Enantioselective organocatalytic formal allylation of α-branched aldehydes

Eduardo Rodrigo, Sara Morales, Sara Duce, José Luis García Ruano, M. Belén Cid*
Department of Organic Chemistry. Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid (Spain)

Supplementary information

Table of contents

1.- General methods SI 2
2.- Determination of the enantiomeric excesses SI 2
3.- Preparation of aldehydes 2 SI 2
4.- Preparation of catalysts VI- VIII SI 3
5.- Preparation of heteroaryl vinylsulfone 1 SI 4
6.- General procedure for the conjugate addition of α, α-disubtituted aldehydes 2 to heteroaryl vinylsulfone 1 SI 5
7.- Data of Michael adducts 3 SI 6
8.- General procedure for the Julia-Kocienski olefination SI 16
9.- Data of the allylated aldehydes SI 17
10.- Assignation of the absolute stereochemistry SI 20
11.- NMR Spectra of the Products SI 21

1.- General methods

NMR spectra were acquired using CDCl_{3} as the solvent, running at 300 and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals ($\mathrm{CHCl}_{3}, 7.26 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR, CDCl_{3}, and 77.0 ppm for ${ }^{13} \mathrm{C}$ NMR). In all ${ }^{1} \mathrm{H}$ NMR spectra, multiplicity is indicated as follows: bs (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet) or m (multiplet). Coupling constant values (in Hertz) and number of protons for each signal are also indicated.

Melting points were measured using Gallenkamp melting point apparatus in open capillary tubes. Optical rotation was recorded in cells with 10 cm path length on a PerkinElmer 241 MC polarimeter.

For thin layer chromatography (TLC) Supelco silica gel plates with fluorescence indicator 254 nm were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of $\mathrm{KMnO}_{4}(1.5 \mathrm{~g}), \mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~g})$, and $10 \% \mathrm{NaOH}(1.25$ $\mathrm{mL})$ in $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ or a solution of phosphomolybdic acid (12 g), in EtOH (250 mL) followed by heating. Flash column chromatography (FCC) was performed using Fluka pore $60 \AA, 40-63 \mu \mathrm{~m}$ silica gel and compressed air.

Mass spectra were obtained in a VG AutoSpec Spectrometer in positive electrospray ionisation (ESI+) or electron impact ionisation (EI). Obtained data are expressed in mass/charge (m / z) units. Values between parentheses indicate relative intensities with regard to the base peak.

Hexane and EtOAc were supplied by Scharlau and were used without previous purification. m-Chloroperbenzoic acid (77\%) was bought in Aldrich and was used without drying. All the other reactants were bought in Aldrich, Fluka or Alfa Aesar and were also used without any previous treatment.

2.- Determination of enantiomeric excesses

Enantiomeric excesses (ee) were determined by chiral-phase HPLC using an Agilent1100 instrument in the indicated column and conditions in each case. Synthesis of racemic compounds is detailed for every reaction.

3.- Preparation of aldehydes 2

Commercially available aldehydes $\mathbf{2 a}, \mathbf{2 i}$ and $\mathbf{2 j}$ were purchased and used without any previous treatment.

The rest of the aldehydes were prepared in a two step process from the corresponding ketones following the procedure described in the literature. ${ }^{1}$ Spectroscopic data are in agreement with the literature.

[^0]
4.- Preparation of catalyst VI, VII and VIII

Catalyst VI-9-epi-DHQA was prepared from dihydroquinine according to the procedure described in the literature ${ }^{2}$.

Catalyst VII-9-epi-QA was prepared following the procedure described in the literature ${ }^{3}$.

Catalyst VIII 9-epi-QDA was prepared following the same procedure described for catalyst VII using Quinidine.

All spectroscopic data are in agreement with the literature.

[^1]
5.- Preparation of heteroaryl vinylsulfone 1

1-Phenyl-1H-tetrazole-5-thiol ($10.7 \mathrm{~g}, 60 \mathrm{mmol}$) was placed in a 500 ml flask equipped with a magnetic stirring bar and 1,2 -dichloroethane $(250 \mathrm{ml})$ followed by $\mathrm{K}_{2} \mathrm{CO}_{3}(20.1 \mathrm{~g}, 150$ mmol) were added. The suspension was stirred and heated under reflux during 2 days. After cooling to room temperature, 200 ml of water were added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{ml})$. The organic layers were combined, washed with water (200 ml) and brine (200 ml), dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford 13.9 g (Yield for this step: 97%) of 5 -(2-chloroethylthio)-1-phenyl-1 H tetrazole as a pale yellow solid that was used in the next step without previous purification.

The crude compound ($4.8 \mathrm{~g}, 20 \mathrm{mmol}$) was placed in a 500 ml flask equipped with a magnetic stirring bar and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. A solution of m-chloroperbenzoic acid ($17.2 \mathrm{~g}, 100 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ was added and the reaction mixture was stirred at room temperature for 3 days, whereupon it was filtered. The filtrate was transferred into a separatory funnel, washed with 150 ml of a NaHSO_{3} solution $40 \% \mathrm{w} / \mathrm{v}$, a sat. aq. NaHCO_{3} solution ($2 \times 150 \mathrm{ml}$) and brine (150 ml). The organic phase was dried over MgSO_{4}, filtered and concentrated under vacuum. The obtained crude was dissolved in THF (100 mL) in a 250 ml flask equipped with a magnetic stirring bar and triethylamine ($4.1 \mathrm{ml}, 30 \mathrm{mmol}$) was added dropwise. The clear solution turned to a clouded suspension which was stirred for 30 min . Solid triethlyamine hydrochloride was filtered and the solvent removed under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc = 4:1) to afford 4.53 g (Yield over two last steps: 96%) of compound 1 as a white solid.

