A Facile, Metal- and Solvent Free, Autoxidative Coupling of Quinolines with Indoles and Pyrroles

Supporting Information

I. GENERAL METHODS. 2
II. GENERAL PROCEDURE FOR OPTIMIZATION OF QUINOLINE-METHYLINDOLECOUPLING MONITORED BY NMR SPECTROSCOPY2
III. USE OF EXTERNAL OXIDANTS 4
IV. GENERAL SIMPLIFIED PROCEDURE FOR THE SYNTHESIS OF COMPOUNDS 3a-3j AND 6a-6f 4
V. REFERENCES 13
VI. ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR SPECTRA 14
VII. X-RAY STRUCTURE REPORT FOR 3a 30
VIII. X-RAY STRUCTURE REPORT FOR 6e 38

I. General Methods.

All glassware was dried overnight at $150{ }^{\circ} \mathrm{C}$ or flame-dried under vacuum immediately prior to use. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F254 plates and visualization on TLC was achieved by UV light (254 nm). Flash column chromatography was carried out using a Biotage SP Flash Purification System (Biotage No. SP1-B1A) with Flash+ cartridges (Biotage No. 25+M 0489-1) using hexanes/ethyl acetate gradients calculated using the TLC data recorded for each compound (vide infra). Reverse phase column chromatography was carried out using the same machine with Flash Cartridges (Biotage No. KP-C18-HS 12+M) using Acetonitrile Water gradient with 0.1% Vol. of Triflic Acid. NMR spectroscopy (${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$) was conducted using a Bruker AV-300, AVQ-400 or DRX-500 spectrometer at room temperature. NMR chemical shifts are reported in ppm relative to CHCl_{3} (7.26 ppm for ${ }^{1} \mathrm{H}$, and 77.2 ppm for ${ }^{13} \mathrm{C}$), $\mathrm{CD}_{3} \mathrm{OD}$ (3.31 ppm for ${ }^{1} \mathrm{H}$, and 49.0 ppm for ${ }^{13} \mathrm{C}$), or DMSO$d 6\left(2.50 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$, and 39.5 ppm for ${ }^{13} \mathrm{C}$). Mass spectra (HRMS) were obtained by the University of California at Berkeley Mass Spectrometry Facility using ProSpec equipped with an ESI source and an LTQ Orbitrap. Crystal structures were obtained by the University of California, Berkeley, College of Chemistry, X-ray Crystallography Facility. Unless otherwise noted, all reagents were obtained from Sigma-Aldrich and used without further purification. 1,4-Dioxane and toluene were obtained from a Seca Solvent System by GlassContour (solvent dried over alumina under a nitrogen atmosphere). HCl in dioxane, from Aldrich, was transferred to a Schlenk flask under nitrogen and was titrated with a sodium hydroxide 0.05 M aqueous solution with phenolphthalein or bromothymol blue as an indicator. Three different bottles of HCl in dioxane were used and were titrated at the following concentrations, $2.1 \mathrm{M}, 2.95 \mathrm{M}$ and 3.25 M . The quantity of HCl in the following preparations is only indicated in mmol.

II. General procedure for optimization of Quinoline-Methylindole coupling monitored by NMR spectroscopy.

To a Schlenk tube under nitrogen were added 1-methylindole ($\mathbf{2 a}, 62 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$), quinolinium chloride salt (1a'), previously purified by sublimation, quinoline (1a),
hexamethylbenzene ($16.2 \mathrm{mg}, 0.10 \mathrm{mmol}$), and solvent, dioxane or toluene, to adjust the absolute concentration of the reagents. The volume of the heterocycles is not negligible at the concentrations used and must therefore be included in the concentration calculation. The reaction vessel was sealed, submerged to the neck in a silicone oil bath, and heated at $175{ }^{\circ} \mathrm{C}$ with stirring for 24 h . The reaction mixture was then cooled to room temperature and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{MeOH}(5 \mathrm{~mL})$. Two aliquots were taken, one for analysis by GCMS, and another for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy analysis. For samples used for NMR analysis the solvents were removed under vacuum and the residue was then dissolved in CDCl_{3}. The yields of the expected product $\mathbf{3 a}$ ' were based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integration relative to hexamethylbenzene. The reactions also produced amounts of tetrahydroquinoline (4) and $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-tetrahydro-2,6'-biquinoline (5). The quantities of these byproducts were estimated based on their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integration relative to hexamethylbenzene.

2-(1-methylindol-3-yl)quinolinium chloride (3a')

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.24(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 1H), 7.45 (m, 3H), 3.99 (s, 3H)

1',2',3',4'-tetrahydro-2,6'-biquinoline (5)

TLC (Hexane/Ethyl Acetate 3:1) $\mathrm{R} f=0.44 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H})$, 8.16 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (s, 1H), 7.85 (dd, $J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 157.5,146.3,140.5,136.5,132.9,129.5,129.1$, 128.9, 127.4, 126.7, 126.5, 125.4, 121.4, 118.4, 113.9, 42.0, 27.2, 22.0. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2}$: $261.1386[\mathrm{M}+\mathrm{H}]^{+}$; observed: 261.1391.

