Supporting Information

An uncommon highly oxidized multiple bonded Re₂⁸⁺ species Gina M. Chiarella, F. Albert Cotton and Carlos A. Murillo*

Experimental

Unless otherwise noted, the synthesis was carried out under an inert atmosphere using standard Schlenk techniques. Commercially available starting materials such as $(Bu^{7}_{4}N)_{2}Re_{2}Cl_{8}$ and silver triflate were purchased from Sigma-Aldrich and used as received. The rhenium precursor $Re_{2}(hpp)_{4}(O_{3}SCF_{3})_{2}$ was prepared using a published method.¹ Solvents were dried using a Glass Contour solvent system. Elemental analyses were performed by Robertson Microlit, Madison, NJ on material that had been placed under vacuum for three days. The infrared spectrum was recorded on a Perkin-Elmer 16PC FT IR spectrophotometer using KBr pellets. The electronic spectrum was recorded on a Shimadzu UV-2501 PC spectrophotometer. Electrochemical measurements were carried out in 0.1 M $Bu^{7}_{4}NPF_{6}$ solution in $CH_{2}Cl_{2}$ using a CH Instruments Model-CH1620A electrochemical analyzer with with Pt working and auxiliary electrodes, Ag/AgCl reference electrode, and operated with a scan rate of 100 mV·s⁻¹. Potentials are referenced to the Ag/AgCl electrode. ¹H NMR data were recorded on a Mercury 300 spectrometer with chemical shifts referenced to the protonated solvent residue.

Synthesis of {[Re₂(hpp)₄(O₃SCF₃)₂](O₃SCF₃)₂, **1**. To a flask charged with a solution of 41 mg (0.16 mmol) of Ag(SO₃CF₃) in 20 mL of methylene chloride was added 100 mg (0.080 mmol) of Re₂(hpp)₄(O₃SCF₃)₂ dissolved in 10 mL of methylene chloride. The color of the supernatant liquid changed immediately from purple to green. The reaction mixture was stirred at ambient temperature for 2 h and then filtered to remove a dark-colored silver residue. After removal of the solvent under vacuum, a deep green solid was obtained in essentially quantitative yield. Anal. Calcd for

C₃₂H₄₈N₁₂S₄O₁₂F₁₂Re₂: C, 25.26; H, 3.18; N, 11.05%. Found: C, 25.09; H, 3.54; N, 11.27%. ¹H NMR (CDCl₃, ppm): 3.37 (m, 32H), 2.04 (m, 16H).

Synthesis of {[Re₂(hpp)₃(OH)(O₃SCF₃)]₂(μ -O)₂}(O₃SCF₃)₂·4CH₂Cl₂, 2·4CH₂Cl₂. This was done similarly to that of **1** but once the silver residue was filtered off the volume of the filtrate was reduced to ca. 15 mL and then a layer of previously deoxygenated but un-dried hexanes was carefully placed on top of the solution. After two weeks, dark brownish-green crystals were collected by filtration, and washed with dry hexanes. Yield: 83 mg, 80%. Anal. Calcd for C₄₆H₇₄N₁₈S₄O₁₆F₁₂Re₄: C, 24.70; H, 3.33; N, 11.27%. Found: C, 24.54; H, 3.38, N, 11.50%. IR (cm⁻¹): 3316 (s), 2960 (m), 2863 (m), 1630 (m), 1553 (s), 1476 (m), 1385 (s), 1316 (s), 1223 (s), 1161 (m), 1029 (s), 909 (m), 766 (m), 637 (m). ¹H NMR (CDCl₃, ppm): 3.25 (m, 48H), 1.95 (m, 24H), 1.17 (s, 2H). ¹H NMR (C₆D₆): 2.61 (m, 24H), 2.05 (m, 24H), 1.04 (m, 24H), 0.91 (s, 2H). UV-vis (λ_{max} , nm): 260, 359, 441 and 606.

