An Efficient and Recyclable Hybrid Nanocatalyst to Promote **Enantioselective Radical Cascade Rearrangements of Enediynes**

Malek Nechab,*^a Eric Besson,*^a Damien Campolo,^a Patricia Perfetti,^a Nicolas Vanthuyne,^b Emily Bloch,^a Renaud Denoyel^a and Michèle Bertrand *^a

^a LCP UMR 6264, Aix-Marseille Université, Faculté de St Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France. E-mail: <u>malek.nechab@univ-provence.fr</u>, <u>eric.besson@univ-provence.fr</u>, <u>michele.bertrand@univ-cezanne.fr</u>
^b ISM2, UMR 6263, Aix-Marseille Université, Faculté de St Jérôme, Avenue Normandie-Niemen, 13397 Marseille Cedex 20, France.

1.	Prep	paration of hybrid materials	2
1.	.1.	MCM41	2
1.	.2.	SBA15	2
1.	.3.	Passivated SBA15	2
1.	.4.	Grafting procedure	3
1.	.5.	Characterization of Mesoporous Silicas	3
2.	Synt	thesis and rearrangement of substrates 1a, 5a, and 5c	. 11
Genera	al inf	formation	. 11
1.	.6.	Synthesis of 1a	. 12
1.	.7.	Synthesis of 5a	. 13
1.	.8.	Synthesis of 5c	. 14
1.	.9.	General procedure for the stoichiometric cyclisation	. 15
1.	.10.	General procedure for the catalytic cyclisation	. 16
1.	.11.	Cycloaromatisation of (S)-1a	. 16
1.	.12.	Cycloaromatisation of (S)-5a	. 17
1.	.13.	Cycloaromatisation of (S)-5c	. 18
3.	Chir	al HPLC Spectra	. 20
4.	NM	R Spectra	. 25

1. Preparation of hybrid materials

1.1. MCM41

The MCM-41 mesoporous silica was synthesized by adopting the procedure reported by Grün et al.¹ In a standard method of synthesis, 0.80 g of cetyltrimethylammonium bromide (CTAB), was dissolved in 17.7 mL of water under vigorous stirring at 70 °C for 10 min. After cooling (30 °C), a mixture of 10.3 mL of absolute ethanol and 8.1 mL of ammonium hydroxide 32% was added and the solution was stirred for an additional 10 min. Then, 1.5 g (7.2 mmol) of tetraethyl orthosilicate (TEOS (98%), commercially available from Aldrich) was added dropwise to the solution with stirring for an additional 24 h. The molar composition of the resultant mixture was 1 TEOS: 0.3 CTAB: 11 NH₃: 144 H₂O: 58 EtOH. After hydrothermal treatment at 90 °C for 24 hours, the precipitate was filtered, washed with deionized water, ethanol and diethyl ether. For acidic extraction, the as-obtained material (1 g) was treated with a mixture of ethanol (100 ml) and concentrated HCl (1 mL, 38% in weight) at 70 °C for 8 h. The resulting (surfactant removed) solid product was filtered and washed with ethanol, and then dried at 60 °C.

1.2. SBA15

In a typical synthesis, 4 g of Pluronic P123 were dissolved in 30 mL of deionized water and 120 mL of 2M HCl under constant stirring for three hours, prior to the addition of 8.5 g of TEOS. This mixture was further stirred for 24 hours before hydrothermal treatment at 100 °C for 48 hours. The resulting white precipitate was filtered, which was followed by soxhlet extraction of the polymeric template with ethanol for 24 hours. The molar composition of the synthesis mixture was as follows: 1 TEOS: 0.017M P123 Polymer: 188M H₂O: 5.8M HCl. The resulting (surfactant removed) solid product was filtered and washed with ethanol, acetone and diethyl ether and then dried at 60 °C.

1.3. Passivated SBA15

In a typical synthesis, 4 g of Pluronic P123 were dissolved in 30 mL of deionized water and 120 mL of 2M HCl under constant stirring for three hours, prior to the addition of 8.5 g of TEOS. This mixture was further stirred for 24 hours before hydrothermal treatment at 100 °C for 48 hours. The resulting white precipitate was filtered, and washed with ethanol, acetone and diethyl ether and then dried at 60 °C. The molar composition of the synthesis mixture was as follows: 1 TEOS: 0.017M P123 Polymer: 188M H₂O: 5.8M HCl. SBA15 still containing the surfactant (1 g) was loaded in dry toluene (75 ml) and triethylamine (4.04 g, 40 mmol, then chlorotrimethylsilane (3.56 g, 33.3 mmol) was added, and the mixture was heated at 70 °C overnight. The resulting white precipitate was filtered, which was followed by soxhlet extraction of the polymeric template with ethanol for 24 hours. The resulting (surfactant removed) solid product was filtered and washed with ethanol, acetone and diethyl ether and then dried at 60°C. The grafting procedure is described in § 1.4.4.

¹ M. Grün, K.K. Unger, A. Matsumoto and K. Tsutsumi, *Micropor. Mesopor. Mater.*, 1999, **27**, 207.

1.4. Grafting procedure

- **1.4.1.** Diethylaminopropyltrimethoxysilane (DEAP) was anchored onto the silica surface via post-grafting procedure. After SBA15 (1 g, 16.7 mmol) was loaded in dry toluene (16 ml), DEAP (1.35 g, 5.7 mmol) was added, and mixture was heated at 70 °C overnight. The precipitate was filtered, washed (ethanol and ether) and dried which was referred as **GA-SBA15**. The quantity of organic group was determined by TGA analysis; it is 1.45 mmol/g.
- **1.4.2.** Diethylaminopropyltrimethoxysilane (DEAP) was anchored onto the silica surface via post-grafting procedure. After MCM41 (1 g, 16.7 mmol) was loaded in dry toluene (16 ml), DEAP (1.35 g, 5.7 mmol) was added, and mixture was heated at 70 °C overnight. The precipitate was filtered, washed (ethanol and ether) and dried which was referred as **GA-**MCM41. The quantity of organic group was determined by TGA analysis; it is 1.57 mmol/g.
- **1.4.3.** Diethylaminopropyltrimethoxysilane (DEAP) was anchored onto the silica surface via post-grafting procedure. After Si2000 (1 g, 16.7 mmol) was loaded in dry toluene (16 ml), DEAP (1.35 g, 5.7 mmol) was added, and mixture was heated at 70 °C overnight. The precipitate was filtered, washed (ethanol and ether) and dried which was referred as **GA-Si2000**. The quantity of organic group was determined by TGA analysis; it is 0.21 mmol/g.
- **1.4.4.** Diethylaminopropyltrimethoxysilane (DEAP) was anchored onto the silica surface via post-grafting procedure. After SBA15 (0.6 g) was loaded in dry toluene (11 ml), DEAP (0.78 g, 3.3 mmol) was added, and mixture was heated at 70 °C overnight. The precipitate was filtered, washed (ethanol and ether) and dried which was referred as passivated **GA-SBA15**.