III. Use of external oxidants

Two potential external oxidants were tested, DDQ and O 2 . The use of 1 atm . of O 2 in the reaction of 2 equiv. of $\mathbf{1 d}$ with $\mathbf{2 b}$, and 1,2 equiv. of HCl , did not improve the yield of the reaction ($\mathbf{6 d}, 60 \%$) and the corresponding tetrahydroquinolines products were observed. DDQ was tested in the reaction of 1,2 equiv. of $\mathbf{1 a}$ with $\mathbf{2 b}$ and 1,2 equiv. of HCl . After an hour at room temperature no product was observed by NMR and GCMS; heating at 50 ${ }^{\circ} \mathrm{C}$ for few hours lead to partial decomposition of the indole and no product was observed. A reaction at $155{ }^{\circ} \mathrm{C}$ for 3,5 hours lead to complete decomposition of the starting material.

IV. General simplified procedure for the synthesis of compounds $\mathbf{3 a - 3 j}$ and $\mathbf{6 a - 6 f}$

To a Schlenk tube under air were added the quinoline substrate (1a-1f, 2 equiv, 1.00 $\mathrm{mmol})$, the indole substrate ($\mathbf{2 a} \mathbf{-} \mathbf{2 i}$, 1 equiv, 0.50 mmol), and HCl in dioxane (1.20 equiv, 0.60 mmol). The reaction vessel was sealed, submerged to the neck in a silicone oil bath, heated at the indicated temperature without stirring, and then cooled to room temperature after the specified reaction time. The reaction mixture was transferred to a 60 mL separatory funnel using 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 5 mL of MeOH , and was washed with a saturated NaHCO_{3} aqueous solution ($1 \times 20 \mathrm{~mL}$). The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic extracts were combined, washed with a saturated NaCl aqueous solution ($1 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness under reduced pressure. The crude product mixture was loaded onto a Biotage samplet using a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the samplet was loaded into a Biotage SP1 system. Eluting with an ethyl acetate/hexanes gradient calculated by the Biotage instrument from the $\mathrm{R} f$ of the product in a specified ethyl acetate/hexanes mixture provided the desired product.

2-(1-methyl-1H-indol-3-yl)quinoline (3a)

The reaction was conducted with 1-methylindole ($62 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$), quinoline ($118 \mu \mathrm{~L}$, $1.00 \mathrm{mmol})$ and HCl in dioxane $(0.60 \mathrm{mmol})$ at $175^{\circ} \mathrm{C}$ for 24 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide 95 $\mathrm{mg}(74 \%$ yield) of 3a as a yellow solid. TLC (Hexane/Ethyl Acetate 3:1) $\mathrm{R} f=0.38$. A portion of the product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give light yellow rods. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~m}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ (s, 1H), $7.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.69(\mathrm{dt}, J=7 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{dt}, J=7 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (100MHz; CDCl_{3}) $\delta 155.2,148.7,138.0,135.9,130.0,129.4,129.2,127.5,126.5,126.4$, 125.2, 122.6, 122.4, 121.1, 119.5, 116.3, 109.6, 33.3. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 259.1230$; observed: 259.1236. See X-Ray structure data in section VII, page 30 .

2-(1H-indol-3-yl)quinoline (3b)

The reaction was conducted with indole ($58.5 \mathrm{mg}, 0.50 \mathrm{mmol}$), quinoline ($118 \mu \mathrm{~L}, 1.00$ $\mathrm{mmol})$ and HCl in dioxane $(0.60 \mathrm{mmol})$ at $155{ }^{\circ} \mathrm{C}$ for 4 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide 90 mg (73% yield) of $\mathbf{3 b}$ as a yellow solid. TLC (Hexane/Ethyl Acetate 4:1) $\mathrm{R} f=0.18 .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 155.2,148.5,137.0,136.0,129.4,129.2,127.5,126.5,125.8,125.3$ (2C), 122.9, 122.2, 121.3, 119.6, 117.8, 111.4. HRMS-ESI (m / z) : calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 245.1073; observed: 245.1066.

3-(quinolin-2-yl)-1H-indole-5-carboxylic acid (3c)

The reaction was conducted with indole-5-carboxylic acid ($80.5 \mathrm{mg}, 0.50 \mathrm{mmol}$), quinoline $(118 \mu \mathrm{~L}, 1.00 \mathrm{mmol})$ and HCl in dioxane $(0.60 \mathrm{mmol})$ at $155^{\circ} \mathrm{C}$ for 18 h . The crude mixture was purified by extraction of the product as a sodium carbonate salt. After reaction, the mixture was transferred to a 60 mL separatory funnel using 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 5 mL of MeOH , and to the resulting solution was added sufficient saturated NaOH aqueous solution $(20 \mathrm{~mL})$ until a basic pH was reached. The aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$, and the resulting organic phases were discarded. The aqueous phase was acidified with $\mathrm{HCl}(37 \%$ wt. in water), and then neutralized with a saturated NaHCO_{3} aqueous solution ($1 \times 20 \mathrm{~mL}$) to precipitate the product. The product was extracted form the aqueous phase with ethyl acetate ($3 \times 10 \mathrm{~mL}$), the organic extracts were combined, washed with a saturated NaCl aqueous solution ($1 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness under reduced pressure. The resulting product was almost pure but was further purified by flash chromatography using an ethyl acetate/hexanes gradient to provide $66 \mathrm{mg}(46 \%$ yield) of 3c as a yellow solid. TLC (Hexane/Ethyl Acetate 3:1) $\mathrm{R} f=0.28 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.41(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.14$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.99$ (d, $J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.96 (dd, $J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ (dd, $J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (ddd, $J=8.4$, $6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 170.7,155.2,148.0,140.0,136.3,129.3,128.0,127.6,127.4,126.5$, 125.3, 125.2, 124. 7, 123.6, 123.3, 119.5, 117.4, 110.9. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 289.0972$; observed: 289.0968.

