Supplementary information

A single precatalyst Tandem RCM-allylic oxidation sequence

Bernd Schmidt* and Stefan Krehl

Universitaet Potsdam, Institut fuer Chemie, Organische Synthesechemie, Karl-Liebknecht-Strasse 24-25, D-14476 Golm, Germany

bernd.schmidt@uni-potsdam.de

Table of contents

А	Genera	al remarks	S3
В	Synthesis and characterization data of Rauhut Currier product 3		
С	Genera	al experimental procedure for Tandem RCM-allylic oxidation	S7
D	Specif	ic details, analytical data and copies of spectra for coumarin 2	S 8
	D1	2H-Chromen-2-one (2a)	S 8
	D2	6,8-Dibromo-2 <i>H</i> -chromen-2-one (2b)	S10
	D3	8-Methoxy-2 <i>H</i> -chromen-2-one (2c) and 2-(<i>tert</i> -butylperoxy)-8-meth	оху-2Н-
		chromene (7c)	S12
	D4	Synthesis of 8-methoxy-2 <i>H</i> -chromen-2-one $(2c)$ with subsequent p	peroxide
		decomposition	S14

D5	8-Ethoxy-2 <i>H</i> -chromen-2-one (2d) and 2-(<i>tert</i> -Butylperoxy)-8-etho	ху-2 <i>H</i> -
	chromene (7d)	S15
D6	Synthesis of 8-ethoxy-2H-chromen-2-one (2d) with subsequent pe	eroxide
	decomposition	S18
D7	7-Methoxy-2 <i>H</i> -chromen-2-one (2e)	S19
D8	6-Nitro-2 <i>H</i> -chromen-2-one (2f)	S21
D9	6-Bromo-2 <i>H</i> -chromen-2-one (2g)	S23
D10	6-Methyl-2 <i>H</i> -chromen-2-one (2h)	S25
D11	6-Vinyl-2 <i>H</i> -chromen-2-one (2i)	S27
D12	4-Methyl-2 <i>H</i> -chromen-2-one (2j)	S29
D13	4,6-Dimethyl-2 <i>H</i> -chromen-2-one (2k)	S31
D14	6-Bromo-4-methyl-2 <i>H</i> -chromen-2-one (2l)	S33
D15	6-Chloro-4-methyl-2H-chromen-2-one (2m)	S35
D16	3 <i>H</i> -Benzo[f]chromen-3-one (2n)	S37
D17	Control experiment 1: allylic oxidation in the absence of Ru-catalyst	S39
D18	Control experiment 2: allylic oxidation of 5a catalyzed by Ru-catalyst A	S41

A General Remarks

All experiments were conducted in dry reaction vessels under an atmosphere of dry nitrogen. Solvents were purified by standard procedures. ¹H NMR spectra were obtained at 300 MHz in CDCl₃ with Tetramethylsilane ($\delta = 0.00$ ppm) as an internal standard. Coupling constants (*J*) are given in Hz. ¹³C NMR spectra were recorded at 75 MHz in CDCl₃ with CDCl₃ ($\delta = 77.0$ ppm) as an internal standard. The number of coupled protons was analyzed APT-experiments and is denoted by a number in parantheses following the chemical shift value. IR spectra were recorded in substance on NaCl or KBr plates. Wavenumbers (*v*) are given in cm⁻¹. The peak intensities are defined as strong (s), medium (m) or weak (w). Mass spectra were obtained at 70 eV. The following starting materials were synthesized following literature procedures: **1a**, ¹ **4a**,**c**,**e**,**f**,**g**,**m**,**n**, ² **4j**, ³ **5a**.²

¹ L. Polito, M. Cravini, L. Poletti and L. Lay, Synth. Commun., 2006, **36**, 2203-2209.

² S. Chang and R. H. Grubbs, J. Org. Chem., 1998, 63, 864-866.

³ K.-S. Huang, S.-R. Li, Y.-F. Wang, Y.-L. Lin, Y.-H. Chen, T.-W. Tsai, C.-H. Yang and E.-C. Wang, *J. Chin. Chem. Soc.*, 2005, **52**, 159-167.

B Synthesis and characterization data of Rauhut Currier product bis-(2vinylphenyl)-2-methylenepentandioate (3)

