Electronic Supplementary Information

Total synthesis of antimalarial diterpenoid (+)-kalihinol A

Hiroaki Miyaoka*, Yasunori Abe, Nobuaki Sekiya, Hidemichi Mitome and Etsuko Kawashima

School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan Fax: +81 42 676 3073; Tel: +81 42 676 3080; E-mail: <u>miyaokah@toyaku.ac.jp</u>

Contents

Experimental Section	2-14
X-Ray Crystal data	15-16
NMR spectra	17-48

Experimental Section

General

Optical rotations were measured using a Jasco P-1030 polarimeter. Melting points (mp) were measured using a Yazawa melting point apparatus BY-2 and are uncorrected. IR spectra were recorded using a Jasco FT-IR/620 spectrometer. UV spectra were recorded using a Jasco V-550 spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Bruker DRX-400 or Bruker Biospin AV-600 spectrometer. Chemical shifts are given on the δ (ppm) scale using tetramethylsilane (TMS) as the internal standard (s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; br, broad). High resolution ESIMS (HRESIMS) spectra were obtained using a Micromass LCT spectrometer. Elemental analysis data were obtained using an Elemental Vavio EL. Flash column chromatography was performed using Kanto Chemical Silica Gel 60N (spherical, neutral) 40-50 µm.

(2R,3R,6R)-6-(*tert*-Butyldiphenylsilanyloxy)-2,3-epoxy-3,7-dimethyloct-7-en-1-ol (3). To a solution of diol 2 (6.20 g, 36.5 mmol) in CH₂ClCH₂Cl (95 mL) were added Et₃N (7.63 mL, 54.8 mmol), DMAP (450 mg, 3.65 mmol) and TBSCl (6.05 g, 40.1 mmol) at r.t. After stirring for 1 hr at an ambient temperature, the mixture was diluted with Et₂O, washed with H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue which was then filtered through silica gel pad using hexane/AcOEt = 6:1 as a eluent. The filtrate was concentrated to give crude TBS ether. The crude TBS ether was used next reaction without further purification.

To a solution of the above crude TBS ether in DMF (37 mL) were added imidazole (4.07 g, 73.0 mmol) and TBDPSCl (14.3 g, 54.8 mmol) at r.t. After stirring for 5 hr at an ambient temperature, the mixture was diluted with Et_2O , washed with H_2O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue which was then filtered through silica gel pad using hexane/AcOEt = 13:1 as a eluent. The filtrate was concentrated to give crude TBDPS ether. The crude TBDPS ether was used next reaction without further purification.

To a solution of the above crude TBDPS ether in MeOH (360 mL) was added PPTS (3.60 g, 14.3 mmol) at r.t. After stirring for 9 hr at an ambient temperature, the mixture was concentrated under reduced pressure to give a residue which was then purified by silica gel column chromatography (hexane/AcOEt = 7 : 2) to generate allylic alcohol (12.4 g, 83% yield, three steps) as a colorless oil. $[\alpha]_D^{28}$ -23.5 (*c* 0.89, CHCl₃); IR (neat) 3333, 2931 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.70-7.63 (4H, m), 7.37 (6H, m), 5.23 (1H, dt, *J* = 6.9, 1.2 Hz), 4.77 (1H, d, *J* = 1.5 Hz), 4.75 (1H, d, *J* = 0.7 Hz), 4.09 (1H, t, *J* = 6.1 Hz), 4.05 (2H, d, *J* = 6.9 Hz), 1.78 (2H, m), 1.70 (3H, s), 1.56 (2H, m), 1.50 (3H, s), 1.07 (9H, s); ¹³C-NMR (75 MHz, CDCl₃) δ : 145.7, 139.5, 135.7, 135.7, 134.4, 133.7, 129.3, 129.3, 127.3, 127.2, 122.8, 111.7, 76.9, 59.4, 34.7, 33.4, 27.2, 19.6, 17.4, 16.4; EIMS *m/z*: 351 (M⁺-^tBu, 9), 135 (100); HREIMS *m/z*: 351.1798 (Calcd for C₂₂H₂₇O₂Si: M⁺-^tBu, 351.1780).

To a cold (-20 °C) suspension of 4A molecular sieves (12 g) in CH_2Cl_2 (53.0 mL) were added D-(-)-DET (230 mg, 1.10 mmol), Ti(OiPr)₄ (220 mg, 0.790 mmol) and TBHP (16.8 mL, 31.6 mmol,

2.52 M in CH₂Cl₂ solution). After stirring for 1 hr at the same temperature, a solution of the above allylic alcohol (6.45 g, 15.8 mol) in CH₂Cl₂ (10.0 mL) was added over 30 min. After stirring at -20 °C for 30 min, NaOH (5.0 mL, 30% in saturated aqueous NaCl) was added. The mixture was diluted with Et₂O, warmed to r.t. and stirred for 10 min. MgSO₄ (69 g) and celite (10 g) were then added and after stirring for 15 min, the mixture was filtered through a celite pad and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/AcOEt = 5 : 2) to give epoxyalcohol **3** (6.37 g, 95% yield) as a colorless oil. $[\alpha]_D^{29}$ -19.7 (*c* 0.97, CHCl₃); IR (neat) cm⁻¹: 3418, 2932; ¹H-NMR (400 MHz, CDCl₃) δ : 7.70-7.61 (4H, m), 7.38 (6H, m), 4.79 (1H, d, *J* = 0.6 Hz), 4.77 (1H, d, *J* =1.3 Hz), 4.11 (1H, t, *J* = 5.5 Hz), 3.75 (1H, dd, *J* = 12.0, 4.4 Hz), 3.61 (1H, dd, *J* = 12.0, 6.6 Hz), 2.79 (1H, dd, *J* = 6.6, 4.4 Hz), 1.66 (3H, s), 1.50 (2H, m), 1.31 (2H, m), 1.12 (3H, s), 1.07 (9H, s); ¹³C-NMR 100 MHz, CDCl₃) δ : 145.6, 135.9, 135.9, 134.5, 133.8, 129.6, 129.5, 127.5, 127.4, 111.9, 76.6, 62.6, 61.3, 61.1, 33.3, 30.3, 27.0, 19.3, 17.5, 17.2, 16.7.; EIMS *m/z*: 367 (M⁺ ^tBu, 2), 199 (100); HREIMS *m/z*: 367.1741 (Calcd for C₂₂H₂₇O₂Si: M⁺ ^tBu, 367.1729).