1.5. Characterization of Mesoporous Silicas

Thermogravimetric (TGA) measurements were carried out with a TGA Q500 apparatus (TA Instruments) under dynamic air atmosphere (sample flow rate 60 ml/min). XRD patterns were measured on a Siemens D5000; XRD diffractometer using Cu (40 Kv, 40 mA) Ka radiation and detected by Scintillator (Thêta-2 Thêta). The N₂ adsorption/desorption isotherms were obtained at 77 K on a Micrometrics ASAP2010. The specific surface area was determined with the Brunauer, Emmett, and Teller (BET) method and the pore size distribution was calculated from the desorption isotherms using the Barrett Joyner Halenda (BJH) method1.² Prior to adsorption, the samples were out gassed at 393 K overnight under a vacuum pressure of 2×10^{-3} mbar. All solid-state Cross Polarization Magic Angle Spinning (CPMAS) NMR spectra were obtained on a Bruker Avance-400 MHz NMR spectrometer operating at a ¹³C and ²⁹Si resonance frequency of 101.6 MHz and 79.5MHz, respectively. ¹³C and ²⁹Si CPMAS experiments were placed in zirconium dioxide rotors of 4-mm outer diameter and spun at a Magic Angle Spinning rate of 10 kHz. The CP technique³ was applied with a ramped 1H-pulse starting at 100 % power and decreasing until 50% during the contact time in order to

² F. Rouquerol, J. Rouquerol, K. S. W. Sing, Adsorption by Powders and Porous Solids: Principles,

Methodology and Applications, Academic Press: London, 1999.

³ J. Schaefer and E. O. R. Stejskal, J. Am. Chem. Soc., 1976, 98, 1031.

circumvent Hartmann-Hahn mismatches (Peersen *et al.*, 1993; Cook *et al.*, 1996)⁴. The contact times were 2 ms for ¹³C CPMAS and 5ms for ²⁹Si CPMAS. To improve the resolution, a dipolar decoupling GT8 pulse sequence (Gerbaud *et al.* 2003)⁵ was applied during the acquisition time. To obtain a good signal-to-noise ratio, 6144 scans were accumulated using a delay of 2 s in ¹³C CPMAS experiment, and 4096 scans with a delay of 5 s in ²⁹Si CPMAS experiment. The ¹³C and ²⁹Si chemical shifts were referenced to tetramethylsilane.

Figure 1: TGA analysis of GA-SBA15 (5.8 nm)

Figure 2: TGA analysis of passivated SBA15 before grafting (5.8 nm)

⁴ a) O. B. Peersen, X. Wu, I. Kustanovich and S.O. Smith, *J. Magn. Reson.*, 1993, **104**, 334. b) R. L. Cook, C. H. Langford, R. Yamdagni and C. M. Preston, *Anal. Chem.*, 1996, **68**, 3979.

⁵ G. Gerbaud, F. Ziarelli and S. Caldarelli, *Chem. Phys. Lett.*, 2003, **377**, 1.

Figure 4: TGA analysis of GA-Si2000 (200 nm)

Figure 5: TGA analysis of passivated GA-SBA15 (5.8 nm) after grafting

TGA experiments were confirmed by elemental analyses.

GA-SBA15: found %N=3.23, C=20.13, H=4.28 (the experimental ratio between C/N is 7.29, close to the theoretical ratio of 7).

GA-MCM41: found % N=2.71, C=17.29, H=3.77 (the experimental ratio between C/N is 7.46, close to the theoretical ratio of 7).

GA-Si2000: found % N=0.09, C=0.75, H=0.38 (owing the experimental errors the vanues are not significant, but they are in agreement with TGA data).

Figure 7: ¹³C CP-MAS solid state NMR of GA-SBA15 (5.8 nm)

Figure 8: ¹³C CP-MAS solid state NMR of GA-MCM41 (2.0 nm)

Probe4 29Si zg sample: EB13 sr7.5kHz

Figure 10: ¹³C CP-MAS solid state NMR of recycled GA-SBA15 (5.8 nm)

Figure 11: Nitrogen adsorption-desorption isotherm of SBA15. Isotherm of type IV, characteristic of mesoporous materials with a narrow pore size distribution SBET: 874 ± 3 m₂/g, Vp: 1.1 cm₃/g and DpBJHdes.: 7.9 nm.

Figure 12: Nitrogen adsorption-desorption isotherm of GA-SBA15. Isotherm of type IV, characteristic of mesoporous materials with a narrow pore size distribution SBET: 296 ± 3 m2/g, Vp: 0.51 cm³/g and DpBJHdes.: 5.8 nm.

Figure 13: Nitrogen adsorption-desorption isotherm of GA-MCM41. Isotherm of type IV, characteristic of mesoporous materials with a narrow pore size distribution SBET: $720 \pm 3 \text{ m}^2/\text{g}$, Vp: 0.78 cm³/g and DpBJHdes .: 2,4 nm.

Figure 14: Nitrogen adsorption-desorption isotherm of GA-MCM41. Isotherm of type IV, characteristic of mesoporous materials with a narrow pore size distribution SBET: $200 \pm 3 \text{ m}^2/\text{g}$ and Dp_{est}.: 2 nm.

Figure 15: Powder Small Angle X-Ray Diffraction pattern of SBA15

Figure 16: Powder Small Angle X-Ray Diffraction pattern of MCM41

2. Synthesis and rearrangement of substrates 1a, 5a, and 5c

General information

All reactions were carried out in dry glassware using magnetic stirring and a positive pressure of argon. Solvents are commercially available, most of them were used as purchased (analytic grade), without further purification. THF was distilled over sodium benzophenone ketyl prior to use. Dry state adsorption conditions and purification were performed on silica gel 60 Å (70-230 mesh). Analytical thin layer chromatography was performed on pre-coated silica gel plates. Visualization was accomplished by UV (254 nm) and with phosphomolybdic acid in ethanol. ¹H NMR spectra were recorded on 400 MHz-spectrometers. ¹³C spectra were recorded at 100 MHz. Chemical shifts (δ) are reported in ppm. Signals due residual protonated solvent (¹H NMR) or to the solvent (¹³C NMR) served as the internal standard: CDCl₃ (7.26 ppm and 77.16 ppm). Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). The lists of coupling constants (*J*) correspond to the order of multiplicity assignment and are reported in Hertz (Hz). APT was used for ¹³C spectra assignment. All melting points were uncorrected and were recorded in open capillary tubes using a Buchi melting point apparatus.