Acrylate **1a** (174 mg, 1.0 mmol) was dissolved in dry and degassed benzene (1.0 mL). Then the catalyst (**A**: 40 mg or PCy₃: 14 mg, 0.05 mmol) was added and the reaction mixture was stirred for 19 h at 40 C. The solvent was removed in vacuo and the residue was purified by coluum chromatography on silica. After purification, **3** was obtained as a colourless liquid (with catalyst **A**: 21 mg, 12%, with PCy₃: 113 mg, 65%) ¹H-NMR: δ 7.58 (td, 2H, *J* = 7.6, 1.5), 7.34 – 7.17 (4H), 7.09 (dd, 1H, *J* = 7.8, 1.0), 7.03 (dd, 1H, *J* = 7.7, 0.9), 6.75 (dd, 1H, *J* = 17.6, 11.1), 6.75 (dd, 1H, *J* = 17.6, 11.1), 6.55 (s, 1H), 5.93 (s, 1H), 5.76 (d, 1H, *J* = 17.6), 5.75 (d, 1H, *J* = 17.6), 5.33 (d, 1H, *J* = 11.1), 5.31 (d, 1H, *J* = 11.1), 2.96 – 2.85 (4H); ¹³C-NMR: δ 170.8 (0), 164.8 (0), 148.1 (0), 147.9 (0), 138.0 (0), 130.4 (1), 130.3 (1), 130.2 (0), 128.7 (1), 128.6 (1), 128.2 (2), 126.6 (1), 126.5 (1), 126.2 (1), 126.2 (1), 122.5 (1), 122.5 (1), 116.5 (2), 116.4 (2), 33.0 (2), 27.5 (2); IR (neat, cm⁻¹): $\tilde{\nu}$ = 2954 (m), 2922 (w), 2853 (m), 1760 (m), 1733 (m), 1630 (w), 1483 (w), 1452 (m); HRMS (EI): calcd for C₂₂H₂₀O₄ [M]⁺: 348.1356, found: 348.1378; MS (EI): m/z 348 (M⁺, 2), 230 (15), 229 (100), 201 (24), 187 (14), 120 (21), 109 (23), 91 (38); Anal. calcd for C₂₂H₂₀O₄: C: 75.84, H: 5.79; found: C: 75.49, H: 5.22.

¹H NMR spectrum of 3

C General experimental procedures for Tandem RCM-allylic oxidation

General procedure A (without addition of NEt₃): Allyl ether **4** (1.0 mmol) was dissolved in dry and degassed benzene (1.0 mL). Catalyst **A** (40 mg, 5 mol%) or **B** (45.5 mg, 5 mol%) was then added. Immediately after addition of the catalyst, the reaction vessel was immersed in an oil bath preheated to 40 °C (electronic temperature control) and stirred for 2 h. After this time, ^{*i*}BuOOH (5.5 M in decane, 720 μ L, 4.0 mmol) was added to the reaction mixture via syringe pump within 15 min. After complete addition of the oxidant, the mixture was stirred for another 3 h. The reaction mixture was diluted with MTBE (50 mL), and MgSO₄ was added to absorb any water and Ru-residues. It was filtered and all volatiles were removed in vacuo. The residue was purified by column chromatography on silica. Each experiment was repeated at least two times.

General procedure B (with addition of NEt₃): Allyl ether **4** (1.0 mmol) was dissolved in dry and degassed benzene (1.0 mL). Catalyst **A** (40 mg, 5 mol%) or **B** (45.5 mg, 5 mol%) was then added. Immediately after addition of the catalyst, the reaction vessel was immersed in an oil bath preheated to 40 °C (electronic temperature control) and stirred for 2 h. After this time, 'BuOOH (5.5 M in decane, 720 μ L, 4.0 mmol) was added to the reaction mixture via syringe pump within 15 min. After complete addition of the oxidant, the mixture was stirred for another 3 h. After this time, NEt₃ (2.5 mmol, 255 mg, 350 μ L) was added, and the mixture was heated to 80°C for 30 min. The reaction mixture was diluted with MTBE (50 mL), and MgSO₄ was added to absorb any water and Ru-residues. It was filtered and all volatiles were removed in vacuo. The residue was purified by column chromatography on silica. Each experiment was repeated at least two times.

D Specific details, analytical data and copies of spectra for coumarins 2

D1 2*H*-Chromen-2-one (**2a**)

Following the general procedure A, 2*H*-chromen-2-one (**2a**) was obtained from **4a** (160 mg, 1.0 mmol) as a yellowish solid (with catalyst **A**: 85 mg, 58%, with catalyst **B**: 86 mg, 59%). Mp: 70 – 72°C;^{4 1}H-NMR: δ 7.72 (d, 1H, *J* = 9.6, H-4), 7.58 – 7.45 (2H, H-5, H-7), 7.37 – 7.24 (2H, H-6, H-8), 6.42 (d, 1H, *J* = 9.5, H-3); ¹³C-NMR: δ 160.7 (0), 154.1 (0), 143.4 (1), 131.8 (1), 127.8 (1), 124.4 (1), 118.8 (0), 116.9 (1), 116.7 (1); IR (neat, cm⁻¹): \tilde{v} = 3061 (w), 2958 (w), 1711 (s), 1605 (s), 1453 (m), 1106 (m); HRMS (ESI): calcd for C₉H₇O₂ [M+H]⁺: 147.0446, found: 147.0451; MS (EI): m/z 146 (M⁺, 92), 118 (100), 90 (32), 89 (39), 63 (25); Anal. calcd for C₉H₇O₂: C: 73.97, H: 4.14; found: C: 73.80, H: 3.97.

⁴ Reported in the literature: mp = 67-68°C; J. Oyamada and T. Kitamura, *Tetrahedron*, 2006, **62**, 6918-6925.