2-(5-bromo-1H-indol-3-yl)quinoline (3d)

The reaction was conducted with 5-bromoindole ($98 \mathrm{mg}, 0.50 \mathrm{mmol}$), quinoline ($118 \mu \mathrm{~L}$, $1.00 \mathrm{mmol})$ and HCl in dioxane $(0.60 \mathrm{mmol})$ at $155^{\circ} \mathrm{C}$ for 18 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide 131 $\mathrm{mg}\left(81 \%\right.$ yield) of 3d as a yellow solid. TLC (Hexane/Ethyl Acetate 7:3) R $f=0.28 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O) ~ \delta 11.85(\mathrm{~s}, 1 \mathrm{H}), 9.05(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO) $\delta 155.5,148.0,136.3,136.3,129.9,129.6,128.8,128.1,127.7,126.3,125.5$, 125.2, 125.0, 119.5, 115.5, 114.2, 113.5. HRMS-ESI (m / z) : calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrN}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 323.0178$; observed: 323.0176

3-(quinolin-2-yl)-1H-indol-6-ol (3e)

The reaction was conducted with 6-hydroxyindole ($66 \mathrm{mg}, 0.50 \mathrm{mmol}$), quinoline (118 $\mu \mathrm{L}, 1.00 \mathrm{mmol}$) and HCl in dioxane $(0.60 \mathrm{mmol})$ at $155{ }^{\circ} \mathrm{C}$ for 18 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide 35 mg (27% yield) of $\mathbf{3 e}$ as a brown oil. TLC (Hexane/Ethyl Acetate 3:1) $\mathrm{R} f=0.23$. The product could also be purified by extraction as a sodium phenoxide salt. After reaction, the mixture was transferred to a 60 mL separatory funnel using 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 5 mL of MeOH , and to the resulting solution was added sufficient saturated NaOH aqueous solution (20 mL) until a basic pH was reached and the solution turned green. The aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ and the resulting organic phases were discarded. The aqueous phase was acidified with $\mathrm{HCl}(37 \%$ wt. in water) and then neutralized with a saturated NaHCO_{3} aqueous solution ($1 \times 20 \mathrm{~mL}$) to precipitate the
product. The product was extracted from the aqueous phase with ethyl acetate (3 x 10 mL) and the organic extracts were combined, washed with a saturated NaCl aqueous solution ($1 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness under reduced pressure. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.1,153.5,148.0$, 138.7, 136.0, 129.2, 127.6, 127.3, 126.4, 124.9, 124.8, 121.8, 119.6, 119.5, 116.2, 110.4, 96.5. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 261.1022$; observed: 261.1020.

3-(quinolin-2-yl)-1H-indol-5-ol (3f)

The reaction was conducted with 5-hydroxyindole ($66 \mathrm{mg}, 0.50 \mathrm{mmol}$), quinoline (118 $\mu \mathrm{L}, 1.00 \mathrm{mmol})$ and HCl in dioxane $(0.60 \mathrm{mmol})$ at $155{ }^{\circ} \mathrm{C}$ for 18 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide 70 mg (54\% yield) of $\mathbf{3 f}$ as a brown oil. TLC (Hexane/Ethyl Acetate 3:1) $\mathrm{R} f=0.34$. The product could also be purified by extraction as a sodium phenoxide salt. After reaction, the mixture was transferred to a 60 mL separatory funnel using 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 5 mL of MeOH , and to the resulting solution was added sufficient saturated NaOH aqueous solution (20 mL) until a basic pH was reached and the solution turned green. The aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ and the resulting organic phases were discarded. The aqueous phase was acidified with $\mathrm{HCl}(37 \%$ wt. in water) and then neutralized with a saturated NaHCO_{3} aqueous solution ($1 \times 20 \mathrm{~mL}$) to precipitate the product. The product was extracted from the aqueous phase with ethyl acetate (3×10 mL), the organic extracts were combined, washed with a saturated NaCl aqueous solution (1 x 20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness under reduced pressure. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.39(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=2.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 8.23(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dt}, J=7.4 \mathrm{~Hz}, J=1.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(126$ $\mathrm{MHz}, \mathrm{DMSO}) \delta 156.3,152.3,148.3,135.9,132.10,129.7,128.6,128.5,128.1,127.0$, 126.1, 125.1, 119.6, 115.3, 112.7, 112.4, 107.4. HRMS-EI (m / z) : calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 261.1022$; observed: 261.1019

2-(1-methylpyrrol-3-yl)quinoline (3g) ${ }^{1,2}$

The reaction was conducted with 1-methylpyrrole ($44.5 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$), quinoline (118 $\mu \mathrm{L}, 1.00 \mathrm{mmol})$ and HCl in dioxane $(0.60 \mathrm{mmol})$ at $155{ }^{\circ} \mathrm{C}$ for 18 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide $44 \mathrm{mg}(42 \%$ yield) of $\mathbf{3 g}$ as a yellow solid. TLC (Hexane/Ethyl Acetate $3: 1) \mathrm{R} f=0.31$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{td}, J=7.7 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 154.6 148.3, 136.1, 129.3, 128.7, 127.4, 126.5, 125.3, 124.9, 123.1, 122.2, 118.6, 107.7, 36.5. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$209.1073; observed: 209.1070.

