>0.000015 0<br>0.000015 0<br>0.000015 0<br>0.000015 0<br>0.000016 -0<br>0.000022 -0<br>0.000021 -0<br>0.000021 -0<br>0.000023 -0<br>0.000023 -0<br>0.000021 -0<br>0.000021 -0<br>0.000021 -0<br>0.000023 -0<br>0.000023 -0<br>0.000023 -0<br>0.000021 -0<br>0.000023 -0<br>0.000021 -0<br>0.000023 -0<br>0.000025 -0<br>0.000005 -0<br>0.00005 -0<br>0.0 | (a.u./ar<br>Y<br>Y<br>000015<br>000060<br>000055<br>000042<br>000013<br>000013<br>000001<br>000071<br>0000049<br>0000168<br>000064<br>0000168<br>000029<br>000153<br>0000168<br>000029<br>000153<br>000015<br>000015<br>000015<br>000012<br>000013<br>000013<br>000013<br>000014<br>0000013<br>0000014<br>0000015<br>000003<br>000014<br>000003<br>000015<br>000003<br>000016<br>0000016<br>0000016<br>0000016<br>0000016<br>0000016<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>0000017<br>000000<br>000000<br>000000<br>000000<br>000000<br>0000 | ngstrom)<br>Z<br>0.000134<br>0.000042<br>0.000042<br>0.000076<br>0.000038<br>0.000038<br>0.000037<br>0.000295<br>0.000295<br>0.000295<br>0.000234<br>0.000135<br>0.000135<br>0.000035<br>0.000035<br>0.000035<br>0.000037<br>0.000146<br>0.000003<br>0.000146<br>0.000003<br>0.000146<br>0.000003<br>0.000014<br>0.000013<br>0.000014<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.000039<br>0.0000000000 |
| 45 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000185 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .000076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -U.000110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 46 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000073 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 47 H -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000001 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 48 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000028 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .000008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 49 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000045 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50 н -<br>51 н -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000024 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

-----

Geometry Convergence after Step 41

| current energy           | -11.08     | 199539 Hartree |   |
|--------------------------|------------|----------------|---|
| abs of energy change     | 0.00000445 | 0.00100000     | Т |
| constrained gradient max | 0.00091388 | 0.00100000     | Т |
| constrained gradient rms | 0.00013971 | 0.00066667     | Т |
| gradient max             | 0.00091388 |                |   |
| gradient rms             | 0.00013971 |                |   |
| cart. step max           | 0.00904993 | 0.01000000     | Т |
| cart. step rms           | 0.00321292 | 0.00666667     | Т |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:           | -10.847965368341191 | -295.1882 | -6807.20 | -28481.33 |
|---------------------------------|---------------------|-----------|----------|-----------|
| Kinetic Energy:                 | 13.394723884680545  | 364.4890  | 8405.32  | 35167.84  |
| Coulomb (Steric+OrbInt) Energy: | -3.143309433586680  | -85.5338  | -1972.46 | -8252.76  |
| XC Energy:                      | -10.485447688567479 | -285.3235 | -6579.72 | -27529.54 |
| Total Bonding Energy:           | -11.081998605814805 | -301.5565 | -6954.06 | -29095.78 |

List of All Frequencies:

Intensities \_\_\_\_\_

| Frequency<br>cm-1 | Dipole Strength<br>1e-40 esu2 cm2 | Absorption Intensity (dege<br>km/mole | neracy not counted) |
|-------------------|-----------------------------------|---------------------------------------|---------------------|
|                   |                                   |                                       |                     |
| -109.536423       | 61.646998                         | -1.692577                             |                     |

| Supplementary Material | (ESI) for Chemical Co | ommunications         |
|------------------------|-----------------------|-----------------------|
|                        |                       | 30 y 2011             |
| 20.121521              | /2.556664             | 0.365945              |
| 56.078954              | 246.731056            | 3.468181              |
| 62.607251              | 15.233583             | 0.239059              |
| 74.109541              | 132.749037            | 2.465946              |
| 92.103890              | 19.886623             | 0.459110              |
| 95.478823              | 19.473713             | 0.466051              |
| 108.2258/2             | 51./42141             | L.403633              |
| 124.099894             | 36.467691             | 1.134378              |
| 141.116988             | 166.640689            | 5.894384              |
| 152.927797             | 189.665818            | 7.270321              |
| 186.169283             | 8.895949              | 0.415124              |
| 195.81195/             | 47.455249             | 2.3291/2              |
| 216.647831             | 60.421472             | 3.281132              |
| 220.872234             | 104.634417            | 5.792870              |
| 231.358668             | 133.539934            | 7.744172              |
| 257.356307             | 61.772174             | 3.984793              |
| 270.055125             | 20 448056             | 8.134247              |
| 310.364120             | 163.923136            | 12.752338             |
| 317.985938             | 85.699191             | 6.830661              |
| 327.196677             | 54.954582             | 4.507034              |
| 339.571840             | 61.821907             | 5.262016              |
| 343.567584             | 58.673907             | 5.052837              |
| 361 968320             | 45 564916             | 4 134083              |
| 365.424740             | 175.546829            | 16.079369             |
| 383.576660             | 46.674478             | 4.487554              |
| 397.846356             | 54.860865             | 5.470866              |
| 435.213645             | 56.966551             | 6.214418              |
| 438.043502             | 27.722898             | 3.043925              |
| 508.222242             | 101.786359            | 12.966457             |
| 518.411563             | 96.720864             | 12.568195             |
| 542.195274             | 0.227135              | 0.030869              |
| 546.159606             | 7.410413              | 1.014472              |
| 556 681953             | 30.755442             | 4.250923              |
| 559.947842             | 21.877533             | 3.070605              |
| 609.217184             | 63.227241             | 9.655048              |
| 642.694973             | 12.256939             | 1.974536              |
| 660.764617             | 6.086911              | 1.008142              |
| 715 823765             | 42.841030             | 4 862874              |
| 729.081319             | 120.308380            | 21.986187             |
| 761.566275             | 218.326458            | 41.676587             |
| 792.043759             | 17.213514             | 3.417408              |
| 811.268930             | 49.575533             | 1 445346              |
| 817.494606             | 6.226218              | 1.275814              |
| 819.783871             | 19.248324             | 3.955217              |
| 833.468845             | 174.210969            | 36.395102             |
| 846.307712             | 106.374612            | 22.565469             |
| 851.81/555             | 102.863303            | 21.962669             |
| 857.976010             | 99.314580             | 21.358278             |
| 860.965966             | 44.899904             | 9.689681              |
| 874.069526             | 38.746488             | 8.488997              |
| 878.921698             | 30.719192             | 6.767652              |
| 909.261018             | 97.940127             | 22.321/02             |
| 916.844389             | 16.438128             | 3.777688              |
| 917.538321             | 9.080317              | 2.088350              |
| 920.309300             | 28.482451             | 6.570361              |
| 928.624616             | 7.758913              | 1.806006              |
| 933.235609             | 0.261639              | U.U612U3<br>12 778586 |
| 961.026939             | 0.168400              | 0.040565              |
| 974.943008             | 28.990272             | 7.084506              |
| 989.326741             | 20.589573             | 5.105816              |
| 993.066872             | 7.488119              | 1.863929              |
| 994.433430             | /5.831/13             | 18.901865             |
| 1006.050796            | 40.875663             | 10.307724             |
| 1020.717332            | 56.091374             | 14.350916             |
| 1029.528209            | 71.172951             | 18.366707             |
| 1049.951085            | 1.463159              | 0.385069              |
| 1052.889663            | 1.299011              | 0.342826              |
| 1054.079384            | 2.940612              | 0.776943              |
| 1056.053999            | 29.209352             | 7.731898              |
| 1071.251761            | 7.990542              | 2.145586              |
| 1095.093860            | 20.521915             | 5.633098              |
| 1099.367426            | 3.412609              | 0.940389              |
| 1112.946573            | 25.278622             | 7.051894              |
| 1116.321219            | 284.435771            | 79.588710             |
| 1133.520496            | 19.664650             | 5.587193              |
| 1160.731657            | 28.668273             | 8.340872              |
| 1192 471431            | 1.009U20<br>68.475548 | 20.496070             |
| 1238.823308            | 0.433247              | 0.134531              |
| 1239.312958            | 0.097036              | 0.030143              |
| 1258.715593            | 43.560413             | 13.743510             |
| 1267.363949            | 69.668656             | 22.131806             |
| 1303.644934            | 27.045697             | 8.837625              |

| -      |                 | Jyai Society of Chernis | 50 y 20 1 1 |        |        |         |        |
|--------|-----------------|-------------------------|-------------|--------|--------|---------|--------|
|        | 1307.137409     | 23.753891               | 7.78276     | 8      |        |         |        |
|        | 1312.843468     | 36.106757               | 11.88172    | 5      |        |         |        |
|        | 1342.623808     | 12.042024               | 4.05258     | 3      |        |         |        |
|        | 1346.188486     | 2.580708                | 0.8/080     | 9      |        |         |        |
|        | 1340.9/4218     | 41.309301               | 1 40100     | 1      |        |         |        |
|        | 1266 525257     | 4.200323                | 1.42102     | 1      |        |         |        |
|        | 1393 943007     | 38 042111               | 13 29191    | д<br>1 |        |         |        |
|        | 1399 405824     | 39 262588               | 13 77211    | 6      |        |         |        |
|        | 1401.699637     | 21.689597               | 7.62051     | 8      |        |         |        |
|        | 1405.466768     | 67.253098               | 23.69250    | 3      |        |         |        |
|        | 1424.920235     | 49.066802               | 17.52493    | 3      |        |         |        |
|        | 1430.257600     | 35.850528               | 12.85250    | 8      |        |         |        |
|        | 1437.288543     | 133.299809              | 48.02325    | 1      |        |         |        |
|        | 1440.157193     | 14.022657               | 5.06195     | 5      |        |         |        |
|        | 1445.988154     | 46.426845               | 16.82720    | 5      |        |         |        |
|        | 1450.911235     | 50.519796               | 18.37301    | 8      |        |         |        |
|        | 1457.162216     | 188.516788              | 68.85508    | 3      |        |         |        |
|        | 1461.099127     | 6.153880                | 2.25375     | 5      |        |         |        |
|        | 1474.866947     | 78.594555               | 29.05516    | 7      |        |         |        |
|        | 1484.287308     | 173.049772              | 64.38238    | 7      |        |         |        |
|        | 1556.590050     | 8.265270                | 3.22484     | 9      |        |         |        |
|        | 1590.504684     | 27.861589               | 11.10756    | 6      |        |         |        |
|        | 2902.412061     | 44.361287               | 32.2/314    | 4      |        |         |        |
|        | 2918.04/663     | 40.150652               | 29.36/23    | 5      |        |         |        |
|        | 3031.207910     | 7 497197                | 4.10913     | 5      |        |         |        |
|        | 3074 832238     | 0 696576                | 0 53686     | 9      |        |         |        |
|        | 3085 079564     | 9 146450                | 7 07289     | 2      |        |         |        |
|        | 3129.652405     | 1.692001                | 1.32731     | 8      |        |         |        |
|        | 3136.681773     | 6.749017                | 5.30626     | 6      |        |         |        |
|        | 3137.646914     | 2.468230                | 1.94118     | 8      |        |         |        |
|        | 3141.469017     | 1.626270                | 1.28057     | 1      |        |         |        |
|        | 3146.508992     | 9.317294                | 7.34846     | 9      |        |         |        |
|        | 3154.255406     | 24.903184               | 19.68927    | 8      |        |         |        |
|        | 3170.393532     | 0.643652                | 0.51149     | 6      |        |         |        |
|        | 3171.610669     | 2.471059                | 1.96445     | 0      |        |         |        |
|        | 3172.024151     | 2.564924                | 2.03933     | 7      |        |         |        |
|        | 3176.232026     | 3.170508                | 2.52417     | 3      |        |         |        |
|        | 3179.095730     | 3.699922                | 2.94831     | 8      |        |         |        |
|        | 3183.068443     | 17.634476               | 14.06975    | 7      |        |         |        |
|        | 3184.348827     | 34.304469               | 27.38100    | 7      |        |         |        |
|        | 3185.483817     | 19.298573               | 15.40915    | 0      |        |         |        |
|        | 3187.892114     | 1/.0/010/               | 13.64011    | 2      |        |         |        |
|        | 3196.803901     | 4.930/18                | 5.95097     | /      |        |         |        |
|        | 3197.752004     | /.562543                | 6.06164     | 8      |        |         |        |
| Temp   |                 |                         |             | Transl | Rotat  | Vibrat  | Tota   |
| 298 15 | Entropy (cal/m  | )le-K).                 |             | 45 716 | 36 317 | 90 560  | 172 50 |
| 200.10 | Internal Energy | v (Kcal/mole):          |             | 0.889  | 0.889  | 260.721 | 262.49 |
|        | incornar bilerg | Nost Coppoints (as)/m   | olo V).     | 2 001  | 2 001  | 05 000  | 101 95 |