High resolution mass spectra were obtained on QStar Elite (Applied Biosystems SCIEX).

Crude mixture and purified compounds were analysed by chiral HPLC with double detection, with UV and circular dichroism detectors. The solvents for chiral chromatography (*n*-hexane, 2-PrOH, ethanol) were HPLC grade, they were degassed and filtered on a 0.45 µm membrane before use. The columns used are Chiralpak IC (250*4.6 mm, cellulose tris(3,5dichlorophenylcarbamate)), Chiralpak AS-3 mm, amylose tris[(S)alpha-(250*4.6)phenethyl]carbamate), and Chiralpak IA (250*4.6)mm, amylose tris-(3,5dimethylphenylcarbamate)). Enantiomeric excesses were determined by integration of the peaks on the chromatograms obtained by UV detection at 254, 240, 230 or 220 nm, and confirmed by circular dichroism detection at 254 nm. The sign given by the on-line circular dichroism detector for one enantiomer is the sign in the solvent used for the chromatographic separation.

The rotatory powers were measured on a 241 MC Perkin-Elmer polarimeter with a sodium lamp and a double-jacketed cell thermostated at the given temperature.

The syntheses of racemic starting materials and rearranged products were achieved according to the procedures described for optically pure materials in the following.

1.6. Synthesis of **1a**

(S)-2-[{3-[2-(3-Ethylsulfanyl-prop-1-ynyl)-phenyl]-prop-2-ynyl}-(toluene-4-sulfonyl)amino]-propionic acid methyl ester (9)

To a solution of ethanethiol (100 μ L, 1.32 mmol) in freshly distilled anhydrous THF (20 mL), a 16.2 M aqueous sodium hydroxide solution (325 μ L, 52.5 mg, 1.32 mmol) was added at room temperature. Then a solution of **8**⁶ (565 mg, 1.12 mmol) in THF (10 mL) was slowly added *via* syringe and the reaction mixture was vigorously stirred overnight. The solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (pentane/Et₂O, 80/30 to 60/40). This afforded **9** as a yellow oil (363 mg, 69%). [α]_D²⁰= -22.1 (c=0.9, CHCl₃). **HRMS** (ESI): *m/z*: calcd for [M+NH₄]⁺ C₂₅H₃₁N₂O₄S₂: 487.1720, found: 487.1708.

¹**H** NMR (400 MHz, CDCl₃) δ: 7.82 (2H, br d, *J*=8.5, CH_{ar}), 7.41-7.38 (1H, m, CH_{ar}), 7.24-7.17 (5H, m, CH_{ar}), 4.69 (1H, q, *J*=7.3, CHCH₃), 4.59 (1H, d, *J*=18.6, CH₂N, A part of an AB pattern), 4.38 (1H, d, *J*=18.6, CH₂N, B part of an AB pattern), 3.62 (3H, s, CH₃O), 3.51 (2H, s, CH₂SEt), 2.77 (2H, q, *J*=7.5, SCH₂CH₃), 2.35 (3H, s, CH₃C), 1.54 (3H, d, *J*=7.3, CH₃CH), 1.32 (3H, t, *J*=7.5, SCH₂CH₃).

¹³C NMR (100 MHz, CDCl₃) δ : 171.9 (CO₂Me), 143.6 (C_{ar}), 137.3 (C_{ar}), 132.2 (CH_{ar}), 132.1 (CH_{ar}), 129.6 (2xCH_{ar}), 128.2 (CH_ar), 127.8 (CH_ar), 127.7 (2xCH_ar), 125.8 (C_ar), 125.0 (C_ar), 89.8 (C_{C=C}), 88.3 (C_{C=C}), 83.4 (C_{C=C}), 81.3 (C_{C=C}), 55.1 (CHN), 52.4 (CH₃O), 35.2 (CH₂N), 25.8 (CH₂S), 21.6 (CH₃), 20.0 (SCH₂), 16.4 (CH₃), 14.4 (CH₃).

(S)-2-[{3-[2-(3-Ethanesulfonyl-prop-1-ynyl)-phenyl]-prop-2-ynyl}-(toluene-4-sulfonyl)amino]-propionic acid methyl ester (1a)

⁶ M. Nechab, D. Campolo, J. Maury, P. Perfetti, N. Vanthuyne, D. Siri, and M. P. Bertrand, J. Am. Chem. Soc., 2010, **132**, 14742.

m-Chloroperbenzoic acid (75%) (346 mg, 1.5 mmol) was dissolved in dichloromethane (15 mL), and the solution was cooled to 0 °C. To this mixture a solution of **9** (323 mg, 0.688 mmol) in dichloromethane (5 mL) was added *via* syringe, and the reaction mixture was stirred for 40 min at 0 °C. The crude product was purified by flash chromatography on silica gel (pentane/CH₂Cl₂, 50/50 to 15/85) then the product was washed with a saturated solution of NaHCO₃, dried over MgSO₄ and concentrated to afford **1a** as a yellow oil (334 mg, 97%). ee=88% (Chiralpak AS-3, hexane/EtOH 50/50, $R_t(S) = 13.22$ min, $R_t(R) = 10.54$ min). [α]_D²⁰= -11.1 (c=0.9, CHCl₃). **HRMS** (ESI): *m/z*: calcd for [M+NH₄]⁺ C₂₅H₃₁N₂O₆S₂: 519.1618, found: 519.1619.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.79 (2H, d, *J*=8.3, CH_{ar}), 7.47-7.43 (1H, m, CH_{ar}), 7.30-7.24 (5H, m, CH_{ar}), 4.67 (1H, q, *J*=7.3, CHCH₃), 4.52 (1H, d, *J*=18.8, CH₂N, A part of an AB pattern), 4.37 (1H, d, *J*=18.8, CH₂N, B part of an AB pattern), 4.15 (2H, AB pattern, *J*=17.1, Δ v=10.6, CH₂SO₂Et), 3.58 (3H, s, CH₃O), 3.32 (2H, q, *J*=7.5, SO₂CH₂CH₃), 2.38 (3H, s, CH₃C), 1.53 (3H, d, *J*=7.3, CH₃CH), 1.47 (3H, t, *J*=7.5, SO₂CH₂CH₃).