(2*S*,3*R*,6*R*)-2-{3-(Benzyloxy)propyl}-6-(*tert*-butyldiphenylsilyloxy)-3,7-dimethyloct-7-ene-1,3 -diol (5). Grignard reagent **4** (2.70 ml, 1.89 mmol, 0.7 M in THF) was added dropwise to CuI (7.2 mg, 37.7 µmol) at -78 °C under Ar atmosphere. After stirring for 30 min at the same temperature, a solution of epoxyalcohol **3** (160 mg, 377 µmol) in THF (3.07 mL) was added. The mixture was warmed to r.t. After stirring for 3 hr, the reaction mixture was diluted with Et₂O, washed with sat. NH₄Cl aqueous solution, H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 5 : 2) to generate diol **5** (240 mg, 94% yield) as a colorless oil. [α]_D²⁸-8.4 (*c* 0.91, CHCl₃); IR (neat) cm⁻¹: 3357, 2931; ¹H-NMR (400 MHz, CDCl₃) δ: 7.70-7.62 (4H, m), 7.43-7.25 (11H, m), 4.82 (1H, d, *J* = 0.6 Hz), 4.79 (1H, d, *J* = 1.3 Hz), 4.47 (2H, s), 4.13 (1H, t, *J* = 5.7 Hz), 3.68 (2H, m), 3.42 (2H, m), 1.68 (2H, m), 1.67 (3H, s), 1.48 (4H, m), 1.34-1.22 (2H, m), 1.07 (9H, s), 0.99 (3H, s); ¹³C-NMR (100 MHz, CDCl₃) δ: 145.9, 138.4, 136.0, 135.9, 134.6, 133.8, 129.6, 129.6, 128.4, 127.6, 127.5, 127.4, 111.8, 77.1, 76.4, 72.9, 70.3, 63.0, 46.6, 36.2, 28.6, 28.4, 27.0, 23.5, 23.3, 19.3, 17.6; ESIMS *m*/*z*: 575 (100); HRESIMS *m*/*z*: 575.3531 (Calcd for C₃₆H₅₀O₄Si: M⁺+H, 575.3557); *Anal.*: Calcd for C₃₆H₅₀O₄Si: C, 75.22; H, 8.77. Found: C, 74.92; H, 8.83.

(2*S*,3*R*,6*R*)-3-Acetoxy-2-(3-benzyloxypropyl)-6-chloro-3,7-dimethyl-7-octenyl acetate (6). To a solution of diol **5** (20.0 mg, 34.8 µmol) in pyridine (35 µL) was added Ac₂O (21.3 mg, 209 µmol) at r.t. After stirring for 3 hr at an ambient temperature, DMAP (0.4 mg, 3.5 µmol) was added and stirred at 60 °C for 24 hr. The reaction mixture was concentrated under reduced pressure to give a residue which was then purified by silica gel column chromatography (hexane/AcOEt = 4 : 1) to generate diacetate (18.8 mg, 82% yield) as a colorless oil. $[\alpha]_D^{22}$ -17.4 (*c* 0.81, CHCl₃); IR (neat) cm⁻¹: 2932, 1738; ¹H-NMR (400 MHz, CDCl₃) δ : 7.69-7.61 (4H, m), 7.42-7.26 (11H, m), 4.77 (2H, s), 4.47 (2H, s), 4.14 (1H, dd, *J* =11.6, 4.8Hz), 4.10 (1H, m), 4.00 (1H, dd, *J* = 11.7, 4.7Hz), 3.41 (2H, m), 2.40 (1H, m), 1.99 (3H, s), 1.87 (3H, s), 1.71 (2H, m), 1.67 (3H, s), 1.55-1.33 (4H, m), 1.30-1.20 (2H, m), 1.24 (3H, s), 1.07 (9H, s); ¹³C-NMR (100 MHz, CDCl₃) δ : 170.9, 170.0, 145.8, 138.6, 135.9, 134.6, 134.0, 129.6, 128.3, 127.6, 127.4, 111.9, 85.9, 72.8, 70.2, 64.0, 43.7, 31.1, 28.7, 28.1, 27.0, 23.9, 22.2, 21.4, 21.0, 19.3, 17.2; EIMS *m*/*z*: 599 (M⁺-OAc, 24), 541 (100); HREIMS *m*/*z*: 599.3548 (Calcd for C₃₈H₅₁O₄Si: M⁺-OAc, 599.3557).

TBAF (1.0 M in THF, 8.64 mL, 8.64 mmol) and AcOH (520 mg, 8.64 mmol) were added to the above diacetate (570 mg, 865 µmol). The mixture stirred at 60 °C for 48 hr. The reaction mixture was diluted with Et₂O, washed with sat. NaHCO₃ aqueous solution, H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 3 : 2) to generate alcohol (344 mg, 95% yield) as a colorless oil. $[\alpha]_D^{22}$ +1.5 (*c* 0.75, CHCl₃); IR (neat) cm⁻¹ : 3445, 2944, 1734; ¹H-NMR (400 MHz, CDCl₃) δ : 7.34-7.27 (5H, m), 4.92 (1H, t, *J* = 0.7 Hz), 4.84 (1H, t, *J* = 1.4 Hz), 4.49 (2H, s), 4.24 (1H, dd, *J* = 11.7, 4.8 Hz), 4.08 (1H, ,dd, *J* = 0.7 Hz), 4.01 (1H, br t, *J* = 1.70, 5.8 Hz), 3.47 (2H, t, *J* = 6.1 Hz), 2.46 (1H, m), 2.02 (3H, s), 1.98 (3H, s), 1.75 (2H, m), 1.70 (3H, s), 1.62-1.49 (4H, m), 1.38 (3H, s), 1.34 (2H, s); ¹³C-NMR (100 MHz, CDCl₃) δ : 171.0, 170.3, 147.0, 138.5, 128.3, 127.6, 127.5, 111.5, 86.0, 75.8, 72.8, 70.1, 64.0, 43.7, 31.9, 28.4, 28.1, 24.0, 22.3, 21.4, 21.0, 17.4; EIMS *m/z*: 361 (M⁺-OAc, 100); HREIMS *m/z*: 443.2399 (Calcd for C₂₄H₃₆O₆: M⁺+Na, 443.2410); *Anal.*: Calcd for C₂₄H₃₆O₆: C, 68.54 ; H, 8.63. Found: C, 68.52; H, 8.62.