# TS2-III

Geometry CYCLE 16

Energy gradients wrt nuclear displacements

| Atom          | Cartes:<br>X | ian (a.u./a<br>Y | angstrom)<br>Z |
|---------------|--------------|------------------|----------------|
| 1 C           | 0.000039     | -0.000012        | 0.000001       |
| 2 H           | -0.000018    | -0.000006        | -0.000033      |
| 3 C           | 0.000084     | 0.000051         | 0.000126       |
| 4 H           | -0.000027    | -0.000003        | -0.000036      |
| 5 C           | -0.000093    | -0.000046        | -0.000116      |
| 6 H           | 0.000007     | 0.000018         | 0.000011       |
| 7 0           | 0.000063     | 0.000004         | 0.000050       |
| 8 H           | -0.000008    | 0.000016         | 0.000012       |
| 10 C          | -0.000020    | -0.000041        | -0.000030      |
| 10 C          | -0.000020    | 0.000256         | -0.000381      |
| 12 C          | 0.000669     | -0.000094        | -0.000003      |
| 13 H          | -0.000095    | -0.000003        | 0.000030       |
| 14 C          | 0.000167     | -0.000595        | 0.000317       |
| 15 N          | -0.000041    | 0.000124         | 0.000131       |
| 16 C          | -0.000344    | 0.000286         | 0.000030       |
| 17 H          | 0.000073     | -0.000107        | -0.000006      |
| 18 C          | 0.000246     | 0.000295         | -0.000059      |
| 19 H          | -0.000040    | -0.000021        | 0.000035       |
| 20 Cl         | -0.000059    | -0.000028        | 0.000000       |
| 21 C          | 0.000026     | 0.000026         | -0.000022      |
| 22 C          | -0.000043    | -0.000014        | -0.000008      |
| 23 C          | -0.000044    | 0.000010         | -0.000046      |
| 24 C          | 0.000008     | 0.000004         | -0.000017      |
| 25 0          | -0.000007    | -0.000004        | -0.000048      |
| 20 H<br>27 U  | -0.000003    | -0.000004        | -0.000008      |
| 27 II<br>28 H | 0.0000011    | 0.0000011        | 0.000003       |
| 29 H          | -0.000008    | -0.000009        | -0.000010      |
| 30 H          | 0.000003     | -0.000004        | -0.000005      |
| 31 N          | -0.000105    | -0.000056        | 0.000016       |
| 32 Ir         | 0.000239     | 0.000048         | 0.000159       |
| 33 C          | 0.000014     | -0.000078        | -0.000078      |
| 34 H          | -0.000001    | 0.000029         | 0.000014       |
| 35 H          | 0.000009     | -0.000011        | -0.000013      |
| 36 H          | 0.00000      | 0.000009         | -0.000018      |
| 37 C          | -0.000015    | 0.000069         | -0.000030      |
| 38 H          | 0.000006     | 0.000009         | 0.000001       |
| 39 H          | 0.000026     | -0.000025        | 0.000037       |
| 40 H          | 0.000010     | -0.000027        | 0.000019       |
| 41 II<br>42 C | -0.000910    | -0.000181        | -0.000401      |
| 43 C          | 0.0000132    | 0.000025         | 0.000122       |
| 44 C          | 0.000040     | 0.000140         | 0.000078       |
| 45 C          | 0.000060     | 0.000103         | -0.000026      |
| 46 C          | -0.000011    | -0.000012        | 0.000052       |
| 47 H          | -0.000002    | -0.000006        | -0.000006      |
| 48 H          | 0.000021     | -0.000005        | 0.000004       |
| 49 H          | -0.000005    | -0.000035        | 0.000030       |
| 50 H          | -0.000036    | 0.000035         | 0.000019       |
| 51 H          | -0.000006    | -0.000017        | 0.000011       |
|               |              |                  |                |
| Geometry Co   | nvergence a  | after Step       | 16             |
|               |              |                  |                |
| current ene   | rgy          |                  |                |

| current energy           | -11.0       | )8201986 Hartre | ∋ |
|--------------------------|-------------|-----------------|---|
| energy change            | -0.00000262 | 0.00100000      | Т |
| constrained gradient max | 0.00091559  | 0.00100000      | Т |
| constrained gradient rms | 0.00013819  | 0.00066667      | Т |
| gradient max             | 0.00091559  |                 |   |
| gradient rms             | 0.00013819  |                 |   |
| cart. step max           | 0.00276863  | 0.01000000      | Т |
| cart. step rms           | 0.00050927  | 0.00666667      | Т |
|                          |             |                 |   |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)  $% \left( {{{\left( {{{{{{\rm{B}}}}} \right)}_{{{\rm{B}}}}}} \right)} \right)$ 

| Electrostatic Energy:           | -10.852099643989787 | -295.3007 | -6809.80 | -28492.18 |
|---------------------------------|---------------------|-----------|----------|-----------|
| Kinetic Energy:                 | 13.381819517948202  | 364.1378  | 8397.22  | 35133.96  |
| Coulomb (Steric+OrbInt) Energy: | -3.127108870052638  | -85.0930  | -1962.29 | -8210.22  |
| XC Energy:                      | -10.484631057469914 | -285.3013 | -6579.21 | -27527.39 |
| Total Bonding Energy:           | -11.082020053564136 | -301.5571 | -6954.07 | -29095.84 |

List of All Frequencies:

| Frequency<br>cm-1 | Dipole Strength<br>1e-40 esu2 cm2 | Absorption Intensity (degeneracy not counted) km/mole |
|-------------------|-----------------------------------|-------------------------------------------------------|
|                   |                                   |                                                       |
| -100.783642       | 27.367006                         | -0.691346                                             |
| 20.000004         | 51.270550                         | 0.007700                                              |

| Supplementary Material     | (ESI) for Chemical Co   | ommunications         |
|----------------------------|-------------------------|-----------------------|
| This journal is (c) The Ro | oyal Society of Chemi   | stry 2011             |
| 38.239149                  | 41.220668               | 0.395095              |
| 62.449388                  | 24.122456               | 0.377596              |
| 73.265571                  | 74.532358               | 1.368746              |
| 88.202539                  | 70.572577               | 1.560253              |
| 107.886003                 | 48.411914               | 1.309168              |
| 117.337783                 | 199.583793              | 5.870042              |
| 124.855384                 | 56.130345<br>148 890687 | 1.756641              |
| 150.474844                 | 155.495245              | 5.864879              |
| 174.024040                 | 76.668737               | 3.344303              |
| 209.85/266<br>219.516405   | 34.935567<br>20.323830  | 1 118280              |
| 220.909632                 | 23.966595               | 1.327086              |
| 233.290646                 | 192.065044              | 11.231137             |
| 258.479819                 | 26.367492<br>64.947718  | 4.207931              |
| 265.012323                 | 74.730008               | 4.964085              |
| 295.032512                 | 79.946748               | 5.912195              |
| 323.398894                 | 99.118503               | 8.034731              |
| 324.840645                 | 29.991526               | 2.442008              |
| 340.073238                 | 61.752515<br>54 999169  | 5.263870              |
| 351.762459                 | 177.880868              | 15.683999             |
| 361.965714                 | 20.709374               | 1.878938              |
| 365.012179<br>385.242963   | 167.696930<br>54.693754 | 15.343009<br>5 281418 |
| 404.996175                 | 72.260901               | 7.335545              |
| 435.946489                 | 58.811371               | 6.426471              |
| 437.692953                 | 2 788329                | 1/.343238             |
| 506.972903                 | 37.864434               | 4.811653              |
| 516.246560                 | 178.363129              | 23.080240             |
| 546.093562                 | 2.8/296/<br>5.707425    | 0.781241              |
| 551.341955                 | 28.209717               | 3.898503              |
| 556.875679                 | 73.666982               | 10.282748             |
| 610.183744                 | 68.654035               | 10.500374             |
| 640.218802                 | 6.905763                | 1.108200              |
| 659.524780                 | 2.068950                | 0.342026              |
| 718.276162                 | 32.585936               | 5.866779              |
| 729.483919                 | 120.554876              | 22.043400             |
| 762.078282                 | 218.635127              | 41.763568             |
| 810.601855                 | 66.820424               | 13.576721             |
| 817.038660                 | 13.414667               | 2.747265              |
| 818.285831<br>820.282126   | /./144/3                | 1.582302              |
| 833.215492                 | 184.017036              | 38.432040             |
| 844.631668                 | 106.272883              | 22.499242             |
| 855.126078                 | 55.010834               | 47.957178             |
| 857.324247                 | 95.298723               | 20.479071             |
| 861.005044                 | 62.090822               | 13.400197             |
| 879.633829                 | 26.310214               | 5.801020              |
| 907.797951                 | 48.773086               | 11.098071             |
| 912.202820<br>915 634278   | 48.878940               | 11.176125             |
| 916.356745                 | 14.436801               | 3.315993              |
| 920.904528                 | 3.766199                | 0.869352              |
| 925.058918<br>931.857757   | 0.824672                | 0.192623              |
| 938.467388                 | 0.215841                | 0.050773              |
| 961.799008                 | 0.083570                | 0.020147              |
| 990.806300                 | 21.440857               | 5.324870              |
| 994.166699                 | 48.981388               | 12.205860             |
| 995.332716                 | 28.875779               | 7.204105              |
| 1006.171439                | 38.478119               | 9.704293              |
| 1024.888527                | 54.080394               | 13.892952             |
| 1030.768772                | 61.839738               | 15.977431             |
| 1053.623758                | 4.767970                | 1.259207              |
| 1054.129876                | 4.024501                | 1.063370              |
| 1055.111544                | 29.933544               | 7.935650              |
| 1074.182395                | 1.014509                | 0.273157              |
| 1086.560231                | 17.930213               | 4.883344              |
| 1100.983623                | 5.743826<br>6.513931    | 1.797637              |
| 1111.530411                | 16.413437               | 4.572976              |
| 1120.710816                | 297.116358              | 83.463808<br>9 148985 |
| 1168.259800                | 36.523773               | 10.695304             |
| 1172.097980                | 1.344362                | 0.394965              |
| 1195.836515<br>1239.814151 | /4.393891<br>0.146764   | 22.299091<br>0.045609 |
| 1241.682910                | 0.401635                | 0.125003              |
| 1257.132071                | 27.311774               | 8.606149              |
| 1271.008349                | /0.442365<br>6.217180   | ∠4.365016<br>1.987855 |
| 1301.371283                | 83.130162               | 27.116767             |
| 1304.884041                | 5.930661                | 1.939783              |

