5

10

Binaphthyl platform as starting material for the preparation of electron rich benzo[g,h,i] perylenes. Application to molecular architectures based on amino benzo[g,h,i] perylenes and carborane combinations

Grégory Pieters, Anne Gaucher*, Damien Prim, Thierry Besson, José Giner Planas*, Francesc Teixidor, Clara Viñas, Mark E. Light, and Michael B. Hursthouse

Table of contents

(General	4
(Operating methods	4
5	General	4
	General procedure for coupling on 1-bromo-2cyanomethylnaphthalene 1	4
	General cyclization procedure for the obtention of aminobenzoperylenes 5a-5c	5
	General procedure for the synthesis of the compound 7 and 8	5
1	Analytical data	7
10	1-bromo-2-cyanomethylnaphthalene 1	7
	Compound 3a	7
	Compound 3b	8
	Compound 3c	8
	6-Aminobenzo[g,h,i]perylène 5a	9
15	Compound 5b	9
	Compound 5c	10
	Compound 7	11
	Compound 8	12
]	NMR Spectra	13
20	¹ H NMR and ¹³ C NMR of 4a	13
	1H NMR of the mixture 4b/1'	14
	1H NMR of the mixture 4c/1'	14
	¹ H NMR and ¹³ C NMR of 5a	15
	¹ H NMR and ¹³ C NMR of 5b	16
25	¹ H NMR and ¹³ C NMR of 5 c	17
	¹ H NMR and ¹³ C NMR of 7	
	¹ H NMR and ¹³ C NMR of 8	19
]	DFT calculation data	20

Standard orientation for 5a	21
Standard orientation for 5b	22
Standard orientation for 5c	23
X-Ray analysis data	25
5 UV and emission additional data	29

Operating methods

General

Unless otherwise noted, all starting materials were obtained from commercial suppliers and ³ used without purification. Petroleum ether was distilled under Argon. NMR spectra were recorded on a 300 MHz and 200 MHz Brucker spectrometer. Chemical shifts were reported in ppm relative to the residual solvent peak (7.26 ppm for CHCl₃, 5.32 ppm for methylene chloride – d₂, 3.58 ppm for THF – d₈) for ¹H spectra and (77.00 ppm for CDCl₃, 53.8 ppm for methylene chloride – d₂, 67.4 ppm for THF – d₈) for ¹³C spectra. High Resolution Mass spectroscopy data were recorded on a Autospec Ultima (Waters/Micromass) device with a resolution of 5000 RP at 5%. UV spectra data were recorded on a Agilent 8453 UV-Visible Spectrometry system at 25 °C.

General procedure for coupling on 1-bromo-2cyanomethylnaphthalene 1

¹⁵ To a stirred suspension of 1-bromo-2-cyanomethylnaphthalene **1** (247 mg, 1 mmol), naphthyl-1-boronic acid (344 mg, 2 mmol, 2 eq.), and K₂CO₃ (414 mg, 3 mmol, 3 eq.) in degassed mixture of toluene (1 mL), absolute ethanol (0.2 mL) and water (0.2 mL) was added PdCl₂(PPh₃)₂ (73 mg, 0.1 mmol, 10% mol). The mixture was stirred at 80°C overnight. Water (10 mL) was then added and the aqueous phase extracted with dichloromethane (2x10 mL). The combined organic layers were dried ²⁰ (MgSO₄), filtered, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel (PE/DCM: 60/40) to give **3a** as a pale yellow solid (206 mg, 70%).

Using the same procedure, 1-bromo-2-cyanomethylnaphthalene **1** (100 mg, 0.4 mmol), acenaphten-4-boronic acid (158 mg, 0.8 mmol, 2 eq.), K₂CO₃ (168 mg, 1.2 mmol, 3 eq.) and ²⁵ PdCl₂(PPh₃)₂ (29 mg, 0.04 mmol, 10% mol), **3b** was isolated as a mixture, containing debrominated starting material (75/25, 101 mg) after filtration through a pad of silica gel (PE/DCM: 60/40). This yellow solid was used without further purification for the next cyclization step.

Using the same procedure, 1-bromo-2-cyanomethylnaphthalene **1** (247mg, 1 mmol), phenanthren-9-boronic acid (444 mg, 2 mmol, 2 eq.), K_2CO_3 (414 mg, 3 mmol, 3 eq.) and $PdCl_2(PPh_3)_2$ (73 mg, 0.1 mmol, 10% mol), **3c** was isolated as a mixture, containing debrominated starting material (75/25, 251 mg) after filtration through a pad of silica gel (PE/DCM: 60/40).This ⁵ cream solid was used without further purification for the next cyclization.