¹³C NMR (100 MHz, CDCl3) δ : 171.8 (CO₂Me), 143.8 (C_{ar}), 137.1 (C_{ar}), 132.4 (CH_{ar}), 132.1 (CH_{ar}), 129.6 (2xCH_{ar}), 128.9 (CH_{ar}), 128.4 (CH_{ar}), 127.6 (2xCH_{ar}), 125.7 (C_{ar}), 124.4 (C_{ar}), 89.4 (C_{C=C}), 85.9 (C_{C=C}), 82.6 (C_{C=C}), 80.8 (C_{C=C}), 55.0 (CHN), 52.4 (CH₃O), 46.2 (CH₂SO₂), 45.5 (CH₂SO₂), 35.1 (CH₂N), 21.6 (CH₃), 16.5 (CH₃), 6.8 (CH₃).

1.7. Synthesis of **5a**

(S)-3-{3-[2-(3-Ethylsulfanyl-prop-1-ynyl)-phenyl]-prop-2-ynyl}-4-phenyl-oxazolidin-2one (11)

Sulfide **11** was prepared according to the procedure already described for the synthesis of **9**, using ethanethiol (130 µL, 1.72 mmol) in THF (10 mL), 210 µL of a 16 M solution of NaOH and **10**⁶ (600 mg, 1.46 mmol). After work-up, purification by liquid chromatography on silica gel (pentane/CH₂Cl₂, 100/0 to 40/60) led to **11** (407 mg, 74%) as a pale yellow oil. $[\alpha]_D^{20}$ + 227 (c=0.8, CH₂Cl₂). **HRMS** (ESI): *m*/*z*: calcd for [M+H]⁺ C₂₃H₂₂NO₂S: 376.1366, found: 376.1365.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.45-7.36 (7H, m, CH_{ar}), 7.29-7.22 (2H, m, CH_{ar}), 5.13 (1H, pseudo t, X part of an ABX pattern, *J*=8.3), 4.71 (1H, t, *J*=8.8), 4.67 (1H, superimposed d, *J*=17.8, CH₂N, A part of an AB pattern), 4.18 (1H, pseudo t, *J*=8.3), 3.67 (1H, d, *J*=17.6,

CH₂N, B part of an AB pattern), 3.52 (2H, s, CH₂SEt), 2.73 (2H, q, *J*=7.5, CH₃CH₂S), 1.28 (3H, t, *J*=7.5, CH₃CH₂SO₂).

¹³C NMR (100 MHz, CDCl₃) δ : 157.9 (CO), 137.1 (C_{ar}), 132.4 (CH_{ar}), 132.3 (CH_{ar}), 129.5 (2xCH_{ar}), 129.3 (CH_{ar}), 128.4 (CH_{ar}), 128.0 (CH_{ar}), 127.4 (2xCH_{ar}), 125.9 (C_{ar}), 124.8 (C_{ar}), 89.8 (C=C), 85.8 (C=C), 83.9 (C=C), 81.5 (C=C), 70.1 (CH_{20xa}), 59.1 (CH_{0xa}), 33.1 (CH₂N), 25.7 (CH₂S), 20.0 (CH₂S), 14.4 (CH₃).

(S)-3-{3-[2-(3-Ethanesulfonyl-prop-1-ynyl)-phenyl]-prop-2-ynyl}-4-phenyl-oxazolidin-2-one (5a)

The procedure already described for the synthesis of **1a** was followed, starting from **11** (375 mg, 1 mmol) and 75% *m*-CPBA (540 mg, 2.2 mmol) in dichloromethane (10 mL). Substrate **5a** was isolated as a pale yellow oil (355 mg, 87%) after purification by flash chromatography on silica gel (pentane/CH₂Cl₂,50/50 to 0/100). ee>99% (Chiralpak IA, hexane/EtOH 50/50, $R_t(S) = 9.83 \text{ min}, R_t(R) = 7.61 \text{ min}).$ [α]_D²⁰ = +143.8 (c=0.675, CHCl₃). HRMS (ESI): *m/z*: calcd for [M+H]⁺ C₂₃H₂₂NO₄S: 408.1264, found: 408.1266.

¹**H** NMR (400 MHz, CDCl₃) δ: 7.47-7.36 (7H, m, CH_{ar}), 7.33-7.27 (2H, m, CH_{ar}), 5.06 (1H, t, J=8.5), 4.71 (1H, t, J=8.8), 4.62 (1H, d, J=17.8, CH₂N), 4.14 (1H, t, J=8.5), 4.11 (2H, superimposed AB pattern, J=17.1, Δv =11, CH₂SO₂Et), 3.69 (1H, d, J=17.8, CH₂N), 3.25 (2H, q, J=7.5, CH₃CH₂SO₂), 1.43 (3H, t, J=7.5, CH₃CH₂SO₂).

¹³C NMR (100 MHz, CDCl₃) δ : 158.1 (CO), 136.9 (C_{ar}), 132.5 (CH_{ar}), 132.3 (CH_{ar}), 129.5 (2xCH_{ar}), 129.4 (CH_{ar}), 128.9 (CH_{ar}), 128.5 (CH_{ar}), 127.4 (2xCH_{ar}), 125.3 (C_{ar}), 124.5 (C_{ar}), 86.5 (C=C), 85.9 (C=C), 83.1 (C=C), 80.6 (C=C), 70.2 (CH_{20xa}), 59.4 (CH_{oxa}), 46.1 (CH₂S), 45.2 (CH₂S), 33.1 (CH₂N), 6.8 (CH₃).

1.8. Synthesis of **5c**

(S)-1-{3-[2-(3-Ethylsulfanyl-prop-1-ynyl)-phenyl]-prop-2-ynyl}-5-oxo-pyrrolidine-2carboxylic acid methyl ester (13)

Sulfide 13 was prepared according to the procedure already described for the synthesis of 9, using ethanethiol (30 μ L, 0.39 mmol) in THF (2 mL), 57 μ L of a 7 M solution of NaOH and

12⁶(150 mg, 0.385 mmol). After work-up, purification by liquid chromatography on silica gel (pentane /CH₂Cl₂, 100/0 to 40/60) led to 13 (91 mg, 67%) as a pale yellow oil. $[α]_D^{20}$ = -11.7 (c=0.366, CH₂Cl₂). HRMS (ESI): *m*/*z*: calcd for [M+H]⁺ C₂₀H₂₂NO₃S: 356.1315, found: 356.1314.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.43-7.37 (2H, m, CH_{ar}), 7.27-7.21 (2H, m, CH_{ar}), 4.89 (1H, d, *J*=17.8, CH₂N), 4.62-4,59 (1H, m, CH), 4.04 (1H, br d, *J*=17.8, CH₂N), 3.77 (3H, s, CH₃O), 3.55 (2H, s, CH₂SEt), 2.78 (2H, q, *J*=7.5, SCH₂CH₃), 2.57-2.38 (3H, m), 2.15-2.09 (1H, m), 1.33 (3H, t, *J*=7.5, SCH₂CH₃).