|        | 1308.793282           | 7.942491     | 2.605589  |          |         |        |
|--------|-----------------------|--------------|-----------|----------|---------|--------|
|        | 1342.555940           | 9.888361     | 3.327628  |          |         |        |
|        | 1346.408656           | 2.971577     | 1.002864  |          |         |        |
|        | 1347.501980           | 41.263900    | 13.937271 |          |         |        |
|        | 1349.859572           | 3.033588     | 1.026416  |          |         |        |
|        | 1365.589972           | 158.577092   | 54.279875 |          |         |        |
|        | 1393.872324           | 37.576348    | 13.128516 |          |         |        |
|        | 1400.954538           | 38.583853    | 13.549014 |          |         |        |
|        | 1402.780386           | 19.009679    | 6.684094  |          |         |        |
|        | 1405.963978           | 60.8/42/1    | 21.452901 |          |         |        |
|        | 1423.303314           | 22 912704    | 11 760170 |          |         |        |
|        | 1430.910607           | 32.813/04    | 11./091/0 |          |         |        |
|        | 1430.303103           | 24.240000    | 0.057724  |          |         |        |
|        | 1443.200009           | 69 455290    | 25 21/36/ |          |         |        |
|        | 1451 082583           | 39 412840    | 14 335338 |          |         |        |
|        | 1458 556172           | 218 375993   | 79 837352 |          |         |        |
|        | 1466.016226           | 10.128333    | 3.721815  |          |         |        |
|        | 1476.977021           | 75.732885    | 28.037308 |          |         |        |
|        | 1482.502384           | 168.020300   | 62.436022 |          |         |        |
|        | 1556.597980           | 7.418084     | 2.894318  |          |         |        |
|        | 1590.756864           | 27.829565    | 11.096558 |          |         |        |
|        | 2900.462900           | 39.576331    | 28.772719 |          |         |        |
|        | 2908.724014           | 39.811001    | 29.025765 |          |         |        |
|        | 3028.025496           | 5.998427     | 4.552763  |          |         |        |
|        | 3032.557635           | 8.110710     | 6.165183  |          |         |        |
|        | 3072.304507           | 1.076633     | 0.829106  |          |         |        |
|        | 3074.901066           | 5.906060     | 4.552051  |          |         |        |
|        | 3126.999976           | 0.972062     | 0.761903  |          |         |        |
|        | 3133.857237           | 0.995984     | 0.782365  |          |         |        |
|        | 3137.519491           | 6.261118     | 4.923981  |          |         |        |
|        | 3145.350710           | 2.471263     | 1.948346  |          |         |        |
|        | 3148.266992           | 16.821725    | 13.274561 |          |         |        |
|        | 3154.139597           | 25.40/351    | 20.08/152 |          |         |        |
|        | 3170.491461           | 0.692940     | 0.550681  |          |         |        |
|        | 2171 402010           | 2 760120     | 4.314009  |          |         |        |
|        | 3175 074070           | 2.700139     | 2.134102  |          |         |        |
|        | 2170 546220           | 3.033270     | 4.008336  |          |         |        |
|        | 3193.013/15           | 17 523368    | 13 980868 |          |         |        |
|        | 3184 208047           | 33 257110    | 26 544614 |          |         |        |
|        | 3186 213324           | 18 403287    | 14 697664 |          |         |        |
|        | 3188 058310           | 16 301822    | 13 026882 |          |         |        |
|        | 3197.316190           | 6.027960     | 4.830967  |          |         |        |
|        | 3197.833771           | 5.938008     | 4.759647  |          |         |        |
| Temp   |                       |              | Trans     | l Rotat  | Vibrat  | Tota   |
|        |                       |              |           |          |         |        |
| 298.15 | Entropy (cal/mole-K): |              |           | 6 36.295 | 89.477  | 171.48 |
|        | Internal Energy       | (Kcal/mole): | 0.88      | 9 0.889  | 260.750 | 262.52 |
|        |                       | 11+ C        |           | 1 0.001  | 05 000  | 101 04 |

# [endo-3a]2+ PBE/TZP, DZP

Geometry CYCLE 63 \_\_\_\_\_

Energy gradients wrt nuclear displacements

| Atom          | Cartes     | ian (a.u./a | angstrom)             |
|---------------|------------|-------------|-----------------------|
|               |            | I           |                       |
| 1 C           | 0.000158   | 0.000183    | -0.000085             |
| 2 H           | -0.000162  | 0.000010    | 0.000081              |
| 3 С<br>4 н    | -0.000190  | -0.000202   | -0.000128             |
| 5 C           | 0.000274   | -0.000016   | 0.000018              |
| 6 Н           | 0.000054   | 0.000023    | 0.000144              |
| 7 C           | 0.000167   | 0.000179    | 0.000044              |
| ен<br>9 С     | 0.000251   | -0.000103   | 0.000339              |
| 10 C          | 0.000104   | 0.000322    | 0.000017              |
| 11 C          | -0.000037  | -0.000588   | -0.000130             |
| 12 C          | -0.0000483 | -0.000106   | -0.000053             |
| 14 C          | -0.000506  | 0.000507    | -0.000519             |
| 15 N          | -0.000141  | -0.000011   | 0.000016              |
| 16 С<br>17 н  | -0.000189  | -0.000/58   | 0.000025              |
| 18 C          | -0.000231  | 0.000023    | 0.000289              |
| 19 H          | 0.000061   | -0.000023   | -0.000065             |
| 20 CL<br>21 C | -0.000021  | -0.000122   | -0.000155             |
| 22 C          | -0.000019  | -0.000115   | -0.000354             |
| 23 C          | 0.000169   | -0.000013   | -0.000106             |
| 24 C          | -0.000444  | 0.000257    | 0.000347              |
| 25 C<br>26 N  | 0.000284   | -0.000364   | -0.000307             |
| 27 Ir         | 0.000276   | 0.000462    | -0.000063             |
| 28 C          | -0.000041  | 0.000318    | -0.000175             |
| 29 H<br>30 H  | 0.000188   | 0.000230    | -0.000070             |
| 31 н          | 0.000236   | -0.000022   | -0.000037             |
| 32 C          | 0.000191   | -0.000150   | 0.000018              |
| 33 н<br>34 н  | -0.000113  | 0.000304    | 0.000128              |
| 35 н          | -0.000392  | -0.000080   | 0.00003               |
| 36 Ir         | 0.000875   | 0.000065    | 0.000510              |
| 37 C<br>38 C  | -0.000187  | -0.000232   | -0.000134             |
| 39 C          | -0.000001  | -0.000350   | -0.000205             |
| 40 C          | -0.000067  | -0.000245   | -0.000079             |
| 41 C<br>42 C  | -0.000432  | -0.0000278  | -0.000185             |
| 43 H          | 0.000182   | -0.000006   | -0.000132             |
| 44 H          | 0.000141   | 0.000166    | 0.000016              |
| 45 H<br>46 C  | -0.000079  | 0.000115    | 0.000120              |
| 47 H          | 0.00000    | -0.000031   | -0.000011             |
| 48 H          | 0.000146   | -0.000046   | -0.000105             |
| 49 H<br>50 C  | 0.000193   | -0.000124   | -0.000015             |
| 51 H          | -0.000028  | 0.000064    | 0.000020              |
| 52 H          | -0.000059  | -0.000139   | 0.000069              |
| 54 C          | 0.000176   | -0.000115   | -0.000014             |
| 55 H          | 0.000065   | -0.000059   | -0.000049             |
| 56 H          | -0.000127  | 0.000145    | -0.000011             |
| 57 H<br>58 C  | -0.000180  | -0.000162   | 0.000135              |
| 59 н          | 0.000141   | 0.000042    | -0.000009             |
| 60 H          | -0.000002  | -0.000014   | -0.000053             |
| 62 C          | 0.000268   | -0.000047   | 0.000154              |
| 63 H          | 0.000081   | 0.000071    | -0.000089             |
| 64 H          | -0.000346  | 0.000163    | 0.000087              |
| 65 H          | -0.000040  | 0.000218    | 0.000138              |
| 67 H          | -0.000031  | -0.000150   | -0.000082             |
| 68 H          | 0.000089   | -0.000036   | -0.000090             |
| юун<br>70 С   | -0.000057  | -0.000127   | 0.000123              |
| 71 H          | 0.000156   | 0.000281    | 0.000026              |
| 72 H          | 0.000027   | -0.000070   | 0.000039              |
| 13 H<br>74 C  | 0.000130   | -0.000057   | -0.000092             |
| 75 H          | -0.000152  | 0.000027    | 0.000021              |
| 76 H          | -0.000037  | 0.000042    | -0.000017             |
| 78 С          | 0.000248   | -0.000125   | -0.000133<br>0.000154 |
| 79 H          | -0.000007  | -0.000020   | 0.000045              |
| 80 H          | -0.000231  | 0.000059    | 0.000011              |
| н 18<br>      | 0.0000/9   | 0.000090    | -0.000149             |

\_\_\_\_\_ Geometry Convergence after Step 63
| current energy           | -17.60     | 126000 Hartree |   |
|--------------------------|------------|----------------|---|
| abs of energy change     | 0.00012899 | 0.00100000     | Т |
| constrained gradient max | 0.00087516 | 0.00100000     | Т |
| constrained gradient rms | 0.00019665 | 0.00066667     | Т |
| gradient max             | 0.00087516 |                |   |
| gradient rms             | 0.00019665 |                |   |
| cart. step max           | 0.00652286 | 0.01000000     | Т |
| cart. step rms           | 0.00219634 | 0.00666667     | Т |
|                          |            |                |   |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:           | -14.969080433309829 | -407.3294 | -9393.24  | -39301.32 |
|---------------------------------|---------------------|-----------|-----------|-----------|
| Kinetic Energy:                 | 19.527067825845677  | 531.3586  | 12253.42  | 51268.31  |
| Coulomb (Steric+OrbInt) Energy: | -5.683039233298416  | -154.6434 | -3566.16  | -14920.82 |
| XC Energy:                      | -16.276795270827705 | -442.9141 | -10213.84 | -42734.72 |
| Solvation:                      | -0.199412991870775  | -5.4263   | -125.13   | -523.56   |
| Total Bonding Energy:           | -17.601260103461048 | -478.9547 | -11044.96 | -46212.10 |

List of All Frequencies:

## Intensities

| Freq           | quency I         | Dipole Str       | ength      | Absorption | Intensity | (degeneracy | not | counted) |
|----------------|------------------|------------------|------------|------------|-----------|-------------|-----|----------|
| Cm             | n-1              | 1e-40 esu:       | 2 cm2      | km/mole    |           |             |     |          |
| 3.7            | 49375            | 0.000            | 000        | 0.00000    |           |             |     |          |
| 15.1           | 96128            | 0.000            | 000        | 0.000000   |           |             |     |          |
| 38.4           | 156905           | 299.451          | 546        | 2.886550   |           |             |     |          |
| 40.7           | 68341            | 380.094          | 194        | 3.884120   |           |             |     |          |
| 49.3           | 350060           | 249.030          | 199        | 3.080479   |           |             |     |          |
| 61.4           | 150333           | 113.073          | 548        | 1.741660   |           |             |     |          |
| /5.8           | 325454           | 68.348<br>74 275 | 124        | 1.299037   |           |             |     |          |
| 83 3           | 303635           | 289 603          | 159        | 6 047081   |           |             |     |          |
| 85.1           | 40979            | 203.464          | 507        | 4.342155   |           |             |     |          |
| 92.9           | 975452           | 149.575          | 408        | 3.485833   |           |             |     |          |
| 94.3           | 360766           | 5.594            | 978        | 0.132333   |           |             |     |          |
| 109.4          | 139614           | 33.664           | 512        | 0.923477   |           |             |     |          |
| 111.6          | 560142           | 287.902          | 954        | 8.057909   |           |             |     |          |
| 11/.2          | 264140           | 54.283           | 014<br>010 | 1.595553   |           |             |     |          |
| 121 0          | 305344           | 16 918           | 270        | 0.219730   |           |             |     |          |
| 122.0          | 80109            | 157.046          | 580        | 4.805646   |           |             |     |          |
| 124.4          | 13130            | 24.006           | 355        | 0.748636   |           |             |     |          |
| 127.4          | 189269           | 21.590           | 083        | 0.689932   |           |             |     |          |
| 130.7          | 52562            | 17.556           | 281        | 0.575388   |           |             |     |          |
| 136.6          | 556219           | 115.413          | 221        | 3.953330   |           |             |     |          |
| 146.0          | 085200           | 85.251           | /53        | 3.121674   |           |             |     |          |
| 147.0          | 80026            | 310 200          | 155        | 4.103344   |           |             |     |          |
| 152.2          | 23917            | 42.318           | 159        | 1.614681   |           |             |     |          |
| 153.6          | 557284           | 294.180          | 758        | 11.330406  |           |             |     |          |
| 157.0          | 57206            | 147.664          | 275        | 5.813148   |           |             |     |          |
| 160.5          | 556320           | 248.421          | 940        | 9.997592   |           |             |     |          |
| 162.9          | 917314           | 53.010           | 448        | 2.164745   |           |             |     |          |
| 178.6          | 508634           | 387.726          | 579        | 17.358261  |           |             |     |          |
| 189.3          | 13037            | 457.321          | 434<br>340 | 21.706898  |           |             |     |          |
| 201.5          | 578079           | 796.425          | 922        | 40.240814  |           |             |     |          |
| 220.6          | 506195           | 435.195          | 584        | 24.064695  |           |             |     |          |
| 242.1          | 38795            | 127.829          | 819        | 7.758444   |           |             |     |          |
| 246.5          | 61413            | 566.730          | 965        | 35.025160  |           |             |     |          |
| 268.3          | 354574           | 25.916           | 779        | 1.743284   |           |             |     |          |
| 269.9          | 951197           | 19.391           | 267        | 1.312108   |           |             |     |          |
| 2/1.2          | 231119<br>247586 | 233 1/5          | /UZ        | 16 231405  |           |             |     |          |
| 279.6          | 500591           | 70.760           | 501        | 4.959155   |           |             |     |          |
| 281.8          | 303920           | 44.475           | 495        | 3.141564   |           |             |     |          |
| 284.3          | 325114           | 74.863           | 360        | 5.335346   |           |             |     |          |
| 293.5          | 525197           | 54.413           | 553        | 4.003414   |           |             |     |          |
| 295.5          | 591157           | 158.960          | 347        | 11.777678  |           |             |     |          |
| 298.0          | )4'/886          | 49.308           | )78        | 3.683682   |           |             |     |          |
| 300.3          | 196561           | 224 785          | 536<br>791 | 18 565080  |           |             |     |          |
| 336.7          | 758600           | 50.369           | 319        | 4.251702   |           |             |     |          |
| 362.9          | 913947           | 54.508           | 718        | 4.958470   |           |             |     |          |
| 371.6          | 550022           | 7.059            | 506        | 0.657647   |           |             |     |          |
| 407.7          | 83022            | 132.418          | 534        | 13.534939  |           |             |     |          |
| 410.9          | 989165           | 17.120           | 930        | 1.763745   |           |             |     |          |
| 425.0          | 95827            | 0.884            | 567        | 0.094253   |           |             |     |          |
| 429.2          | 272334           | 74.400           | 040<br>735 | 3 707333   |           |             |     |          |
| 436.4          | 192370           | 82.306           | 767        | 9.005136   |           |             |     |          |
| 440.9          | 29536            | 38.507           | 549        | 4.255928   |           |             |     |          |
| 465.2          | 256484           | 55.331           | 535        | 6.452726   |           |             |     |          |
| 484.4          | 41730            | 134.338          | 298        | 16.312460  |           |             |     |          |
| 511.0          | )15439           | 454.563          | 09         | 58.224556  |           |             |     |          |
| 521.0          | 100///           | 5.643            | 125<br>594 | 0./3/0/1   |           |             |     |          |
| 522.1<br>522 7 | 178539           | 21 905           | 317        | 2.870419   |           |             |     |          |
| 524.1          | 38725            | 13.358           | 110        | 1.754968   |           |             |     |          |
| 528.3          | 389337           | 144.626          | 765        | 19.154940  |           |             |     |          |