General cyclization procedure for the obtention of aminobenzoperylenes 5a-5c

The nitrile product **3a** (150 mg, 0.51 mmol) was added in stirred polyphosphoric acid (10 mL) ¹⁰ under argon. The suspension was stirred at 110°C for 48 h. The resulting mixture was poured into ice (100 g) and basified with 1 M aqueous solution of Na₂CO₃. This aqueous layer was then extracted with ethyl acetate (4x50 mL) and the combined organic layers were dried (MgSO₄), filtered and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel (PE/CH₂Cl₂: 40/60) to give 6-aminobenzo-[g,h,i]-perylene **5a** (90 mg, 60%) as a yellow solid.

15

Using the same procedure starting from the nitrile **3b** (86 mg, 0.27 mmol) compound **5b** was obtained after silica gel flash chromatography purification (PE/EtOAc : 60/40) as an orange solid (25 mg, 30%).

Using the same procedure starting from the nitrile 3c (216 mg, 0.63 mmol) compound 5c was obtained ²⁰ after silica gel flash chromatography purification (PE/EtOAc : 70/30) as a yellow solid (95 mg, 44%).

General procedure for the synthesis of the compound 7 and 8

To a solution of 6-aminobenzo-[g,h,i]-perylene **5a** (50 mg, 0.17 mmol) and triethylamine (70 $_{25}$ µL, 0.51 mmol, 3 eq.) in MeCN (1 mL) was added the chloride **6** (54 mg, 0.19 mmol) and KI (9 mg, 30% mol) and the mixture was stirred at reflux for 72 h. Thereafter, saturated aqueous K₂CO₃ solution (10 mL) was added to the reaction mixture, the aqueous phase was extracted with EtOAc (3x10 mL), and the combined organic phases were dried over MgSO₄, filtered, and concentrated. Chromatographic separation of the residue obtained on silica gel (PE/EtOAc: 80/20) afforded the compound **7** (36 mg, 30 40%) as a yellow solid.

Using the same procedure starting from the amine 5c (40 mg, 0.11 mmol) compound 8 was obtained as a yellow solid (13 mg, 20%). The crude product was purified with PE/EtOAc: 80/20 on preparative TLC.

Analytical data

1-bromo-2-cyanomethylnaphthalene 1

<u>mp</u>: 122 °C.

5

¹<u>H NMR</u> (δ ppm, CDCl₃, 300K, 300 MHz): 8.26 (d, J = 8.1 Hz, 1H), 7.88 – 7.76 (m, 2H), 7.67 – 7.44 ¹⁰ (m, 3H), 4.03 (s, 2H).

¹³C NMR (δ ppm, CDCl₃, 300K, 75 MHz): 133.9, 132.3, 128.6, 128.3, 128.2, 127.8, 127.3, 127.2, 126.1, 124.2, 117.2, 25.9.

¹⁵ Data in accordance with literature.^{S1}

Compound 3a

20

¹<u>H NMR</u> (δ ppm, CDCl₃, 300K, 300 MHz): 8.04 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 8.01 – 7.93 (m, 2H), 7.76 (d, J = 8.5 Hz, 1H), 7.69 – 7.62 (m, 1H), 7.56 – 7.47 (m, 2H), 7.44 (dd, J = 7.0, 1.2 Hz, 1H), 7.37 – 7.25 (m, 2H), 7.19 (d, J = 8.2 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 3.59 – 3.32 (m, 2H).

^{S1} N. Aoyagi, T. Izumi Tetrahedron Lett. 2002, 43, 5529

5

¹³C NMR (δ ppm, CDCl₃, 300K, 75 MHz): 137.1, 135.0, 133.8, 133.2, 133.0, 132.2, 129.0, 128.7, 128.5, 128.1, 128.0, 126.9, 126.8, 126.7, 126.5, 126.5, 126.4, 125.7, 125.6, 125.3, 118.2, 22.2.
Data in accordance with literature.^{S2}

Compound 3b

¹⁰ **<u>HRMS (ESI)</u>**: m/z calculated for C₂₄H₁₇NNa ([M+Na]⁺): 342.1259 found: 342.1253.

Compound 3c

¹⁵ **<u>MS (ESI)</u>**: m/z calculated for C₂₅H₁₇ ([M-CN]⁺): 317.4 found: 317.1.

^{s2} N. Aoyagi, T. Izumi Tetrahedron Lett. 2002, 43, 5529

6-Aminobenzo[g,h,i]perylène 5a

₅ <u>mp</u>: 256 °C

¹<u>H NMR</u> (δ ppm, CD₂Cl₂, 300K, 300 MHz): 8.94 (d, *J* = 8.2 Hz, 1H), 8.92 (d, *J* = 8.2 Hz, 1H), 8.20 – 7.8 (m, 8H), 7.61 (s, 1H), 4.58 (s_{br}, 2H).

¹³<u>C NMR</u> (δ ppm, CD₂Cl₂, 300K, 75 MHz): 149.1, 141.3, 134.0, 132.3, 130.8, 130.4, 128.9, 127.6, 126.6, 126.5, 126.3, 126.0, 125.8, 124.9, 124.7, 124.0, 120.6, 120.5, 120.1, 118.6, 117.9, 109.4.