1-Phenyl-5-(vinylsulfonyl)-1H-tetrazole (1)

White solid. Mp: 63-64 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz): δ 7.72-7.57 (m, 5H), $\delta 7.14$ (dd, $J=10.0,16,5 \mathrm{~Hz}, 1 \mathrm{H}), \delta 6.67(\mathrm{~d}, J=16,5 \mathrm{~Hz}, 1 \mathrm{H}), \delta 6.49(\mathrm{~d}, J=10 \mathrm{~Hz}$, 1H). ${ }^{13}$ C NMR (75 MHz): $\delta 154.2$ (C), 135.3 (CH), 134.5 (CH), 133.0 (C), 131.6 $\left(\mathrm{CH}_{2}\right), 129.8(2 \mathrm{CH}), 125.2(2 \mathrm{CH}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 237\left(\mathrm{M}^{+}+1,48\right), 149$ (13), 118 (100). HRMS (ESI): calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+1\right)$: 237.0440; found: 237.0450 .

5-(2-chloroethylthio)-1-Phenyl-1H-tetrazole

 (ESI): m/z 241 (M+1, 43), 149 (100), 79 (35). HRMS (ESI): calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{SCl}$ ($\mathrm{M}^{+}+1$): 241.0309; found: 241.0316 .

6.- General procedure for the conjugate addition of α, α-disubtituted aldehydes 2 to heteroaryl vinylsulfone 1.

Catalyst VII (9-amino-(9-deoxi)-epiquinine) ($9.6 \mathrm{mg}, 0.03 \mathrm{mmol}$) was dissolved in CHCl_{3} (1 ml) and the indicated equivalents in each case of the corresponding aldehyde 2 were added to the solution. The mixture was stirred for 5 minutes before sulfone 1 ($35 \mathrm{mg}, 0.15$ mmol) and p-nitrobenzoic acid were added. The reaction mixture was stirred at room temperature until completion (TLC) (see table 2). The solvent was removed under reduced pressure and the crude was purified by flash column chromatography (hexane/EtOAc = 10:1 to $8: 1$ to $6: 1$) to afford the corresponding Michael adduct 3.

Racemics:

Method A: A mixture of (S)-methylbenzylamine ($2 \mu \mathrm{l}, 0.01 \mathrm{mmol}$) and (R)methylbenzylamine ($2 \mu \mathrm{l}, 0.01 \mathrm{mmol}$) were dissolved in $\mathrm{CHCl}_{3}(0.5 \mathrm{ml}$) and the corresponding aldehyde 2 (30 equiv, 2.25 mmol) was added to the solution. The mixture was stirred for 5 minutes before sulfone $1(17.8 \mathrm{mg}, 0.075 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature until completion (TLC). The solvent was removed under reduced pressure and the crude was purified by flash column chromatography (hexane/EtOAc $=10: 1$ to $8: 1$ to $6: 1$) to afford the corresponding racemic aldehyde 3 .

Method B ${ }^{4}$: A mixture of 9-amino-(9-deoxi)-epiquinine VII ($2.4 \mathrm{mg}, 0.0075 \mathrm{mmol}$) and 9-amino-(9-deoxi)-epiquinidine ($2.4 \mathrm{mg}, 0.0075 \mathrm{mmol}$) were dissolved in $\mathrm{CHCl}_{3}(0.5 \mathrm{ml})$ and the indicated equivalents in each case of the corresponding aldehyde 2 were added to the solution. The mixture was stirred for 5 minutes before sulfone 1 ($17.8 \mathrm{mg}, 0.075 \mathrm{mmol}$) and and p-nitrobenzoic acid were added. The reaction mixture was stirred at room temperature until completion (TLC). The solvent was removed under reduced pressure and the crude was purified by flash column chromatography (hexane/EtOAc $=10: 1$ to $8: 1$ to $6: 1$) to afford the corresponding racemic aldehyde 3.

[^2]
7.- Data of Michael adducts 3

(R)-2-Methyl-2-phenyl-4-(1-phenyl-1H-tetrazol-5-ylsulfonyl) butanal (3a).

Adduct 3a was obtained following the general method using 5 equiv of aldehyde 2a and $20 \mathrm{~mol} \%$ of p-nitrobenzoic acid. Yield: $\mathbf{7 6 \%}$.
White solid. Mp: $83-84^{\circ} \mathrm{C} .[\alpha]^{30} \mathrm{D}-32.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}): \delta 9.41$ (s, 1H), 7.71-7.53 (m, 5H), 7.49-7.21 (m, 5H), 3.61 (ddd, J = 4.4, 12.6, 14.4 $\mathrm{Hz}, 1 \mathrm{H}$), 3.43 (ddd, $J=4.4,12.5,14.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (ddd, $J=4.5,12.5,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (ddd, $J=4.4,12.6,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 199.9$ (CHO), 153.2 (C), 136.9 (C), $133.0(\mathrm{C}), 131.5(\mathrm{CH}), 129.7(2 \mathrm{CH}), 129.6(2 \mathrm{CH}), 128.4(\mathrm{CH}), 127.0(2$ $\mathrm{CH}), 125.1(2 \mathrm{CH})$, $52.9(\mathrm{C}), 52.3\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right) 18.5\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 371\left(\mathrm{M}^{+}+1\right.$, 71), 149 (100), 143 (37), 64 (22). HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+1\right)$: 371.1172; found: 371.1166. IR (film): 3026, 1723 (CHO), 1497, 1342, $1155 \mathrm{~cm}^{-1}$.