| Supplementary Material<br>This journal is (c) The Ro | (ESI) for Chemical Co<br>oyal Society of Chemi | ommunications<br>istry 2011 |
|------------------------------------------------------|------------------------------------------------|-----------------------------|
| 538.028069                                           | 0.049878                                       | 0.006726                    |
| 538.266477                                           | 3.010025                                       | 0.406112                    |
| 559.681163                                           | 110.301418                                     | 15.473903                   |
| 5/9.244993                                           | 58.125214<br>71.879602                         | 8.439271                    |
| 587 628014                                           | 235 089466                                     | 34 626909                   |
| 593.772078                                           | 8.612391                                       | 1.281804                    |
| 594.769314                                           | 2.971360                                       | 0.442978                    |
| 597.287176                                           | 9.232132                                       | 1.382176                    |
| 599.259150                                           | 135.766395                                     | 20.393184                   |
| 6/5 812790                                           | 629.355/3/<br>104 687707                       | 98.440259<br>31.515430      |
| 658.844208                                           | 63.650313                                      | 10.511419                   |
| 713.099017                                           | 27.238176                                      | 4.868621                    |
| 729.479868                                           | 382.887069                                     | 70.010323                   |
| 755.895448                                           | 452.126267                                     | 85.664235                   |
| /81.130/18                                           | 5.028909                                       | 0.984636                    |
| 785.638775                                           | 10.210403                                      | 2.010684                    |
| 786.093286                                           | 3.674286                                       | 0.723978                    |
| 788.361659                                           | 40.047771                                      | 7.913743                    |
| 842.112966                                           | 221.336395                                     | 46.719830                   |
| 858.378788                                           | 17.195674                                      | 3.699783                    |
| 908 312869                                           | 15 323167                                      | 3 488687                    |
| 928.528976                                           | 51.481500                                      | 11.981873                   |
| 930.380382                                           | 20.948644                                      | 4.885337                    |
| 931.770557                                           | 18.582053                                      | 4.339910                    |
| 932.085612                                           | 5.222980                                       | 1.220260                    |
| 932.83/366                                           | 35.235148                                      | 8.238/2/                    |
| 957.353923                                           | 1.434310                                       | 0.344186                    |
| 985.285339                                           | 723.608470                                     | 178.707892                  |
| 994.522645                                           | 123.329576                                     | 30.743973                   |
| 995.608848                                           | 228.249184                                     | 56.960796                   |
| 996.539710                                           | 648.015592<br>300 493083                       | 161.866932<br>75 142315     |
| 999.543294                                           | 218.004928                                     | 54.619283                   |
| 1000.124400                                          | 148.399718                                     | 37.201904                   |
| 1001.579071                                          | 63.949267                                      | 16.054577                   |
| 1005.024118                                          | 144.571976                                     | 36.419894                   |
| 1005.498055                                          | 38.195048                                      | 9.626454                    |
| 1009 232601                                          | 62 673588                                      | 15 854549                   |
| 1031.648153                                          | 63.551594                                      | 16.433729                   |
| 1041.688736                                          | 99.371055                                      | 25.946330                   |
| 1050.056601                                          | 43.491979                                      | 11.447218                   |
| 1056.540818                                          | /3.4006/9                                      | 19.4385/5                   |
| 1063 236445                                          | 114 223101                                     | 30 441207                   |
| 1063.610562                                          | 105.001989                                     | 27.993567                   |
| 1070.742114                                          | 6.473972                                       | 1.737536                    |
| 1082.849564                                          | 0.805633                                       | 0.218667                    |
| 1088.209577                                          | 0.518287                                       | 0.141371                    |
| 1104 086299                                          | 200 654716                                     | 55 530357                   |
| 1109.248482                                          | 3.513910                                       | 0.977007                    |
| 1137.337748                                          | 11.500828                                      | 3.278662                    |
| 1141.627888                                          | 22.232662                                      | 6.362006                    |
| 1143.641044                                          | 4.762124                                       | 1.365113                    |
| 1144.355050                                          | 6 101686                                       | 2.037030                    |
| 1159.120535                                          | 110.194191                                     | 32.015875                   |
| 1198.130313                                          | 365.707696                                     | 109.828797                  |
| 1201.509339                                          | 18.244683                                      | 5.494669                    |
| 1265.104724                                          | 42.649497                                      | 13.524414                   |
| 1304 389715                                          | 63 319145                                      | 20 702390                   |
| 1327.245438                                          | 6.237806                                       | 2.075206                    |
| 1332.733020                                          | 43.142564                                      | 14.412097                   |
| 1336.617853                                          | 10.330742                                      | 3.461121                    |
| 1338.530792                                          | 177.791871                                     | 59.651083                   |
| 1341 954917                                          | 31./048/9                                      | 10.641144                   |
| 1342.983560                                          | 2.168962                                       | 0.730131                    |
| 1351.625099                                          | 93.309120                                      | 31.612469                   |
| 1353.133945                                          | 226.412086                                     | 76.792440                   |
| 1353.822997                                          | 24.340787                                      | 8.259896                    |
| 1354.624388                                          | 101 265849                                     | 64.368638<br>34 399040      |
| 1356.537124                                          | 42.855273                                      | 14.571827                   |
| 1373.211923                                          | 31.450594                                      | 10.825413                   |
| 1375.473188                                          | 1.174415                                       | 0.404904                    |
| 1375.955860                                          | 4.609283                                       | 1.589703                    |
| 13/8.950254<br>1387 118386                           | 7.620813<br>20.001763                          | 2.634074                    |
| 1389.575757                                          | 145.272323                                     | 50.599145                   |
| 1390.690297                                          | 6.975126                                       | 2.431423                    |
| 1392.340316                                          | 26.367991                                      | 9.202387                    |
| 1395.600217                                          | 112.873289                                     | 39.484830                   |
| 1405.439505                                          | 12.197125                                      | 4.296825                    |
| 1405.984935                                          | 230.505970                                     | 81.234575                   |
| 1406.574037                                          | 141.327396                                     | 49.827262                   |
| 1410.886423                                          | 209.542644                                     | 74.104152                   |
| 1412.028088                                          | 41.119537                                      | 14.553573                   |
| 1413.499001<br>1414 754199                           | 43.4//0/9 18.245984                            | 10.112019<br>6.470329       |
| 1417.322815                                          | 7.989660                                       | 2.838410                    |

| Supplementary Material     | (ESI) for Chemical C | ommunications          |
|----------------------------|----------------------|------------------------|
| This journal is (c) The Ro | Syal Society of Chem | isuy 2011              |
| 1418.408907                | 19.578281            | 6.960719               |
| 1423.260883                | 10.730070            | 3.827940               |
| 1425.008706                | 30.423244            | 10.866786              |
| 1426.057280                | 29.339824            | 10.487514              |
| 1427.101466                | 95.693635            | 34.230715              |
| 1428.549724                | 117.589859           | 42.105934              |
| 1429.478045                | 9.099886             | 3.260555               |
| 1430.291505                | 154.151420           | 55.264998              |
| 1433.590038                | 36.991840            | 13.292571              |
| 1435.487169                | 201.506535           | 72.504760              |
| 1437.103791                | 220.633562           | 79.476326              |
| 1441.982940                | 37.052489            | 13.392313              |
| 1443.585213                | 145.033876           | 52.479531              |
| 1445 118517                | 125 890859           | 45 601144              |
| 1446 192427                | 174 103190           | 63 111846              |
| 1447 190514                | 30 694648            | 11 134390              |
| 1455 501508                | 362 472803           | 132 241009             |
| 1455.501500                | 72 382116            | 26 443969              |
| 1457 538334                | 378 662433           | 138 340798             |
| 1459 830431                | 145 619742           | 53 28//81              |
| 1405 000402                | 265 472710           | 00 001120              |
| 1400.200705                | 203.472713           | 50.001120<br>00 00C141 |
| 1652 206160                | 50 040177            | 22.020141              |
| 1553.390109                | J0.0401/7            | 22.910404              |
| 1502.040343                | 2139.44803/          | 040.10091/             |
| 1592.948343                | 50.740247            | 22.655561              |
| 2957.906924                | 5.388201             | 3.994904               |
| 2960.646336                | 5.494928             | 4.077807               |
| 2901.991391                | 12 421440            | 4.13/13/               |
| 2902.134119                | 12.431440            | 9.230110               |
| 2903.302341                | 2 026457             | 2.050850               |
| 2304.443344                | 2.920437             | 4 507202               |
| 2903.792343                | 0.104150             | 4.397293               |
| 2967.332302                | 2 382004             | 1 772654               |
| 2967 793573                | 1 830308             | 1 361558               |
| 2969 392954                | 21 802944            | 16 227846              |
| 2973 957211                | 17 072270            | 12 726356              |
| 3038 887772                | 5 038276             | 3 937732               |
| 3039 456866                | 2 020501             | 1 539335               |
| 3041 795603                | 23 562080            | 17 964773              |
| 3042 426351                | 7 373274             | 5 622876               |
| 3043 055777                | 2 784464             | 2 123878               |
| 3043.214456                | 1.160908             | 0.885541               |
| 3047.116995                | 24.066274            | 18.381293              |
| 3050.208206                | 9.807866             | 7.498633               |
| 3051 222026                | 1 980685             | 1 514842               |
| 3052.802713                | 9.046002             | 6.922030               |
| 3064.437281                | 3,434130             | 2.637822               |
| 3066.278581                | 4.438468             | 3.411322               |
| 3071.336576                | 1.779116             | 1.369650               |
| 3072.464263                | 12.816208            | 9.870166               |
| 3072.589308                | 7.827316             | 6.028308               |
| 3074.116986                | 6.374611             | 4,911929               |
| 3074.728253                | 1.272476             | 0.980696               |
| 3077.754111                | 1.167429             | 0.900621               |
| 3079.365291                | 21.733792            | 16.775474              |
| 3085.244171                | 1.307400             | 1.011058               |
| 3087.003870                | 0.326540             | 0.252669               |
| 3089.250803                | 0.520582             | 0.403107               |
| 3105.496720                | 0.352636             | 0.274495               |
| 3111.762038                | 2.149575             | 1.676629               |
| 3134.051703                | 0.553879             | 0.435110               |
| 3142.641061                | 9.161868             | 7.217003               |
| 3146.058426                | 2.477320             | 1.953561               |
| 3147.590058                | 2.668783             | 2.105569               |
| 3150.272847                | 50.420064            | 39.813434              |
| 3161.359704                | 9.733546             | 7.712995               |
| 3165.347601                | 52.480103            | 41.638412              |

| Temp   |                                             | Transl | Rotat  | Vibrat  | Total   |
|--------|---------------------------------------------|--------|--------|---------|---------|
|        |                                             |        |        |         |         |
| 298.15 | Entropy (cal/mole-K):                       | 46.228 | 37.575 | 154.042 | 237.845 |
|        | Internal Energy (Kcal/mole):                | 0.889  | 0.889  | 438.018 | 439.795 |
|        | Constant Volume Heat Capacity (cal/mole-K): | 2.981  | 2.981  | 152.958 | 158.919 |