HRMS (ESI): m/z calculated for C₂₂H₁₄N ([M+H]⁺): 292.1126 found: 292.1108.

Compound 5b

<u>mp</u>: 219 °C

15

20

¹<u>H NMR</u>: (δ ppm, CD₂Cl₂, 300K, 300 MHz): 8.83 (d, *J* = 8.2 Hz, 1H), 8.80 (d, *J* = 8.3 Hz, 1H), 8.07 (d, *J* = 7.3 Hz, 1H), 8.01 - 7.75 (m, 4H), 7.60 (s, 1H), 4.54 (s_{br}, 2H), 3.64 (s, 4H).

¹³C NMR: (δ ppm, CD₂Cl₂, 300K, 75 MHz): 144.5, 143.7, 141.1, 131.3, 129.1, 127.7, 127.2, 126.5, 126.0, 125.9, 124.6, 123.7, 123.2, 121.6, 121.3, 120.6, 120.0, 112.1, 109.2, 31.3, 30.8.

 $_{5}$ **HRMS (ESI):** *m/z* calculated for C₂₄H₁₆N [M+H]⁺: 318.1259 found : 318.1283

Compound 5c

<u>mp</u>: 229 °C

10

¹<u>H NMR</u>: (δ ppm, CD₂Cl₂, 300K, 300 MHz): 9.48 – 9.30 (m, 1H), 8.96 (d, *J* = 7.7 Hz, 1H), 8.90 (d, *J* = 7.5 Hz, 1H), 8.86 – 8.75 (m, 2H), 8.12 (d, *J* = 7.2 Hz, 1H), 8.04 – 7.84 (m, 4H), 7.73 – 7.61 (m, 3H), 15 4.74 (s, 2H).

¹³C NMR: (δ ppm, CD₂Cl₂, 300K, 75 MHz): 143.0, 130.2, 130.1, 130.0, 128.6, 127.9, 127.5, 126.1, 126.2, 125.6, 125.5, 125.1, 124.9, 124.7, 124.4, 123.6, 121.5, 120.4, 120.3, 117.2, 116.5, 115.9, 113.0.

HRMS (ESI): m/z calculated for C₂₆H₁₆N [M+H]⁺: 342.1283 found : 342.1281

25

20

Compound 7

¹<u>H NMR</u>: (δ ppm, THF-d₈, 300K, 300 MHz): 9.05 (d, J = 7.1 Hz, 1H), 9.00 (d, J = 7.2 Hz, 1H), 8.53 ¹⁰ (d, J = 9.2 Hz, 1H), 8.24 – 8.14 (m, 2H), 8.08 (d, J = 7.2 Hz, 1H), 8.00 (t, J = 7.8 Hz, 1H), 7.95 (d, J = 8.9 Hz, 1H), 7.87 (t, J = 7.8 Hz, 1H), 7.80 (t, J = 7.7 Hz, 3H), 7.49 (s, 1H), 7.37 (m, 3H), 6.43 (d, J = 10.6 Hz, 1H), 5.79 – 5.45 (m, 1H), 2.16 (s, 3H).

¹³C NMR: (δ ppm, THF-d₈, 300K, 75 MHz): 140.7, 140.3, 133.4, 132.0, 131.9, 13.1, 130.2, 129.5, 129.2, 128.4, 127.6, 127.5, 127.3, 1126.9, 126.6, 125.8, 121.7, 121.6, 121.2, 119.1, 108.4, 84.0, 77.2, 61.0, 23.1

¹¹**B** NMR: (δ ppm, THF-d₈, 300K, 96 MHz): 0 to -15 (m, 8B)

²⁰ **HRMS (EI):** m/z calculated for C₃₂H₃₁NB₁₀ [M]⁺: 540.3499 found : 540.3469

5

Compound 8

 $_{5}$ ¹<u>H NMR</u>: (δ ppm, CD₂Cl₂, 300K, 300 MHz): 9.48 (m, 1H), 9.15 – 8.75 (m, 4H), 8.15 (d, *J* = 4.8 Hz, 1H), 8.11 (d, *J* = 5.4 Hz, 1H), 8.04 (d, *J* = 5.0 Hz, 1H), 7.96 (d, *J* = 7.9 Hz, 2H), 7.91 – 7.78(m, 3H), 7.61-7.52 (m, 2H), 7.45 – 7.30 (m, 3H), 6.46 (m, 1H), 5.27 (m, 1H), 2.21 (s, 3H).

¹³C NMR: (δ ppm, CD₂Cl₂, 300K, 75 MHz): 141.3, 138.9, 131.5, 131.0, 130.8, 130.7, 129.4, 129.3, 128.9, 128.6, 128.5, 127.7, 127.4, 127.3, 127.1, 126.7, 126.0, 125.9, 125.5, 125.26, 125.1, 122.7, 121.4, 116.9, 109.5, 82.7, 77.4, 61.7, 30.1.