2-(1H-pyrrol-3-yl)quinoline (3h) ${ }^{1}$ and 2,2'-(1H-pyrrole-2,4-diyl)diquinoline (3i)

(3i)
The reaction was conducted with pyrrole ($34 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$), quinoline ($118 \mu \mathrm{~L}, 1.00$ $\mathrm{mmol})$ and HCl in dioxane (0.60 mmol) at $155{ }^{\circ} \mathrm{C}$ for 18 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide 21 mg (22% yield) of $\mathbf{3 h}$ and 19 mg (12% yield) of $\mathbf{3 i}$ as yellow solids. TLC (Hexane/Ethyl Acetate 3:1) $\mathrm{Rf} \mathbf{3 h}=0.20, \mathbf{3 i}=0.30$.
(3h) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 11.21(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=4.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=4.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (100 MHz, DMSO) $\delta 155.1,148.2,136.4,129.7,128.6,128.1,126.6,125.2,124.9$, 119.9, 119.4, 119.2, 107.2. HRMS-ESI (m / z): calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 195.0917$; observed: 195.0914.
(3i) ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 12.06(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~m}, 6 \mathrm{H}), 7.73(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}, \mathrm{DMSO}) \delta 154.3,150.6,148.2$, $147.9,137.1,136.7,133.3,130.3,129.9,128.7,128.5,128.4,128.2,126.9,126.8,126.7$, 125.9, 125.5, 123.3, 119.1, 118.4, 108.9. HRMS-ESI (m / z) : calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 322.1339$; observed: 322.1334

2-(1H-indol-3-yl)quinolin-6-ol (6b)

The reaction was conducted with indole ($58.5 \mathrm{mg}, 0.50 \mathrm{mmol}$), 6-hydroxyquinoline $(145.1 \mathrm{mg}, 1.00 \mathrm{mmol})$ and HCl in dioxane $(0.60 \mathrm{mmol})$ at $155^{\circ} \mathrm{C}$ for 18 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide 54 mg (41% yield) of $\mathbf{6 b}$ as a red-brown solid. TLC (Hexane/Ethyl Acetate 1:1) $\mathrm{R} f=0.12 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.45(\mathrm{dd}, J=6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=6.6$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 154.8, 153.1, 143.1, 137.4, 134.8, 128.9, 127.7, 125.6, 125.3, 121.8, 121.2, 120.74, 120.1, 120.0, 116.3, 111.2, 108.4. HRMS-ESI (m / z): calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 261.1022; observed: 261.1018

6-bromo-2-(1H-indol-3-yl)quinoline (6c)

The reaction was conducted with indole ($117 \mathrm{mg}, 1.00 \mathrm{mmol}$), 6-bromoquinoline (272 $\mu \mathrm{L}, 2.00 \mathrm{mmol}$) and HCl in dioxane $(1.20 \mathrm{mmol})$ at $155^{\circ} \mathrm{C}$ for 4 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide 239 mg (74% yield) of $\mathbf{6 c}$ as a yellow solid. TLC (Hexane/Ethyl Acetate 7:3) $\mathrm{R} f=0.38$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.63(\mathrm{dt}, J=4.9 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79$ (dd, J $=9.0 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=6.1 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dt}, J=6.6 \mathrm{~Hz}, 2.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 156.6, 146.7, 137.6, 135.1, 132.4, 129.7, 129.4, 127.5, 126.6, 125.6, 122.1, 121.4, 120.4, 120.3, 118.0, 115.9, 111.3. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$: 323.0178; observed: 323.0184.

2-(1H-indol-3-yl)quinolin-8-ol (6d)

The reaction was conducted with indole ($58.5 \mathrm{mg}, 0.50 \mathrm{mmol}$), quinoline ($145.1 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ and HCl in dioxane $(0.60 \mathrm{mmol})$ at $175{ }^{\circ} \mathrm{C}$ for 18 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide 70 $\mathrm{mg}\left(54 \%\right.$ yield) of $\mathbf{6 d}$ as a red solid. TLC (Hexane/Ethyl Acetate 2:1) $\mathrm{R} f=0.34 .{ }^{1} \mathrm{H}$ NMR (500 MHz; DMSO) $\delta 11.70(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.22(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz ; DMSO) δ $154.1,152.8,138.7,137.7,136.4,128.6,127.0,126.0,125.7,122.5,122.5,120.9,120.2$, 118.3, 116.0, 112.3, 111.7. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 261.1018; observed: 261.1022.

6-(1H-indol-3-yl)phenanthridine (6e)

The reaction was conducted with indole ($58.5 \mathrm{mg}, 0.50 \mathrm{mmol}$), phenanthridine (179 mg , $1.00 \mathrm{mmol})$ and HCl in dioxane $(0.60 \mathrm{mmol})$ at $155^{\circ} \mathrm{C}$ for 18 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide 76 $\mathrm{mg}(51 \%$ yield) of $\mathbf{6 e}$ as a yellow solid. A portion of the product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give light yellow prisms. TLC (Hexane/Ethyl Acetate 4:1) $\mathrm{R} f=0.14 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.42$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (126MHz; CDCl_{3}) $\delta 156.3,144.2,136.3,133.5,130.5,129.9,129.0,128.7,127.4,127.1$, 126.4, 126.2, 126.0, 123.5, 122.7, 122.1, 122.0, 121.0, 120.7, 116.0, 111.4. HRMS-ESI (m / z) : calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 295.1230; observed: 295.1226. See X-Ray structure data in section VIII, page 38.