X-ray Structure Determination. Diffraction data were collected at 213 K on a Bruker SMART 1000 CCD area detector system using omega scans of 0.3 deg/frame with exposition of 40 sec/frame. Cell parameters were determined using the SMART software suite.^{II} Data reduction and integration was performed with the SAINT.^{III} An absorption correction was applied using the program SADABS.^{IV} Positions of the Re atoms were located via direct methods with the aid of the program SHELXTL.^V Subsequent cycles of least-squares refinement followed by difference Fourier syntheses revealed the positions of the remaining non-hydrogen atoms. Hydrogen atoms were added in idealized positions. All hydrogen atoms were included in the calculation of the structure factors. Non-hydrogen atoms were refined with anisotropic displacement parameters. Four sections of the structure showed some degree of disorder. This was handled as follows: a) a carbon atom in a methylene group of one of the hpp ligands was refined with partial occupancies of 0.62384 and 0.37616; b) three interstitial CH₂Cl₂ molecules presented disorder and it was resolved by refinement using partial occupancies; c) two oxygen atoms of a triflate

ligand that was bound to a rhenium atom were refined with partial occupancies of 0.54272 and 0.45728; d) a sulfur and two oxygen atoms in an unbound triflate anion were refined with partial occupancies of 0.52112 and 0.47888. For **2**, the structure was solved in the triclinic space group $P\bar{1}$. Selected bond distances and angles are listed in Table 1 and crystallographic data are provided in Table 2.

Fig S1 ¹H NMR spectrum of **2** in C_6D_6 .

Fig S2 Expansion of the signal centered at 2.61-2.62 ppm in the ¹H NMR spectrum of **2** in C_6D_6 .

Fig S3 Expansion of the signal centered at \sim 3.35 ppm in the ¹H NMR spectrum of 1 in CDCl₃.

Fig S4 Expansion of the signal centered at ~1.95 ppm in the ¹H NMR spectrum of 1 in CDCl₃.

Fig S5 Change in CV of **1** (bottom) with time as reaction with H_2O take place to form the redox inactive **2** (top).

Bond	Distances Å
Re–Re (Å)	2.2058(11), 2.2066(10)
Re–N (Å)	2.061(av)
Re1–01	1.897(5)
Re3–O1	1.902(5)
Re2–O2	1.910(5)
Re4–O2	1.883(5)
Re–L _{ax}	2.514(6), 2.481(6) (OSO ₂ CF ₃)
(axial ligand)	2.375(6), 2.396(6) (OH)

Table 1 Selected bond distances for $2.4CH_2CI_2$.

Table 2 Crystallographic data for 2·4CH₂Cl₂.

Chemical formula	$Re_4C_{46}H_{74}N_{18}O_{16}S_4F_{12}\cdot 4CH_2CI_2$
Fw	2575.98
Space group	Pī
<i>a</i> (Å)	13.399(8)
<i>b</i> (Å)	15.484(10)
<i>c</i> (Å)	20.484(12)
α (°)	80.220(11)
β (°)	86.058(11)
γ(°)	75.259(10)
V (Å ³)	4049(4)
Ζ	2
d _{calcd} (g⋅cm ⁻³)	2.113
μ (mm ⁻¹)	6.425
т (к)	213
R1 ^{<i>a</i>} (wR2 ^{<i>b</i>})	0.0380 (0.0975)

^{*a*} R1 = $[\sum w(F_o - F_c)^2 / \sum wF_o^2]^{1/2}$. ^{*b*} wR2 = $[\sum [w(F_o^2 - F_c^2)^2] / \sum w(F_o^2)^2]^{1/2}$, *w* = $1/[\sigma^2(F_o^2) + (aP)^2 + bP]$, where *P* = $[\max(F_o^2, 0) + 2(F_c^2)]/3$. References

2 SMART for Windows NT, version 5.618; Bruker Advanced X-ray Solutions, Inc.: Madison, WI, 2001. 3 SAINT. Data Reduction Software. Version 6.36A; Bruker Advanced X-ray Solutions, Inc.: Madison, WI, 2001.

4 SADABS. Area Detector Absorption and other Corrections Software, Version 2.05; Bruker Advanced X-ray Solutions, Inc.: Madison, WI, 2001.

^{1 (}*a*) J. F. Berry, F. A. Cotton, P. Huang and C. A. Murillo, *Dalton Trans.*, 2003, 1218; (*b*) F. A. Cotton, N. S. Dalal, P. Huang, S. A. Ibragimov, C. A. Murillo, P. M. B. Piccoli, C. M. Ramsey, A. J. Schultz, X. Wang and Q. Zhao, *Inorg. Chem.*, 2007, **46**, 1718.

⁵ G. M. Sheldrick, *SHELXTL, version 6.12*; Bruker Advanced X-ray Solutions, Inc.: Madison, WI, 2002.