TS1-[endo-3a]2+

Geometry CYCLE 8

Energy gradients wrt nuclear displacements

| Atom          | Cartes:<br>X | ian (a.u./a<br>Y | angstrom)<br>Z |
|---------------|--------------|------------------|----------------|
| 1 C           | -0.000105    | -0.000110        | -0.000192      |
| 2 H           | -0.000030    | 0.000098         | 0.000112       |
| 3 C           | 0.000021     | 0.000043         | 0.000072       |
| 4 H           | 0.000010     | -0.00001/        | 0.000002       |
| 5 0           | -0.000119    | -0.000058        | -0.000011      |
| 7 0           | -0.000027    | 0.000001         | -0.000027      |
| 9 U           | 0.000023     | 0.000110         | -0.0000120     |
| 9 C           | -0 000217    | -0 000024        | -0.000533      |
| 10 C          | -0.000160    | -0.000011        | -0.000139      |
| 11 C          | -0.000148    | -0.000120        | 0.000183       |
| 12 C          | 0.000166     | -0.000191        | 0.000515       |
| 13 H          | 0.000000     | -0.000076        | -0.000028      |
| 14 C          | -0.000089    | 0.000515         | 0.000055       |
| 15 N          | -0.000417    | -0.000659        | -0.000459      |
| 16 C          | -0.000015    | -0.000182        | -0.000205      |
| 17 H          | -0.000007    | 0.000029         | -0.000030      |
| 18 C          | 0.000123     | 0.000095         | -0.000112      |
| 19 H          | -0.000100    | -0.000022        | 0.000143       |
| 20 Cl         | 0.000041     | -0.000117        | -0.000030      |
| 21 C          | -0.000138    | -0.000052        | -0.000187      |
| 22 C          | -0.000060    | -0.000121        | -0.000050      |
| 23 C          | -0.000095    | 0.000005         | -0.000269      |
| 24 C<br>25 C  | -0.000075    | -0.000090        | 0.000110       |
| 25 C          | -0.000040    | -0.000213        | 0.000188       |
| 20 N<br>27 Tr | 0.000112     | 0.000271         | 0.0000000      |
| 28 C          | 0.000075     | -0.000375        | 0.000282       |
| 29 H          | -0.000066    | 0.000069         | 0.000017       |
| 30 H          | -0.000040    | 0.000063         | 0.000012       |
| 31 Н          | -0.000032    | -0.000007        | -0.000056      |
| 32 C          | 0.000452     | 0.000497         | -0.000040      |
| 33 H          | -0.000071    | -0.000002        | -0.000074      |
| 34 H          | -0.000089    | 0.000054         | 0.000096       |
| 35 н          | 0.000024     | 0.000035         | 0.000074       |
| 36 Ir         | 0.000483     | -0.000198        | -0.000001      |
| 37 C          | 0.000002     | 0.000025         | 0.000174       |

| Supple       | ementary N    | laterial (ES | I) for Chem | ical Communications |
|--------------|---------------|--------------|-------------|---------------------|
| This jo      | ournal is (c) | The Roya     | Society of  | Chemistry 2011      |
| 38 C         | -0.000138     | 0.000069     | 0.000159    | 2                   |
| 39 C         | 0.000102      | 0.000021     | 0.000024    |                     |
| 40 C         | -0.000191     | 0.000061     | -0.000412   |                     |
| 41 C         | -0.000088     | -0.000081    | 0.000081    |                     |
| 42 C         | 0.000138      | -0.000008    | 0.000101    |                     |
| 43 H         | -0.000017     | 0.000005     | -0.000117   |                     |
| 44 H         | 0.000052      | 0.000166     | 0.000070    |                     |
| 45 H         | -0.000042     | -0.000053    | 0.000090    |                     |
| 46 C         | 0.000105      | -0.000098    | -0.000085   |                     |
| 47 H         | 0.000029      | -0.000006    | -0.000013   |                     |
| 48 H         | -0.000007     | -0.000032    | 0.000061    |                     |
| 49 H         | -0.000071     | 0.000101     | 0.000000    |                     |
| 50 C         | -0.000020     | -0.000052    | -0.000008   |                     |
| 51 H         | -0.000015     | 0.000025     | -0.000034   |                     |
| 52 H         | 0.000026      | -0.000013    | -0.000011   |                     |
| 53 H         | 0.000005      | 0.000003     | 0.000026    |                     |
| 54 C         | 0.000001      | 0.000060     | -0.000028   |                     |
| 55 H         | -0.000021     | -0.000043    | 0.000026    |                     |
| 56 H         | 0.000006      | 0.000004     | -0.000007   |                     |
| 57 H         | -0.000049     | 0.000022     | -0.000046   |                     |
| 50 U         | 0.000002      | -0.000023    | 0.000087    |                     |
| 59 H         | 0.000005      | 0.000023     | -0.000037   |                     |
| 60 Л<br>61 Ц | -0.000032     | -0.000047    | -0.000028   |                     |
| 62 C         | -0.000024     | 0.000035     | -0.000012   |                     |
| 63 H         | 0.0000177     | -0 000019    | -0.000024   |                     |
| 64 H         | 0.000027      | 0 000040     | -0 000024   |                     |
| 65 H         | 0.000119      | 0.000008     | 0.000003    |                     |
| 66 C         | -0.000052     | 0.000001     | -0.000042   |                     |
| 67 H         | -0.000048     | -0.000024    | 0.000008    |                     |
| 68 H         | 0.000083      | 0.000046     | 0.000028    |                     |
| 69 H         | -0.000037     | 0.000062     | 0.000014    |                     |
| 70 C         | 0.000225      | -0.000005    | 0.000013    |                     |
| 71 H         | -0.000189     | -0.000079    | -0.000085   |                     |
| 72 H         | -0.000028     | -0.000037    | 0.000004    |                     |
| 73 H         | -0.000042     | 0.000064     | -0.000188   |                     |
| 74 C         | 0.000057      | -0.000088    | 0.000055    |                     |
| 75 H         | 0.000014      | 0.000046     | -0.000078   |                     |
| 76 H         | 0.000042      | -0.000006    | -0.000010   |                     |
| 77 H         | -0.000001     | 0.000017     | -0.000020   |                     |
| 78 C         | -0.000073     | -0.000175    | 0.000039    |                     |
| 79 H         | 0.000001      | -0.000025    | -0.000035   |                     |

80 H 0.00003 0.00002 -0.00001 81 H -0.000065 -0.000020 -0.000001

Geometry Convergence after Step 8

| current energy           | -17.571    | 104584 Hartree |   |
|--------------------------|------------|----------------|---|
| abs of energy change     | 0.00017250 | 0.00100000     | Т |
| constrained gradient max | 0.00096464 | 0.00100000     | Т |
| constrained gradient rms | 0.00016155 | 0.00066667     | Т |
| gradient max             | 0.00096464 |                |   |
| gradient rms             | 0.00016155 |                |   |
| cart. step max           | 0.00343365 | 0.01000000     | Т |
| cart. step rms           | 0.00083448 | 0.00666667     | Т |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)  $% \left( \left( {{{\left( {{{\left( {{{\left( {{{c}}} \right)}} \right.} \right)}} \right)} \right)$ 

| Electrostatic Energy:           | -14.925141864459953 | -406.1338 | -9365.67  | -39185.95 |
|---------------------------------|---------------------|-----------|-----------|-----------|
| Kinetic Energy:                 | 19.469055468629847  | 529.7800  | 12217.02  | 51116.00  |
| Coulomb (Steric+OrbInt) Energy: | -5.667182711332075  | -154.2119 | -3556.21  | -14879.19 |
| XC Energy:                      | -16.250350020275029 | -442.1945 | -10197.25 | -42665.29 |
| Solvation:                      | -0.197427028992267  | -5.3723   | -123.89   | -518.34   |
| Total Bonding Energy:           |                     |           |           |           |

List of All Frequencies:

Intensities

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Frequency<br>cm-1 | Dipole Strength<br>1e-40 esu2 cm2 | Absorption<br>km/mole | Intensity | (degeneracy | not | counted) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|-----------------------|-----------|-------------|-----|----------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -104.854548       | 129.281384                        | -3.397828             |           |             |     |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.386652         | 99.296652                         | 0.532299              |           |             |     |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.014121         | 618.386568                        | 6.357283              |           |             |     |          |
| 49.282033       252.994535       3.125200         63.149352       152.085222       2.407321         75.363397       11.249191       0.212500         85.243995       191.238393       4.086175         89.475630       20.231611       0.453747         98.357483       249.212410       6.144056         105.492554       64.689250       1.710535         109.012874       15.997136       0.437117         113.610937       61.241191       1.743981         114.664327       61.781980       1.775694         116.043509       101.010020       2.938078         119.995430       23.369811       0.702907         123.719376       53.501554       1.659137         127.171763       100.851579       3.214782         135.475451       2.2.986292       0.780562 | 42.685782         | 411.985063                        | 4.408012              |           |             |     |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49.282033         | 252.994535                        | 3.125200              |           |             |     |          |
| 75.363397       11.249191       0.212500         85.243995       191.238393       4.086175         89.475630       20.231611       0.453747         98.357483       249.212410       6.144056         105.492554       64.689250       1.710535         109.012874       15.997136       0.437117         113.610937       61.241191       1.743981         114.664327       61.781980       1.775694         116.043509       101.010020       2.938078         113.995430       23.369811       0.702907         123.719376       53.501554       1.659137         127.171763       100.851579       3.214782         13.475451       22.986292       0.780562                                                                                                       | 63.149352         | 152.085222                        | 2.407321              |           |             |     |          |
| 85.243995       191.238393       4.086175         89.475630       20.231611       0.453747         98.357483       249.212410       6.144056         105.492554       64.689250       1.710535         109.012874       15.997136       0.437117         113.610937       61.241191       1.743981         114.664327       61.781980       1.775694         116.043509       101.010020       2.938078         119.995430       23.369811       0.702907         123.719376       53.501554       1.659137         127.171763       100.851579       3.214782         135.475451       22.986292       0.780562                                                                                                                                                       | 75.363397         | 11.249191                         | 0.212500              |           |             |     |          |
| 89.475630         20.231611         0.453747           98.357483         249.212410         6.144056           105.492554         64.689250         1.710535           109.012874         15.997136         0.437117           113.610937         61.241191         1.743981           114.664327         61.781980         1.775694           116.043509         101.010020         2.938078           119.995430         23.369811         0.702907           123.719376         53.501554         1.659137           127.171763         100.851579         3.214782           135.475451         22.986292         0.780562                                                                                                                                         | 85.243995         | 191.238393                        | 4.086175              |           |             |     |          |
| 98.357483       249.212410       6.144056         105.492554       64.689250       1.710535         109.012874       15.997136       0.437117         113.610937       61.241191       1.743981         114.664327       61.781980       1.775694         116.043509       101.010020       2.938078         119.995430       23.369811       0.702907         123.719376       53.501554       1.659137         127.171763       100.851579       3.214782         135.475451       22.986292       0.780562                                                                                                                                                                                                                                                          | 89.475630         | 20.231611                         | 0.453747              |           |             |     |          |
| 105,492554         64.689250         1.710535           109.012874         15.997136         0.437117           113.610937         61.241191         1.743981           114.664327         61.781980         1.775694           116.043509         101.010020         2.938078           119.995430         23.369811         0.702907           123.719376         53.501554         1.659137           127.171763         100.851579         3.214782           135.475451         22.986292         0.780562                                                                                                                                                                                                                                                        | 98.357483         | 249.212410                        | 6.144056              |           |             |     |          |
| 109.012874         15.997136         0.437117           113.610937         61.241191         1.743981           114.664327         61.781980         1.775694           116.043509         101.010020         2.938078           119.995430         23.369811         0.702907           123.719376         53.501554         1.659137           127.171763         100.851579         3.214782           135.475451         22.986292         0.780562                                                                                                                                                                                                                                                                                                                | 105.492554        | 64.689250                         | 1.710535              |           |             |     |          |
| 113.610937       61.241191       1.743981         114.664327       61.781980       1.775694         116.043509       101.010020       2.938078         119.995430       23.369811       0.702907         123.719376       53.501554       1.659137         127.171763       100.851579       3.214782         135.475451       22.986292       0.780562                                                                                                                                                                                                                                                                                                                                                                                                                | 109.012874        | 15.997136                         | 0.437117              |           |             |     |          |
| 114.664327       61.781980       1.775694         116.043509       101.010020       2.938078         119.995430       23.369811       0.702907         123.719376       53.501554       1.659137         127.171763       100.851579       3.214782         135.475451       22.986292       0.780562                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 113.610937        | 61.241191                         | 1.743981              |           |             |     |          |
| 116.043509         101.010020         2.938078           119.995430         23.369811         0.702907           123.719376         53.501554         1.659137           127.71763         100.851579         3.214782           135.475451         22.986292         0.780562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 114.664327        | 61.781980                         | 1.775694              |           |             |     |          |
| 119.995430         23.369811         0.702907           123.719376         53.501554         1.659137           127.171763         100.851579         3.214782           135.475451         22.986292         0.780562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116.043509        | 101.010020                        | 2.938078              |           |             |     |          |
| 123.719376         53.501554         1.659137           127.171763         100.851579         3.214782           135.475451         22.986292         0.780562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.995430        | 23.369811                         | 0.702907              |           |             |     |          |
| 127.171763         100.851579         3.214782           135.475451         22.986292         0.780562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 123.719376        | 53.501554                         | 1.659137              |           |             |     |          |
| 135.475451 22.986292 0.780562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 127.171763        | 100.851579                        | 3.214782              |           |             |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 135.475451        | 22.986292                         | 0.780562              |           |             |     |          |