To a cold (0 °C) solution of the above alcohol (44.6 g, 106 mmol) in CH₂Cl₂ (212 mL) were added hexachloroacetone (19.3 mL, 127 mmol) and Ph₃P (33.3 g, 127 mmol). After stirring for 5 min at the same temperature, the reaction mixture was concentrated under reduced pressure to give a residue which was then purified by silica gel column chromatography (hexane/AcOEt = 3 : 1) to generate allylic chloride **6** (41.9 g, 90% yield) as a colorless oil. $[\alpha]_D^{23}$ -1.3 (*c* 0.78, CHCl₃); IR (neat) cm⁻¹: 2951, 1732; ¹H-NMR (400 MHz, CDCl₃) δ : 7.35-7.27 (5H, m), 5.00 (1H, s), 4.89 (1H, q, *J* = 1.5 Hz), 4.49 (2H, s), 4.31 (1H, t, *J* =11.7, 4.4 Hz), 3.47 (2H, t, *J* = 6.1 Hz), 2.50 (1H, m), 2.03 (3H, s), 1.98 (3H, s), 1.97-1.74 (4H, m), 1.79 (3H, s), 1.56 (2H, m), 1.38 (3H, s), 1.35 (2H, m); ¹³C-NMR (100 MHz, CDCl₃) δ : 170.9, 170.2, 144.0, 138.5, 128.3, 127.6, 127.5, 114.5, 85.7, 72.8, 70.0, 66.9, 63.8, 43.7, 33.7, 30.6, 28.1, 24.1, 22.3, 21.4, 21.0, 16.9; EIMS *m/z*: 437 (M⁺-H, 10), 379 (M⁺-OAc, 100); HREIMS *m/z*: 378.2025 (Calcd for C₂₂H₃₁O₃Cl: M⁺-AcOH, 378.1962); *Anal*.: Calcd for C₃₆H₅₀O₄Si: C, 65.66 ; H, 8.04. Found: C, 65.60; H, 8.11.

(2S)-5-Benzyloxy-2-[(2R,5S)-(5-chloro-2,6,6-trimethyltetrahydropyran-2-yl)]-pentyl

pivalate (7). To a cold (-78 °C) solution of diacetate **6** (208 mg, 473 μ mol) in toluene (4.70 mL) was added DIBAH (1.05 mL, 945 μ mol, 0.9 M in hexane). After stirring for 10 min at the same temperature, the reaction mixture was diluted with Et₂O, warmed to r.t. and stirred for 3 hr. The mixture was dried over MgSO₄. Removal of the solvent gave crude diol, which was used the next reaction without further purification.

To a solution of the above crude diol in pyridine (500 μ L) was added PivCl (65.4 mg, 567 μ mol) at r.t. After stirring for 30 min at an ambient temperature, the reaction mixture was diluted with

Et₂O, washed with sat. NaHCO₃ aqueous solution, H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 4 : 1) to generate pivalate (161 mg, 78% yield, two steps) as a colorless oil. $[\alpha]_D^{22}$ +1.6 (*c* 1.27, CHCl₃); IR (neat) cm⁻¹: 3491, 2971, 1726; ¹H-NMR (400 MHz, CDCl₃) δ : 7.35-7.28 (5H, m), 5.00 (1H, s), 4.88 (1H, m), 4.49 (2H, s), 4.35 (1H, t, *J* = 7.2 Hz), 4.28 (1H, dd, *J* = 11.7, 5.0 Hz), 4.18 (1H, dd, *J* = 11.79, 3.9 Hz), 3.48 (2H, t, *J* = 6.1 Hz), 1.99-1.91 (3H, m), 1.80 (3H, s), 1.71-1.57 (4H, m), 1.47 (1H, m), 1.36 (1H, m), 1.19 (9H, s), 1.15 (3H, s); ¹³C-NMR (100 MHz, CDCl₃) δ : 178.4, 144.3, 138.4, 128.3, 127.6, 127.5, 114.2, 74.0, 72.9, 70.1, 67.3, 64.2, 47.0, 38.7, 37.7, 30.5, 28.2, 27.2, 24.3, 24.1, 17.1; EIMS *m*/*z*: 439 (M⁺-H, 0.1), 421 (M⁺-OH, 4), 125 (100); HREIMS *m*/*z*: 420.2424 (Calcd for C₂₅H₃₉O₄Cl: M⁺-H₂O, 420.2431).

To a solution of the above pivalate (14.9 g, 34.0 mmol) in CH_2Cl_2 (340 mL) was added IDCP (120 g, 255 mmol) at r.t. After stirring for 4 hr at an ambient temperature, the reaction mixture was diluted with Et_2O , washed with sat. $Na_2S_2O_3$ aqueous solution, H_2O and brine, and then dried over MgSO₄. Removal of the solvent gave crude iodoether, which was used the next reaction without further purification.