The procedure to obtain this product has been scaled up until 500 mg of sulfone 1. Yield: 70\%.
Racemic aldehyde was obtained using Method A.
The enantiomeric excess was determined by HPLC using a Chiralpak IB column [hexane/iPrOH $=90: 10$]; flow rate $1.0 \mathrm{ml} / \mathrm{min}$. $\boldsymbol{e e}=94 \%, \tau_{\text {major }}=23.6 \mathrm{~min} ; \tau_{\text {minor }}=26.9 \mathrm{~min}$.

Adduct $\mathbf{3 b}$ was obtained following the general method using 5 equiv of aldehyde 2b and $20 \mathrm{~mol} \%$ of p-nitrobenzoic acid. Yield: 71%.
Colourless oil. $[\alpha]^{30}{ }_{D}-3.3^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.45$ (s, 1H), 7.69-7.53 (m, 7H), 7.17-7.11 (m, 2H), 3.61 (ddd, J = 4.4, 12.4, $14.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (ddd, $J=4.4,12.6,14.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (ddd, $J=4.5$,
$12.6,13.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29 (ddd, $J=4.5,12.4,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): б 199.2 (CHO), 153.1 (C), 136.0 (C), 132.9 (C), 132.7 (2 CH), $131.5(\mathrm{CH}), 129.7(2 \mathrm{CH})$, $128.7(2 \mathrm{CH}), 125.0(2 \mathrm{CH}), 122.7(\mathrm{CH}), 52.6(\mathrm{C}) 52.1\left(\mathrm{CH}_{2}\right) 28.7\left(\mathrm{CH}_{2}\right) 18.5\left(\mathrm{CH}_{3}\right)$. MS (ESI): 449 (M ${ }^{+}+1,28$), 149 (100), 79 (30). HRMS (ESI): calculated $\mathrm{C}_{1} 8 \mathrm{H}_{18} \mathrm{BrN}_{4} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+1\right)$: 449.0243; found: 449.0268. IR (film): 2926, 1725 (CHO), 1497, 1347, $1154 \mathrm{~cm}^{-1}$.

Racemic aldehyde was obtained using Method B.
The enantiomeric excess was determined by HPLC using a Chiralpak IC column [hexane/iPrOH $=90: 10$]; flow rate $1.0 \mathrm{ml} / \mathrm{min}$. $\boldsymbol{e e}=93 \%, \tau_{\text {major }}=41.9 \mathrm{~min} ; \tau_{\text {minor }}=50.2 \mathrm{~min}$.

Adduct 3c was obtained following the general method using 5 equiv of aldehyde $\mathbf{2 c}$ and $20 \mathrm{~mol} \%$ of p-nitrobenzoic acid. Yield: 65%.
Colourless oil. $[\alpha]^{25}{ }_{D}-10.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.49$ (s, 1H), 7.75 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70-7.55$ (m, 5H), 7.41 (d, J = 8.5 Hz , 2H), 3.62 (ddd, $J=4.8,12.4,14.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45 (ddd, $J=4.4,12.3$, $14.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.62 (ddd, $J=4.4,12.3,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (ddd, $J=4.8,12.4,13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.64 (s, 3H). ${ }^{13}$ C NMR (75 MHz): $\delta 198.7$ (CHO), 153.1 (C), 142.6 (C), 133.2 (2 CH), 132.8 (C), $131.6(\mathrm{CH}), 129.8(2 \mathrm{CH}), 127.9(2 \mathrm{CH}), 124.9(2 \mathrm{CH}), 117.9$ (C), 112.6 (CN), 53.3 (C), $51.9\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CH}_{3}\right)$. MS (ESI): $396\left(\mathrm{M}^{+}+1,28\right), 280(64), 149(100)$. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$ (M ${ }^{+}+1$): 396.1124; found: 396.1118. IR (film): 3021, 2233 (CN), 1728 (CHO), 1216, $1155 \mathrm{~cm}^{-1}$.
Racemic aldehyde was obtained using Method B
The enantiomeric excess was determined in the corresponding acetal by HPLC using a Chiralpak IA column [hexane $/ \mathrm{PrOH}=90: 10$]; flow rate $1.0 \mathrm{ml} / \mathrm{min}$. $\boldsymbol{e e}=\mathbf{8 6 \%}, \tau$ major $=57.1$ $\mathrm{min} ; \tau_{\text {minor }}=48.3 \mathrm{~min}$.

(R)-2-methyl-4-(1-phenyl-1H-tetrazol-5-ylsulfonyl)-2-p-tolylbutanal (3d)

Adduct 3d was obtained following the general method using 5 equiv of aldehyde 2d and $20 \mathrm{~mol} \%$ of p-nitrobenzoic acid. Yield: 60\%.
Colourless oil. $[\alpha]^{30}-30.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR (300 MHz): δ $9.44(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.59 (ddd, $J=4.5,12.6,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42$ (ddd, $J=4.4$, $12.3,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ (ddd, $J=4.3,12.6,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{ddd}, J=4.5$, $12.5,13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.57 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 200.0$ (CHO), 153.4 (C), 138.3 (C), 133.8 (C), 133.1 (C), 131.5 (CH), $130.3(2 \mathrm{CH}), 129.7(2 \mathrm{CH}), 126.9(2 \mathrm{CH}), 125.1(2 \mathrm{CH})$, $52.6(\mathrm{C}), 52.3\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right)$. MS (ESI): $385\left(\mathrm{M}^{+}+1,53\right), 157$ (55), 149 (100). HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+1\right)$: 385.1328; found: 385.1314. IR (film): 2921, 2714, 2360, 1773 (CHO) cm^{-1}.