¹³C NMR (100 MHz, CDCl₃) δ : 174.5 (CO), 172.4 (CO), 132.3 (CH_{ar}), 132.3 (CH_{ar}), 128.3 (CH_{ar}), 128.0 (CH_{ar}), 125.8 (C_{ar}), 125.0 (C_{ar}), 89.8 (C_{C=C}), 86.3 (C_{C=C}), 83.6 (C_{C=C}), 81.5 (C_{C=C}), 58.6 (CH), 52.6 (CH₃O), 32.4 (CH₂N), 29.6 (CH₂), 25.7 (CH₂SEt), 23.0 (CH₂), 19.9 (CH₂), 14.4 (CH₃).

(S)-1-{3-[2-(3-Ethanesulfonyl-prop-1-ynyl)-phenyl]-prop-2-ynyl}-5-oxo-pyrrolidine-2carboxylic acid methyl ester (5c)

The procedure already described for the synthesis of **1a** was followed, when reacting **13** (80 mg, 0.225 mmol) with 75% *m*-CPBA (113 mg, 0.49 mmol) in dichloromethane (3 mL). Substrate **5c** was isolated as a yellow solid (68 mg, 78%) after purification by flash chromatography on silica gel (CH₂Cl₂/Et₂O, 100/0 to 80/20). ee=97% (Chiralpak IA, hexane/EtOH 50/50, 1mL/min, R_t(*S*) = 7.63 min, R_t(*R*) = 8.99 min). [α]_D³⁰= -2.1 (c=0.6, CH₂Cl₂). **HRMS** (ESI): *m/z*: calcd for [M+H]⁺ C₂₀H₂₂NO₅S: 388.1213, found: 388.1210.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.46-7.40 (2H, m, CH_{ar}), 7.32-7.27 (2H, m, CH_{ar}), 4.82 (1H, d, *J*=17.8, CH₂N), 4.54-4.52 (1H, m, CH), 4.15 (2H, s, CH₂SO₂Et), 4.07 (1H, br d, *J*=17.8, CH₂N), 3.76 (3H, s, CH₃O), 3.30 (2H, q, *J*=7.5, SO₂CH₂CH₃), 2.56-2.36 (3H, m), 2.15-2.03 (1H, m), 1.47 (3H, t, *J*=7.5, SO₂CH₂CH₃).

¹³C NMR (100 MHz, CDCl₃) δ : 174.7 (CO), 172.4 (CO), 132.5 (CH_{ar}), 132.4 (CH_{ar}), 129.0 (CH_{ar}), 128.5 (CH_{ar}), 125.5 (C_{ar}), 124.3 (C_{ar}), 87.1 (C_{C=C}), 86.0 (C_{C=C}), 82.7 (C_{C=C}), 80.6 (C_{C=C}), 58.8 (CH), 52.7 (CH₃O), 46.0 (CH₂SO₂), 45.2 (CH₂SO₂), 32.2 (CH₂N), 29.5 (CH₂), 23.0 (CH₂), 6.9 (CH₃).

1.9. General procedure for the stoichiometric cyclisation

In a typical experiment, 400 mg (0.566 mmol of amine) of mesoporous silica grafted with the tertiary amine group (**GA-SBA15**) were added to a solution of enediyne (*S*)-**1b** (130 mg, 0.259 mmol) in benzene (20 mL). The mixture was stirred at 80 °C for 10h. The reaction was monitored by CCM (CH₂Cl₂/Et₂O, 98/2). After filtration and recovery of silica (rinsed with ether), purification by liquid chromatography on silica gel (pentane/CH₂Cl₂, from 70/30 to

0/100) led to the isolation of (3S,4R)-**3a** (58 mg, 45%, ee=68%) as a yellowish oil, **4a** (26 mg, 20%), and (3S,4S)-**2a** (38 mg, 29%, ee=72%) as yellowish oil.

1.10. General procedure for the catalytic cyclisation

In a typical experiment, 26 mg (0.037 mmol, 20 mol %) of mesoporous silica grafted with the tertiary amine group (**GA**-SBA15) were added to a solution of enediyne (*S*)-**5c** (100 mg, 0.184 mmol) in benzene (4 mL). The mixture stirred at 80 °C for 13h. The reaction was monitored by CCM (CH₂Cl₂/Et₂O, 95/5). The crude was then purified by liquid chromatography on silica gel (pentane/ CH₂Cl₂, from 70/30 to 0/100). This led to the isolation of (*R*,*S*)-**6c** (45 mg, 60%, ee=93.5%) as colourless oil and (*S*,*S*)-**7c** (22 mg, 30%, ee=62%) as a colourless oil.

1.11. Cycloaromatisation of (*S*)-**1a**

(3*S*,4*S*)-4-Ethanesulfonyl-3-methyl-2-(toluene-4-sulfonyl)-1,2,3,4-tetrahydrobenzo[*g*]isoquinoline-3-carboxylic acid methyl ester (2a)

ee=72% (Chiralpak IC, hexane/EtOH 50/50, 1mL/min $R_t(major) = 16.93 \text{ min}$, $R_t(minor) = 22.23 \text{ min}$). $[\alpha]_D^{30} = +9.6 \text{ (c=0.3, CH}_2\text{Cl}_2\text{)}$. **HRMS** (ESI): m/z: calcd for $[M+NH_4]^+ C_{25}H_{31}N_2O_6S_2$: 519.1618, found: 519.1614.

¹**H** NMR (400 MHz, CDCl₃) δ: 8.00 (2H, d, J=8.3, CH_{ar}), 7.86-7.82 (2H, m, CH_{ar}), 7.82 (1H, superimposed s, CH_{ar}), 7.69 (1H, s, CH_{ar}), 7.59-7.53 (2H, m, CH_{ar}), 7.32 (2H, d, J=8.0, CH_{ar}), 4.96 (1H, br d, J=14.3, CH₂N, A part of an AB pattern), 4.65 (1H, d, J=15.1, CH₂N, B part of an AB pattern), 4.59 (1H, s, CHSO₂Et), 3.93 (3H, s, CH₃O), 2.96 (1H, dq, J=13.3 and 7.5, SO₂CH₂CH₃, A part of ABX₃ pattern), 2.85 (1H, dq, J=13.3 and 7.5, SO₂CH₂CH₃, B part of an ABX₃ pattern), 2.42 (3H, s), 1.79 (3H, s), 1.26 (3H, t, J=7.5, SO₂CH₂CH₃).