¹¹**B** NMR: (δ ppm, CD₂Cl₂, 300K, 96 MHz): 5 to -15 (m, 8B)

15

20

HRMS (EI): m/z calculated for C₃₆H₃₃NB₁₀ [M]⁺: 584.3712 found : 584.3720

NMR Spectra

5

1H NMR of the mixture 4b/1'

¹H NMR and ¹³C NMR of 5a

10.5 10.0 9.5 9.0 8.5 8.0 7.5

5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

7.0 6.5 6.0

¹H NMR and ¹³C NMR of 5b

¹H NMR and ¹³C NMR of 5c

¹H NMR and ¹³C NMR of 7

5.29 5.29 5.25 -9.49 -9.47 -9.46 -9.46 -9.46 -8.91 -8.91 -8.91 8.15 8.15 8.13 8.13 8.13 8.13 8.13 7.94 7.94 7.94 7.57 7.39 7.57 7.33 6.44 6.44 - 1.28 - 2.21 0.91 8.15 8.13 8.13 8.13 8.09 8.05 8.03 8.05 8.03 8.03 7.80 7.80 7.80 7.80 9.50 9.49 9.47 9.46 9.02 8.96 8.91 8.91 7.57 7.57 7.39 7.39 11. Ourophiles, where is the wind of some public White a strategy with -00-1 2.97-2.18 3.03-2:00 8.6 8.4 f1 (ppm) 9.4 9.2 9.0 8.8 8.2 8.0 7.8 7.6 7.4 Millin All 2.004 1.074 1.934 2.974 2.974 2.184 3.034 Hoo. Ho 1-96-1 6 4.14-10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 129.43 129.43 128.61 128.53 128.53 127.41 127.41 127.41 125.56 125.56 125.56 125.56 141.27 138.91 09.55 --- 82.75 -- 61.75 0.07 īlī 131.06 130.81 130.74 130.74 129.43 129.43 129.43 129.43 127.75 128.55 127.75 127.13 127.11 126.00 127.13 12 109.55 - 141.27 16.851 1 150 145 140 135 130 125 f1 (ppm) 120 115 110 لاله أأندأوا 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10

¹H NMR and ¹³C NMR of 8

DFT calculation data

Computational details:

All calculations were carried out using Gaussian 03 program [G03]. The geometries were fully optimized using a hybrid density functional [hybrid]; Becke's three-parameter exchange functional ⁵ combined with the LYP correlation functional (B3LYP) [B3LYP] and with the 6-31G(d) basis set. The vibrational frequencies have been computed to characterize all the stationary point. Note that the optimized Cartesian geometries are given in Angstrom and the total energies (E) expressed in hartree and the frequencies (v) in cm⁻¹.

[G03] Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;

- ¹⁰ Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
- ¹⁵ Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
- ²⁰ M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, **2004**.
- [hybrid] (a) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, **1989**. (b) Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH: New York, **2000**.
- ²⁵ [B3LYP] (a) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* **1988**, 37, 785. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

Standard orientation for 5a

$\mathbf{E} = -901.05610060$

Dipole Moment: 2.2434 Debye

Standard orientation:

Center	Atomic	At	omic	Coordinates	s (Angs	troms
Num	ber Nu	mber	Туре	X	Y	Z
1	6	0	0.832726	4.025330	0.0002	38
2	6	0	-0.370019	3.311660	0.0002	68
3	6	0	-0.396721	1.910218	0.0000	81
4	6	0	0.850890	1.208485	0.0000	36
5	6	0	2.076501	1.946528	0.0000	89
6	6	0	2.046324	3.354578	0.0000	31
7	6	0	0.888708	-0.228127	0.0000	33
8	6	0	2.138902	-0.908678	0.0000	79
9	6	0	3.343346	-0.134335	0.0002	68
10	6	0	3.315765	1.229824	0.0002	270
11	6	0	-0.337125	-0.960939	0.0000)17
12	6	0	-0.291313	-2.380379	0.0000)42
13	6	0	0.953753	-3.040757	0.0000)77
14	6	0	2.155721	-2.344922	0.0000)53
15	6	0	-1.594983	-0.278586	0.0000)20
16	6	0	-2.806770	-1.040253	0.0000)11
17	6	0	-2.726778	-2.473244	0.0000)16
18	6	0	-1.524274	-3.115458	0.0000)46
19	6	0	-1.652844	1.148189	0.0000)02
20	6	0	-2.912708	1.762837	0.0001	12
21	6	0	-4.094266	1.014457	0.0001	46
22	6	0	-4.045551	-0.373059	0.000)79
23	7	0	3.348732	-3.039258	0.0001	06
24	1	Õ	0.809680	5.111267	0.0003	379
25	1	0	-1.297236	3.872396	0.0004	62
26	1	0	2.983138	3.905264	0.0000)25
27	1	0	4.310504	-0.626864	0.0004	86
28	1	0	4.242955	1.796456	0.0004	34
29	1	0	0.968185	-4.128510	0.0001	50
30	1	0	-3.653228	-3.041751	0.0000)01
31	1	0	-1.481047	-4.201550	0.0000)64
32	1	0	-2.992140	2.843730	0.0001	99
33	1	0	-5.051958	1.526641	0.0002	234
34	1	0	-4.962305	-0.956976	0.0001	102
35	1	0	4.240804	-2.580907	0.0006	554
36	1	0	3.345831	-4.044614	0.0004	24