¹H NMR spectrum of 2a

D2 6,8-Dibromo-2*H*-chromen-2-one (**2b**)

Following the general procedure A, 6,8-dibromo-2*H*-chromen-2-one (**2b**) was obtained from **4b** (159 mg, 0.5 mmol) together with the corresponding pyron **6b** (**2b** : **6b**, 10: 1) as a yellowish solid (with catalyst **A**: 85 mg, 56%, with catalyst **B**: 85 mg, 56%). Mp: 136 – 138°C;^{5 1}H-NMR: δ 7.89 (d, 1H, J = 2.2, H-5), 7.61 (d, 1H, J = 9.7, H-4), 7.58 (d, 1H, J = 2.2, H-7), 6.50 (d, 1H, J = 9.5, H-3); ¹³C-NMR: δ 158.8 (0), 149.9 (0), 141.8 (1), 137.4 (1), 129.4 (1), 121.1 (0), 118.5 (1), 116.9 (0), 111.5 (0); IR (neat, cm⁻¹): $\tilde{v} = 3067$ (w), 1740 (s), 1655 (m), 1544 (m), 1442 (m), 1167 (m); HRMS (EI): calcd for C₉H₄O₂[79]Br₂ [M]⁺: 301.8578, found: 301.8584; MS (EI): m/z 306 (M⁺, 47), 304 (M⁺, 100), 302 (M⁺, 53), 278 (30), 276 (63), 274 (35), 197 (20), 195 (21), 169 (29), 167 (32); Anal. calcd for C₉H₄O₂Br₂: C: 35.57, H: 1.33; found: C: 35.79, H: 1.30.

⁵ Reported in the literature: 160°C; M. J. Bhukta and P. I. Ittyerah, J. Indian Chem. Soc., 1965, 42, 454-456.

¹H NMR spectrum of 2b

D3 8-Methoxy-2*H*-chromen-2-one (2c) and 2-(*tert*-butylperoxy)-8-methoxy-2*H*-chromene (7c)

Following the general procedure A, 2-(*tert*-butylperoxy)-8-methoxy-2H-chromene (7c) and 8methoxy-2H-chromen-2-one (2c) were synthesized from 4c (190 mg, 1.0 mmol) using catalyst **A**. The products were separated by column chromatography on silica to give 7c as a colourless liquid (43 mg, 17%) and 2c as a yellowish solid (60 mg, 34%). Analytical data for 2-(tert-butylperoxy)-8-methoxy-2H-chromene (7c): ¹H-NMR: δ 6.92 (dd, 1H, J = 8.1, 7.1, H-6), 6.86 (dd, 1H, J = 8.1, 1.9, H-5), 6.80 (d, H, J = 9.6, H-4), 6.77 (dd, 1H, J = 7.5, 1.9, H-7), 6.23 (d, H, J = 4.1, H-2), 5.79 (dd, 1H, J = 9.6, 4.1, H-3), 3.90 (s, 3H, OCH₃), 1.20 (s, 9H, OC(CH₃)₃); ¹³C-NMR: δ 148.3 (0), 140.7 (0), 129.2 (1), 121.1 (1), 121.1 (0), 119.2 (1), 115.5 (1), 112.4 (1), 97.0 (1), 81.2 (0), 55.9 (3), 26.2 (3, 3C); IR (neat, cm⁻¹): $\tilde{v} = 2976$ (m), 1641 (m), 1576 (m), 1480 (m), 1363 (m), 1268 (s), 1210 (s), 1192 (s); HRMS (EI): calcd for $C_{14}H_{18}O_4$ [M]⁺: 250.1205, found: 250.1202; MS (EI): m/z 250 (M⁺, 1), 161 (100), 146 (12), 134 (13), 85 (14), 83 (18), 79 (12), 77 (12), 57 (12), 43 (21); Anal. calcd for C₁₄H₁₈O₄: C: 67.18, H: 7.25; found: C: 66.83, H: 7.08. Analytical data for 8-methoxy-2H-chromen-2-one (2c): Mp: 90 – 91°C; ⁶ ¹H-NMR: δ 7.70 (d, 1H, J = 9.6, H-4), 7.21 (dd, 1H, J = 8.0, 7.8, H-6), 7.09 (dd, H, J = 8.0, 1.4, H-5/H-7), 7.06 (dd, H, J = 7.5, 1.4, H-5/H-7), 6.43 (d, 1H, J = 9.6, H-3), 3.96 (s, 3H, OCH₃); 13 C-NMR: δ 160.1 (0), 147.2 (0), 143.7 (0), 143.5 (1), 124.21 (1), 119.4 (0), 119.2 (1), 116.8 (1), 113.8 (1), 56.2 (3); IR (neat, cm⁻¹): $\tilde{v} = 2933$ (w), 2847 (w), 1724 (s), 1608 (m), 1571 (m), 1467 (s), 1273 (s); HRMS (EI): calcd for $C_{10}H_8O_3$ [M]⁺: 176.0473, found: 176.0482; MS (EI): m/z 176 (M⁺, 100), 161 (24), 148 (32), 147 (18), 133 (43), 105 (42), 77 (41), 51 (47), 50 (23); Anal. calcd for $C_{10}H_8O_3$: C: 68.18, H: 4.58; found: C: 67.86, H: 4.39.