¹³C NMR (100 MHz, CDCl₃) δ : 171.2 (CO₂Me), 143.7 (C_{ar}), 137.8 (C_{ar}), 134.0 (C_{ar}), 132.6 (C_{ar}), 131.8 (C_{ar}), 130.6 (CH_{ar}), 129.8 (2xCH_{ar}), 128.0 (CH_{ar}), 127.99 (2xCH_{ar}), 127.95 (CH_{ar}), 127.8 (CH_{ar}), 127.2 (CH_{ar}), 126.5 (CH_{ar}), 124.8 (C_{ar}), 74.4 (CHSO₂), 64.7 (C), 53.4 (CH₃O), 48.0 (CH₂), 46.7 (CH₂), 29.3 (CH₃), 21.7 (CH₃), 5.7 (CH₃).

(3*S*,4*R*)-4-Ethanesulfonyl-3-methyl-2-(toluene-4-sulfonyl)-1,2,3,4-tetrahydrobenzo[*g*]isoquinoline-3-carboxylic acid methyl ester (3a) ee=68% (Chiralpak IC, hexane/EtOH 50/50, 1mL/min, $R_t(major) = 13.44 \text{ min}$, $R_t(minor) = 18.32 \text{ min}$). [α]_D³⁰= +63.7 (c=0.85, CHCl₃). **HRMS** (ESI): *m/z*: calcd for [M+NH₄]⁺ C₂₅H₃₁N₂O₆S₂: 519.1618, found: 519.1609.

¹**H** NMR (400 MHz, CDCl₃) δ : 7.91 (1H, s, CH_{ar}), 7.86 (2H, d, *J*=8.5, CH_{ar}), 7.84 (1H, d, *J*=7.8, CH_{ar}), 7.78 (1H, d, *J*=7.8, CH_{ar}), 7.67 (1H, s, CH_{ar}), 7.54-7.46 (2H, m, CH_{ar}), 7.35 (2H, d, *J*=8.0), 5.29 (1H, d, *J*=15.9, CH₂N, A part of an AB pattern), 4.98 (1H, d, *J*=15.9, CH₂N, B part of an AB pattern), 4.72 (1H, s, CHSO₂Et), 3.24 (3H, s, CH₃O), 3.09 (1H, dq, *J*=13.3 and 7.5, SO₂CH₂CH₃, A part of ABX₃ pattern), 2.69 (1H, dq, *J*=13.3 and 7.5, SO₂CH₂CH₃, B part of an ABX₃ pattern), 2.44 (3H, s), 2.32 (3H, s), 1.21 (3H, t, *J*=7.5, SO₂CH₂CH₃).

¹³C NMR (100 MHz, CDCl₃) δ : 171.5 (CO₂Me), 143.8 (C_{ar}), 138.0 (C_{ar}), 133.6 (C_{ar}), 132.1 (C_{ar}), 131.0 (CH_a), 130.2 (C_a), 129.6 (2xCH_a), 128.3 (CH_a), 127.8 (2xCH_a), 127.6 (CH_a), 127.5 (CH_a), 126.7 (CH_a), 125.4 (CH_a), 125.1 (C_a), 72.1 (CHSO₂), 66.5 (C), 53.1 (CH₃O), 49.3 (CH₂), 46.1 (CH₂), 23.2 (CH₃), 21.7 (CH₃), 5.1 (CH₃).

2-[(3-Ethanesulfonylmethyl-naphthalen-2-ylmethyl)-(toluene-4-sulfonyl)-amino]-acrylic acid methyl ester (4a)

HRMS (ESI): m/z: calcd for $[M+NH_4]^+ C_{25}H_{31}N_2O_6S_2$: 519.1618, found: 519.1615. ¹**H** NMR (400 MHz, CDCl₃) δ : 7.90 (1H, br s, CH_{ar}), 7.83-7.81 (1H, m, CH_{ar}), 7.75 (2H, d, J=8.5, CH_{ar}), 7.69-7;67 (1H, m, CH_{ar}), 7.51-7.44 (2H, m, CH_{ar}), 7.41 (1H, s, CH_{ar}), 7.35 (2H, d, J=8.0, CH_{ar}), 6.18 (1H, s, =CH), 5.45 (1H, s, =CH), 4.89 (2H, s, CH₂), 4.85 (2H, s, CH₂), 3.57 (3H, s, CH₃O), 3.29 (2H, q, J=7.5, SO₂CH₂CH₃), 2.47 (3H, s), 1.56 (3H, t, J=7.5, SO₂CH₂CH₃), 3.29 (2H, S, CH₂), 3.29 (2H, S

SO₂CH₂CH₃).

¹³C NMR (100 MHz, CDCl₃) δ : 164.3 (CO₂Me), 144.4 (C_{ar}), 135.9 (C_{ar}), 134.4 (C_{ar}), 133.2 (CH_{ar}), 133.1 (C=), 133.0 (C_{ar}), 131.7 (CH_{ar}), 131.4 (C_{ar}), 129.8 (2xCH_{ar}), 128.2 (2xCH_{ar}), 127.9 (CH_{ar}), 127.6 (CH_{ar}), 127.4 (CH₂), 127.1 (CH_{ar}), 127.0 (CH_{ar}), 124.5 (C_{ar}), 54.4 (CH₂), 52.5 (CH₃O), 52.3 (CH₂), 48.2 (CH₂), 21.8 (CH₃), 6.9 (CH₃).

1.12. Cycloaromatisation of (*S*)-**5a**

(11*R*,11a*S*)-11-Ethanesulfonyl-11a-phenyl-1,4,11,11a-tetrahydro-2-oxa-3a-aza-cyclopenta[*b*]anthracen-3-one (6a)

ee=93% (Chiralpak IC, hexane/EtOH 50/50, 1mL/min $R_t(minor) = 12.77 \text{ min}$, $R_t(major) = 14.31 \text{ min}$). $[\alpha]_D^{30} = +106.6 \text{ (c=0.9, CHCl}_3)$. **HRMS** (ESI): m/z: calcd for $[M+H]^+ C_{23}H_{22}NO_4S$: 408.1264, found: 408.1265.