Standard orientation for 5b

$\mathbf{E} = -978.37416122$

Dipole Moment: 2.8738 Debye

Standard orientation:

Center	Atomio	c Ate	omic	Coordinate	s (Angstrom
INUM	der Nu	umber	1 ype	Λ	1 Z
1	6	0	1.836560	2.017342	0.000277
2	6	0	3.270683	2.069928	0.000470
3	6	0	4.014920	0.926108	0.000407
4	6	0	3.399784	-0.372385	0.000145
5	6	0	1.971927	-0.462433	0.000000
6	6	0	1.203189	0.748817	0.000123
7	6	0	4.169202	-1.551928	0.000000
8	6	0	3.550762	-2.795214	0.000435
9	6	0	2.154453	-2.890955	0.000482
10	6	0	1.341674	-1.750486	0.000176
11	6	0	-0.219555	0.696249	0.000000
12	6	0	-1.022937	1.874373	0.000111
13	6	0	-0.348299	3.143248	0.000186
14	6	0	1.042792	3.184592	0.000000
15	6	0	-0.844860	-0.586912	0.000103
16	6	0	-2.247347	-0.631928	0.000000
17	6	0	-3.061876	0.533475	0.000000
18	6	0	-2.463818	1.763544	0.000000
19	6	0	-0.125029	-1.815155	0.000000
20	6	0	-0.877665	-3.004570	0.000234
21	6	0	-2.286870	-3.020948	0.000270
22	6	0	-2.986395	-1.819346	0.000000
23	7	0	-1.066152	4.323717	0.000399
24	6	0	-4.518342	0.091183	0.000227
25	6	0	-4.467414	-1.480726	0.000000
26	1	0	3.757990	3.041690	0.000587
27	1	0	5.100673	0.979933	0.000555
28	1	0	5.253574	-1.476856	0.000000
29	1	0	4.149743	-3.701282	0.000695
30	1	0	1.702656	-3.877086	0.000817
31	1	0	1.541180	4.151871	0.000000
32	1	0	-3.079240	2.658853	0.000155
33	1	0	-0.364932	-3.960720	0.000472
34	1	0	-2.804080	-3.977119	0.000469
35	1	0	-0.585754	5.206845	0.000214
36	1	0	-2.068904	4.342986	0.001558
37	1	0	-5.051758	0.471115	0.878626
38	1	0	-5.051342	0.470994	0.879389
39	1	0	-4.975017	-1.896326	0.878626
40	1	0	-4.974950	-1.896154	0.878613

Standard orientation for 5c

 $\mathbf{E} = -1054.66955572$

Dipole Moment: 1.6918 Debye

Standard orientation:

Cente	er Ato	omic A	tomic	Coordinates	s (Angst	roms)
N	umber	Number	Туре	Х	Y	Ζ
1	6	0	-1.338448	-2.338163	0.07606	 50
2	6	0	-2.640869	-2.933044	0.00686	55
3	6	0	-3.754872	-2.164300	0.13878	37
4	6	0	-3.666846	-0.733312	0.1740	11
5	6	0	-2.382062	-0.112565	0.07344	42
6	6	0	-1.206896	-0.925558	0.01953	36
7	6	0	-4.814752	0.067286	0.30034	17
8	6	0	-4.706056	1.449623	0.32503	30
9	6	0	-3.456089	2.060238	0.20519) 5
10) 6	0	-2.283113	1.306734	0.0647	45
1	16	0	0.097089	-0.342291	0.0437	25
12	2 6	0	1.259727	-1.159266	0.0842	11
13	36	0	1.083186	-2.566169	0.3069	64
14	46	0	-0.189678	-3.118855	0.2593	74
1:	5 6	5 0	0.211071	1.100837	0.0850	30
10	56	5 0	1.495761	1.709899	0.1835	15
1′	7 6	5 0	2.691997	0.885463	0.0064	11
18	8 6	0	2.571937	-0.529597	0.0950	35
19	9 6	0	-0.961330	1.918397	0.0984	32
20) 6	0	-0.819389	3.299697	0.2919	74
2	1 6	5 0	0.432970	3.878031	0.4546	87
22	2 6	5 0	1.577545	3.095354	0.3918	69
23	3 6	5 0	3.965026	1.474560	0.1504	65
24	4 6	5 0	5.090932	0.722965	0.4366	19
25	5 6	0	4.963411	-0.658583	0.6164	00
20	6 6	0	3.729394	-1.265894	0.4540	51
2	7 7	0	2.159869	-3.429309	0.5593	51
28	3 1	0	-2.717394	-4.016354	0.0325	07
29) 1	0	-4.737476	-2.622769	0.2117	85
30) 1	0	-5.786696	-0.411568	0.3833	06
3	1 1	0	-5.593996	2.064774	0.4362	03
32	2 1	0	-3.407746	3.142351	0.2371	78
33	3 1	0	-0.301117	-4.193233	0.3898	91
34	4 1	0	-1.696590	3.932874	0.3465	92
3:	5 1	0	0.517035	4.946719	0.6283	42
30	5 1	0	2.541004	3.573143	0.5194	60
3'	7 1	0	4.069512	2.550693	0.0852	03
3	8 1	0	6.054066	1.210098	0.5557	71
39) 1	0	5.823384	-1.257823	0.9011	12
40) 1	0	3.642127	-2.324582	0.6556	90
4	1 1	0	1.863999	-4.303425	0.9755	25
42	2 1	0	2.912926	-3.014670	1.0937	06