⁶ Reported in the literature: 86-87°C°C; J. A. Panetta and H. Rapoport, J. Org. Chem., 1982, 47, 946-950.

¹H NMR spectrum of 7c

¹H NMR spectrum of 2c

D4 Synthesis of 8-methoxy-2*H*-chromen-2-one (**2c**) with subsequent peroxide decomposition

Following the general procedure B, 8-methoxy-2*H*-chromen-2-one (2c) was obtained from 4c (190 mg, 1.0 mmol) as a yellowish solid (with catalyst A: 97 mg, 55%, with catalyst B: 100 mg, 57%). Analytical data for 2c synthesized via this protocol are identical to those reported above.

D5 8-Ethoxy-2*H*-chromen-2-one (**2d**) and 2-(*tert*-butylperoxy)-8-ethoxy-2*H*-chromene (**7d**)

Following the general procedure A, 2-(tert-butylperoxy)-8-ethoxy-2H-chromene (7d) and 8ethoxy-2H-chromen-2-one (2d) were synthesized from 4d (204 mg, 1.0 mmol) using catalyst A. The products were separated by column chromatography on silica to give 7d as a colourless liquid (40 mg, 15%) and 2d as a yellowish solid (72 mg, 38%). Analytical data of 2-(tert-butylperoxy)-8-ethoxy-2H-chromene (7d): ¹H-NMR: δ 6.92 – 6.83 (2H, H-6, H-7), 6.79 (d, 1H, J = 9.6, H-4), 6.76 (dd, 1H, J = 6.5, 1.7, H-5), 6.24 (d, 1H, J = 4.1, H-2), 5.78(dd, 1H, J = 9.6, 4.1, H-3), 4.17 (dq, 1H, J = 9.6, 7.0, OCHHCH₃), 4.11 (dq, 1H, JOCH*H*CH₃), 1.46 (t, 3H, J = 7.0, OCH₂CH₃), 1.21 (s, 9H, OC(CH₃)3); ¹³C-NMR: δ 147.5 (0). 141.1 (0), 129.2 (1), 121.3 (0), 121.1 (1), 119.3 (1), 115.6 (1), 114.1 (1), 96.9 (1), 81.0 (0), 64.5 (2), 26.3 (3, 3C), 14.9 (3); IR (neat, cm⁻¹): $\tilde{v} = 2977$ (m), 2932 (w), 1576 (m), 1471 (s), 1393 (m), 1363 (m), 1270 (s), 1210 (s); HRMS (EI): calcd for $C_{15}H_{20}O_4$ [M]⁺: 264.1362, found: 264.1347; MS (EI): m/z 264 (M⁺, 1), 175 (100), 147 (20), 134 (17), 107 (11), 77 (14), 57 (10), 43 (17); Anal. calcd for C₁₅H₂₀O₄: C: 68.16 H: 7.63; found: C: 68.11 H: 7.72. Analytical data of 8-Ethoxy-2H-chromen-2-one (2d): Mp: 69 – 70°C; ¹H-NMR: δ7.69 (d, 1H, J = 9.5, H-4), 7.17 (d, 1H, J = 7.7, H-5/7), 7.10 – 7.02 (2H, H-5/7, H-6), 6.42 (d, 1H, J = 9.6, H-3), 4.18 (q, 2H, J = 7.0, OCH₂CH₃), 1.50 (t, 3H, J = 7.0, OCH₂CH₃); ¹³C-NMR: δ 160.4 (0), 146.5 (0), 143.9 (0), 143.6 (1), 124.2 (1), 119.5 (0), 119.2 (1), 116.7 (1), 115.0 (1), 64.9 (2), 14.7 (3); IR (neat, cm⁻¹): $\tilde{v} = 3437$ (w), 3083 (w), 2980 (w), 2933 (w), 1720 (s), 1605 (m), 1570 (m), 1462 (s), 1393 (m); HRMS (EI): calcd for $C_{11}H_{10}O_3$ [M]⁺: 190.0630, found: 190.0619; MS (EI): m/z 190 (M⁺, 45), 162 (90), 134 (100), 105 (19), 78 (28), 77 (31), 51 (24); Anal. calcd for C₁₁H₁₀O₃: C: 69.46, H: 5.30; found: C: 69.07, H: 5.15.

¹H NMR spectrum of 7d

¹H NMR spectrum of 2d

D6 Synthesis of 8-ethoxy-2*H*-chromen-2-one (2d) with subsequent peroxide decomposition

Following the general procedure B, 8-Ethoxy-2*H*-chromen-2-one (**2d**) was obtained from **4d** (204 mg, 1.0 mmol) as a yellowish solid (with catalyst **A**: 97 mg, 51%, with catalyst **B**: 97 mg, 51%). Analytical data for **2d** synthesized via this protocol are identical to those reported above.

