Convenient method to access long-chain and functionalized mixed methylphosphonate esters and their application in the synthesis of ionic liquids

Swetlana J. Sachnov,^{*a*} Peter S. Schulz^{*a*} and Peter Wasserscheid^{**a*}

Experimental

The ionic liquid [EMIM] methyl methylphosphonate was received from BASF AG. All reagents were purchased from Aldrich, Fluka, Merck KGaA with synthesis grades.

Synthesis of asymmetric methyl methylphosphonate esters

Synthesis of AcNMe(Me)PO₃

1.2 eq of the ionic liquid [EMIM] methyl methylphosphonate was weighted into a dry Schlenk flask and 1.0 eq of bromoacetonitrile was added dropwise under stirring. The reaction mixture was stirred for 5 h at room temperature under an Ar atmosphere. The reaction mixture was subsequently extracted four times with diethylether. The combined diethylether phases were concentrated to a small volume and dried under reduced pressure to yield the product ester (42 %).

Synthesis of MeAcMe(Me)PO₃

1.2 eq of the ionic liquid [EMIM] methyl methylphosphonate was weighted into a dry Schlenk flask and 1.0 eq of methyl 2-chloroacetate was added dropwise under stirring. The reaction mixture was stirred for 12 h at room temperature under an Ar atmosphere. The reaction mixture was subsequently extracted four times with diethylether. The combined diethylether phases were concentrated to a small volume and dried under reduced pressure to yield the product ester (74 %).

Synthesis of BuMe(Me)PO₃

1.0 eq of 1-bromobutane was weighted into a dry Schlenk flask and 1.2 eq of the ionic liquid [EMIM] methyl methylphosphonate was added. The reaction mixture was stirred for 20 h at 50 °C under an Ar atmosphere. The reaction mixture was subsequently extracted four times with diethylether. The combined diethylether phases were concentrated to a small volume and dried under reduced pressure to yield the product ester (85 %).

Synthesis of OcMe(Me)PO₃

1.0 eq of 1-bromooctane was weighted into a dry Schlenk flask and 1.2 eq of the ionic liquid [EMIM] methyl methylphosphonate was added. The reaction mixture was stirred for 20 h at 60 °C under an Ar atmosphere. The reaction mixture was subsequently extracted four times with diethylether. The combined diethylether phases were concentrated to a small volume and dried under reduced pressure to yield the product ester (89 %).

$Synthesis \ of \ (MeEG_3)Me(Me)PO_3$

1.0 eq of PEG-benzenesulfonate (obtained according to [S1]) was weighted into a dry Schlenk flask and 1.2 eq of the ionic liquid [EMIM] methylphosphonate was added. The reaction mixture was stirred for 12 h at RT under an Ar atmosphere. The reaction mixture was subsequently extracted four times with diethylether. The combined diethylether phases were concentrated to a small volume and dried under reduced pressure to yield the product ester (87 %).

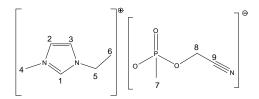
Synthesis of DodMe(Me)PO₃

1.0 eq of 1-iodododecane was weighted into a dry Schlenk flask and 1.2 eq of the ionic liquid [EMIM] methyl methylphosphonate was added. The reaction mixture was stirred for 36 h at 75 °C under an Ar atmosphere. The reaction mixture was subsequently extracted four times with diethylether. The combined diethylether phases were concentrated to a small volume and dried under reduced pressure to yield the product ester (92 %).

General synthetic procedure for the synthesis of alkylphosphonate ionic liquids from dialkyl alkylphosphonate esters

1.0 eq of the respective alkylphosphonate ester was weighted into a dry Schlenk flask and 1.0 eq of the corresponding amine was added. Then the reaction mixture was stirred. The required conditions are summarized in Table 3.