Structure	5a	5b
Dihedral abcd angle	0.010	0.023

Table 1.DFT calculated dihedral angles for compounds 5a and 5b

X-Ray analysis data

Data were collected on a Bruker Nonius KappaCCD with a Mo rotating anode generator; standard procedures were ⁵ followed. During refinement a probable twinning issue was identified; Platon's [REF1] TwinRotMat function gave the following 2 twin law suggestions (1 0 0.48 0 -1 0 0 0 -1 & 0.998 0 0.49 0 -1 0 0.008 0 -0.008). Generation and use of an HKLF5 file reduced the *R*1 from ca 19% to ca 6%.

^{*a*}Crystal data for 2010acc1038: M = 536.67, Monoclinic, a = 16.7059(6), b = 12.6255(5), c = 13.7625(4) Å, $a = 90.00^{\circ}$, $\beta = 101.603(2)^{\circ}$, $\gamma = 90.00^{\circ}$, U = 2843.47(17) Å³, T = 120(2) K, space group P2(1)/c, Z = 4, μ (MoK\ α) = 0.066 mm⁻¹, 4996 reflections measured, 4996 unique reflections ($R_{int} = 0.0000$). The final R_1 values were 0.0667 ($I > 2\sigma(I)$). The final $wR(F_2)$ values were 0.1605 ($I > 2\sigma(I)$). The final R_1 values were 0.0956 (all data). The final $wR(F_2)$ values were 0.1787 (all data). The goodness of fit on F_2 was 1.032.

15 Table 2

Compound reference	2010acc1038
Chemical formula	
Formula Mass	536.67
Crystal system	Monoclinic
a/ Å	16.7059(6)
b/ Å	12.6255(5)
c/ Å	13.7625(4)
α / °	90.00
β / °	101.603(2)
γ / \circ	90.00
Unit cell volume/ Å ³	2843.47(17)
Temperature/ K	120(2)
Space group	P2(1)/c
No. of formula units per unit cell, Z	4
Radiation type	ΜοΚ\α
Absorption coefficient, μ / mm ⁻¹	0.066
No. of reflections measured	4996
No. of unique reflections	4996
No. of independent reflections, R_{int}	0.0000 (HKLF5, merging suppressed)
Final R_l values ($I > 2\sigma(I)$)	0.0667
Final wR_2 values ($I > 2\sigma(I)$)	0.1605
Final R_1 values (all data)	0.0956
Final wR_2 values (all data)	0.1787
Goodness of fit on F_2	1.032

Thermal ellipsoids drawn at the 35% probability level, selected hydrogens omitted for clarity.

[Tapez un texte]

Table 3. π - π and π -H interactions		
RMS deviation for ring system (C11 >	C32)	0.0147Å
Perpendicular distance between mean	3.148(1) Å	
C21-H21 $(C5 > C10)^{i}$	HCent	2.95Å
	C-HCent	153°
	CCent	3.8221(3) Å

i = 1-x,1-y,-z

[REF1]. Spek, A. L. (1998) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.