Racemic aldehyde was obtained using Method B.
The enantiomeric excess was determined by HPLC using a Chiralpak IC column [hexane/iPrOH $=90: 10$]; flow rate $1.0 \mathrm{ml} / \mathrm{min}$. $\boldsymbol{e e}=\mathbf{9 3 \%}, \tau_{\text {major }}=34.5 \mathrm{~min} ; \tau_{\text {minor }}=40.6 \mathrm{~min}$.

Peak \ddagger	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \cdot \mathrm{~s}]} \end{gathered}$	Height [mAV]	$\begin{gathered} \text { Area } \\ 1 \end{gathered}$
1	34.070	m	1.1046	4.45623e4	672.34747	68.8400
2	39.538	M	1.2820	2.01708 e 4	262.23016	31.1600

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & {[\text { min }]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	34.547		1.1266	2.56033 e4	378.78482	96.6394
2	40.636	MM	1.0819	890.33734	13.71532	3.3

(R)-2-methyl-2-(naphthalen-2-yl)-4-(1-phenyl-1H-tetrazol-5-ylsulfonyl) butanal (3e)

Adduct 3 e was obtained following the general method using 5 equiv of aldehyde $\mathbf{2 e}$ and $20 \mathrm{~mol} \%$ of p-nitrobenzoic acid. Yield: 83%.
Colourless oil. $[\alpha]^{30}{ }_{D}-1.7^{\circ}\left(c=0.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.55$ (s, $1 \mathrm{H}), 7.94-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.52(\mathrm{~m}, 7 \mathrm{H}), 7.32$ (dd, $J=2.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62 (ddd, $J=4.4,12.6,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$ (ddd, $J=4.4,12.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (ddd, $J=4.4,12.7,13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (ddd, $J=4.4$, $12.6,13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 200.1$ (CHO), 153.3 (C), 134.3 (C), 133.4 (C), 132.9 (C), 132.8 (C), 131.5 (CH), 129.7 (2 CH), 129.6 (CH), 128.1 (CH), 127.8 (CH), 126.9 (CH), 126.8 (CH), $126.5(\mathrm{CH}), 125.1(2 \mathrm{CH}), 124.1(\mathrm{CH}), 53.1(\mathrm{C}), 52.3\left(\mathrm{CH}_{2}\right)$, $28.7\left(\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CH}_{3}\right)$. MS (ESI): 421 ($\mathrm{M}^{+}+1,78$), 149 (100), 119 (16). HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+1\right)$: 421.1328 ; found: 421.1310. IR (film): 2921, 1724 (CHO), 1345, $1215 \mathrm{~cm}^{-1}$.
Racemic aldehyde was obtained using Method A.
The enantiomeric excess was determined by HPLC using a Chiralpak IA column [hexane/iPrOH $=90: 10$]; flow rate $1.0 \mathrm{ml} / \mathrm{min}$. ee $=89 \%, \tau_{\text {major }}=32.4 \mathrm{~min} ; \tau_{\text {minor }}=38.1 \mathrm{~min}$.

(R)-2-(2-fluorophenyl)-2-methyl-4-(1-phenyl-1H-tetrazol-5-ylsulfonyl) butanal (3f)

(R)-2-(2-fluorophenyl)-2-methyl-4-(1-phenyl-1H-tetrazol-5-ylsulfonyl)butanal

Adduct 3 f was obtained following the general method using 5 equiv of aldehyde $\mathbf{2 f}$ and $20 \mathrm{~mol} \%$ of p nitrobenzoic acid. Yield bsmr: 30\%.
Colourless oil. Data obtained from a mixture which contained a 25% of sulfone 1. ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.43-7.34(\mathrm{~m}$, $1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.19-7-10(\mathrm{~m}, 1 \mathrm{H}), 3.62$ (ddd, $J=4.5,12.6,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ (ddd, $J=4.7,12.4,14.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (ddd, $J=4.6,12.4,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (ddd, $J=4.8,12.3$, $13.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 199.4$ (d, J = $2.4 \mathrm{~Hz}, \mathrm{CHO}$), 160.75 (d, J = $246.8 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 153.2(\mathrm{C}), 134.9(\mathrm{~d}, \mathrm{~J}=59.3 \mathrm{~Hz}, \mathrm{CH}), 132.9(\mathrm{C}), 131.5(\mathrm{CH}), 130.6(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, \mathrm{CH}), 129.7(2 \mathrm{CH}), 128.4(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, \mathrm{CH}), 125.3(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, \mathrm{C}), 125.1(2 \mathrm{CH})$, $52.3\left(\mathrm{CH}_{2}\right), 51.1(\mathrm{C}), 27.6\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{3}\right)$.
Racemic aldehyde was obtained using Method B.
The enantiomeric excess was determined by HPLC using a Chiralpak IA column [hexane $/ \mathrm{iPrOH}=90: 10$]; flow rate $1.0 \mathrm{ml} / \mathrm{min}$. $\boldsymbol{e} \boldsymbol{e}=\mathbf{9 2 \%}, \tau_{\text {major }}=28.1 \mathrm{~min} ; \tau_{\text {minor }}=25.7 \mathrm{~min}$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% 8 \end{gathered}$
1	24.962		0.7627	9185	419.25598	1.
2	26.986		0.7702	. 17372	903	8.5

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{8} \end{gathered}$
1	25.789	MM	0.7351	2076.18115	47.07070	3.868

(S)-2-methyl-4-(1-phenyl-1H-tetrazol-5-ylsulfonyl)-2-(thiophen-2-yl) butanal (3g).