Entry	Phosphonate ester	Amine	Ionic Liquid	T / °C	t / d	Yield / %	Water content / ppm
1	AcNMe(Me)PO ₃	EtIm	[EMIM]	90	1	82	4494
			[AcN(Me)PO ₃] ^{a)}				
2	MeAcMe(Me)PO ₃	EtIm	[EMIM]	75	1	86	3304
			[MeAc(Me)PO ₃]				
3	$Me_2(Me)PO_3$	EtIm	[EMIM]	100	1	> 99	2744
			[Me(Me)PO ₃]				
4	$Bu_2(Me)PO_3$	MIm	[BMIM]	130	2	94	2345
			[Bu(Me)PO ₃]				
5	$Oc_2(Me)PO_3$	MIm	[OMIM]	150	3	92	2771
			$[Oc(Me)PO_3]$				
6	$Oc_2(Ph)PO_3$	MIm	[OMIM]	150	3	>99	1972
			$[Oc(Ph)PO_3]$				
7	$(MeEG_3)_2(Me)PO_3$	MIm	[(MeEG ₃)MIM]	140	3	92	645
			$[(MeEG_3) (Me)PO_3]$				
8	$Dod_2(Me)PO_3$	MIm	[DodMIM]	160	3	98	n.a.
			[Dod(Me)PO ₃]				

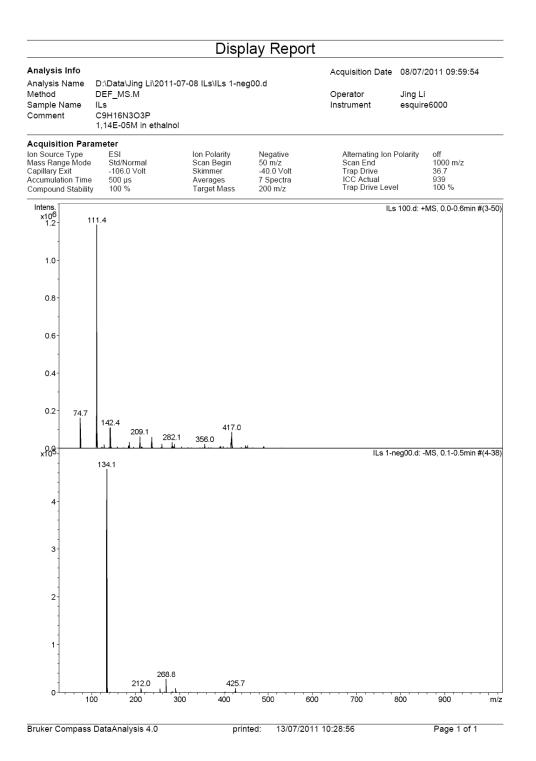

	1 / 1 1 11 11	a	• • • • •
Table S1: Phose	phonate ionic liquid	s: Synthesis conditi	ons and water content.

a) Synthesis in acetonitrile

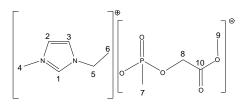
NMR spectroscopy and ESI-MS analysis

NMR spectra were recorded on a JEOL ECX +400 spectrometer (¹H: 400 MHz, ¹³C: 100 MHz, ³¹P: 162 MHz). Deuterated solvents (CDCl₃ and d₆-DMSO) were used as internal standards. The chemical shifts are noted in parts per million (ppm), the coupling constants in Hz. The data is stated in the following way:

[EMIM][AcN(Me)PO₃] (1)