N1-C11	1.413(4)	C18-C19	1.388(4)
N1-C4	1.446(4)	C19–C31	1.430(4)
C1-C4	1.551(4)	C19-C20	1.472(4)
C1–C2	1.670(4)	C20-C21	1.395(4)
C1-B4	1.704(4)	C20-C32	1.416(4)
C1-B5	1.724(4)	C21-C22	1.383(4)
C1-B6	1.724(4)	C22–C23	1.359(4)
C1-B3	1.732(4)	C23–C24	1.403(4)
C2–C3	1.513(4)	C24–C25	1.423(4)
C2-B11	1.714(4)	C24–C32	1.440(4)
C2-B7	1.715(5)	C25-C26	1.348(4)
C2-B3	1.726(5)	C26–C27	1.436(4)
C2-B6	1.733(4)	C27–C28	1.404(4)
C4–C5	1.524(4)	C27-C30	1.411(4)
C5–C6	1.389(4)	C29–C30	1.420(4)
C5-C10	1.392(4)	C29–C31	1.440(4)
C6–C7	1.375(4)	C30–C32	1.426(4)
C7–C8	1.368(5)	B3–B8	1.756(5)
C8–C9	1.380(5)	B3-B4	1.771(5)
C9-C10	1.399(5)	B3–B7	1.774(5)
C11-C28	1.379(4)	B4–B8	1.781(5)
C11-C12	1.426(4)	B4–B5	1.787(5)
C12-C29	1.417(4)	B4–B9	1.791(5)
C12-C13	1.428(4)	B5-B6	1.760(5)
C13–C14	1.357(4)	B5–B9	1.771(5)
C14–C15	1.432(4)	B5-B10	1.784(5)
C15-C16	1.385(4)	B6-B10	1.763(5)
C15-C31	1.429(4)	B6-B11	1.773(5)
C16-C17	1.375(4)	B7–B8	1.762(6)
C17–C18	1.404(5)	B7-B12	1.765(5)

Table 4. Bond lengths [Å] and angles [°].

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

[Tapez un texte]

B7-B11	1.778(5)	B9-B12	1.785(6)
B8-B12	1.777(5)	B10-B11	1.774(5)
B8–B9	1.793(5)	B10-B12	1.786(5)
B9-B10	1.783(5)	B11-B12	1.769(5)
C11-N1-C4	121.4(2)	C8–C9–C10	120.2(3)
C4-C1-C2	115.1(2)	C5-C10-C9	119.4(3)
C4-C1-B4	125.6(2)	C28-C11-N1	122.1(3)
C2-C1-B4	110.6(2)	C28-C11-C12	120.0(2)
C4-C1-B5	121.9(2)	N1-C11-C12	117.8(3)
C2-C1-B5	110.4(2)	C29-C12-C11	119.3(3)
B4-C1-B5	62.83(19)	C29-C12-C13	118.1(3)
C4-C1-B6	113.7(2)	C11-C12-C13	122.6(3)
C2-C1-B6	61.39(18)	C14-C13-C12	122.2(3)
B4-C1-B6	113.2(2)	C13-C14-C15	121.3(3)
B5-C1-B6	61.42(19)	C16-C15-C31	119.4(3)
C4-C1-B3	119.3(2)	C16-C15-C14	122.1(3)
C2-C1-B3	60.95(19)	C31-C15-C14	118.5(3)
B4-C1-B3	62.1(2)	C17–C16–C15	121.2(3)
B5-C1-B3	113.5(2)	C16-C17-C18	120.0(3)
B6-C1-B3	113.1(2)	C19–C18–C17	121.4(3)
C3-C2-C1	118.6(2)	C18-C19-C31	118.4(3)
C3-C2-B11	120.8(3)	C18-C19-C20	122.9(3)
C1-C2-B11	110.5(2)	C31-C19-C20	118.7(2)
С3-С2-В7	121.4(3)	C21-C20-C32	118.8(3)
C1-C2-B7	110.7(2)	C21-C20-C19	122.0(3)
B11-C2-B7	62.5(2)	C32-C20-C19	119.2(2)
С3-С2-В3	117.9(3)	C22-C21-C20	121.3(3)
C1-C2-B3	61.30(18)	C23-C22-C21	120.7(3)
B11-C2-B3	113.5(2)	C22-C23-C24	121.4(3)
B7-C2-B3	62.1(2)	C23-C24-C25	123.3(3)
C3-C2-B6	117.5(3)	C23-C24-C32	118.3(3)
C1-C2-B6	60.85(18)	C25-C24-C32	118.3(3)
B11-C2-B6	61.91(19)	C26-C25-C24	122.0(3)
B7-C2-B6	113.0(2)	C25-C26-C27	121.2(3)
B3-C2-B6	113.0(2)	C28-C27-C30	120.2(3)
N1-C4-C5	113.6(2)	C28-C27-C26	121.0(3)
N1-C4-C1	109.9(2)	C30-C27-C26	118.8(3)
C5-C4-C1	113.6(2)	C11-C28-C27	121.2(3)
C6-C5-C10	119.2(3)	C12-C29-C30	120.2(3)
C6-C5-C4	121.4(3)	C12-C29-C31	120.5(3)
C10-C5-C4	119.3(3)	C30-C29-C31	119.3(2)
C7–C6–C5	120.7(3)	C27-C30-C29	119.1(3)
C8–C7–C6	120.4(3)	C27-C30-C32	120.3(3)
С7-С8-С9	120.1(3)	C29-C30-C32	120.6(3)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