| Supplementary Material   | (ESI) for Chemical Co<br>oval Society of Chemi | ommunications<br>stry 2011 |
|--------------------------|------------------------------------------------|----------------------------|
| 120, 017209              | 20 104702                                      | 1 265/1/                   |
| 147 303381               | 321 412114                                     | 11 867330                  |
| 150.498478               | 376.700548                                     | 14.210404                  |
| 153.471800               | 8.227122                                       | 0.316486                   |
| 154.572897               | 169.577611                                     | 6.570220                   |
| 154.897861               | 38.423784                                      | 1.491845                   |
| 158.176826               | 80.534149                                      | 3.193015                   |
| 168 749666               | 208.380302                                     | 0.404030<br>/ /73538       |
| 176.748538               | 421.333385                                     | 18.666366                  |
| 181.197532               | 122.324712                                     | 5.555774                   |
| 192.145250               | 104.992142                                     | 5.056669                   |
| 198.623536               | 194.625448                                     | 9.689657                   |
| 201.859259               | 444.810392                                     | 22.5061/4                  |
| 211.035708               | 199.916364                                     | 10.575048                  |
| 221.057600               | 505.762835                                     | 28.024020                  |
| 223.405977               | 56.365543                                      | 3.156360                   |
| 238.543672               | 180.454513                                     | 10.789808                  |
| 261.148383               | 18.943752                                      | 1.240028                   |
| 267.954316               | 146 309148                                     | 0.9/1915                   |
| 276.452741               | 205.939826                                     | 14.270504                  |
| 278.308718               | 107.535866                                     | 7.501675                   |
| 281.016362               | 4.469517                                       | 0.314826                   |
| 284.863304               | 29.723219                                      | 2.122318                   |
| 292.472753               | 65 423838                                      | 6.5/5841<br>/ 919330       |
| 297.384477               | 50.168218                                      | 3.739599                   |
| 299.920118               | 68.414284                                      | 5.143165                   |
| 320.398828               | 264.164881                                     | 21.215050                  |
| 333.486265               | 158.349456                                     | 13.236483                  |
| 362.103701               | 57.130413                                      | 5.185354                   |
| 394 889336               | 13.770728<br>69.731719                         | 6 902141                   |
| 404.730635               | 58.548327                                      | 5.939620                   |
| 411.900391               | 19.111221                                      | 1.973144                   |
| 427.012934               | 45.603273                                      | 4.881071                   |
| 427.775734               | 137.678981                                     | 14.762566                  |
| 430.120683               | 81.625063                                      | 8.80018/                   |
| 442.016826               | 80.943031                                      | 8.968015                   |
| 460.203676               | 324.230637                                     | 37.400913                  |
| 510.628463               | 272.624993                                     | 34.893839                  |
| 517.433304               | 197.717171                                     | 25.643473                  |
| 522.416161<br>522.813834 | 7 298494                                       | 1.446220                   |
| 523.075798               | 12.169953                                      | 1.595628                   |
| 525.182434               | 91.665839                                      | 12.066902                  |
| 538.539339               | 0.345694                                       | 0.046665                   |
| 538.794668               | 1.657119                                       | 0.223797                   |
| 579 796606               | 51 665439                                      | 7 508512                   |
| 584.060431               | 60.667856                                      | 8.881667                   |
| 591.417527               | 15.645088                                      | 2.319264                   |
| 593.722926               | 12.345435                                      | 1.837250                   |
| 596.128872               | 5.894867                                       | 0.880830                   |
| 590.041100<br>607 426690 | 23.0/022/<br>221 315577                        | 33 696433                  |
| 638.422000               | 48.861727                                      | 7.819063                   |
| 656.847015               | 49.939112                                      | 8.222107                   |
| 679.156786               | 126.714329                                     | 21.571177                  |
| 712.090070               | 54.983104                                      | 9.813914                   |
| 758 066988               | 387.417411                                     | 70.828971<br>67.846330     |
| 782.907178               | 6.175691                                       | 1.211920                   |
| 784.642038               | 1.656681                                       | 0.325828                   |
| 786.452683               | 0.976674                                       | 0.192531                   |
| 789.212132               | 24.202811                                      | 4.787818                   |
| /91.0361/9<br>857 370034 | 48./38131                                      | 9.663697                   |
| 861.741719               | 138.477033                                     | 29.911138                  |
| 907.696933               | 233.718009                                     | 53.175443                  |
| 921.709489               | 2.177338                                       | 0.503035                   |
| 927.884936               | 232.282645                                     | 54.024276                  |
| 931.015360               | 1./6/421                                       | 0.412453                   |
| 932 261149               | 58 104736                                      | 13 577731                  |
| 932.939860               | 21.251702                                      | 4.969646                   |
| 940.643723               | 11.464071                                      | 2.702975                   |
| 959.337662               | 1.385755                                       | 0.333224                   |
| 986.591325<br>990 317999 | 024.89036/<br>248 868138                       | 203.992512<br>61 779102    |
| 992.764433               | 162.882535                                     | 40.532071                  |
| 994.557686               | 753.216451                                     | 187.770708                 |
| 995.576247               | 347.752698                                     | 86.780691                  |
| 998.090305               | 106.174527                                     | 26.562457                  |
| 999.432172               | 129.165031                                     | 32.357604                  |
| 1001.240950              | 103.177089                                     | 25.894048                  |
| 1004.336434              | 35.428651                                      | 8.918913                   |
| 1005.476143              | 6.973049                                       | 1.757408                   |
| 1007.736349              | 101.365463                                     | 25.604424                  |
| 1019.140715              | 84.943503                                      | 21.699133                  |
| 1049.716582              | 24.007507                                      | 6.316801                   |
| 1057.133345              | 88.945837                                      | 23.568583                  |
| 1060.068101              | 28.482281                                      | 7.568095                   |
| 1063.341769              | 101.922771                                     | 27.165779                  |

| Supplementary Material (<br>This journal is (c) The Ro | ESI) for Chemical C<br>yal Society of Chem | ommunications<br>istry 2011 |
|--------------------------------------------------------|--------------------------------------------|-----------------------------|
| 1065.826066                                            | 116.552391                                 | 31.137633                   |
| 1071.172961                                            | 37.144739                                  | 9.973210                    |
| 1083.788888                                            | 1.239474                                   | 0.336713                    |
| 1088.521928                                            | 32.115848                                  | 8./62633                    |
| 1100.182833                                            | 0.766492                                   | 0.211374                    |
| 1111.668288                                            | 515.017063                                 | 143.507601                  |
| 1132.848603                                            | 32.884448                                  | 9.337713                    |
| 1138.289156                                            | 6.762262                                   | 1.929402                    |
| 1142.493852                                            | 10.959844                                  | 3.138602                    |
| 1146.736806                                            | 27.232596                                  | 7.827640                    |
| 1149.179839                                            | 6.203433                                   | 1.786891                    |
| 1165.045047                                            | 93.693496                                  | 27.360891                   |
| 1187.610897                                            | 195.115383                                 | 58.082293                   |
| 1255.882364                                            | 74.148816                                  | 23.341634                   |
| 1262.263578                                            | 4 919380                                   | 37.093797                   |
| 1305.370243                                            | 51.481937                                  | 16.844831                   |
| 1313.908124                                            | 33.077548                                  | 10.893724                   |
| 1316.828369                                            | 59.412807                                  | 19.610439                   |
| 1331.946863                                            | 30.956179                                  | 10.335044                   |
| 1336.808372                                            | 10.589156                                  | 3.548204                    |
| 1342 619973                                            | 25.643045                                  | 2 865189                    |
| 1351.820834                                            | 7.660063                                   | 2.595551                    |
| 1352.214226                                            | 255.404909                                 | 86.567089                   |
| 1352.751073                                            | 223.727718                                 | 75.860509                   |
| 1353.817408                                            | 95.595137                                  | 32.439486                   |
| 1354.274094                                            | 89.146/15                                  | 30.261468                   |
| 1364.310674                                            | 429.220430                                 | 146.781639                  |
| 1373.092974                                            | 46.029008                                  | 15.841986                   |
| 1375.469427                                            | 3.138811                                   | 1.082167                    |
| 1375.483070                                            | 23.309679                                  | 8.036549                    |
| 1379.133320                                            | 18.451646                                  | 6.378513                    |
| 1388 952789                                            | 13 322124                                  | 4.330203                    |
| 1390.886710                                            | 13.710909                                  | 4.780090                    |
| 1391.584232                                            | 22.002666                                  | 7.674726                    |
| 1399.492728                                            | 79.154382                                  | 27.766662                   |
| 1403.273299                                            | 14.573949                                  | 5.126224                    |
| 1407.408951                                            | 252.035221                                 | 88.911844<br>79 107036      |
| 1410.077574                                            | 38.180407                                  | 13.494650                   |
| 1411.071299                                            | 28.019108                                  | 9.910175                    |
| 1413.003371                                            | 7.546181                                   | 2.672689                    |
| 1414.199779                                            | 1.946706                                   | 0.690064                    |
| 1416.093938                                            | 10.93/169                                  | 3.8821/4                    |
| 1421.136015                                            | 60.480236                                  | 21.544042                   |
| 1423.937458                                            | 21.431289                                  | 7.649222                    |
| 1424.186267                                            | 56.310515                                  | 20.101773                   |
| 1425.276167                                            | 117.454398                                 | 41.961053                   |
| 1426.197731                                            | 215.083773                                 | 76.889220                   |
| 1428.030241                                            | 278.331107                                 | 99.627039                   |
| 1432.153632                                            | 122.481060                                 | 43.967990                   |
| 1435.240520                                            | 178.982146                                 | 64.389117                   |
| 1437.243367                                            | 236.035666                                 | 85.032709                   |
| 1440./64252                                            | 56.844467                                  | 20.528593                   |
| 1443 301007                                            | 85 037247                                  | 30 764097                   |
| 1445.692608                                            | 111.274194                                 | 40.322596                   |
| 1449.058554                                            | 78.827536                                  | 28.631358                   |
| 1451.453605                                            | 179.668354                                 | 65.366137                   |
| 1454.//506/                                            | 330.284392                                 | 120.43/566                  |
| 1462.366348                                            | 145.803253                                 | 53.444309                   |
| 1464.207725                                            | 191.298290                                 | 70.208849                   |
| 1485.145306                                            | 378.083743                                 | 140.745663                  |
| 1502.440622                                            | 264.275968                                 | 99.525200                   |
| 1554.253178                                            | 2.801580                                   | 1.091448                    |
| 2900 775992                                            | 38.516/07<br>74 431819                     | 15.3/4608<br>54 119141      |
| 2910.278793                                            | 75.530853                                  | 55.098155                   |
| 2957.012506                                            | 6.894451                                   | 5.110118                    |
| 2959.922511                                            | 3.025139                                   | 2.244418                    |
| 2961.896167                                            | 5.076803                                   | 3.769105                    |
| 2962.498980                                            | 5 160380                                   | 4.307739                    |
| 2964.016523                                            | 18.184907                                  | 13.510449                   |
| 2965.138838                                            | 2.057086                                   | 1.528887                    |
| 2966.686010                                            | 5.128931                                   | 3.813964                    |
| 2967.677358                                            | 13.426754                                  | 9.987707                    |
| 2968.554327                                            | /.844065                                   | 5.836658<br>8 015320        |
| 3034.309590                                            | 14.468524                                  | 11.004294                   |
| 3039.254344                                            | 41.818408                                  | 31.857568                   |
| 3040.080502                                            | 3.427954                                   | 2.612150                    |
| 3040.375746                                            | 7.317518                                   | 5.576595                    |
| 3042.210362                                            | 5.259651                                   | 4.010737                    |
| 3044.42//30<br>3044 921828                             | 1 848263                                   | 1 410646                    |
| 3049.351513                                            | 27.071256                                  | 20.691595                   |
| 3051.024872                                            | 8.249392                                   | 6.308785                    |
| 3052.482054                                            | 9.830702                                   | 7.521695                    |
| 3054.051239<br>3067 536402                             | 12.6///24                                  | 9.705003<br>2 358987        |