4-(1H-indol-3-yl)-2-methylquinoline (6f)

The reaction was conducted with indole ($58.5 \mathrm{mg}, 0.50 \mathrm{mmol}$), 2-picoline ($135 \mu \mathrm{~L}, 1.00$ $\mathrm{mmol})$ and HCl in dioxane (0.60 mmol) at $175{ }^{\circ} \mathrm{C}$ for 36 h . The crude mixture was purified by flash chromatography using an ethyl acetate/hexanes gradient to provide 40 $\mathrm{mg}\left(31 \%\right.$ yield) of $\mathbf{6 f}$ as a brown oil. TLC (Hexane/Ethyl Acetate 3:1) $\mathrm{R} f=0.24 .{ }^{1} \mathrm{H}$ NMR (400 MHz; CD $\left.{ }_{3} \mathrm{OD}\right) \delta 8.19$ (dd, $\left.J=8.4 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.03$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (td, $J=8.4 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ $(\mathrm{td}, J=7.5 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.62(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz; CD $\left.{ }_{3} \mathrm{OD}\right) \delta$ 158.5, 147.7, 144.0, $136.9,129.4,127.1,126.5,126.3,125.6,125.4,125.3,121.9$ (2C), 119.8, 119.0, 112.3, 111.5, 23.2. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 259.1230$; observed: 259.1234.

V. References

1. K. Ohkura, K.-i. Seki, M. Terahima and Y. Kanaoka, Heterocycles, 1990, 30, 957962.
2. R. Martinez, D. Ramon and M. Yus, Tetrahedron, 2006, 62, 8988-9001.

VI. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra

$5^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

3a ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\left.3 \mathrm{C}^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$-NMR $\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$

3e ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$
$\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}$

6b ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR
$\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$

6d ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ DMSO, 100 MHz

6e ${ }^{1} \mathrm{H}-\mathrm{NMR}$
500 MHz CDCl 3

6 e ${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$-NMR 125 MHz CDCl 3

1	1	1	1	1	1	1	1	1	1	1	
160	150	140	130	120	110	100	90	80	70	60	50

T	1	1	1	1	1	1	1			1		1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

VII. X-Ray structure report for 3a

A colorless rod $0.12 \times 0.10 \times 0.04 \mathrm{~mm}$ in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 0.5°. Data collection was 98.3% complete to 67.00° in θ. A total of 16829 reflections were collected covering the indices, $-9 \leq h \leq 9,-6 \leq k \leq 9,-22 \leq l \leq 22$. 2304 reflections were found to be symmetry independent, with an $\mathrm{R}_{\text {int }}$ of 0.0160 . Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be P2(1)/c (No. 14). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2004) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.

Table 1. Crystal data and structure refinement for 3a.

X-ray ID	3a
Sample/notebook ID	MB-I-47
Empirical formula	C18 H14 N2
Formula weight	258.31
Temperature	100(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$\mathrm{a}=7.7173(3) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=8.8634(3) \AA \quad \beta=93.350(2)^{\circ}$.
	$\mathrm{c}=19.0154(6) \AA \quad \gamma=90^{\circ}$.
Volume	1298.46(8) \AA^{3}
Z	4
Density (calculated)	$1.321 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.608 \mathrm{~mm}^{-1}$
$F(000)$	544
Crystal size	$0.12 \times 0.10 \times 0.04 \mathrm{~mm}^{3}$
Crystal color/habit	colorless rod
Theta range for data collection	4.66 to 67.95°.
Index ranges	$-9<=\mathrm{h}<=9,-6<=\mathrm{k}<=9,-22<=\mathrm{l}<=22$
Reflections collected	16829
Independent reflections	$2304[\mathrm{R}(\mathrm{int})=0.0160]$
Completeness to theta $=67.00^{\circ}$	98.3 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9761 and 0.9306
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2304 / 0 / 182
Goodness-of-fit on F^{2}	1.038
Final R indices [I >2 sigma(I)]	$\mathrm{R} 1=0.0324, \mathrm{wR} 2=0.0837$
R indices (all data)	$\mathrm{R} 1=0.0349, \mathrm{wR} 2=0.0865$
Largest diff. peak and hole	0.197 and -0.152 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{3 a}$. $U(e q)$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$3765(1)$	$397(1)$	$7315(1)$	$23(1)$
$\mathrm{C}(2)$	$4271(2)$	$-412(1)$	$7947(1)$	$25(1)$
$\mathrm{C}(3)$	$3184(2)$	$-477(1)$	$8480(1)$	$26(1)$
$\mathrm{C}(4)$	$1536(2)$	$229(1)$	$8404(1)$	$24(1)$
$\mathrm{C}(5)$	$284(2)$	$135(1)$	$8914(1)$	$27(1)$
$\mathrm{C}(6)$	$-1295(2)$	$829(1)$	$8807(1)$	$29(1)$
$\mathrm{C}(7)$	$-1677(2)$	$1659(1)$	$8184(1)$	$29(1)$
$\mathrm{C}(8)$	$-492(2)$	$1761(1)$	$7678(1)$	$27(1)$
$\mathrm{C}(9)$	$1140(1)$	$1035(1)$	$7769(1)$	$24(1)$
$\mathrm{C}(10)$	$6512(2)$	$-248(1)$	$6716(1)$	$25(1)$
$\mathrm{C}(11)$	$4921(1)$	$452(1)$	$6736(1)$	$24(1)$
$\mathrm{C}(12)$	$4684(1)$	$1278(1)$	$6082(1)$	$23(1)$
$\mathrm{C}(13)$	$3382(2)$	$2222(1)$	$5784(1)$	$25(1)$
$\mathrm{C}(14)$	$3613(2)$	$2860(1)$	$5133(1)$	$28(1)$
$\mathrm{C}(15)$	$5100(2)$	$2575(1)$	$4766(1)$	$28(1)$
$\mathrm{C}(16)$	$6413(2)$	$1659(1)$	$5046(1)$	$26(1)$
$\mathrm{C}(17)$	$6181(1)$	$1025(1)$	$5706(1)$	$24(1)$
$\mathrm{C}(18)$	$8990(2)$	$-390(2)$	$5924(1)$	$32(1)$
$\mathrm{N}(1)$	$2257(1)$	$1119(1)$	$7236(1)$	$24(1)$
$\mathrm{N}(2)$	$8275(1)$	$89(1)$	$6108(1)$	$26(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 3a.