[Tapez un texte]

C15-C31-C19	119.5(3)	B10-B6-B11	60.2(2)
C15-C31-C29	119.4(3)	C2–B7–B8	105.2(2)
C19-C31-C29	121.1(3)	C2-B7-B12	105.3(2)
C20-C32-C30	121.1(3)	B8-B7-B12	60.5(2)
C20-C32-C24	119.5(3)	C2-B7-B3	59.25(19)
C30-C32-C24	119.4(3)	B8-B7-B3	59.6(2)
C2-B3-C1	57.75(18)	B12-B7-B3	108.2(3)
С2-В3-В8	105.0(2)	C2-B7-B11	58.73(19)
С1-В3-В8	105.1(2)	B8–B7–B11	108.1(3)
С2-В3-В4	104.9(2)	B12-B7-B11	59.9(2)
C1-B3-B4	58.19(18)	B3-B7-B11	108.1(2)
B8-B3-B4	60.7(2)	B3–B8–B7	60.6(2)
С2-В3-В7	58.68(19)	B3-B8-B12	108.5(3)
C1-B3-B7	105.1(2)	B7-B8-B12	59.8(2)
B8-B3-B7	59.9(2)	B3–B8–B4	60.1(2)
B4-B3-B7	108.3(2)	B7–B8–B4	108.4(3)
C1-B4-B3	59.75(19)	B12-B8-B4	108.2(3)
C1-B4-B8	105.2(3)	B3–B8–B9	108.4(3)
B3-B4-B8	59.3(2)	B7–B8–B9	108.0(3)
C1-B4-B5	59.13(18)	B12-B8-B9	60.0(2)
B3-B4-B5	108.7(2)	B4–B8–B9	60.1(2)
B8-B4-B5	107.7(3)	B5-B9-B10	60.3(2)
C1-B4-B9	105.0(2)	B5-B9-B12	108.1(3)
B3-B4-B9	107.8(3)	B10-B9-B12	60.1(2)
B8-B4-B9	60.3(2)	B5–B9–B4	60.20(19)
B5-B4-B9	59.3(2)	B10-B9-B4	108.2(2)
C1-B5-B6	59.30(18)	B12-B9-B4	107.4(3)
C1-B5-B9	105.1(2)	B5–B9–B8	107.8(2)
B6-B5-B9	107.7(3)	B10–B9–B8	107.8(3)
C1-B5-B10	105.4(2)	B12-B9-B8	59.6(2)
B6-B5-B10	59.6(2)	B4–B9–B8	59.6(2)
B9-B5-B10	60.2(2)	B6-B10-B11	60.2(2)
C1-B5-B4	58.04(18)	B6-B10-B9	107.1(2)
B6-B5-B4	107.5(2)	B11-B10-B9	107.6(2)
B9-B5-B4	60.4(2)	B6-B10-B5	59.52(19)
B10-B5-B4	108.3(3)	B11-B10-B5	107.7(2)
C1-B6-C2	57.76(17)	B9-B10-B5	59.5(2)
C1-B6-B5	59.28(17)	B6-B10-B12	107.5(2)
C2-B6-B5	105.8(2)	B11-B10-B12	59.6(2)
C1-B6-B10	106.3(2)	B9-B10-B12	60.0(2)
C2-B6-B10	105.6(2)	B5-B10-B12	107.5(2)
B5-B6-B10	60.8(2)	C2-B11-B12	105.1(2)
C1-B6-B11	105.3(2)	C2-B11-B6	59.57(18)
C2-B6-B11	58.52(19)	B12-B11-B6	107.8(3)
B5-B6-B11	108.7(3)	C2-B11-B10	106.0(2)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

[Tapez un texte]

B12-B11-B10	60.5(2)
B6-B11-B10	59.6(2)
C2-B11-B7	58.81(19)
B12-B11-B7	59.7(2)
B6-B11-B7	108.2(2)
B10-B11-B7	108.5(3)
B7-B12-B11	60.4(2)
B7-B12-B8	59.6(2)
B11-B12-B8	107.8(3)
B7-B12-B9	108.2(3)
B11-B12-B9	107.7(3)
B8-B12-B9	60.4(2)
B7-B12-B10	108.5(2)
B11-B12-B10	59.9(2)
B8-B12-B10	108.3(3)
B9-B12-B10	59.9(2

[Tapez un texte]

UV and emission additional data

Comparison between the available UV spectrum for benzo[ghi]perylene^{S2} and that for the new amino benzo[ghi]perylene **5a** is shown in Figure 1.

Figure 2. UV absorbance (C = 10^{-5}) and emission (C = 0.5×10^{-5}) spectra for 5a, 5c, 7 and 8 in THF.

^{s2} J. W. McClaine, X. Zhang, M. J. Wornat, *Journal of Chromatography A* **2006**, *1127*, 137.