|             | yai coolety of offerin | 50 y 20 1 1 |
|-------------|------------------------|-------------|
| 3072.204971 | 10.442276              | 8.041247    |
| 3074.202119 | 0.462993               | 0.356767    |
| 3075.145397 | 4.666476               | 3.596936    |
| 3076.013099 | 1.340622               | 1.033648    |
| 3077.639183 | 0.790517               | 0.609828    |
| 3079.748762 | 2.001794               | 1.545300    |
| 3084.585190 | 19.748572              | 15.268998   |
| 3088.938361 | 0.529308               | 0.409822    |
| 3090.418121 | 0.923418               | 0.715309    |
| 3100.695897 | 1.246491               | 0.968783    |
| 3105.794451 | 5.352643               | 4.166957    |
| 3135.524752 | 7.101835               | 5.581602    |
| 3136.606825 | 9.212000               | 7.242560    |
| 3137.656848 | 16.608174              | 13.061872   |
| 3144.667283 | 5.339746               | 4.208946    |
| 3148.419777 | 40.659589              | 32.087337   |
| 3152.732816 | 52.963313              | 41.854328   |
| 3164.917731 | 15.797500              | 12.532244   |

| Temp   |                                             | Transl | Rotat  | Vibrat  | Total   |
|--------|---------------------------------------------|--------|--------|---------|---------|
|        |                                             |        |        |         |         |
| 298.15 | Entropy (cal/mole-K):                       | 46.228 | 37.599 | 159.572 | 243.399 |
|        | Internal Energy (Kcal/mole):                | 0.889  | 0.889  | 438.448 | 440.226 |
|        | Constant Volume Heat Capacity (cal/mole-K): | 2.981  | 2.981  | 156.824 | 162.786 |

|     |         | Х         | Y         | Z         |
|-----|---------|-----------|-----------|-----------|
| 1   | С       | 0.000005  | 0.000029  | -0.000013 |
| 2   | Н       | 0.000007  | -0.000001 | -0.000001 |
| 3   | С       | 0.000015  | 0.000003  | 0.000001  |
| 4   | Н       | -0.000006 | -0.000004 | -0.000003 |
| 5   | С       | 0.000009  | -0.000002 | -0.000005 |
| 6   | Η       | -0.000016 | -0.000004 | 0.000003  |
| 7   | С       | -0.000029 | 0.000034  | -0.000011 |
| 8   | Н       | -0.000054 | -0.000188 | -0.000037 |
| 9   | С       | 0.000006  | -0.000020 | -0.000069 |
| 10  | С       | -0.000143 | 0.000024  | -0.000030 |
| 11  | С       | 0.000239  | 0.000174  | -0.000027 |
| 12  | С       | -0.000280 | 0.000177  | -0.000121 |
| 13  | Н       | -0.000016 | -0.000007 | 0.000009  |
| 14  | С       | -0.000008 | -0.000060 | -0.000077 |
| 15  | Ν       | 0.000025  | 0.000036  | 0.000138  |
| 16  | С       | 0.000028  | -0.000089 | 0.000060  |
| 17  | H       | -0.000019 | 0.000024  | 0.000007  |
| 18  | С       | 0.000123  | 0.0000/3  | -0.000019 |
| 19  | H       | 0.000031  | 0.000164  | 0.000058  |
| 20  | CT      | -0.000060 | -0.000057 | 0.000021  |
| 21  | C       | -0.000031 | -0.000108 | 0.000101  |
| 22  | C       | -0.0001// | 0.000020  | -0.000043 |
| 23  | C       | -0.000025 | -0.000015 | 0.000063  |
| 24  | C       | -0.000154 | 0.000028  | -0.000037 |
| 25  |         | -0.000017 | -0.000113 | 0.000046  |
| 20  | IN<br>T | -0.000121 | 0.000028  | -0.000036 |
| 27  | 11      | 0.000534  | 0.0001/5  | 0.000226  |
| 20  | U<br>U  | -0.000090 | 0.000001  | -0.000163 |
| 20  | п       | 0.000001  | -0.000019 | 0.000027  |
| 30  | п<br>U  | 0.000049  | 0.000002  | -0.000004 |
| 32  | C       | 0.000003  | -0.000069 | -0.000020 |
| 32  | н       | -0 000005 | -0.000005 | 0 000015  |
| 34  | н       | -0.000007 | -0.000005 | 0.000016  |
| 35  | н       | -0 000014 | -0 000004 | -0 000004 |
| 36  | Tr      | 0 000203  | -0 000672 | -0 000291 |
| 37  | C       | -0.000233 | 0.000201  | -0.000084 |
| ~ / |         |           |           |           |

Geometry CYCLE 89 ------Energy gradients wrt nuclear displacements

Cartesian (a.u./angstrom)

Atom

\_\_\_



# TS2-[endo-3a]2+

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

| Supple        | ementary N | laterial (ES | SI) for Chen | nical Communications |
|---------------|------------|--------------|--------------|----------------------|
| This ju       |            | пе коуа      | 1 Obciety Of | Chemistry 2011       |
| 38 C          | -0.000036  | 0.000009     | 0.000245     |                      |
| 39 C          | 0.000003   | 0.000027     | 0.000031     |                      |
| 40 C          | 0.000132   | 0.000040     | 0.000068     |                      |
| 41 C          | 0.000016   | -0.000080    | 0.000009     |                      |
| 42 C          | 0.000005   | 0.000010     | -0.000008    |                      |
| 43 H          | -0.000018  | 0.000006     | 0.000009     |                      |
| 44 H          | 0.000003   | -0.000002    | -0.000026    |                      |
| 45 H          | -0.000003  | 0.000025     | -0.000005    |                      |
| 40 C          | 0.000023   | 0.000021     | 0.000011     |                      |
| 4/ H          | 0.000026   | 0.000003     | 0.000006     |                      |
| 40 H          | 0.000000   | -0.000019    | 0.000001     |                      |
| чэ п<br>50 С  | -0.000002  | -0.0000003   | 0.0000003    |                      |
| 50 0          | 0.000043   | 0.000010     | 0.000010     |                      |
| 52 ц          | -0.000002  | -0.000008    | -0.000019    |                      |
| 52 II<br>53 U | -0.000015  | -0.000004    | -0.000013    |                      |
| 54 C          | -0.0000031 | 0.000010     | -0.000023    |                      |
| 55 H          | -0.000001  | 0.0000002    | -0.0000014   |                      |
| 56 H          | -0.0000019 | -0.000001    | 0.000000     |                      |
| 57 H          | 0.000020   | -0.000006    | -0.000013    |                      |
| 58 C          | 0 000032   | 0 000022     | -0.000028    |                      |
| 59 H          | -0.000032  | 0.0000022    | 0 000041     |                      |
| 60 H          | 0.000020   | -0.0000025   | -0 000009    |                      |
| 61 H          | -0.000012  | 0.000002     | -0.000007    |                      |
| 62 C          | 0.000022   | 0.000046     | -0.000047    |                      |
| 63 H          | -0.000006  | 0.000008     | 0.000003     |                      |
| 64 H          | 0.000061   | -0.000013    | 0.000029     |                      |
| 65 H          | 0.000004   | -0.000006    | -0.000015    |                      |
| 66 C          | -0.000017  | -0.000007    | 0.000039     |                      |
| 67 H          | 0.000006   | 0.000008     | 0.000012     |                      |
| 68 H          | 0.000007   | -0.000012    | 0.000005     |                      |
| 69 H          | 0.000010   | 0.000012     | -0.000025    |                      |
| 70 C          | 0.000061   | 0.000104     | -0.000124    |                      |
| 71 H          | -0.000048  | 0.000035     | 0.000017     |                      |
| 72 H          | -0.000046  | 0.000037     | 0.000001     |                      |
| 73 H          | 0.000014   | -0.000055    | 0.000180     |                      |
| 74 C          | -0.000042  | 0.000023     | -0.000025    |                      |
| 75 H          | 0.000004   | -0.000002    | -0.000022    |                      |
| 76 H          | 0.000004   | 0.000002     | 0.000003     |                      |
| 77 H          | 0.000001   | -0.000012    | 0.000016     |                      |
| 78 C          | -0.000015  | 0.000021     | -0.000008    |                      |
| 79 H          | -0.000005  | 0.000002     | 0.000020     |                      |
| 80 H          | -0.000011  | 0.000015     | 0.000001     |                      |
| 81 H          | -0.000007  | -0.000007    | -0.000001    |                      |

81 H -0.000007 -0.000007 -0.000001

Geometry Convergence after Step 89

| current energy           | -17.        | 57656931 Hartree |   |
|--------------------------|-------------|------------------|---|
| energy change            | -0.00001498 | 0.00100000       | т |
| constrained gradient max | 0.00067249  | 0.00100000       | т |
| constrained gradient rms | 0.00008626  | 0.00066667       | т |
| gradient max             | 0.00067249  |                  |   |
| gradient rms             | 0.00008626  |                  |   |
| cart. step max           | 0.00930994  | 0.01000000       | т |
| cart. step rms           | 0.00271428  | 0.00666667       | т |
|                          |             |                  |   |

Summary of Bonding Energy (energy terms are taken from the energy decomposition above)

| Electrostatic Energy:           | -14.925301598698599 | -406.1381 | -9365.77  | -39186.37 |
|---------------------------------|---------------------|-----------|-----------|-----------|
| Kinetic Energy:                 | 19.469623987421016  | 529.7954  | 12217.37  | 51117.49  |
| Coulomb (Steric+OrbInt) Energy: | -5.666550189620267  | -154.1947 | -3555.81  | -14877.53 |
| XC Energy:                      | -16.250764923941865 | -442.2058 | -10197.51 | -42666.38 |
| Solvation:                      | -0.203576828887520  | -5.5396   | -127.75   | -534.49   |
| Total Bonding Energy:           | -17.576569553727236 | -478.2828 | -11029.47 | -46147.28 |

List of All Frequencies:

Intensities

\_\_\_\_\_

| Frequency<br>cm-1 | Dipole Strength<br>1e-40 esu2 cm2 | Absorption Intensity (degeneracy not counte<br>km/mole | d) |
|-------------------|-----------------------------------|--------------------------------------------------------|----|
| -94.887231        | 79.662055                         |                                                        |    |
| 18.107168         | 0.000000                          | 0.00000                                                |    |
| 42.177635         | 769.130279                        | 8.131304                                               |    |
| 46.847316         | 93.423870                         | 1.097035                                               |    |
| 50.413818         | 338.087444                        | 4.272250                                               |    |
| 67.781457         | 193.622175                        | 3.289607                                               |    |
| 77.431991         | 96.098176                         | 1.865149                                               |    |
| 84.683141         | 171.671314                        | 3.643953                                               |    |
| 89.617958         | 16.960326                         | 0.380985                                               |    |
| 97.247438         | 164.223722                        | 4.003060                                               |    |
| 106.757087        | 19.848773                         | 0.531139                                               |    |
| 110.027423        | 46.866844                         | 1.292542                                               |    |
| 113.474291        | 172.673492                        | 4.911354                                               |    |
| 116.353011        | 29.156431                         | 0.850335                                               |    |
| 118.069519        | 60.673982                         | 1.795636                                               |    |
| 120.796634        | 42.452253                         | 1.285386                                               |    |
| 122.843380        | 132.241527                        | 4.071905                                               |    |
| 128.583022        | 37.137555                         | 1.196947                                               |    |
| 132.432531        | 25.977107                         | 0.862310                                               |    |