To a cold (-78 °C) solution of the above crude iodoether in THF (175 mL) were added Bu₃SnH (28.3 mL, 105 mmol) and Et₃B (7.61 mL, 52.6 mmol). After stirring for 1 hr at the same temperature, the reaction mixture was diluted with Et₂O, warmed to r.t. and added sat. KF aqueous solution (50 mL). After stirring for 30 min at the same temperature, the reaction mixture was washed with H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 10 : 1) to generate tetrahydropyran **7** (10.8 g, 72% yield, two steps) as a colorless oil. $[\alpha]_D^{22}$ -13.4 (*c* 0.71, CHCl₃); IR (neat) cm⁻¹: 2957, 1727; ¹H-NMR (400 MHz, CDCl₃) δ : 7.36-7.27 (5H, m), 4.49 (2H, s), 4.24 (1H, dd, *J* = 11.5, 4.1 Hz), 4.13 (1H, dd, *J* = 11.4, 4.4 Hz), 3.69 (1H, dd, *J* = 12.2, 4.3 Hz), 3.46 (2H, t, *J* = 6.2 Hz), 2.08 (1H, m), 1.98 (1H, m), 1.80-1.50 (5H, m), 1.35 (2H, m), 1.32 (3H, s), 1.25 (3H, s), 1.18 (3H, s); ¹³C-NMR (100 MHz, CDCl₃) δ : 178.6, 138.6, 128.3, 127.6, 127.5, 75.4, 75.1, 72.8, 70.4, 65.1, 63.7, 50.1, 38.7, 35.6, 30.5, 28.3, 27.2, 27.0, 23.5, 22.6, 22.4; EIMS *m*/*z*: 438 (M⁺, 12), 161 (100); HREIMS *m*/*z*: 438.2527 (Calcd for C₂₅H₃₉O₄Cl: M⁺, 438.2537); *Anal.*: Calcd for C₂₅H₃₉O₄Cl: C, 68.39 ; H, 8.95. Found: C, 68.56; H, 8.78.

(2*S*,5*RS*)-5-(*tert*-Butyldimethylsilanyloxy)-2-[(2*R*,5*S*)-(5-chloro-2,6,6-trimethyltetrahydropy ran-2-yl)]-5-hydroxy-6-heptenyl pivalate (8). A solution of benzyl ether 7 (3.80g, 8.66 mmol) in MeOH (28.9 mL) in the presence of 10% Pd/C (866 mg) was stirred at r.t. for 2.5 hr under a hydrogen atmosphere. The reaction mixture was diluted with AcOEt and filtered through silica gel pad and filtrate was concentrated under reduced pressured. The residue was purified by silica gel column chromatography (hexane : AcOEt = 2 : 1) to generate alcohol (3.00 g, 99% yield) as a colorless oil. $[\alpha]_D^{28}$ -16.9 (*c* 0.78, CHCl₃); IR (neat) cm⁻¹: 3434, 2957, 1726; ¹H-NMR (400 MHz, CDCl₃) δ : 4.24 (1H, dd, *J* = 11.5, 4.3 Hz), 4.11 (1H, dd, *J* = 11.5, 4.7 Hz), 3.70 (1H, dd, *J* = 12.2, 4.2 Hz), 3.64 (2H, t, *J* = 6.1 Hz), 2.08 (1H, m), 2.01 (1H, m), 1.74-1.51 (7H, m), 1.34 (3H, s), 1.27 (3H, s), 1.25 (3H, s), 1.19 (9H, s); ¹³C-NMR (100 MHz, CDCl₃) δ : 178.7, 75.6, 75.4, 65.0, 63.8, 63.0, 49.9, 38.8, 35.0, 31.2, 30.5, 27.2, 27.0, 23.2, 22.9, 22.6; EIMS *m*/*z*: 349 (M⁺+H, 15), 331 (M⁺-OH, 2), 161 (100); HREIMS *m*/*z*: 349.2147 (Calcd for C₁₈H₃₃O₄Cl: M⁺+H, 349.2146); *Anal*.: Calcd for C₁₈H₃₃O₄Cl: C, 61.96 ; H, 9.53. Found: C, 62.18; H, 9.59.

To a solution of the above alcohol 19.7 mg, 56.5 µmol) in CH₂Cl₂ (753 µL) were added NaHCO₃ (17.1 mg, 203 µmol) and Dess-Martin periodinane (28.8 mg, 67.8 µmol) at r.t. After stirring for 10 min at an ambient temperature, the reaction mixture was diluted with Et₂O and added sat. NaHCO₃ aqueous solution and sat. Na₂S₂O₃ aqueous solution. After stirring for 15 min at the same temperature, the reaction mixture was washed with H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 4 : 1) to generate aldehyde (19.2 mg, 98% yield) as a colorless oil. $[\alpha]_D^{27}$ -19.6 (*c* 0.89, CHCl₃); IR (neat) cm⁻¹: 2976, 1726; ¹H-NMR (400 MHz, CDCl₃) δ : 9.78 (1H, t, *J* = 1.2 Hz), 4.26 (1H, dd, *J* = 11.6, 3.8 Hz), 4.07 (1H, dd, *J* = 11.6, 4.4 Hz), 3.69 (1H, dd, *J* = 12.2, 4.2 Hz), 2.56 (2H, m), 2.15-1.97 (2H, m), 1.87 (1H, m), 1.69-1.54 (4H, m), 1.33 (3H, s), 1.25 (6H, s), 1.18 (9H, s); ¹³C-NMR (100 MHz, CDCl₃) δ : 202.0, 178.5, 75.6, 75.1, 64.8, 63.5, 49.4, 42.6, 38.8, 35.0, 30.4, 27.2, 27.0, 22.9, 22.6, 19.3; EIMS *m*/*z*: 347 (M⁺, 4), 331 (M⁺-Me, 1), 161 (100); HREIMS *m*/*z*: 331.1646 (Calcd for C₁₈H₃₁O₄Cl: M⁺-Me, 331.1676).

To a cold (0 °C) solution of the above aldehyde (184 mg, 530 µmol) in THF (5.30 mL) was added CH₂=CHMgBr (1.09 mL, 1.06 mmol, 0.97 M in THF). After stirring for 10 min at the same temperature, the reaction mixture was diluted with Et₂O, washed with sat. NH₄Cl aqueous solution, H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 2 : 1) to generate diastereomeric mixture of alcohol (198 mg, 99% yield) as a colorless oil. IR (neat) cm⁻¹: 3439, 2958, 1727; ¹H-NMR (400 MHz, CDCl₃) δ : 5.84 (1H, m), 5.21 (1H, d, *J* = 17.2 Hz), 5.10 (1H, d, *J* = 10.4 Hz), 4.23 (1H, m), 4.13 (1H, m), 4.10 (1H, m), 3.70 (1H, dd, *J* = 12.3, 4.2 Hz), 2.09 (1H, m), 1.98 (1H, m), 1.80-1.48 (6H, m), 1.33 (3H, s), 1.30 (2H, m), 1.27 (3H, s), 1.22 (3H, s), 1.19 (3H, s); ¹³C-NMR (100 MHz, CDCl₃) δ : 178.6, 141.0, 114.8, 114.6, 75.6, 75.4, 73.7, 72.7, 65.0, 63.8, 63.7, 38.8, 35.8, 35.4, 35.2, 35.1, 30.5, 29.7, 27.2, 27.0, 22.9, 22.8, 22.7, 22.6, 22.3; EIMS *m/z*: 375 (M⁺+H, 0.3), 359 (M⁺-Me, 0.2), 161 (100); HREIMS *m/z*: 359.1995 (Calcd for C₂₀H₃₅O₄Cl: M⁺-Me, 359.1989); *Anal.*: Calcd for C₂₀H₃₅O₄Cl: C, 64.07 ; H, 9.41. Found: C, 64.17; H, 9.28.