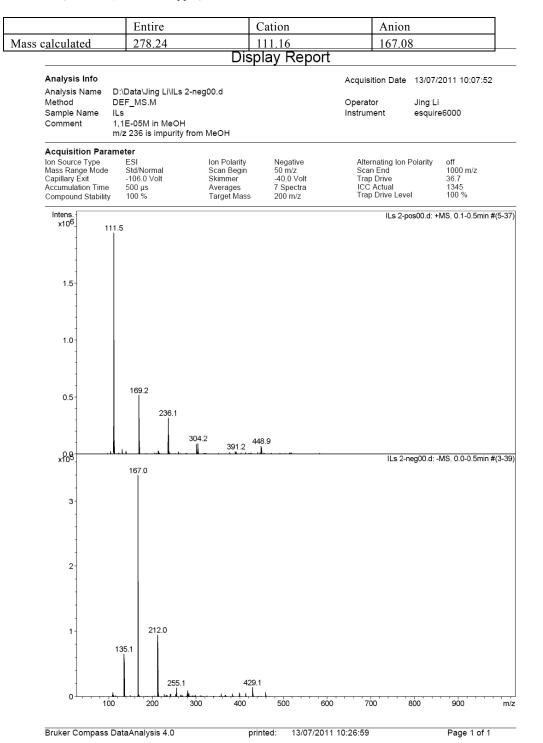
¹H-NMR (DMSO-d₆, 400 MHz, ppm): δ = 0.96 (d, 3H, J = 15.65 Hz, 7-H), 1.40 (t, 3H, J = 7.41 Hz, 6-H), 3.87 (s, 3H, 4-H), 4.21 (q, 2H, J = 0.74, Hz 5-H), 4.50 (d, 2H, J = 1.03 Hz, 8-H), 7.78 (s, 1H, 2-H), 7.87 (s, 1H, 3-H), 9.60 (s, 1H, 1-H).


¹³C-NMR (DMSO-d₆, 100.4 MHz, ppm): δ = 14.00 (d, J = 13.22 Hz, C-7), 15.20 C-6, 35.52 C-4, 43.98 C-5, 49.02 C-8, 118.87 C-9, 122.09 C-3, 123.61 C-2, 137.15 C-1.

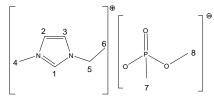
³¹P-NMR (DMSO-d₆, 162 MHz, ppm): δ = 23.55.

	Entire	Cation	Anion
Mass calculated	245.22	111.16	134.05

[EMIM][MeAc(Me)PO₃] (2)

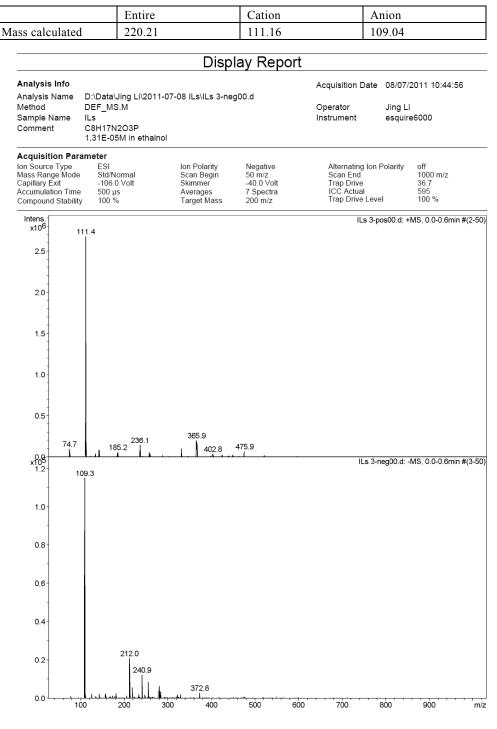


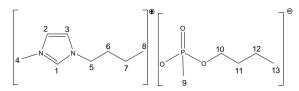
¹H-NMR


(DMSO-d₆, 400 MHz, ppm): δ = 0.91 (d, 3H, J = 15.66 Hz, 7-H), 1.40 (t, 3H, J = 7.42 Hz, 6-H), 3,60 (s, 3H, 9-H), 3.87 (s, 3H, 4-H), 4.21 (q, 2H, J = 0.72 Hz, 5-H), 4.24 (d, 2H, J = 0.86 Hz, 8-H), 7.78 (s, 1H, 2-H), 7.87 (s, 1H, 3-H), 9.66 (s, 1H, 1-H).