D7 7-Methoxy-2*H*-chromen-2-one (2e)

7-Methoxy-2*H*-chromen-2-one (**2e**) was synthesized following the general procedure A, using an initial concentration of **4e** (190 mg, 1.0 mmol) of 0.1 M. **2e** was obtained as a yellowish solid (with catalyst **A**: 71 mg, 40%, with catalyst **B**: 71 mg, 40%). Mp: 121 – 123°C;⁷ ¹H-NMR: δ 7.64 (d, 1H, *J* = 9.6, H-4), 7.38 (d, 1H, *J* = 8.5, H-5), 6.84 (dd, 1H, *J* = 8.5, 2.4, H-6), 6.80 (d, 1H, *J* = 2.3, H-8), 6.24 (d, 1H, *J* = 9.5, H-3), 3.87 (s, 3H, OC*H*₃); ¹³C-NMR: δ 162.8 (0), 161.1 (0), 155.8 (0), 143.3 C(1), 128.7 (1), 113.0 (0), 112.5 (1, 2C), 100.8 (1), 55.7 (3); IR (neat, cm⁻¹): \tilde{v} = 2936 (w), 1727 (s), 1609 (s), 1556 (m), 1507 (m), 1282 (m); HRMS (EI): calcd for C₁₀H₈O₃ [M]⁺: 176.0473, found: 176.0456; MS (EI): m/z 176 (M⁺, 93), 148 (100), 133 (76), 105 (15), 77 (19), 51 (13); Anal. calcd for C₁₀H₈O₃: C: 68.18, H: 4.58; found: C: 67.59, H: 4.33.

⁷ Reported in the literature: mp = 117-118°C; J. Oyamada and T. Kitamura, *Tetrahedron*, 2006, **62**, 6918-6925.

¹H NMR spectrum of 2e

D8 6-Nitro-2*H*-chromen-2-one (**2f**)

Following the general procedure A, 6-nitro-2*H*-chromen-2-one (**2f**) was obtained from **4f** (205 mg, 1.0 mmol) as a yellowish solid (with catalyst **A**: 120 mg, 63%, with catalyst **B**: 120 mg, 63%). Mp = 180-182°C;⁸ ¹H-NMR: δ 8.46 (d, 1H, *J* = 2.6, H-5), 8.41 (dd, 1H, *J* = 9.0, 2.6, H-7), 7.84 (d, 1H, *J* = 9.7, H-4), 7.48 (d, 1H, *J* = 9.0, H-8), 6.60 (d, 1H, *J* = 9.7, H-3); ¹³CNMR: δ 158.8 (0), 157.5 (0), 144.0 (0), 142.2 (1), 126.6 (1), 123.7 (1), 118.8 (1), 118.8 (0), 118.0 (1); IR (neat, cm⁻¹): \tilde{v} =3071 (w), 1736 (s), 1615 (s), 1517 (s), 1340 (s); HRMS (EI): calcd for C₉H₅O₄N [M]⁺: 191.0219, found: 191.0219; MS (EI): m/z 191 (M⁺, 67), 190 (19), 176 (28), 166 (27), 163 (27), 161 (22), 133 (40), 118 (22), 117 (49), 105 (23), 89 (75), 85 (41), 83 (39), 71 (55), 69 (38), 63 (64), 57 (44), 43 (51), 41 (73), 40 (100); Anal. calcd for C₉H₅O₄N: C: 56.55, H: 2.64, N: 7.33; found: C: 56.37, H: 2.67, N: 7.25.

⁸ Reported in the literature: 181-182°C; F. Jafarpour, N. Jalalimanesh, M. B. A. Olia and A. O. Kashani, *Tetrahedron*, 2010, **66**, 9508-9511.

¹H NMR spectrum of 2f

D9 6-Bromo-2*H*-chromen-2-one (**2g**)

Following the general procedure A, 6-bromo-2*H*-chromen-2-one (**2g**) was obtained from **4g** (239 mg, 1.0 mmol) as a yellowish solid (with catalyst **A**: 137 mg, 61%, with catalyst **B**: 140 mg 62%). Mp: 157 – 159°C;^{9 1}H-NMR: δ 7.67 – 7.58 (3H, H-5, H-7, H-8), 7.22 (d, 1H, *J* = 9.7, H-4), 6.47 (d, 1H, *J* = 9.6, H-3); ¹³C-NMR: δ 159.9 (0), 152.9 (0), 142.0 (1), 134.5 (1), 130.1 (1), 120.3 (0), 118.6 (1), 117.8 (1), 116.9 (0); IR (neat, cm⁻¹): \tilde{v} = 3086 (w), 1721(s), 1600 (w), 1557 (w), 1476 (w); HRMS (EI): calcd for C₉H₅O₂[79]Br [M]⁺: 223.9473, found: 223.9493; MS (EI): m/z 226 (M⁺, 88), 224 (M⁺, 100), 198 (57), 196 (53), 117 (31), 89 (50), 62 (27); Anal. calcd for C₉H₅O₂Br: C: 48.03, H: 2.24; found: C: 47.98, H: 2.14.

⁹ Reported in the literature: mp = 160-163°C; J. Oyamada and T. Kitamura, *Tetrahedron*, 2006, **62**, 6918-6925.