(S)-2-methyl-4-(1-phenyl-1 H-tetrazol-5-ylsulfonyl)-2-(thiophen-2-yl)butanal

Adduct 3 g was obtained following the general method using 5 equiv of aldehyde $\mathbf{2 g}$ and $20 \mathrm{~mol} \%$ of p nitrobenzoic acid. Yield: 68\%.
Colourless oil. $[\alpha]^{30}-7.3^{\circ}(c=0.5$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.36(\mathrm{dd}, \mathrm{J}=1.1,5.1 \mathrm{~Hz}$, 1 H), 7.07 (dd, $J=3.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.95(\mathrm{dd}, J=1.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.63$ (ddd, $J=4.5,12.1,13.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 (ddd, $J=5.1,12.1,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): ס 197.6 (CHO), 153.2 (C), 141.3 (C), 132.9 (C), 131.6 (CH), 129.8 (2 CH), $128.0(\mathrm{CH}), 126.5(\mathrm{CH}), 126.2(\mathrm{CH}), 125.1(2 \mathrm{CH}), 52.2\left(\mathrm{CH}_{2}\right), 51.3(\mathrm{C}), 29.2\left(\mathrm{CH}_{2}\right), 20.2$ $\left(\mathrm{CH}_{3}\right)$. MS (ESI): 377 ($\mathrm{M}^{+}+1,30$), 149 (100). HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2}$ $\left(\mathrm{M}^{+}+1\right)$: 377.0736 ; found: 377.0735 . IR (film): 2922, 2851, 1725 (CHO), $1342 \mathrm{~cm}^{-1}$.
Racemic aldehyde was obtained using Method B.
The enantiomeric excess was determined by HPLC using a Chiralpak IC column [hexane/iPrOH $=90: 10$]; flow rate $1.0 \mathrm{ml} / \mathrm{min}$. $\boldsymbol{e e}=\mathbf{5 8 \%}, \tau_{\text {major }}=35.4 \mathrm{~min} ; \tau_{\text {minor }}=41.5 \mathrm{~min}$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	34.784	MM	0.9987	4761.23242	79.45654	58.6052
2	40.776	MM	1.1806	3363.01880	47.47803	41.3948

(S)-2-Methyl-2-isopropyl-4-(1-phenyl-1H-tetrazol-5-ylsulfonyl) butanal (3h)

Adduct 3 h was obtained following the general method using 10 equiv of aldehyde $\mathbf{2 h}$ and $50 \mathrm{~mol} \%$ of p-nitrobenzoic acid. Yield: 48%.
Colourless oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.55(\mathrm{~m}, 5 \mathrm{H})$, 3.71-3.51 (m, 2H), 2.23-1.98 (m, 2H), 1.55-1.47 (m, 2H), 1.40-1.06 (m, 5 H), 0.93 (t, J = 7.2 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 204.1$ (CHO), 153.2 (C), 133.0 (C), $131.5(\mathrm{CH}), 129.7(2 \mathrm{CH}), 125.1(2 \mathrm{CH}), 52.0\left(\mathrm{CH}_{2}\right), 48.2(\mathrm{C}), 37.3\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 18.8$ $\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{2}\right), 14.5\left(\mathrm{CH}_{3}\right)$.
Racemic aldehyde was obtained using Method A.
The enantiomeric excess was determined by HPLC using a Chiralpak IC column [hexane/iPrOH $=90: 10$]; flow rate $1.0 \mathrm{ml} / \mathrm{min}$. $\boldsymbol{e e}=\mathbf{4 0 \%}, \tau_{\text {major }}=30.8 \mathrm{~min} ; \tau_{\text {minor }}=39.3 \mathrm{~min}$.

(S)-2-Methyl-2-isopropyl-4-(1-phenyl-1H-tetrazol-5-ylsulfonyl) butanal (3i).

Adduct 3i was obtained following the general method using 10 equiv of aldehyde $\mathbf{2 i}$ and $50 \mathrm{~mol} \%$ of p-nitrobenzoic acid. Yield: 46%
Colourless oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.54(\mathrm{~m}, 5 \mathrm{H}), 5.08-$ $4.95(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.27-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.48(\mathrm{~m}, 8 \mathrm{H}), 1.17$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz): ठ 203.8 (CHO), 153.2 (C), 133.2 (C), 133.0 (C), $131.5(\mathrm{CH}), 129.7(2 \mathrm{CH}), 125.0(2 \mathrm{CH}), 122.7(\mathrm{CH}) 51.9\left(\mathrm{CH}_{2}\right), 48.1(\mathrm{C}), 35.6\left(\mathrm{CH}_{2}\right), 26.3$ $\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 18.7\left(\mathrm{CH}_{3}\right)$, $17.7\left(\mathrm{CH}_{3}\right)$. MS (ESI): m/z: $377\left(\mathrm{M}^{+}+1,44\right), 359$ (100), 149 (55), 147 (38), 121 (19). HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+1\right)$: 377.1641; found: 377.1629 .

Racemic aldehyde was obtained using Method A
The enantiomeric excess was determined by HPLC using a Chiralpak IC column [hexane/iPrOH $=90: 10$]; flow rate $1.0 \mathrm{ml} / \mathrm{min}$. $\boldsymbol{e e}=\mathbf{4 2 \%}, \tau_{\text {major }}=24.4 \mathrm{~min} ; \tau_{\text {minor }}=27.5 \mathrm{~min}$.