| Supplementary Material     | (ESI) for Chemical Co   | ommunications         |
|----------------------------|-------------------------|-----------------------|
| This journal is (c) The Ro | Syal Society of Chemi   | Suy 2011              |
| 139.853631                 | 72.553432               | 2.543371              |
| 144.642122                 | 134 938783              | 5 027087              |
| 153.506876                 | 156.200664              | 6.010198              |
| 154.467673                 | 225.118316              | 8.716186              |
| 155.483863                 | 41.164103               | 1.604287              |
| 159.474505                 | 65.208860               | 2.606609              |
| 169.928051                 | 237.532077              | 10.117318             |
| 173.896414                 | 455.382411              | 19.849289             |
| 184.279512                 | 348.497976              | 16.097387             |
| 186.677311                 | 211.513847              | 9.897110              |
| 199.386688                 | 85.914387               | 4.293783              |
| 211.960866                 | 263.825079              | 14.016831             |
| 215.330437                 | 224.021225              | 12.091291             |
| 227.662821                 | 512.538905              | 29.248057             |
| 233.040003                 | 34.864801               | 2.124854              |
| 257.236031                 | 15.125066               | 0.975230              |
| 267.815798                 | 78.068078               | 5.240681              |
| 274.019901                 | 63.764562               | 4.379652              |
| 281 673392                 | 370.122678              | 25.739006             |
| 284.553030                 | 44.397481               | 3.166647              |
| 288.373440                 | 87.140743               | 6.298753              |
| 292.762986                 | 64.905294               | 4.762932              |
| 298 301838                 | 64 750235               | 3.390322<br>4 841449  |
| 300.264566                 | 66.945566               | 5.038531              |
| 322.104011                 | 242.038932              | 19.541569             |
| 332.311251                 | 87.518765               | 7.289946              |
| 361.882496                 | 68.214110               | 6.187566              |
| 398.915535                 | 72.875352               | 7.286848              |
| 403.044751                 | 48.662618               | 4.916169              |
| 411.278926                 | 19.927572               | 2.054324              |
| 421.455311                 | 267.382272              | 28.246342             |
| 427.592648                 | 44 539876               | 9.793036<br>4.803969  |
| 439.091858                 | 12.211242               | 1.343981              |
| 443.713450                 | 102.073568              | 11.352564             |
| 447.775948                 | 167.395737              | 18.788116             |
| 516.686391                 | 438.310410              | 56.765815             |
| 522.017241                 | 11.326743               | 1.482067              |
| 522.980557                 | 1.949577                | 0.255567              |
| 523.243849                 | 19.424983               | 2.547668              |
| 538.196960                 | 0.636176                | 0.085822              |
| 539.593126                 | 2.344779                | 0.317137              |
| 556.024306                 | 184.704394              | 25.742402             |
| 580.275556                 | 50.387947               | 7.328904              |
| 590 717328                 | 14 437781               | 2 137757              |
| 593.234984                 | 6.392602                | 0.950566              |
| 595.345057                 | 6.832895                | 1.019651              |
| 596.210247                 | 26.950434               | 4.027572              |
| 634.758408                 | 42.712572               | 6.795826              |
| 653.413763                 | 21.508307               | 3.522675              |
| 680.567367                 | 159.747246              | 27.251008             |
| 714.634128                 | 61.301533               | 10.980779             |
| 758.534158                 | 372.788882              | 70.878769             |
| 783.181687                 | 6.459071                | 1.267975              |
| 785.771859                 | 1.445795                | 0.284762              |
| 786.498024                 | 1.161263                | 0.228932              |
| 793.151423                 | 194.866831              | 38.741114             |
| 861.198832                 | 21.165899               | 4.568969              |
| 866.571355                 | 180.061464              | 39.111383             |
| 905.509514                 | 38.878927               | 8.824403              |
| 927.145992                 | 28.852708               | 6.705216              |
| 931.796611                 | 2.515466                | 0.587513              |
| 932.278841                 | 6.970559                | 1.628889              |
| 932.567368                 | 27.950806               | 6.533601              |
| 934.335365                 | 11.155475               | 2.628961              |
| 959.103057                 | 2.176151                | 0.523157              |
| 985.387711                 | 790.709219              | 195.299897            |
| 989.044166<br>992 319731   | 285.515135              | /0./82010             |
| 994.058200                 | 682.403963              | 170.032297            |
| 994.918423                 | 376.237000              | 93.826830             |
| 997.547035                 | 150.570838              | 37.648902             |
| 998.910566                 | 24.366182               | 6.100876              |
| 1000.851738                | 134.506891              | 33.743673             |
| 1004.543809                | 32.777923               | 8.253314              |
| 1005.229813                | 5.590430                | 1.408603              |
| 1008.012100                | 111.810635              | 28.250552             |
| 1026.747747                | 48.940182               | 12.595268             |
| 1049.387000                | 27.663127               | 7.276374              |
| 1057.542279                | 90.193979               | 23.908556             |
| 1060.416250                | ∠9.858113<br>111.300401 | 7.936277<br>29.663614 |
|                            |                         |                       |

| Supplementary Material     | (ESI) for Chemical Co  | ommunications           |
|----------------------------|------------------------|-------------------------|
| This journal is (c) The R  | oyal Society of Chemi  | stry 2011               |
| 1065.296271                | 109.923143             | 29.351994               |
| 1076.396750                | 35.876077              | 9.679555                |
| 1084.253112                | 0.421251               | 0.114485                |
| 1089.385229                | 0.841447               | 0.229766                |
| 1096.713930                | 13.205946              | 3.630287                |
| 11132 007708               | 476.730018             | 10 076010               |
| 1137.804637                | 4.198320               | 1.197351                |
| 1142.818927                | 12.818606              | 3.671946                |
| 1144.686182                | 13.075571              | 3.751675                |
| 1146.943850                | 30.158988              | 8.6/035/                |
| 1172.883779                | 117.324513             | 34.492273               |
| 1191.638236                | 197.915830             | 59.115726               |
| 1252.775326                | 50.258950              | 15.782096               |
| 1264.995972                | 138.266924             | 43.841511               |
| 1306.479390                | 61.570790              | 20.163010               |
| 1306.887934                | 51.965992              | 17.022982               |
| 1311.568083                | 33.757171              | 11.097750               |
| 1331.799787                | 40.020955              | 13.359938               |
| 1340.534357                | 41.376570              | 13.903063               |
| 1342.620422                | 2.634645               | 0.886652                |
| 1351.320302                | 42.438264              | 14.374541               |
| 1352.071631                | 264.781749             | 89.735816               |
| 1354.099727                | 39.035928              | 13.249309               |
| 1354.456808                | 26.256798              | 8.914254                |
| 1354.636098                | 105.293289             | 35.752088               |
| 1360.935891                | 398.845472             | 136.056847              |
| 1374.775781                | 43.239418              | 4.142254                |
| 1375.845206                | 7.220485               | 2.490084                |
| 1379.774335                | 14.388142              | 4.976120                |
| 1384.858454                | 15.707705              | 5.452507                |
| 1390 376904                | 17 923236              | 6.246360                |
| 1391.322579                | 16.125012              | 5.623490                |
| 1399.896133                | 77.960514              | 27.355747               |
| 1403.388621                | 28.205866              | 9.921914                |
| 1406.960130                | 130.477592             | 46.046898               |
| 1409.254924                | 299.271399             | 105.714083              |
| 1411.058100                | 22.633214              | 8.005145                |
| 1411.887796                | 4.189418               | 1.482627                |
| 1414.546960                | 10 636981              | 3 773600                |
| 1417.008761                | 28.541287              | 10.137343               |
| 1420.128291                | 53.992990              | 19.219542               |
| 1424.006084                | 21.428684              | 7.648661                |
| 1425.027622                | 61.213317<br>20.661206 | 21.864888               |
| 1426.549566                | 218.063489             | 77.973655               |
| 1427.653309                | 120.787501             | 43.223788               |
| 1428.034419                | 174.440925             | 62.440321               |
| 1433.26/919                | 292.234824 216.619909  | 104.98/45/<br>77 973859 |
| 1437.531054                | 65.444356              | 23.581287               |
| 1441.626293                | 59.572809              | 21.526769               |
| 1444.030514                | 110.260388             | 39.909286               |
| 1444./36243                | 67 123069              | 41.564603               |
| 1448.012154                | 190.120128             | 69.004653               |
| 1454.162771                | 360.232150             | 131.302671              |
| 1456.359928                | 356.837516             | 130.261867              |
| 1458.51/205                | 228./69366             | 83.634891<br>40.652614  |
| 1470.122471                | 255.684175             | 94.218337               |
| 1480.951463                | 281.433619             | 104.470788              |
| 1502.879362                | 255.510883             | 96.252406               |
| 1592 015241                | 2.824294               | 1.100132                |
| 2901.248650                | 63.748384              | 46.358801               |
| 2909.078566                | 77.448867              | 56.474005               |
| 2956.118312                | 7.458931               | 5.526834                |
| 2960.322044                | 2.825218               | 2.096375                |
| 2962.010235                | 8.154235               | 6.054076                |
| 2963.150752                | 4.200685               | 3.119981                |
| 2964.635649                | 14.917844              | 11.085505               |
| 2964.647794                | 5.810149               | 4.317560                |
| 2967.677107                | 13.836312              | 10.292362               |
| 2968.793342                | 9.038016               | 6.725602                |
| 3021.417809                | 14.106581              | 10.683428               |
| 3032.923701                | 17.373720              | 13.207857               |
| 3039.397708                | 7.464930               | 5.687106                |
| 3040.220573                | 2.915345               | 2.221637                |
| 3043.292284                | 0.869267               | 0.663093                |
| 3043.483083                | 2.175915               | 1.659934                |
| 3049.490160                | 31.033370              | 23.721068               |
| 3052.548773                | 11.607931              | 8.881688                |
| 3054.500991                | 2.210536               | 1.692451                |
| 3055.204050<br>3067.733130 | 4.360637               | 11.911364<br>3.353093   |

| - ]         |           |           |
|-------------|-----------|-----------|
| 3071.996585 | 8.908583  | 6.859736  |
| 3073.211893 | 0.500837  | 0.385804  |
| 3073.839270 | 5.251367  | 4.046053  |
| 3075.864468 | 0.760756  | 0.586530  |
| 3077.894983 | 1.496085  | 1.154219  |
| 3082.365654 | 3.955833  | 3.056330  |
| 3084.773630 | 18.181925 | 14.058573 |
| 3089.119268 | 0.777980  | 0.602395  |
| 3090.775868 | 0.808744  | 0.626551  |
| 3095.449588 | 12.625992 | 9.796418  |
| 3102.573098 | 0.989542  | 0.769545  |
| 3120.499745 | 2.690979  | 2.104808  |
| 3135.813540 | 0.961732  | 0.755931  |
| 3140.819562 | 15.300341 | 12.045426 |
| 3145.497375 | 1.470741  | 1.159588  |
| 3150.842988 | 33.903442 | 26.776180 |
| 3152.345934 | 88.718257 | 70.101117 |
| 3163.178571 | 17.421457 | 13.812944 |
|             |           |           |

| Temp   |                                             | Transl | Rotat  | Vibrat  | Total   |
|--------|---------------------------------------------|--------|--------|---------|---------|
|        |                                             |        |        |         |         |
| 298.15 | Entropy (cal/mole-K):                       | 46.228 | 37.578 | 152.335 | 236.141 |
|        | Internal Energy (Kcal/mole):                | 0.889  | 0.889  | 437.832 | 439.610 |
|        | Constant Volume Heat Capacity (cal/mole-K): | 2.981  | 2.981  | 154.797 | 160.759 |

## References

- 1. J. Sandström, *Dynamic NMR spectroscopy*, Academic Press, London, 1982.
- 2. B. W. Tattershall, in *DNM3RUN and N3PLOT for Windows*, Newcastle University, Newcastle, England, Editon edn., 2007.
- 3. A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100.
- 4. J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.
- 5. J. P. Perdew, *Phys. Rev. B*, 1986, **34**, 7406.
- 6. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 7. J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, *Phys. Rev. Lett.*, 2003, **91**, 146401.
- 8. G. TeVelde, F. M. Bickelhaupt, S. J. A. vanGisbergen, C. Fonseca-Guerra, E. J. Baerends, J. G. Snijders and T. Ziegler, *J. Comput. Chem.*, 2001, **22**, 931-967.
- E. J. Baerends, J. Autschbach, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. vanFaassen, L. Fan, T. H. Fischer, C. F. Guerra, S. J. A. vanGisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, F. E. Harris, P. v. Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, G. vanKessel, F. Kootstra, M. V. Krykunov, E. vanLenthe, D. A. McCormack, A. Michalak, J. Neugebauer, V. P. Nicu, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. teVelde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. vanWezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev and T. Ziegler, in *Amsterdam Density Functional*, ed. SCM, Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands, Editon edn., 2009.
- 10. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200-1211.
- 11. E. vanLenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1993, 99, 4597-4610.
- 12. E. vanLenthe, A. E. Ehlers and E. J. Baerends, J. Chem. Phys., 1999, 110, 8943-8953.
- 13. E. vanLenthe and E. J. Baerends, J. Comp. Chem., 2003, 24, 1142-1156.
- 14. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales and F. Weinhold, in *NBO*, Theoretical Chemistry Institute, University of Wisconsin, Madison, Editon edn., 2001.
- 15. A. Klamt and G. Schüürmann, J. Chem. Soc.: Perkin Trans. 2, 1993, 799-805.
- 16. A. Klamt, J. Phys. Chem., 1995, 99, 2224-2235.
- 17. A. Klamt and V. Jones, J. Chem. Phys., 1996, 105, 9972-9981.