¹H NMR spectrum of 2g

D10 6-Methyl-2*H*-chromen-2-one (2h)

Following the general procedure A, 6-methyl-2*H*-chromen-2-one (**2h**) was obtained from **4h** (174 mg, 1.0 mmol) as a yellowish solid (with catalyst **A**: 83 mg, 52%, with catalyst **B**: 80 mg, 50%). Mp: 76 – 78 °C;¹⁰ ¹H-NMR: δ 7.66 (d, 1H, *J* = 9.5, H-4), 7.32 (dd, 1H, *J* = 8.4, 1.9, H-8), 7.26 (s (br), 1H, H-5), 7.18 (d, 1H, *J* = 8.4, H-7), 6.38 (d, 1H, *J* = 9.6, H-3), 2.39 (s, 3H, *CH*₃); ¹³C-NMR: δ 160.8 (0), 152.0 (0), 143.2 (1), 133.9 (0), 132.6 (1), 127.5 (1), 118.4 (0), 116.3 (1, 2C), 20.5 (3); IR (neat, cm⁻¹): \tilde{v} = 3077 (w), 2926 (w), 1716 (s), 1622 (m), 1573 (m); HRMS (EI): calcd for C₁₀H₈O₂ [M]⁺: 160.0524, found: 160.0513; MS (EI): m/z 160 (M⁺, 75), 132 (100), 131 (100), 104 (33), 103 (24), 78 (23), 77 (32), 51 (24).

¹⁰ Reported in the literature: mp = 73.5-74°C; J. Oyamada and T. Kitamura, *Tetrahedron*, 2006, **62**, 6918-6925.

¹H NMR spectrum of 2h

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

D11 6-Vinyl-2*H*-chromen-2-one (2i)

Following the general procedure A, 6-vinyl-2*H*-chromen-2-one (**2i**) was obtained from **4i** (186 mg, 1.0 mmol) as a yellowish solid (with catalyst **A**: 52 mg, 30%, with catalyst **B**: 57 mg, 33%). Mp: 69 – 71°C; ¹H-NMR: δ 7.70 (d, 1H, *J* = 9.5, H-4), 7.60 (dd, 1H, *J* = 8.6, 1.8, H-7), 7.47 (d, 1H, *J* = 1.8, H-5), 7.30 (d, 1H, *J* = 8.6, H-8), 6.63 (dd, 1H, *J* = 17.6, 10.9, H-1'), 6.43 (d, 1H, *J* = 9.7, H-3), 5.76 (d, 1H, *J* = 17.6, H-2'(trans)), 5.32 (d, 1H, *J* = 10.9, H-2' (cis)); ¹³C-NMR: δ 160.5 (0), 153.6 (0), 143.3 (1), 135.0 (1), 134.2 (0), 129.4 (1), 125.3 (1), 118.8 (0), 117.0 (1), 117.0 (1), 114.9 (2); IR (neat, cm⁻¹): $\tilde{\nu}$ = 2975 (w), 1723 (s), 1622 (m), 1570 (m), 1489 (w), 1159 (m); HRMS (EI): calcd for C₁₁H₈O₂ [M]⁺: 172.0524, found: 172.0518; MS (EI): m/z 172 (M⁺, 100), 144 (77), 129 (23), 115 (73), 83 (25), 57 (63); Anal. calcd for C₁₁H₈O₂: C: 76.73, H: 4.68; found: C: 75.91, H: 4.49.

¹H NMR spectrum of 2i

D12 4-Methyl-2*H*-chromen-2-one (2j)

Following the general procedure A, 4-methyl-2*H*-chromen-2-one (**2j**) was obtained from **4j** (174 mg, 1.0 mmol) as a yellowish solid (with catalyst A: 48 mg, 30%, with catalyst B: 53 mg, 33%). Mp: 69 – 71°C;^{11 1}H-NMR: δ 7.61 (d, 1H, *J* = 7.9, H-5), 7.53 (m, 1H, H7), 7.35 – 7.26 (2H, H-6, H8), 6.28 (s (br), 1H, H-3), 2.44 (m, 3H, CH₃); ¹³C-NMR: δ 160.7 (0), 153.4 (0), 152.3 (0), 131. 7 (1), 124.5 (1), 124.1 (1), 119.8 (0), 116.9 (1), 115.0 (1), 18.5 (3); IR (neat, cm⁻¹): \tilde{v} = 3056 (w), 2981 (w), 1723 (s), 1626 (m), 1609 (m), 1265 (m); HRMS (EI): calcd for C₁₀H₈O₂ [M]⁺: 160.0524, found: 160.0510; MS (EI): m/z 160 (M⁺, 73), 132 (69), 131 (100), 121 (23), 103 (20), 77 (27), 43 (27), 39 (29).

¹¹ Reported in the literature: 75-76°C; J. Koever, Z. Naturforsch. B, 2005, **60**, 792-796.