To a solution of the above alcohol (15.1 mg, 40.3 µmol) in DMF (40.3 µL) were added imidazole (4.12 mg, 60.5 µmol) and TBSCl (6.68 mg, 44.3 µmol) at r.t. After stirring for 1 hr at an ambient temperature, the mixture was diluted with Et₂O, washed with H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 10 : 1) to generate diastereomeric mixture of TBS ether **8** (19.5 mg, 99% yield) as a colorless oil. IR (neat) cm⁻¹: 2957, 1729; ¹H-NMR (400 MHz, CDCl₃) δ : 5.77 (1H, m), 5.13 (1H, m), 5.01 (1H, d, *J* = 10.4 Hz), 4.22 (1H, m), 4.15-4.01 (2H, m), 3.69 (1H, dd, *J* = 12.2, 4.2 Hz), 2.08 (1H, m), 1.99 (1H, m), 1.65-1.39 (6H, m), 1.32 (3H, s), 1.25 (3H, s), 1.21 (3H, s), 1.18 (9H, s), 0.89 (9H, s), 0.04 (6H, m); ¹³C-NMR (100 MHz, CDCl₃) δ : 141.4, 141.2, 113.9,

79.9, 76.5, 73.7, 73.5, 64.3, 63.6, 53.1, 53.0, 37.3, 37.3, 37.0, 36.8, 30.5, 27.0, 25.8, 22.3, 21.8, 19.9, 19.8, -4.4, -4.8; EIMS m/z: 489 (M⁺+H, 10), 357 (M⁺-OTBS, 25), 161 (100); HREIMS m/z: 488.3098 (Calcd for C₂₆H₄₉O₄SiCl: M⁺, 488.3089); *Anal*.: Calcd for C₂₆H₄₉O₄SiCl: C, 63.83 ; H, 10.10. Found: C, 63.89; H, 10.07.

(2*S*,5*RS*)-5-(*tert*-Butyldimethylsilanyloxy)-2-[(2*R*,5*S*)-(5-chloro-2,6,6-trimethyltetrahydropy ran-2-yl)]-6-hepten-1-ol (9). To a cold (-78 °C) solution of pivalate **8** (19.7 mg, 40.3 µmol) in CH₂Cl₂ (400 µL) was added DIBAH (52.0 µL, 48.4 µmol, 0.93 M in hexane). After stirring for 10 min at the same temperature, the reaction mixture was diluted with Et₂O, added with brine, warmed to r.t. and stirred for 3 hr. The mixture was dried with MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 4 : 1) to generate diastereomeric mixture of alcohol (15.8 mg, 97% yield) as a colorless oil. IR (neat) cm⁻¹: 3476, 2954; ¹H-NMR (400 MHz, CDCl₃) δ: 5.76 (1H, m), 5.13 (1H, d, *J* = 17.2 Hz), 5.02 (1H, d, *J* = 10.4 Hz), 4.05 (1H, m), 3.93 (1H, br d, *J* = 7.4 Hz), 3.76-3.67 (2H, m), 3.57 (1H, m), 2.16-1.98 (2H, m), 1.79(1H, m), 1.66-1.51 (4H, m), 1.42 (2H, m), 1.38 (3H, s), 1.32 (3H, s), 1.23 (3H, s), 0.88 (9H, s), 0.02 (6H, s); ¹³C-NMR (100 MHz, CDCl₃) δ: 141.4, 141.2, 113.9, 79.9, 76.5, 73.7, 73.5, 64.3, 63.6, 53.1, 53.0, 37.3, 37.3, 37.0, 36.8, 30.5, 27.0, 25.8, 22.3, 21.8, 19.9, 19.8, -4.4, -4.8; EIMS *m*/*z*: 405 (M⁺+H, 1), 347 (M⁺-^{*T*}Bu, 1), 59 (100); HREIMS *m*/*z*: 404.2521 (Calcd for C₂₁H₄₁O₃SiCl: M⁺, 404.2514); *Anal*.: Calcd for C₂₁H₄₁O₃SiCl: C, 62.26 ; H, 10.20. Found: C, 62.45; H, 10.07.

To a solution of the above alcohol (240 mg, 592 μ mol) in CH₂Cl₂ (6.00 mL) were added NaHCO₃ (300 mg, 3.55 mmol) and Dess-Martin periodinane (377 mg, 888 μ mol) at r.t. After stirring for 30 min at an ambient temperature, the reaction mixture was diluted with Et₂O and added sat. NaHCO₃ aqueous solution and sat. Na₂S₂O₃ aqueous solution. After stirring for 15 min at the same temperature, the reaction mixture was washed with H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave crude aldehyde. The crude aldehyde was used next reaction without further purification.