¹³C-NMR (DMSO-d₆, 100.4 MHz, ppm): δ = 13.80 (d, J = 13.32 Hz, C-7), 15.27 C-6, 35.49 C-4, 43.96 C-5, 51.31 C-9, 61.02 C-8, 122.15 C-3, 123.67 C-2, 137.40 C-1, 171.26 C-10.

³¹P-NMR (DMSO-d₆, 162 MHz, ppm): δ = 18.37.

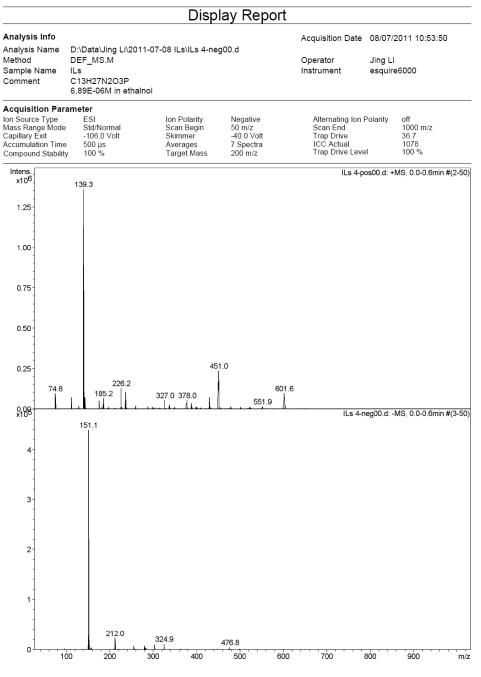

[EMIM][Me(Me)PO₃] (3)


¹H-NMR (DMSO-d₆, 400 MHz, ppm): $\delta = 0.88$ (d, 3H, J = 15.24 Hz, 7-H), 1.35 (t, 3H, J = 7.42 Hz, 6-H), 3,27 (d, 3H, J = 1.03 Hz, 8-H), 3.92 (s, 3H, 4-H), 4.25 (q, 2H, J = 0.74 Hz, 5-H), 8.08 (s, 1H, 2-H), 8.22 (s, 1H, 3-H), 10.26 (s, 1H, 1-H).

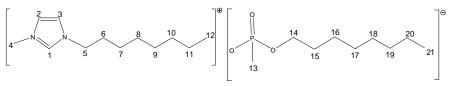
¹³C-NMR (DMSO-d₆, 100.4 MHz, ppm): δ = 12.80 (d, J = 13.13 Hz, C-7), 15.30 C-6, 35.35 C-4, 43.83 C-5, 50.20 C-8, 122.23 C-3, 123.71 C-2, 137.71 C-1.

³¹P-NMR (DMSO-d₆, 162 MHz, ppm): δ = 18.98.

[BMIM][Bu(Me)PO₃] (4)