(R)-2-benzyl-2-methyl-4-(1-phenyl-1H-tetrazol-5-ylsulfonyl) butanal (3j)

Adduct $\mathbf{3 j}$ was obtained following the general method using 5 equiv of aldehyde $\mathbf{2 j}$ and $20 \mathrm{~mol} \%$ of p-nitrobenzoic acid. Yield: 62%.
Colourless oil. $[\alpha]^{30}{ }_{\mathrm{D}}-1.2^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.58$ (s, 1H), 7.70-7.55 (m, 5H), 7.33-7.23 (m, 3H), 7.11-7.04 (m, 2H), 3.763.63 (m, 2H), 2.95-2.79 (m, 2H), 2.30-2.15 (m, 1H), 2.11-1.96 (m, 1H), 1.17 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 203.9$ (CHO), 153.3 (C), 135.0 (C), 132.9 (C), 131.5 (CH), 130.1 (2 CH), $129.7(2 \mathrm{CH}), 128.6(2 \mathrm{CH}), 127.2(\mathrm{CH}), 125.1(2 \mathrm{CH}), 52.0\left(\mathrm{CH}_{2}\right), 49.2(\mathrm{C}), 42.4\left(\mathrm{CH}_{2}\right)$, $26.8\left(\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CH}_{3}\right)$. MS (ESI): $385\left(\mathrm{M}^{+}+1,80\right)$, 149 (100). HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+1\right)$: 385.1328 ; found: 385.1321. IR (film): 2928, 1739 (CHO), 1345, 1149 cm^{-1}.
Racemic aldehyde was obtained using Method A.
The enantiomeric excess was determined by HPLC using a Chiralpak IC column [hexane/iPrOH $=90: 10$]; flow rate $1.0 \mathrm{ml} / \mathrm{min}$. $\boldsymbol{e e}=\mathbf{7 1} \% \tau_{\text {major }}=47.4 \mathrm{~min} ; \tau_{\text {minor }}=36.6 \mathrm{~min}$.

(R)-2-ethyl-2-phenyl-4-(1-phenyl-1H-tetrazol-5-yIsulfonyl)butanal (3k)

Adduct $3 \mathbf{k}$ was obtained in 50% yield (ca. 70% purity) following the general method using 10 equiv aldehyde $\mathbf{2 k}$ and $50 \mathrm{~mol} \%$ of p nitrobenzoic acid. Colourless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}): \delta 9.44(\mathrm{~s}, 1 \mathrm{H})$ 7.62-7.44 (m, 5H), 7.41-7.10 (m, 5 H), 3.41 (ddd, $J=4.4,12.5$ and $14.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (ddd, $J=4.412 .5$ and $14.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50 (ddd, $J=4.6,12.5$ and $13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (ddd, $J=4.6,12.5$ and $13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20$1.90(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (75 MHz): $\delta 200.9$ (CHO), 153.1 (C), 136.8 (C), 132.9 (C), 131.5 (CH), 129.7 (2 $\mathrm{CH}), 129.5(2 \mathrm{CH}), 128.3(\mathrm{CH}), 127.2(2 \mathrm{CH}), 125.1(2 \mathrm{CH}), 56.6(\mathrm{C}), 52.0\left(\mathrm{CH}_{2}\right), 25.0$ $\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 8.4\left(\mathrm{CH}_{3}\right)$.

Racemic aldehyde was obtained using Method A.
Both enantiomers from the racemic sample could be separated by HPLC using a Chiralpak IC column [hexane $/ \mathrm{iPrOH}=90: 10$]; flow rate $1.0 \mathrm{ml} / \mathrm{min} . \tau_{1}=27.5 \mathrm{~min} ; \tau_{2}=31.0 \mathrm{~min}$.
The enantiomeric excess of the Michael adduct obtained using catalyst VII could not be determined accurately due to presence of impurities (see ${ }^{1} \mathrm{H}$ NMR, page 33) which could not be removed after several attemps. ee $=\mathbf{7 5 - 8 0 \%}$ (Estimated ee according to the chromatogram).

8.- General procedure for the Julia-Kocienski olefination

Method A

3a

Sulfone 3a ($37 \mathrm{mg}, 0.1 \mathrm{mmol}$) was placed in a 10 ml flask equipped with a magnetic stirring bar. Dry DME (1 ml) and the corresponding aldehyde 4A-F (1.2 equiv, 0.12 mmol) were added subsequently under argon atmosphere. After stirring the mixture at $-78{ }^{\circ} \mathrm{C}$ for 5 min, NaHMDS 1M in THF (1.2 equiv, $0.12 \mathrm{ml}, 0.12 \mathrm{mmol}$) was added and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min whereupon it was allowed to reach to room temperature removing the cooling bath. After 5 minutes, the reaction was quenched with a sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 ml) and extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{ml})$. The combined organic layers were washed with water (10 ml) and brine (10 ml), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude was purified by flash column chromatography (hexane/EtOAc = 30:1) to afford the corresponding aldehyde.

Method B

Aldehyde 3a ($185 \mathrm{mg}, 0.5 \mathrm{mmol}$) was placed in a 25 ml flask equipped with a magnetic stirring bar, a Dean-Stark apparatus and a reflux condenser. Benzene (5 ml), p-toluene sulfonic acid ($9.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) and 1,2-ethanodiol ($0.14 \mathrm{ml}, 2.5 \mathrm{mmol}$) were sequentially added. The reaction mixture was heated under reflux overnight. After cooling to room temperature, the reaction was quenched with a sat. aq. NaHCO_{3} solution (10 ml), extracted with EtOAc ($3 \times 10 \mathrm{ml}$). The combined organic layers were washed with water (10 ml) and brine (10 ml), dried over MgSO_{4}, filtered and concentrated under vacuum to afford the corresponding acetal as colourless oil used in the next step without purification.