¹H NMR spectrum of 2j

D13 4,6-Dimethyl-2*H*-chromen-2-one (2k)

Following the general procedure A, 4,6-dimethyl-2*H*-chromen-2-one (**2k**) was obtained from **4k** (188 mg, 1.0 mmol) as a yellowish solid (with catalyst **A**: 61 mg, 35%, with catalyst **B**: 52 mg, 30%). Mp: 152 – 154°C;¹² ¹H-NMR: δ 7.38 (s (br), 1H, H-5), 7.33 (dd, 1H, *J* = 8.5, 1.8, H-7), 7.22 (d, 1H, *J* = 8.5, H-8), 6.27 (m, 1H, H-3), 2.42 (s, 3H, *CH*₃), 2.42 (s, 3H, *CH*₃); ¹³C-NMR: δ 161.0 (0), 152.3 (0), 151.6 (0), 133.8 (0), 132.6 (1), 124.4 (1), 119.6 (0), 116.7 (1), 115.0 (1), 20.9 (3), 18.6 (3); IR (neat, cm⁻¹): $\tilde{v} = 2924$ (w), 1709 (s), 1624 (m), 1610 (m), 1571 (m); HRMS (EI): calcd for C₁₁H₁₀O₂ [M]⁺: 174.0681, found: 174.0664; MS (EI): m/z 174 (M⁺, 78), 146 (65), 145 (100), 131 (26), 117 (18), 115 (30), 91 (18), 77 (15).

¹² Reported in the literature: 151-153°C; H. Sharghi and M. Jokar, *Heterocycles*, 2007, **71**, 2721-2733.

¹H NMR spectrum of 2k

D14 6-Bromo-4-methyl-2*H*-chromen-2-one (2l)

Following the general procedure A, 6-bromo-4-methyl-2*H*-chromen-2-one (**2l**) was obtained from **4l** (253 mg, 1.0 mmol) as a yellowish solid (with catalyst **A**: 120 mg, 50%, with catalyst **B**: 107 mg, 45%). Mp: 187 – 189°C;¹³ ¹H-NMR: δ 7.72 (d, 1H, *J* = 2.2, H-5), 7.62 (dd, 1H, *J* = 8.7, 2.3, H-7), 7.22 (d, 1H, *J* = 8.7, H-8), 6.33 (m, 1H, H-3), 2.43 (d, 3H, *J* = 1.3, CH₃); ¹³C-NMR: δ 159.9 (0) 152.4 (0), 151.1 (0), 134.5 (1), 127.2 (1), 121.6 (0), 118.8 (1), 116.9 (0), 116.0 (1), 18.5 (3); IR (neat, cm⁻¹): \tilde{v} = 3092 (w), 2928 (w), 1749 (s), 1598 (w), 1556 (w), 1479 (m), 1413 (m), 1380 (m), 1357 (m); HRMS (EI): calcd for C₁₀H₇O₂[79]Br [M]⁺: 237.9629, found: 237.9626; MS (EI): m/z 240 (M⁺, 95), 238 (M⁺, 100), 212 (68), 211 (88), 210 (75), 209 (91), 131 (74), 103 (77), 102 (58), 77 (98), 63 (56), 51 (87), 39 (54); Anal. calcd for C₁₀H₇O₂Br: C: 50.24, H: 2.95; found: C: 50.21, H: 2.85.

¹³ Reported in the literature: mp = 184-186°C; L.-Q. Wu, C.-G. Yang, Y.-F. Wu and L.-M. Yang, *J. Chin. Chem. Soc.*, 2009, **56**, 606-608.

¹H NMR spectrum of 2l

D15 6-Chloro-4-methyl-2H-chromen-2-one (2m)

Following the general procedure A, 6-Chloro-4-methyl-2H-chromen-2-one (**2m**) was obtained from **4m** (209 mg, 1.0 mmol) as a yellowish solid (with catalyst **A**: 92 mg, 47%, with catalyst **B**: 86 mg, 44%). Mp: 191 – 193°C;¹⁴ ¹H-NMR: δ 7.56 (d, 1H, *J* = 2.4, H-5), 7.48 (dd, 1H, *J* = 8.7, 2.4, H-7), 7.27 (d, 1H, *J* = 8.8, H-8), 6.33 (m, 1H, H-3), 2.43 (d, 3H, *J* = 1.3, CH₃); ¹³C-NMR: δ 159.9 (0), 151.9 (0), 151.1 (0), 131.6 (1), 129.6 (0), 124.2 (1), 121.1 (0), 118.4 (1), 116.0 (1), 18.5 (3); IR (neat, cm⁻¹): \tilde{v} = 2924 (w), 1720 (s), 1625 (w), 1600 (w), 1484 (w), 1417 (m); HRMS (EI): calcd for C₁₀H₇O₂[35]Cl [M]⁺: 194.0135, found: 194.0122; MS (EI): m/z 196 (M⁺, 21), 194 (M+, 65), 168 (25), 167 (40), 166 (73), 165 (100), 155 (15), 131 (26), 103 (25), 77 (28), 57 (27), 51 (27), 43 (27); Anal. calcd for C₁₀H₇O₂Cl: C: 61.72, H: 3.63; found: C: 61.37, H: 3.40.

¹⁴ Reported in the literature: mp = 184-186°C; P. Goswami, *Synth. Commun.*, 2009, **39**, 2271 - 2278.