¹**H** NMR (400 MHz, CDCl₃) δ : 8.26 (1H, s, CH_{ar}), 7.88 (1H, d, *J*=7.5, CH_{ar}), 7.82 (1H, d, *J*=7.5, CH_{ar}), 7.72 (1H, s, CH_{ar}), 7.59-7.49 (4H, m, CH_{ar}), 7.32-7.29 (3H, m, CH_{ar}), 5.12 (1H,

d, J=9.5, CH₂O, A part of an AB pattern), 5.09 (1H, s, CHSO₂Et), 4.99 (1H, d, J=16.5, CH₂N, A part of an AB pattern), 4.74 (1H, d, J=9.8, CH₂O, B part of an AB pattern), 4.65 (1H, br d, J=16.5, CH₂N, B part of an AB pattern), 2.99 (1H, dq, J=13.8 and 7.5, CH₃CH₂SO₂, A part of an ABX₃ pattern), 2.57 (1H, dq, J=13.8 and 7.5, CH₃CH₂SO₂, B part of an ABX₃ pattern), 1.31 (3H, t, J=7.5, CH₃CH₂SO₂).

¹³C NMR (100 MHz, CDCl₃) δ : 157.2 (CO), 137.1 (C_{ar}), 132.8 (C_{ar}), 132.4 (C_{ar}), 130.8 (C_{ar}), 129.3 (CH_{ar}), 129.0 (CH_{ar}), 128.8 (2xCH_{ar}), 128.3 (CH_{ar}), 127.9 (CH_{ar}), 127.5 (CH_{ar}), 127.4 (2xCH_{ar}), 126.9 (CH_{ar}), 126.3 (CH_{ar}), 124.9 (C_{ar}), 76.9 (CH₂O), 71.1 (CHSO₂Et), 64.6 (C), 49.8 (CH₂), 43.6 (CH₂), 6.1 (CH₃).

(11*S*,11a*S*)-11-Ethanesulfonyl-11a-phenyl-1,4,11,11a-tetrahydro-2-oxa-3a-aza-cyclopenta[*b*]anthracen-3-one (7a)

ee=84% (Chiralpak IC, hexane/EtOH 50/50, 1mL/min R_t (*major*) = 32.96 min, R_t (*minor*)=53.62 min). $[\alpha]_D^{30}$ = +33 (c=1.5, CHCl₃). **HRMS** (ESI): *m/z*: calcd for $[M+H]^+$ C₂₃H₂₂NO₄S: 408.1264, found: 408.1270.

¹**H** NMR (400 MHz, CDCl₃) δ: 7.75-7.72 (2H, m, CH_{ar}), 7.70 (2H, br s, CH_{ar}), 7.50-7.42 (2H, m, CH_{ar}), 7.21 (4H, m, CH_{ar}), 7.14-7.09 (1H, m, CH_{ar}), 5.90 (1H, d, *J*=9.3, CH₂O), 5.31 (1H, d, *J*=16.8, CH₂N, A part of an AB pattern), 5.07 (1H, s, CHSO₂Et), 4.86 (1H, d, *J*=17.0, CH₂N, B part of an AB pattern), 4.31 (1H, d, *J*=9.0, CH₂O), 2.98 (1H, dq, *J*=13.5 and 7.5, CH₃CH₂SO₂, A part of an ABX₃ pattern), 2.82 (1H, dq, *J*=13.5 and 7.5, CH₃CH₂SO₂, B part of an ABX₃ pattern), 1.27 (3H, t, *J*=7.5, CH₃CH₂SO₂).

¹³C NMR (100 MHz, CDCl₃) δ : 158.4 (CO), 142.4 (C_{ar}), 133.5 (C_{ar}), 131.8 (C_{ar}), 131.3 (CH_{ar}), 129.5 (2xCH_{ar}), 129.3 (C_{ar}), 128.3 (CH_{ar}), 127.8 (CH_{ar}), 127.7 (CH_{ar}), 127.5 (CH_{ar}), 126.7 (CH_{ar}), 126.6 (CH_{ar}), 124.6 (C_{ar}), 124.0 (2xCH_{ar}), 72.5 (CH₂O), 67.5 (CHSO₂Et), 65.2 (C), 46.5 (CH₂), 44.9 (CH₂), 5.3 (CH₃).

1.13. Cycloaromatisation of (*S*)-**5c**

(11*S*,11a*S*)-11-Ethanesulfonyl-3-oxo-2,3,4,11-tetrahydro-1*H*-3a-azacyclopenta[*b*]anthracene-11a-carboxylic acid methyl ester (6c)

ee=94% (Chiralpak IC, hexane/EtOH 50/50, 1mL/min R_t (*major*) = 13.43 min, R_t (*minor*)=18.46 min). $[\alpha]_D^{30}$ =-172 (c=0.186, CH₂Cl₂). **HRMS** (ESI): *m/z*: calcd for $[M+H]^+$ C₂₀H₂₂NO₅S: 388.1213, found: 388.1211.

¹**H** NMR (400 MHz, CDCl₃) δ : 8.15 (1H, s, CH_{ar}), 7.85-7.80 (2H, m, CH_{ar}), 7.72 (1H, s, CH_{ar}), 7.56-7.49 (2H, m, CH_{ar}), 5.18 (1H, d, *J*=16.3, CH₂N, A part of an AB pattern), 4.93

(1H, s, CHSO₂Et), 4.38 (1H, d, *J*=16.3, CH₂N, B part of an AB pattern), 3.83 (3H, s, OCH₃), 3.19-3.13 (1H, m), 3.17 (2H, superimposed q, *J*=7.5, SO₂CH₂CH₃), 2.69-2.59 (1H, m), 2.44-2.37 (1H, m), 2.25-2.17 (1H, m), 1.34 (3H, t, *J*=7.5, SO₂CH₂CH₃).

¹³C NMR (100 MHz, CDCl₃) δ : 174.3 (CO), 170.6 (CO), 133.0 (C_{ar}), 132.3 (C_{ar}), 131.4 (C_{ar}), 129.0 (CH_{ar}), 128.1 (CH_{ar}), 127.7 (CH_{ar}), 127.6 (CH_{ar}), 126.8 (CH_{ar}), 126.1 (CH_{ar}), 124.5 (C_{ar}), 74.0 (CHSO₂Et), 67.6 (C), 53.5 (OCH₃), 47.5 (CH₂), 41.3 (CH₂), 33.7 (CH₂), 30.0 (CH₂), 5.9 (CH₃).