The crude acetal ($41 \mathrm{mg}, 0.1 \mathrm{mmol}$) was placed in a 10 ml flask equipped with a magnetic stirring bar. Dry DME (1 ml) and the corresponding aldehyde 4A-F were subsequently added under argon atmosphere. After stirring the mixture at $-78^{\circ} \mathrm{C}$ for 5 min , KHMDS 0.5 M in toluene (1.25 equiv, $0.25 \mathrm{ml}, 0.125 \mathrm{mmol}$) was added and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min whereupon it was allowed to reach to room temperature by removing the bath until the colour of the solution disappeared. Then the reaction was quenched with a sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 ml) and extracted with EtOAc (3 $x 10 \mathrm{ml})$. The combined organic layers were washed with water (10 ml) and brine (10 ml), dried over MgSO_{4}, filtered and concentrated under vacuum.

The corresponding resulting acetal was dissolved in a mixture of THF (1.5 ml) and HCl $4 \mathrm{M}(1.5 \mathrm{ml})$ and stirred at $50^{\circ} \mathrm{C}$ overnight, whereupon the reaction was quenched with a sat. aq. NaHCO_{3} solution (10 ml) and extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{ml})$. The combined organic layers were washed with water (10 ml) and brine (10 ml), dried over MgSO_{4}, filtered and concentrated under vacuum. The crude was purified by flash column chromatography (hexane/EtOAc = 30:1) to afford the corresponding aldehyde 5aA-5aF.

9.- Data of the allylated aldehydes 5aA-5aF

-Data of (R)-5-(3-(1,3-dioxolan-2-yl)-3-Phenylbutylsulfonyl)-1-phenyl-1H-tetrazole.

This compound was prepared as specified in the first part of the general method B.
${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 7.75-7.22(\mathrm{~m}, 10 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{bs}, 4 \mathrm{H})$, 3.64 (ddd, $J=4.4,12.6,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (ddd, $J=4.4,12.5,14.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.68 (ddd, $J=4.5,12.5,13.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34 (ddd, $J=4.4,12.6,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.47$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 153.2$ (C), 140.8 (C), 132.9 (C), 131.3 (CH), 129.6 (2 CH), $128.5(2 \mathrm{CH}), 127.1(2 \mathrm{CH}), 127.0(\mathrm{CH}), 125.0(2 \mathrm{CH}), 108.6(\mathrm{CH}), 65.3\left(\mathrm{CH}_{2}\right), 65.2\left(\mathrm{CH}_{2}\right)$, $52.5\left(\mathrm{CH}_{2}\right), 44.7(\mathrm{C}), 28.2\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{3}\right)$.

(R,E)-2-Methyl-2,5-diphenylpent-4-enal (5aA)

Aldehyde 5aA was obtained using Julia-Kocienski olefination following general methods A and B. Method A. Yield: 48\%. $\mathrm{E} / \mathrm{Z}=10: 1$
Method B. Yield: 72\%. E/Z > 10/1
Colorless oil. $[\alpha]^{30}{ }_{D}-88.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. Data of the mayor stereomer: ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.17(\mathrm{~m}, 10 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dt}, J=7.4$ and $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 201.9(\mathrm{CHO}), 139.5$ (C), 137.2 (C), 133.6 (CH), $128.9(2 \mathrm{CH}), 128.4(2 \mathrm{CH}), 127.4(\mathrm{CH}), 127.2(\mathrm{CH}), 127.1(2$ $\mathrm{CH}), 126.1(2 \mathrm{CH}), 124.9(\mathrm{CH}), 54.1(\mathrm{C}), 39.9\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{Gc} / \mathrm{El}): 250\left(\mathrm{M}^{+}, 0.1\right)$, 117 (100), 115 (69), 91 (25). HRMS (EI): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}$ (M^{+}): 250.1358; found: 250.1348. IR (film): 3027, 2929, 1724 (CHO), 1495, $1446 \mathrm{~cm}^{-1}$.

(R,E)-2-Methyl-5-(4-nitrophenyl)-2-phenylpent-4-enal (5aB)

Aldehyde 5aB was obtained using Julia-Kocienski olefination following the general method B. Yield: 77%. $\mathrm{E} / \mathrm{Z}=9 / 1$.
Yellow oil. $[\alpha]^{25}{ }_{\mathrm{D}}-77.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. Data of the mayor stereomer. ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.18(\mathrm{~m}, 7 \mathrm{H})$, 6.46 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dt}, J=7.5$ and $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.78(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}$, 3H). ${ }^{13}$ C NMR (75 MHz): $\delta 201.4$ (CHO), 146.7 (C), 143.5 (C), 138.9 (C), 131.6 (CH), 130.6 $(\mathrm{CH}), 129.0(2 \mathrm{CH}), 127.7(\mathrm{CH}), 127.1(2 \mathrm{CH}), 126.6(2 \mathrm{CH}), 123.9(2 \mathrm{CH}), 54.1(\mathrm{C}), 40.1$ $\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{3}\right)$.

(R,E)-5-(4-methoxyphenyl)-2-Methyl-2-phenylpent-4-enal (5aC)

Aldehyde 5aC was obtained using Julia-Kocienski olefination following the general method B. Yield: 60%. E/Z > 10/1.
Orange oil. $[\alpha]^{25}{ }_{\mathrm{D}}-39.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. Data of the mayor stereomer. ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.0(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dt}, J=7.5$ and 15.6 Hz , $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 202.1$ (CHO), 158.9 (C), 139.6 (C), $133.0(\mathrm{CH}), 130.1$ (C), 128.9 (2 CH), 127.3 (CH), 127.2 (2 CH), 127.1 (2 CH), $122.6(\mathrm{CH}), 113.9(2 \mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 54.2(\mathrm{C}), 39.9\left(\mathrm{CH}_{2}\right), 19.0\left(\mathrm{CH}_{3}\right)$.