To a cold (-78 °C) solution of CH₂=C(CH₃)CH₂P(O)Ph₂ (607 mg, 2.37 mmol) in THF (6.00 mL) were added HMPA (425 mg, 2.37 mmol) and BuLi (840 mL, 1.18 mmol. 1.41 M in hexane). After stirring for 1 hr at the same temperature, a solution of the above crude aldehyde in THF (1.00 mL) was added to the mixture. The mixture was warmed to r.t. over 2 hr. The reaction mixture was diluted with Et₂O, washed with sat. NH₄Cl aqueous solution, H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 40 : 1) to generate triene **9** (205 mg, 78% yield, two steps) as a colorless oil. IR (neat) cm⁻¹: 2928; ¹H-NMR (400 MHz, CDCl₃) δ : 6.05 (1H, d *J* = 15.7 Hz), 5.78 (1H, m), 5.37 (1H, dd, *J* = 15.8, 9.8 Hz), 5.13 (1H, m), 5.00 (1H, m), 4.87 (2H, s), 4.06 (1H, m), 3.64 (1H, dd, *J* = 12.4 Hz, 4.1 Hz), 2.14-1.92 (2H, m), 1.84 (2H, m), 1.82 (3H, s), 1.51-1.05 (5H, m), 1.33 (3H, s), 1.27 (3H, s), 1.22 (3H, s), 0.90 (9H, s), 0.03 (6H, s); ¹³C-NMR (100 MHz, CDCl₃) δ : 142.0, 141.8, 135.5, 131.4, 131.3, 114.6, 113.4, 113.2, 77.2, 75.2, 74.1, 74.0, 65.5, 55.7, 55.5,

36.6, 33.3, 33.2, 30.4, 27.1, 25.9, 25.1, 24.0, 23.9, 22.4, 18.8, 18.3, -4.4, -4.4; EIMS *m*/*z*: 440 (M⁺, 20), 383 (M⁺-^{*t*}Bu, 16), 161 (100); HREIMS *m*/*z*: 440.2851 (Calcd for C₂₅H₄₅O₂SiCl: M⁺, 440.2877).

(4*S*,4*a*,8*aR*)-4-((2*R*,5*S*)-5-Chloro-2,6,6-trimethyltetrahydro-2*H*-pyran-2-yl)-6-methyl-3,4,4 a,7,8,8a-hexahydronaphthalen-1-one (10). TBAF (3.00 mL, 3.00 mmol) and was added to trienen 9 (205 mg, 465 μmol). The mixture stirred at r.t. for 2 hr. The reaction mixture was diluted with Et₂O, washed with H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 5 : 1) to generate alcohol (146 mg, 96% yield) as a colorless oil. IR (neat) cm⁻¹: 3361, 2937; ¹H-NMR (400 MHz, CDCl₃) δ: 6.07 (1H, d *J* = 15.1 Hz), 5.85 (1H, m), 5.38 (1H, dd, *J* = 15.7, 9.7 Hz), 5.09 (1H, m), 4.88 (2H, s), 4.87 (2H, s), 4.09 (1H, br s), 3.66 (1H, m), 2.08 (1H,m), 1.98-1.75 (3H, m), 1.85 (3H, s), 1.61-1.48 (3H, m), 1.44-1.31 (3H, m), 1.33 (3H, s), 1.28 (3H, s), 1.24 (3H, s); ¹³C-NMR (100 MHz, CDCl₃) δ: 141.9, 141.3, 141.2, 135.7, 135.7, 114.9, 114.5, 114.4, 75.5, 73.6, 55.7, 55.2, 35.6, 35.4, 33.2, 32.9, 30.3, 27.2, 25.2, 24.2, 22.4, 18.8; EIMS *m/z*: 327 (M⁺+H, 0.1), 161 (100).

To a solution of the above alcohol (146 mg, 447 µmol) in CH₂Cl₂ (5.00 mL) were added NaHCO₃ (230 mg, 2.68 mmol) and Dess-Martin periodinane (380 mg, 894 µmol) at r.t. After stirring for 30 min at an ambient temperature, the reaction mixture was diluted with Et₂O and added sat. NaHCO₃ aqueous solution and sat. Na₂S₂O₃ aqueous solution. After stirring for 15 min at the same temperature, the reaction mixture was washed with H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 9 : 1) to generate *cis*-decalin **10** (144 mg, 99% yield) as a colorless oil. $[\alpha]_D^{23}$ -82.5 (*c* 0.48, CHCl₃); IR (neat) cm⁻¹: 2927, 1721; ¹H-NMR (500 MHz, CDCl₃) δ : 5.17 (1H, s), 3.72 (1H, dd *J* = 12.4, 4.1 Hz), 2.85 (1H, m), 2.64 (1H, m), 2.40 (1H, td, *J* = 17.5, 4.5 Hz), 2.30 (1H, m), 2.20-1.98 (4H, m), 1.84-1.70 (4H, m), 1.57 (3H, s), 1.56 (1H, m), 1.51 (1H, m), 1.44 (1H, m), 1.35 (3H, s), 1.29 (3H, s), 1.25 (3H, s); ¹H-NMR (125 MHz, CDCl₃) δ : 214.9, 134.0, 128.3, 76.4, 75.3, 65.1, 52.5, 44.3, 38.0, 35.3, 35.1, 30.5, 27.3, 26.3, 23.6, 22.6, 22.3, 21.3; EIMS *m/z*: 324 (M⁺, 28), 189 (100); HREIMS *m/z*: 324.1852 (Calcd for C₁₉H₂₉O₂Cl: M⁺, 324.1856); *Anal.*: Calcd for C₁₉H₂₉O₂Cl: C, 70.24; H, 9.00. Found: C, 70.32; H, 9.11.

(1aR,3aR,7S,7aR,7bS)-7-((2R,5S)-5-Chloro-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)-1a-me thyl-octahydronaphtho[2,1-*b*]oxiren-4(7bH)-one (11a) and

(1aS,3aR,7S,7aR,7bR)-7-((2R,5S)-5-chloro-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)-1a-meth yl- octahydronaphtho[2,1-b]oxiren-4(7bH)-one (11b). To a cold (0 °C) solution of *cis*-decalin 10 (44.9 mg, 148 µmol) in CH₂Cl₂ (1.38 mL) were added Na₂HPO₄ (118 mg, 829 µmol) and *m*CPBA (110 mg, 415 µmol). After stirring for 3 hr at the same temperature, the reaction mixture was diluted with Et₂O, added with Me₂S and stirred for 10 min. The mixture was washed with 1 M NaOH aqueous solution, H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 3 : 1) to