$\mathrm{C}(1)-\mathrm{N}(1)$	$1.3288(15)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.3780(16)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.4339(16)$	$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500
$\mathrm{C}(1)-\mathrm{C}(11)$	$1.4575(16)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.4445(15)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.3548(16)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.4015(16)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500	$\mathrm{C}(12)-\mathrm{C}(17)$	$1.4118(16)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.4173(16)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.3827(16)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500	$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.4101(16)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.4008(17)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.4209(16)$	$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.3699(17)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.3807(17)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500	$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.4105(17)$	$\mathrm{C}(16)-\mathrm{H}(16)$	$1.3973(16)$
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500	$\mathrm{C}(17)-\mathrm{N}(2)$	0.9500
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.3690(17)$	$\mathrm{C}(18)-\mathrm{N}(2)$	$1.3807(15)$
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	$1.4522(15)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.4159(16)$	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800
$\mathrm{C}(9)-\mathrm{N}(1)$	$1.3700(15)$	0.9800	

$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.88(11)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.7
$\mathrm{~N}(1)-\mathrm{C}(1)-\mathrm{C}(11)$	$118.03(10)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.97(11)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)$	$120.09(10)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	120.0
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$119.90(11)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	120.0
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	120.0	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$120.64(11)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	120.0	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	119.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.77(10)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	120.1	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.62(11)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	120.1	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.7
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$123.40(11)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.7
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	$119.49(11)$	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$118.59(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	$117.09(10)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(4)$	$122.83(10)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$120.67(11)$	$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	$118.58(11)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.7	$110.78(10)$	

$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{H}(10)$	124.6
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	124.6
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	105.84(10)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(1)$	126.21(10)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(1)$	127.91(10)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	118.62(10)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	134.60(11)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(11)$	106.76(10)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	118.67(11)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	120.7
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	120.7
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	121.64(11)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.2
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	119.2
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	121.22(11)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.4
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.4
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	116.99(11)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	121.5
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	121.5
$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	129.22(11)
$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(12)$	107.93(10)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	122.85(11)
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(9)$	118.46(10)
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(17)$	108.68(9)
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(18)$	125.89(10)
$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{C}(18)$	125.36(10)

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2011

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{3 a}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$25(1)$	$19(1)$	$25(1)$	$-2(1)$	$-2(1)$	$-2(1)$
$\mathrm{C}(2)$	$25(1)$	$24(1)$	$27(1)$	$1(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(3)$	$30(1)$	$23(1)$	$24(1)$	$2(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(4)$	$27(1)$	$20(1)$	$24(1)$	$-2(1)$	$-1(1)$	$-4(1)$
$\mathrm{C}(5)$	$31(1)$	$24(1)$	$26(1)$	$-1(1)$	$1(1)$	$-4(1)$
$\mathrm{C}(6)$	$29(1)$	$27(1)$	$32(1)$	$-3(1)$	$5(1)$	$-5(1)$
$\mathrm{C}(7)$	$24(1)$	$27(1)$	$36(1)$	$-3(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(8)$	$28(1)$	$26(1)$	$28(1)$	$1(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(9)$	$25(1)$	$20(1)$	$25(1)$	$-2(1)$	$-1(1)$	$-3(1)$
$\mathrm{C}(10)$	$29(1)$	$24(1)$	$23(1)$	$0(1)$	$-2(1)$	$1(1)$
$\mathrm{C}(11)$	$25(1)$	$21(1)$	$23(1)$	$-1(1)$	$-2(1)$	$-1(1)$
$\mathrm{C}(12)$	$25(1)$	$20(1)$	$23(1)$	$-3(1)$	$-1(1)$	$-3(1)$
$\mathrm{C}(13)$	$25(1)$	$24(1)$	$26(1)$	$-2(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(14)$	$30(1)$	$26(1)$	$27(1)$	$2(1)$	$-4(1)$	$0(1)$
$\mathrm{C}(15)$	$35(1)$	$28(1)$	$23(1)$	$1(1)$	$-1(1)$	$-5(1)$
$\mathrm{C}(16)$	$28(1)$	$26(1)$	$24(1)$	$-4(1)$	$3(1)$	$-3(1)$
$\mathrm{C}(17)$	$26(1)$	$21(1)$	$25(1)$	$-4(1)$	$-1(1)$	$-2(1)$
$\mathrm{C}(18)$	$27(1)$	$37(1)$	$31(1)$	$0(1)$	$3(1)$	$6(1)$
$\mathrm{N}(1)$	$26(1)$	$23(1)$	$24(1)$	$0(1)$	$-1(1)$	$0(1)$
$\mathrm{N}(2)$	$26(1)$	$27(1)$	$25(1)$	$-1(1)$	$1(1)$	$2(1)$
					-10	

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$
for 3a.