(11*R*,11a*S*)-11-Ethanesulfonyl-3-oxo-2,3,4,11-tetrahydro-1*H*-3a-azacyclopenta[*b*]anthracene-11a-carboxylic acid methyl ester (7c)

ee=87% (Chiralpak IC, hexane/EtOH 50/50, 1mL/min $R_t(minor) = 17.46 \text{ min}$, $R_t(major) = 24.17 \text{ min}$). $[\alpha]_D{}^{30} = -11.1 \text{ (c=0.18, CH}_2\text{Cl}_2)$. **HRMS** (ESI): m/z: calcd for $[M+H]^+ C_{20}H_{22}NO_5S$: 388.1213, found: 388.1212.

¹**H** NMR (400 MHz, CDCl₃) δ : 7.87 (1H, s, CH_{ar}), 7.78-7.74 (2H, m, CH_{ar}), 7.69 (1H, br s, CH_{ar}), 7.57-7.49 (2H, m, CH_{ar}), 5.12 (1H, d, *J*=17.6, CH₂N, A part of an AB pattern), 5.02 (1H, s, CHSO₂Et), 4.74 (1H, d, *J*=17.6, CH₂N, B part of an AB pattern), 3.66-3.56 (1H, ddd, *J*=14.0, 10.5 and 6.0), 3.51 (3H, s, OCH₃), 2.84-2.54 (4H, m superimposed to the ABX₃ pattern of SO₂CH₂CH₃), 2.34-2.26 (1H, ddd, *J*=14.0, 10.5 and 6.0), 1.24 (3H, t, *J*=7.5, SO₂CH₂CH₃).

¹³C NMR (100 MHz, CDCl₃) δ : 175.1 (CO), 171.8 (CO), 133.9 (C_{ar}), 132.0 (C_{ar}), 131.4 (CH_{ar}), 129.7 (C_{ar}), 128.0 (CH_{ar}), 127.9 (CH_{ar}), 127.6 (CH_{ar}), 126.9 (CH_{ar}), 126.9 (CH_{ar}), 124.6 (C_{ar}), 67.9 (C), 66.7 (CHSO₂Et), 53.5 (OCH₃), 47.9 (CH₂), 43.5 (CH₂), 29.6 (CH₂), 26.3 (CH₂), 5.2 (CH₃).

3. Chiral HPLC Spectra

Method description : Chiralpak IC, Hexane/Ethanol 50/50, 1 ml/min, DAD and CD 254nm

Method description : Chiralpak IC, Hexane/Ethanol 50/50, 1 ml/min, DAD and CD 254nm

Totals

88825178

100.00

3.71

Method description : Chiralpak IA, Hexane/Ethanol 50/50, 1 ml/min, DAD and CD 254nm

Method description : Chiralpak IA, Hexane/Ethanol 50/50, 1 ml/min, DAD and CD 254nm

142778358

100.00

Method description : Chiralpak IC, Hexane/Ethanol 50/50, 1 ml/min, DAD and CD 254nm

Method description : Chiralpak IC, Hexane/Ethanol 50/50, 1 ml/min, DAD and CD 254nm

Crude of the cyclization of 5a (catalytic version)

Method description : Chiralpak IC, Hexane/Ethanol 50/50, 1 ml/min, DAD and CD 254nm

Method description : Chiralpak IA, Hexane/Ethanol 50/50, 1 ml/min, DAD and CD 254nm

63551330 100.00

Method description : Chiralpak IA, Hexane/ethanol 50/50, 1 ml/min, UV 254 nm et CD 254nm

Method description : Chiralpak IC, Hexane/Ethanol 50/50, 1 ml/min, DAD and CD 254nm

Method description : Chiralpak IC, Hexane/Ethanol 50/50, 1 ml/min, DAD and CD 254nm

4. NMR Spectra

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

(p p m)

4 % / / / 0 4 0 8 0 1 0 0 0 0 8 1 0 4 8 1 2 4 0 0 0 0 8
01044110004004004000110004004081
00159910864-08659156491098609
887777666666666666666666666666666666666
$\mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} $
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0120-0248001201 001440 V4-80VUQQUU4484















Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

34



200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0













### Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011



190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0



	~	<b>.</b>	70				
	0,		1-01				
ØNNNØ488NN80000101NVVØØ <i>mm</i> Ø	2	4	9	0	$\omega \propto \omega \nu$	6	$\infty \cup \infty$
	•	•				0	4 O N
94999000000049009000000000000	2	7	アク	0	5000	•	
NWWUOQV000000000000000000000000000000000000	$\sim$	$\infty$	54	ŝ	0755	6	6 8 1
~~~~~0000000000000000000000000000000000	4	Ι	9	4	$\omega \omega \omega \omega$	$\infty$	- 1 M
<i>wwwwwwwwwwwwwwwwwwww</i> wwwwwwwwwwwwwwww	2	2	Ι	Ι	7777	6	000
				1		1	•

6	040 <i>00014010004</i>				
6	ミタキミオンアシオこ10アタム0	508	404ω	ŝ	
Ι	4050000045000448	000	0800	\sim	\sim
\mathfrak{S}	4 & 4 – – 0 / 4 & 0 0 0 0 – 0 4	804	4080	6	9
		8 - 8	4500	\sim	∞
4	すらすうう うーーの & アアアアオ				∞
6	4 3 3 3 3 3 3 2 2 0 0 0 0 0 0	6 1 1	4008	Ι	
Ι	~~~~~	ファフ	ろろろみ	7	9
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1	Π	

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

108081140000401004000108108	$\sim \infty$	me emporps	<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>
ここ ー チ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ	3	KK 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	$\neg \phi w \phi \neg w w w \phi v \phi w w \phi v \phi \phi \phi w$
そのらこまこーちオアダオコダらのキュアキャネタウシーダ	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00065000046675487
000000000000000000000000000000000000000	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100000000000000000000000000000000000000
$\neg \neg \bigcirc \bigcirc$	$\omega \omega$	111000 22	000000000000000000000000000000000000000
<i>w w w w w w W U U U U U U U U U U U U U </i>	\sim		
	L		

4	400544000048			
9	U800U0U0VUU4V	10 m 10 C	28	
9	こちきめる きちてめ 1 600 1	$\infty 000 VV$	1	
\mathfrak{S}	458055350505000	$\sim \sim $	1 0	
		418441	50	
∞	こターーのの&アアアダクォタ			
2	4 m m m U U U U U U U U U U U U U	275077	94	
Γ	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	001111	44	

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