generate α -epoxide **11a** (11.2 mg, 24% yield) as colorless needles and β -epoxide **11b** (33.5 mg, 71% yield) as a colorless oil. α -epoxide **11a**: mp: 164-168 °C; $[\alpha]_D^{27}$ -88.2 (c 0.76, CHCl₃); IR (KBr) cm⁻¹: 2927, 1712; ¹H-NMR (400 MHz, CDCl₃) δ : 3.74 (1H, dd, J = 12.1, 4.3 Hz), 2.82 (1H, s), 2.57-2.52 (1H, m), 2.48-2.41 (1H, m), 2.22-2.02 (3H, m), 2.00-1.93 (1H, m), 1.92-1.72 (5H, m), 1.67-1.54 (3H, m), 1.40-1.31 (7H, m), 1.26 (3H, s), 1.23 (3H, s); ¹³C-NMR (100 MHz, CDCl₃) δ: 213.8, 76.2, 75.6, 66.0, 64.8, 58.3, 51.2, 42.5, 39.0, 36.2, 35.6, 30.4, 27.2, 25.5, 23.6, 22.6, 22.3, 21.6, 19.1; ESIMS m/z: 341 (100); HRESIMS m/z: 341.1889 (Calcd for C₁₉H₂₉O₃Cl: M⁺+H, 341.1883); Anal.: Calcd for C₁₉H₂₉O₃Cl: C, 66.94 ; H, 8.57. Found: C, 66.98; H, 8.53, β-epoxide **11b**: $\left[\alpha\right]_{D}^{27}$ -60.3 (c 1.21, CHCl₃); IR (neat) cm⁻¹: 2952, 1712; ¹H-NMR (400 MHz, CDCl₃) δ : 3.73 (1H, dd, J = 12.4, 4.3 Hz), 2.96 (1H, s), 2.63 (1H, ddd, J = 6.8, 4.0, 1.4 Hz), 2.36 (1H, dt, J = 18.0, 3.7 Hz), 2.28 (1H, dd, J = 13.6, 4.5 Hz), 2.22-2.11 (3H, m), 2.06-1.99 (2H, m), 1.86-1.80 (1H, m), 1.77-1.67 (3H, m), 1.63-1.52 (3H, m), 1.37 (3H, s), 1.28 (1H, s), 1.27 (6H, s), 1.25 (3H, s); ¹³C-NMR (100 MHz, CDCl₃) δ: 212.3, 76.3, 75.5, 66.3, 65.0, 60.5, 51.4, 40.9, 38.1, 36.4, 35.6, 30.5, 27.3, 24.5, 23.6, 22.4, 21.0, 20.0, 20.0; ESIMS m/z: 359 (100), 341 (60); HRESIMS m/z: 341.1878 (Calcd for $C_{19}H_{29}O_3Cl$: M⁺+H, 341.1883); *Anal*.: Calcd for $C_{19}H_{29}O_3Cl$: C, 66.94; H, 8.57. Found: C, 67.13; H, 8.48.3

tert-Butyl((1aR,3aR,4S,7S,7aS,7bS)-7-((2R,5S)-5-chloro-2,6,6-trimethyltetrahydro-2H-pyra n-2-yl)-1a-methyldecahydronaphtho[2,1-b]oxiren-4-yloxy)dimethylsilane (12). To a cold (0 °C) solution of ketone 10 (19.1 mg, 58.8 µmol) in MeOH (588 µL) was added NaBH₄ (3.3 mg, 88.2 µmol). After stirring for 15 min at the same temperature, the reaction mixture was diluted with Et₂O, washed with sat. NH₄Cl aqueous solution, H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 9 : 1) to generate β -alcohol (15.0 mg, 79% yield) as colorless needles and α -alcohol (3.1 mg, 16% yield) as a colorless oil. β -alcohol: mp: 164-168 °C; $[\alpha]_D^{27}$ +67.6 (c 1.12, CHCl₃); IR (KBr) cm⁻¹: 3365, 2933; ¹H-NMR (600 MHz, CDCl₃) δ : 5.69 (1H, d, J = 4.8 Hz), 3.74 (1H, dt, J = 12.1, 4.6 Hz), 3.69 (1H, dd, J = 12.5, 4.2 Hz), 2.08 (1H, dq, J = 12.9, 4.2 Hz), 2.02-1.90 (4H, m), 1.77-1.74 (1H, m), 1.69-1.66 (2H, m), 1.62-1.49 (6H, m), 1.45-1.39 (3H, m), 1.35 (3H, s), 1.25 (1H, s), 1.22 (6H, s), 0.91 (1H, m); ¹³C-NMR (150 MHz, CDCl₃) δ: 129.5, 127.9, 76.1, 75.0, 72.9, 65.3, 51.2, 41.6, 37.7, 37.3, 30.5, 30.3, 29.7, 27.6, 25.2, 23.6, 22.7, 20.8, 16.7; ESIMS m/z: 327 (100); HRESIMS m/z: 327.2096 (Calcd for C₁₉H₃₁O₂Cl : M⁺+H, 327.2091); Anal.: Calcd for C₁₉H₃₁O₂Cl : C, 69.81 ; H, 9.56. Found: C, 69.59 ; H, 9.53. α -alcohol: $[\alpha]_D^{27}$ +21.5 (*c* 0.97, CHCl₃); IR (neat) cm⁻¹: 3365, 2934; ¹H-NMR (400 MHz, CDCl₃) δ : 5.68 (1H, dd, J = 4.3, 1.2 Hz), 3.77-3.68 (2H, m), 2.15-1.90 (6H, m), 1.78-1.66 (3H, m), 1.62 (3H, brs), 1.61-1.51 (3H, m), 1.50-1.41 (2H, m), 1.39-1.34 (4H, m), 1.22 (6H, s), 0.92 (1H, m); ¹³C-NMR (100 MHz, CDCl₃) δ: 127.9, 77.2, 76.1, 75.0, 72.8, 65.3, 50.9, 41.3, 37.8, 37.3, 30.5, 30.3, 29.7, 27.6, 25.3, 23.5, 22.8, 20.8, 16.7; ESIMS *m/z*: 327 (100); HRESIMS *m/z*: 327.2088 (Calcd for C₁₉H₃₁O₂Cl: M⁺+H, 327.2091); Anal.: Calcd for C₁₉H₃₁O₂Cl: C, 69.81; H, 9.56. Found: C, 69.57; H, 9.55.