(R,E)-2-Methyl-2-phenylhept-4-enal (5aD)

Aldehyde 5aD was obtained using Julia-Kocienski olefination following general methods A and B. Method A. Yield: 15\%. $\mathrm{E} / \mathrm{Z}=2: 1$
Method B. Yield: 45%. $\mathrm{E} / \mathrm{Z}=8 / 1$
Yellowish oil. $[\alpha]^{25}{ }_{\mathrm{D}}-22.0^{\circ}\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right)$. Data of the mayor stereomer. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}): \delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.57-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.10(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 2 \mathrm{H})$, 2.03-1.90 (m, 2H), 1.41 (s, 3H), 0.91 (t, J=7.5 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 202.4$ (CHO), 140.0 (C), 136.6 (CH), 134.7 (CH), $128.8(2 \mathrm{CH}), 127.2(2 \mathrm{CH}), 123.2(\mathrm{CH}), 54.0(\mathrm{C}), 39.3$ $\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{3}\right), 13.9\left(\mathrm{CH}_{3}\right)$.
MS (Gc/El): 202 (${ }^{+}, 0.9$), 134 (100), 105 (91), 91 (49). HRMS (EI): calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ (M^{+}): 202.1358; found: 202.1351. IR (film): 2926, 1724 (CHO), 1216, $899 \mathrm{~cm}^{-1}$.

(R,E)-2,7-Dimethyl-2-phenyloct-4-enal (5aE)

Aldehyde 5aE was obtained using Julia-Kocienski olefination following the general method B. Yield: 48%. $\mathrm{E} / \mathrm{Z}=7 / 1$
Colourless oil. $[\alpha]^{25}{ }_{\mathrm{D}}-14.7^{\circ}\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)$. Data of the mayor stereomer. ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.53-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.26-$ $5.09(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.81$ (dd, J=4.1 and $6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 202.3$ (CHO), 139.9 (C), 133.7 (CH), 128.8 (2 CH), $127.1(3 \mathrm{CH}), 125.2(\mathrm{CH}), 53.9(\mathrm{C}), 41.9\left(\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right), 28.3(\mathrm{CH}), 22.1\left(2 \mathrm{CH}_{3}\right), 19.0$ $\left(\mathrm{CH}_{3}\right)$. MS (EI): $230\left(\mathrm{M}^{+}, 0.2\right), 134(100), 105(38)$. HRMS (EI): calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 230.1671; found: 230.1680. IR (film): 2925.74, 1723.94 (CHO), $1358.03,999.58 \mathrm{~cm}^{-1}$.

(R)-2-Methyl-2-phenyIpent-4-enal (5aF)

Aldehyde 5aF was obtained using Julia-Kocienski olefination following the general method B adding 30 equiv of formaldehyde. Yield: 30\%
$[\alpha]^{25} \mathrm{D}-54.2^{\circ}(c=1.0, \mathrm{MeOH})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}): \delta 9.52$ (s, 1H), 7.42-7.34 (m, 2H), 7.32-7.22 (m, 3H), 5.61-5.47 (m, 2H), 5.08-5.01 (m, 1H), 2.73-2.59 (m, 2H), 1.44 (s, 3H).

10.- Assignation of the absolute stereochemistry

Configuration of compounds 5 aA and $\mathbf{5 a F}$ was assigned by comparison with the literature data and the configurations of the rest of compounds were assigned by analogy.

(R)-2-Methyl-2-phenylpent-4-enal (5aF)

$[\alpha]^{25} \mathrm{D}-54.2^{\circ}(c=1.0, \mathrm{MeOH}) .\left[\mathrm{Lit.}^{5}-38^{\circ}(\mathrm{MeOH})\right.$ for the (R) enantiomer];
 $\left[\right.$ Lit. ${ }^{6}+84.8^{\circ}(c=1.08, \mathrm{MeOH})$ for the (S) enantiomer]. Comparing to the $[\alpha]^{25}{ }_{D}$ values reported in the literature, the configuration of 5 aF was assigned as (R).

(R,E)-2-Methyl-2,5-diphenylpent-4-enal (5aA)

The enantiomeric excess of compound 5aA was determined and
 checked to remain the same after the whole process without erosion of the ee value by comparison with the HPLC data reported by List ${ }^{6}$ for the corresponding alcohol of known configuration after reduction with NaBH_{4} in EtOH at $0{ }^{\circ} \mathrm{C}$. (Chiralpak AS-H column [95:5 n -heptane/i-PrOH, $0.5 \mathrm{ml} / \mathrm{min}$]. Major enantiomer: $\mathrm{t}_{\mathrm{R}}=15.94 \mathrm{~min}$, minor enantiomer: $\mathrm{t}_{\mathrm{R}}=17.36 \mathrm{~min}$).

The (R) configuration deduced from the chromatogram is in agreement with the configuration deduced for the compound $\mathbf{5 a F}$ from the value of the optical rotatory power.

[^3]
11.- NMR Spectra of the Products

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10		

- Literature ${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{5 a F}$:

[^0]: 1. a) S. Hoffmann, M. Nicoletti, B. List, J. Am. Chem. Soc., 2006, 128, 13074.
[^1]: 2. S. H. McCooey, S. J. Connon, Org. Lett., 2007, 9, 599.
 3. B. Vakulya, S.Varga, A. Csámpai, T. Soós, Org. Lett., 2005, 7, 1967.
[^2]: 4. It is important to note that, as the catalysts used are not enantiomers but pseudoenantiomers, adducts $\mathbf{3}$ are not obtained as racemates.
[^3]: 5. K. Hiroi, J. Abe, K. Suya, S. Sato, Tetrahedron Lett., 1989, 30, 1543.
 6. S. Mukherjee, B. List, J. Am. Chem. Soc., 2007, 129, 11336.