	x	y	z	$U(e q)$
$H(2)$	5367	-902	7991	30
$H(3)$	3525	-993	8903	31
$H(5)$	539	-417	9336	32
$H(6)$	-2133	751	9152	35
$H(7)$	-2767	2152	8115	35
$H(8)$	-767	2325	7261	33
$H(10)$	7008	-879	7078	30
$H(13)$	2362	2420	6025	30
$H(14)$	2740	3508	4929	33
$H(15)$	5208	3020	4316	34
$H(16)$	7428	1469	4801	31
$H(18 A)$	9434	-1154	6261	47
$H(18 B)$	9774	480	5938	47
$H(18 C)$	-820	5448	47	

VIII. X-Ray structure report for $\mathbf{6 e}$

A colorless prism $0.12 \times 0.10 \times 0.04 \mathrm{~mm}$ in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 1.0°. Data collection was 99.5% complete to 67.00° in θ. A total of 22240 reflections were collected covering the indices, $-10 \leq h \leq 10,-11 \leq k \leq 11$, $25 \leq l \leq 26$. 3206 reflections were found to be symmetry independent, with an $\mathrm{R}_{\text {int }}$ of 0.0501. Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be $\mathrm{P} 2(1) / \mathrm{n}$ (No. 14). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-2008) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.

Table 1. Crystal data and structure refinement for $\mathbf{6 e}$.

X-ray ID
Sample/notebook ID
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color/habit
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$6 e$
MB-II-194
C22 H16 Cl2 N2
379.27

100(2) K
$1.54178 \AA$
Monoclinic
P2(1)/n
$\mathrm{a}=8.5493(10) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=9.3890(11) \AA \quad \beta=97.850(7)^{\circ}$.
$\mathrm{c}=22.288(2) \AA$
$\gamma=90^{\circ}$.
1772.3(4) \AA^{3}

4
$1.421 \mathrm{Mg} / \mathrm{m}^{3}$
$3.344 \mathrm{~mm}^{-1}$
784
$0.12 \times 0.10 \times 0.04 \mathrm{~mm}^{3}$
colorless prism
4.00 to 68.04°.
$-10<=\mathrm{h}<=10,-11<=\mathrm{k}<=11,-25<=1<=26$
22240
$3206[\mathrm{R}(\mathrm{int})=0.0501]$
99.5 \%

Semi-empirical from equivalents
0.8779 and 0.6897

Full-matrix least-squares on F^{2}
3206 / 0 / 235
1.071
$\mathrm{R} 1=0.0371, \mathrm{wR} 2=0.0970$
$R 1=0.0452, w R 2=0.1084$
0.310 and -0.334 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $6 \mathbf{e} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
C(1)	1585(2)	3162(2)	7392(1)	24(1)
$\mathrm{C}(2)$	1762(2)	2214(2)	6934(1)	22(1)
C(3)	3419(2)	1838(2)	7003(1)	22(1)
C(4)	4355(2)	982(2)	6681(1)	25(1)
$\mathrm{C}(5)$	5960(2)	902(2)	6872(1)	28(1)
C(6)	6667(2)	1673(2)	7381(1)	30(1)
$\mathrm{C}(7)$	5777(2)	2536(2)	7705(1)	28(1)
$\mathrm{C}(8)$	4151(2)	2608(2)	7512(1)	24(1)
C(9)	550(2)	1646(2)	6459(1)	22(1)
C(10)	-755(2)	2513(2)	6174(1)	22(1)
$\mathrm{C}(11)$	-937(2)	3958(2)	6319(1)	25(1)
C(12)	-2202(2)	4738(2)	6049(1)	29(1)
C(13)	-3324(2)	4089(2)	5622(1)	32(1)
C(14)	-3163(2)	2694(2)	5460(1)	29(1)
C(15)	-1876(2)	1868(2)	5729(1)	24(1)
C(16)	-1637(2)	408(2)	5561(1)	24(1)
C(17)	-2644(2)	-348(2)	5113(1)	28(1)
C(18)	-2323(2)	-1713(2)	4960(1)	31(1)
C(19)	-971(2)	-2415(2)	5248(1)	29(1)
$\mathrm{C}(20)$	26(2)	-1716(2)	5689(1)	28(1)
C(21)	-292(2)	-307(2)	5850(1)	23(1)
C(22)	5964(3)	4343(2)	3493(1)	35(1)
N(1)	3003(2)	3388(2)	7742(1)	25(1)
$\mathrm{N}(2)$	758(2)	324(2)	6302(1)	23(1)
$\mathrm{Cl}(1)$	7370(1)	5003(1)	4080(1)	37(1)
$\mathrm{Cl}(2)$	5118(1)	2730(1)	3719(1)	33(1)

Table 3. Bond lengths $\left[\AA \AA\right.$] and angles $\left[{ }^{\circ}\right]$ for $\mathbf{6 e}$.