¹H NMR spectrum of 2m

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

D16 3*H*-Benzo[f]chromen-3-one (2n)

Following the general procedure A, 3*H*-benzo[f]chromen-3-one (**2n**) was obtained from **4n** (210 mg, 1.0 mmol) as a yellowish solid (with catalyst **A**: 77 mg, 39%, with catalyst **B**: 77 mg, 39%). Mp: 119 – 121°C;¹⁵ ¹H-NMR: δ 8.42 (d, 1H, *J* = 9.8, H-1), 8.18 (d, 1H, *J* = 8.4, H-10), 7.94 (d, 1H, *J* = 9.0, H-6), 7.88 (d, 1H, *J* = 8.0, H-7), 7.67 (ddd, 1H, *J* = 8.4, 7.0, 1.4, H-9), 7.55 (ddd, 1H, *J* = 8.1, 7.1, 1.1, H-8), 7.41 (d, 1H, *J* = 9.0, H-5), 6.53 (d, 1H, *J* = 9.7, H-2); ¹³C-NMR: δ 160.8 (0), 153.8 (0), 139.0 (1), 133.0 (1), 130.2 (0), 128.9 (1), 128.9 (0), 128.2 (1), 126.0 (1), 121.3 (1), 116.9 (1), 115.5 (1), 112.9 (0); IR (neat, cm⁻¹): \tilde{v} = 3067 (w), 2928 (w), 1717 (s), 1631 (m), 1563 (s), 1514 (m), 1175 (m); HRMS (EI): calcd for C₁₃H₈O₂ [M]⁺: 196.0524, found: 196.0528; MS (EI): m/z 196 (M⁺, 63), 168 (90), 140 (34), 139 (100), 85 (42), 83 (33).

¹⁵ Reported in the literature: mp = 117-118°C; J. Oyamada and T. Kitamura, *Tetrahedron*, 2006, **62**, 6918-6925.

¹H NMR spectrum of 2n

D17 Control experiment: allylic oxidation in the absence of Ru-catalyst

Purified (via kugelrohr distillation) chromene **5a** (132 mg, 1.0 mmol) was dissolved in ethyl acetate (10 mL) and immersed in an oil bath preheated to 40 °C. To this solution was added ^{*t*}BuOOH (5.5 M in decane, 720 μ L, 4.0 mmol) via syringe pump within 15 min. The reaction mixture was stirred for 72 h at 40 °C. Then all volatiles were removed in vacuo. After column chromatography on silica unreacted chromene **5a** (41 mg, 31%), coumarin **2a** (20 mg, 14%) and 2-(*tert*-butylperoxy)-2*H*-chromene (**7a**, 79 mg, 36%) were isolated.

Analytical data for 2-(tert-butylperoxy)-2H-chromene (7a):

Colourless oil. ¹H-NMR: δ 7.23 (m, 1H, H-7), 7.13 (dd, 1H, J = 7.5, 1.6, H-5), 7.03 (d, 1H, J = 8.1, H-8), 6.95 (td, 1H, J = 7.5, 1.1, H-6), 6.80 (d, 1H, J = 9.6, H-4), 6.15 (d, 1H, J = 4.0, H-2), 5.75 (dd, 1H, J = 9.6, 4.0, H-3), 1.22 (s, 9H, C(CH₃)₃); ¹³C-NMR: δ 151.6 (0), 129.7 (1), 129.2 (1), 127.1 (1), 121.5 (1), 120.3 (0), 117.0 (1), 115.3 (1), 97.3 (1), 81.2 (0), 26.5 (3, 3C); IR (neat, cm⁻¹): \tilde{v} = 2977 (w), 1640 (m), 1608 (m), 1488 (m), 1458 (m), 1363 (m), 1313 (m); HRMS (ESI): calcd for C₁₃H₁₆O₃Na [M+Na]⁺: 243.0997, found: 243.0992; MS (EI): m/z 220 (M⁺, 8), 147 (13), 131 (100), 121 (13), 77 (17), 73 (94), 57 (82), 55 (16), 43 (39), 41 (22); Anal. calcd for C₁₃H₁₆O₃: C: 70.89, H: 7.32; found: C: 70.26, H: 7.30.

¹H NMR spectrum of 7a

D18 Control experiment 2: allylic oxidation of 5a catalyzed by Ru-catalyst A

Purified (via Kugelrohr distillation) chromene **5a** (132 mg, 1.0 mmol) was dissolved in dry and degassed benzene (1.0 mL). Catalyst **A** (40 mg, 0.05 mmol) was then added. Immediately after addition of the catalyst, the reaction vessel was immersed in an oil bath preheated to 40 °C (electronic temperature control) and the solution was stirred for 5 min. Then ^{*t*}BuOOH (5.5 M in decane, 720 μ L, 4.0 mmol) was added to the reaction mixture via syringe pump within 15 min. After complete addition of the oxidant, the mixture was stirred for another 3 h. It was diluted with MTBE (50 mL), and MgSO₄ was added to absorb water and Ru residues. The mixture was filtered and all volatiles were removed in vacuo. The residue was purified by column chromatography on silica. Coumarin **2a** was obtained as a yellowish solid (70 mg, 48%). Analytical data were identical with those reported in section D1.