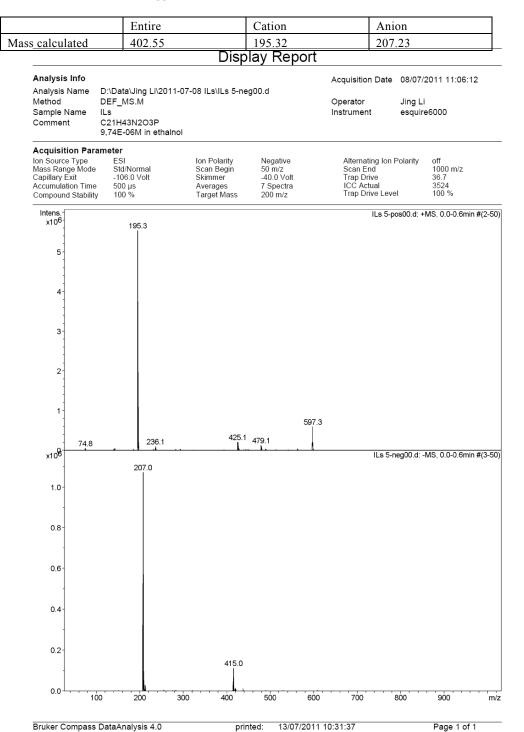


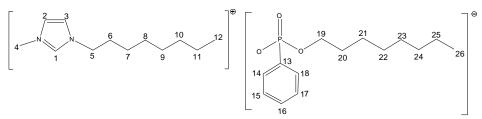
¹H-NMR (CDCl₃, 400 MHz, ppm): $\delta = 0.78$ (t, 3H, J = 7.42 Hz, 8-H), 0.84 (t, 3H, J = 7.41 Hz, 13-H), 1.19 (d, 3H, J = 16.07 Hz, 9-H), 1.27 (m, 4H, 7-H and 12-H), 1.47 (m, 2H, 6-H), 1.75 (m, 2H, 11-H), 3.74 (q, 2H, J = 0.66 Hz, 5-H), 3.96 (s, 3H, 4-H), 4.19 (t, 2H, J = 0.74 Hz, 10-H), 7.19 (s, 1H, 2-H), 7.31 (s, 1H, 3-H), 10.75 (s, 1H, 1-H).


¹³C-NMR (DMSO-d₆, 100.4 MHz, ppm): δ = 13.00 (d, J = 13.22 Hz, C-9), 13.14 C-8, 13.54 C-13, 18.60 C-12, 18.75 C-7, 31.56 C-11, 32.87 C-6, 35.37 C-4, 48.17 C-5, 62.33 C-10, 122.38 C-3, 123.58 C-2, 137.86 C-1.

³¹P-NMR (CDCl₃, 162 MHz, ppm): δ = 22.70.

	Entire	Cation	Anion
Mass calculated	290.34	139.22	151.12

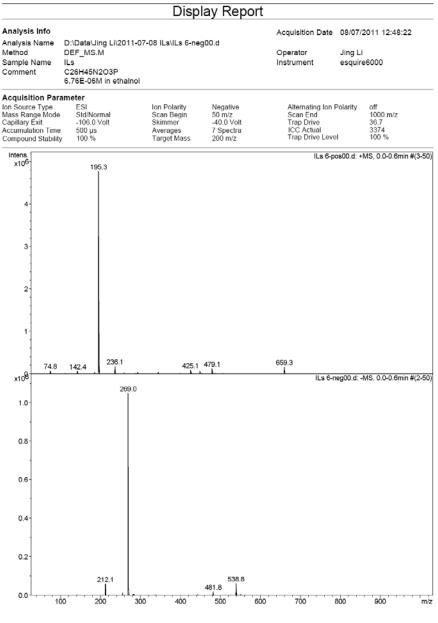

[OMIM][Oc(Me)PO₃] (5)


¹H-NMR (CDCl₃, 400 MHz, ppm): δ = 0.74 (m, 6H, 12-H and 21-H), 1.19 (d, 3H, J = 15.65 Hz, 13-H), 1.13 (m, 20H, 7-H – 11-H and 16-H – 20-H), 1.48 (m, 2H, 6-H), 1.75 (m, 2H, 15-H), 3.71 (q, 2H, J = 0.70, Hz 5-H), 3.96 (s, 3H, 4-H), 4.16 (t, 2H, J = 0.74 Hz, 14-H), 7.15 (s, 1H, 2-H), 7.29 (s, 1H, 3-H), 10.92 (s, 1H, 1-H).

¹³C-NMR (DMSO-d₆, 100.4 MHz, ppm): δ = 13.00 (d, J = 13.22 Hz, C-13), 13.74 C-12, 22.11 C-21, 22.59 (2C, C-11 and C-20), 28.54 – 31.34 (m, 10C, C-6 – C-10 and C-15 – C-19), 35.39 C-4, 48.46 C-5, 62.66 C-14, 122.36 C-3, 123.53 C-2, 137.82 C-1.

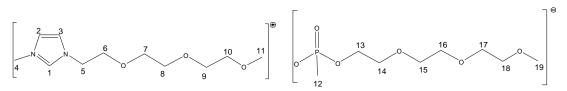
³¹P-NMR (CDCl₃, 162 MHz, ppm): δ = 22.40.