$\mathrm{C}(1)-\mathrm{N}(1)$	1.365(2)	$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(1)-\mathrm{C}(2)$	1.378(3)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.370(3)
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9500	$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(2)-\mathrm{C}(3)$	1.448 (3)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.411(3)
$\mathrm{C}(2)-\mathrm{C}(9)$	1.476 (2)	$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	1.399 (3)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.443 (3)
$\mathrm{C}(3)-\mathrm{C}(8)$	1.417(3)	$\mathrm{C}(16)-\mathrm{C}(21)$	$1.409(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.382(3)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.417(3)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	$\mathrm{C}(17)-\mathrm{C}(18)$	1.363(3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.410(3)	$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500	$\mathrm{C}(18)-\mathrm{C}(19)$	1.407(3)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.381(3)	$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500	C(19)-C(20)	1.377(3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.400(3)	$\mathrm{C}(19)-\mathrm{H}(19)$	0.9500
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500	$\mathrm{C}(20)-\mathrm{C}(21)$	1.407(3)
$\mathrm{C}(8)-\mathrm{N}(1)$	1.377(3)	$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500
$\mathrm{C}(9)-\mathrm{N}(2)$	1.308(3)	$\mathrm{C}(21)-\mathrm{N}(2)$	1.387(2)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.455(2)$	$\mathrm{C}(22)-\mathrm{Cl}(1)$	$1.762(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	1.408(3)	$\mathrm{C}(22)-\mathrm{Cl}(2)$	1.780(2)
$\mathrm{C}(10)-\mathrm{C}(15)$	1.418(3)	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9900
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.375(3)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9900
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500	$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	0.8800
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.395(3)$		
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	110.15(17)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	120.4
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	124.9	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.4
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	124.9	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.20(19)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	106.44(15)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.4
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(9)$	128.86(17)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.4
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(9)$	124.70(16)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	121.02(18)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	118.90(17)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	119.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	134.83(16)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.5
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	106.22(16)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	117.60(17)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.13(17)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	121.2

$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(7)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(3)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(2)$
C(11)-C(10)-C(15)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(9)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(16)$
$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)$
$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(15)$
C(17)-C(16)-C(15)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$
C(19)-C(18)-H(18)
C(20)-C(19)-C(18)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$
121.2
129.81(17)
108.05(16)
122.13(18)
122.52(16)
115.31(16)
122.14(17)
119.13(17)
122.74(16)
118.13(17)
121.13(18)
119.4
119.4
119.5(2)
120.2
120.2
120.80(18)
119.6
119.6
120.95(18)
119.5
119.5
118.40(18)
122.83(17)
118.76(16)
117.59(18)
117.99(16)
124.39(17)
121.54(18)
119.2
119.2
120.50(17)
119.7
119.7
119.48(19)
120.3

$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	120.3
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$120.52(18)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	119.7
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	119.7
$\mathrm{~N}(2)-\mathrm{C}(21)-\mathrm{C}(20)$	$117.26(17)$
$\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(16)$	$122.38(18)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	$120.36(17)$
$\mathrm{Cl}(1)-\mathrm{C}(22)-\mathrm{Cl}(2)$	$110.63(11)$
$\mathrm{Cl}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{Cl}(2)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{Cl}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{Cl}(2)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	108.1
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)$	$109.13(15)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	125.4
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	125.4
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(21)$	$120.11(16)$

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2011

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{6 e}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C(1)	26(1)	25(1)	20(1)	2(1)	$0(1)$	$0(1)$
C(2)	24(1)	21(1)	19(1)	2(1)	$0(1)$	$0(1)$
C(3)	26(1)	21(1)	18(1)	4(1)	-2(1)	-2(1)
C(4)	28(1)	26(1)	20(1)	3(1)	1(1)	$0(1)$
C(5)	27(1)	32(1)	25(1)	4(1)	5(1)	2(1)
C(6)	22(1)	38(1)	29(1)	7(1)	-1(1)	-4(1)
C(7)	28(1)	32(1)	23(1)	2(1)	-4(1)	-6(1)
C(8)	29(1)	23(1)	21(1)	2(1)	1(1)	-4(1)
C(9)	22(1)	26(1)	17(1)	2(1)	2(1)	-1(1)
C(10)	21(1)	26(1)	18(1)	4(1)	3(1)	-1(1)
$\mathrm{C}(11)$	24(1)	28(1)	21(1)	2(1)	3(1)	1(1)
C(12)	30(1)	29(1)	28(1)	4(1)	5(1)	6(1)
C(13)	27(1)	43(1)	26(1)	5(1)	$0(1)$	11(1)
C(14)	25(1)	39(1)	21(1)	1(1)	-2(1)	2(1)
C(15)	23(1)	31(1)	17(1)	4(1)	4(1)	$0(1)$
C(16)	22(1)	30(1)	18(1)	2(1)	2(1)	-4(1)
C(17)	25(1)	36(1)	23(1)	1(1)	-2(1)	-4(1)
C(18)	30(1)	37(1)	24(1)	-3(1)	-1(1)	-12(1)
C(19)	37(1)	25(1)	24(1)	-1(1)	4(1)	-6(1)
C(20)	31(1)	28(1)	23(1)	2(1)	$0(1)$	-1(1)
C(21)	26(1)	26(1)	17(1)	2(1)	1(1)	-4(1)
C(22)	47(1)	31(1)	28(1)	1(1)	7(1)	1(1)
N(1)	29(1)	25(1)	20(1)	-4(1)	-1(1)	-3(1)
N(2)	25(1)	24(1)	18(1)	1(1)	-1(1)	$0(1)$
$\mathrm{Cl}(1)$	34(1)	35(1)	42(1)	-1(1)	5(1)	-4(1)
$\mathrm{Cl}(2)$	36(1)	27(1)	35(1)	-3(1)	3(1)	2(1)

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$
for $6 \mathbf{6}$.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1)	617	3595	7456	29
H(4)	3893	464	6336	30
H(5)	6598	318	6656	34
H(6)	7773	1597	7502	36
H(7)	6252	3063	8046	34
H(11)	-173	4402	6609	29
H(12)	-2311	5711	6152	35
H(13)	-4210	4622	5441	38
H(14)	-3930	2278	5163	35
H(17)	-3564	107	4914	34
H(18)	-3017	-2193	4657	37
H(19)	-748	-3364	5139	35
H(20)	936	-2189	5887	33
H(22A)	6477	4169	3128	42
H(22B)	5122	5061	3390	42
H(1A)	3160	3944	8062	30