[OMIM][Oc(Ph)PO₃] (6)



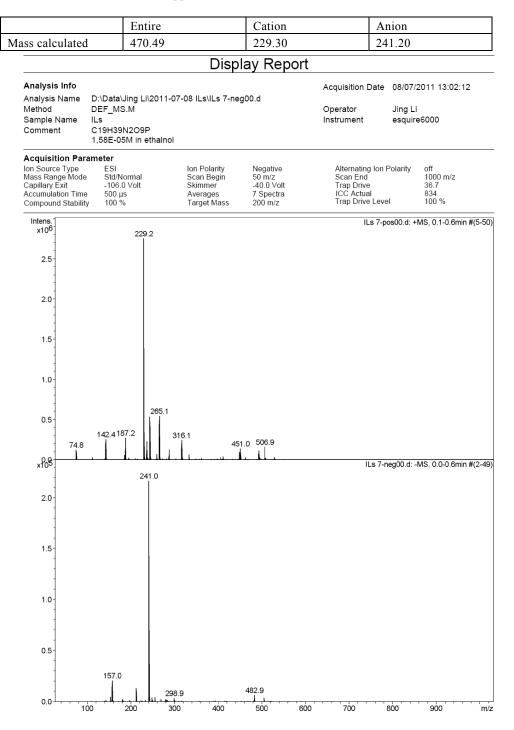
¹H-NMR (DMSO-d₆, 400 MHz, ppm): δ = 0.84 (m, 6H, 12-H and 26-H), 1.14 – 1.21 (m, 20H, 7-H – 11H and 21-H – 25-H), 1.35 (m, 2H, 6-H), 1.74 (m, 2H, 20-H), 3.50 (q, 2H, J = 0.66 Hz, 5-H), 3.85 (s, 3H, 4-H), 4.16 (t, 2H, J = 0.74 Hz, 19-H), 7.25 (m, 3H, 15-H – 17-H), 7.60 (m, 2H, 14-H and 18-H), 7.79 (s, 1H, 2-H), 7.89 (s, 1H, 3-H), 10.78 (s, 1H, 1-H).

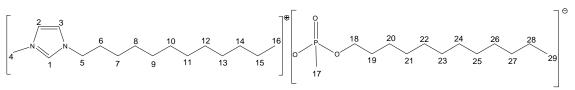
¹³C-NMR (DMSO-d₆, 100.4 MHz, ppm): δ = 13.82 C-12, 22.08 C-26, 25.40 – 31.25 (m, 12C, C-6 – C-11 and C-20 – C-25), 35.46 C-4, 48.55 C-5, 62.89 C-19, 122.30 C-3, 123.49 C-2, 127.05 (m, 2C, C-15 and C-17), 128.3 (m, 2C, C-13 and C-16), 131.08 (m, 2C, C-14 and C-18), 137.48 C-1.


³¹P-NMR (DMSO-d₆, 162 MHz, ppm): δ = 9.33.

Mass calculated 464.62 195.32 269.30		Entire	Cation	Anion
	Mass calculated	464.62	195.32	269.30

Bruker Compass DataAnalysis 4.0


[(MeEG₃)MIM][(MeEG₃)(Me)PO₃] (7)

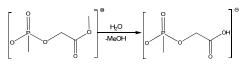

¹H-NMR (DMSO-d₆, 400 MHz, ppm): δ = 0.98 (d, 3H, J = 16.10 Hz, 12-H), 3.22 (m, 6H, 11-H and 19-H), 3,41 (m, 4H, 8-H and 18-H), 3.44 – 3.51 (m, 12H, 7-H – 9-H and 15-H – 17-H), 3.54 (m, 2H, 6-H), 3.70 -3.80 (m, 4H, 5-H and 14-H), 3.88 (s, 3H, 4-H), 4.38 (t, 2H, J = 0.5 Hz, 13-H), 7.77 (s, 1H, 2-H), 7.80 (s, 1H, 3-H), 9.45 (s, 1H, 1-H).

¹³C-NMR (DMSO-d₆, 100.4 MHz, ppm): δ = 13.00 (d, J = 13.42 Hz, C-12), 35.51 C-4, 48.50 C-5, 58.01 (2C, C-11 and C-19), 60.0 – 70.70 (m, 10C, C-6 – C-10 and C-14 – C-18), 71.30 C-13, 122.70 C-3, 123.39 C-2, 137.62 C-1.

³¹P-NMR (DMSO-d₆, 162 MHz, ppm): δ = 20.32.

[DodMIM][Dod(Me)PO₃] (8)

¹H-NMR (DMSO-d₆, 400 MHz, ppm): δ = 0.83 – 0.89 (m, 9H, 16-H, 17-H and 29-H), 1.23 (m, 36H, 7-15-H and 20-28-H), 1.43 (m, 2H, 6-H), 1.77 (m, 2H, 19-H), 3.56 (q, 2H, J = 0.66 Hz, 5-H), 3.86 (s, 3H, 4-H), 4.15 (t, 2H, J = 0.70 Hz, 18-H), 7.71 (s, 1H, 2-H), 7.78 (s, 1H, 3-H), 9.41 (s, 1H, 1-H).


¹³C-NMR (DMSO-d₆, 100.4 MHz, ppm): δ = 13.00 (d, J = 13.23 Hz, C-17), 13.69 (2C, C-16 and C-29), 22.00 (2C, C-15 and C-28), 25.42 – 31.22 (m, 18C, C-6 – C-14 and C-19 – C-27), 35.43 C-4, 48.72 C-5, 62.80 C-18, 121.96 C-3, 123.27 C-2, 137.57 C-1.

³¹P-NMR (DMSO-d₆, 162 MHz, ppm): δ = 16.97.

	Entire	Cation	Anion
Mass calculated	514.76	251.43	263.33

nalysis Inf nalysis Nan lethod ample Nam	ne D:\D DEF	ata\Jing L _MS.M	i\2011-07	-08 Ls\ Ls 8-n	eg00.d	Acquisi Operato Instrum	or	08/07/2 Jing Li esquire	2011 13:16:3	8
comment	C29H 8,31	159N2O3 E-06M in (P ethalnol							
Acquisition on Source Typ lass Range M apillary Exit accumulation 1 Compound Sta	oe E lode S -1 Fime 5	er SI td/Normal 106.0 Volt 00 μs 00 %		lon Polarity Scan Begin Skimmer Averages Target Mass	Negative 50 m/z -40.0 Volt 7 Spectra 200 m/z	Scar Trap ICC	nating Ion P End Drive Actual Drive Level	-	off 1000 m/z 36.7 4488 100 %	
Intens. x10 ⁶		:	251.3				ILs 8-po	s00.d: +l	MS, 0.0-0.6mir	n #(3-50
6-										
4-										
2-										
	142	4		4	48.9 537.2 ⁵	91.2	765.5			
x10 ⁸			263.1				ILs 8-ne	eg00.d: -l	MS, 0.0-0.6mir	n #(2-5
1.25-										
1.00-										
0.75-										
0.50										
-										
0.25 -		212.1			527.0 475.9					

Hydrolysis of the [MeAc(Me)PO₃] ion

Scheme S1:

The signal for the methyl group at 3.56 ppm in the ¹H-NMR spectrum disappeared upon refluxing in water and the signal for phosphorous shifted upfield from 19 to 25 ppm. However, this step may be regarded as further functionalization possibility. The free carboxylic acid group is now disposable for coupling reactions like esterification or amidation or may be deprotonated to provide a dianion.

SI References

[S1] E. Kuhlmann, S. Himmler, H. Giebelhaus, and P. Wasserscheid, Green Chem., 2007, 9, 233.