To a solution of the above β-alcohol (495 mg, 1.51 mmol) in DMF (1.51 mL) were added imidazole (165 mg, 2.42 mmol) and TBSCI (274 mg, 1.82 mmol) at r.t. After stirring for 10 hr at an ambient temperature, the reaction mixture was diluted with Et₂O, washed with H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 10 : 1) to generate TBS ether (664 mg, quantitative yield) as a colorless oil. $[\alpha]_D^{27}$ +27.4 (*c* 1.37, CHCl₃); IR (neat) cm⁻¹: 2952, 1470, 1378, 1254; ¹H-NMR (400 MHz, CDCl₃) δ: 5.64 (1H, d, *J* = 5.6 Hz), 3.72-3.64 (2H, m), 2.84 (1H, dq, *J* = 12.6, 4.3 Hz), 2.00-1.77 (6H, m), 1.65-1.60 (4H, m), 1.59-1.39 (6H, m), 1.35 (3H, s), 1.26 (1H, s), 1.22 (3H, s), 1.21 (3H, s), 0.88 (9H, s), 0.03 (6H, s); ¹³C-NMR (100 MHz, CDCl₃) δ: 129.8, 128.0, 77.2, 76.1, 75.0, 73.4, 65.3, 50.9, 42.1, 37.9, 37.3, 30.6, 30.5, 30.3, 27.7, 25.9, 25.5, 23.6, 22.8, 20.8, 18.2, 16.9, -4.7, -4.7; ESIMS *m*/*z*: 309 (100), 441 (10); HRESIMS *m*/*z*: 441.2961 (Calcd for C₂₅H₄₅ClO₂Si: M⁺+H, 441.2956); *Anal*.: Calcd for C₂₅H₄₅ClO₂Si: C, 68.06; H, 10.28. Found: C, 67.84; H, 10.21.

To a cold (0 °C) solution of the above TBS ether (155 mg, 351 µmol) in CHCl₃ (3.51 mL) were added Na₂HPO₄ (125 mg, 878 µmol) and *m*CPBA (72.7 mg, 421 µmol). After stirring for 1 hr at the same temperature, the reaction mixture was diluted with Et₂O, added with Me₂S and stirred for 10 min. The mixture was washed with 1 M NaOH aqueous solution, H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 20 : 1) to generate epoxide **12** (150 mg, 99% yield) as a colorless oil. $[\alpha]_D^{25}$ +8.00 (*c* 1.11, CHCl₃); IR (neat) cm⁻¹: 2952, 1462, 1380, 1254; ¹H-NMR (400 MHz, CDCl₃) δ : 3.74 (1H, d, *J* = 2.3 Hz), 3.69 (1H, dd, *J* = 12.1, 4.3 Hz), 3.56-3.52 (1H, m), 2.10-1.97 (5H, m), 1.81-1.80 (2H, m), 1.64-1.61 (2H, m), 1.53-1.41 (5H, m), 1.32-1.22 (1H, m), 1.32 (3H, s), 1.26 (3H, s), 1.24 (3H, s), 1.22 (3H, s), 0.84 (9H, s), -0.01 (6H, s); ¹³C-NMR (100 MHz, CDCl₃) δ : 76.4, 75.5, 72.7, 64.7, 63.6, 58.4, 46.5, 38.5, 38.0, 34.9, 30.8, 29.6, 27.8, 27.6, 25.8, 25.8, 25.8, 25.1, 22.6, 18.9, 18.0, 14.8, -4.7, -4.8; ESIMS *m*/*z*: 457 (100); HRESIMS *m*/*z*: 457.2904 (Calcd for C₂₅H₄₅ClO₃Si: M⁺+H, 457.2905); *Anal*.: Calcd for C₂₅H₄₅ClO₃Si: C, 65.68; H, 9.92. Found: C, 65.78; H, 9.78.

(4*S*,4a*R*,5*R*,6*R*,8a*R*)-5-Azido-4-((2*R*,5*S*)-5-chloro-2,6,6-trimethyltetrahydro-2*H*-pyran-2-yl)-6-hydroxy-6-methyloctahydronaphthalen-1(2*H*)-one (13) and (4*S*,4a*R*,5*R*,6*R*,8a*S*)-5-azido-4-((2*R*,5*S*)-5-chloro-2,6,6-trimethyltetrahydro-2*H*-pyran-2-yl)-6-h ydroxy-6-methyloctahydronaphthalen-1(2*H*)-one (14). TBAF (1.0 M in THF, 15.6 mL, 15.6 mmol) was added to TBS ether 12 (712 mg, 1.56 mmol). The mixture stirred at 50 °C for 6 hr. The reaction mixture was diluted with Et₂O, washed with H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 1 : 1) to generate alcohol (497 mg, 93% yield) as a colorless oil. $[\alpha]_D^{-26}$ +19.9 (*c* 1.20, CHCl₃); IR (neat) cm⁻¹: 3418, 2952, 1457; ¹H-NMR (400 MHz, CDCl₃) &: 3.74 (1H, d, *J* = 2.8 Hz), 3.68 (1H, dd, *J* = 12.1, 4.3 Hz), 3.59 (1H, m), 2.18-2.16 (1H, m), 2.13-1.95 (3H, m), 1.86-1.82 (3H, m), 1.68-1.61 (3H, m), 1.56-1.36 (4H, m), 1.32 (3H, s), 1.32-1.26 (1H, m), 1.23 (3H, s), 1.21 (3H, s), 0.88 (1H, dq, J = 14.4, 4.8 Hz); ¹³C-NMR (100 MHz, CDCl₃) δ : 76.3, 75.5, 72.1, 64.7, 63.6, 58.5, 46.3, 38.4, 37.9, 34.4, 30.8, 28.6, 27.5, 27.5, 25.6, 25.0, 22.5, 18.9, 14.6; ESIMS *m/z*: 343 (100); HRESIMS *m/z*: 343.2023 (Calcd for C₁₉H₃₁ClO₃: M⁺+H, 343.2016); *Anal.*: Calcd for C₁₉H₃₁ClO₃: C, 66.65; H, 9.11. Found: C, 66.55; H, 9.20.

To a solution of IBX (1.01 g, 3.62 mmol) in DMSO (7.25 mL) was added a solution of the above alcohol (497 mg, 1.45 mmol) in THF (7.25 mL) at r.t. After stirring for 20 min at an ambient temperature, the reaction mixture was diluted with Et₂O and filtered through celite pad. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 4 : 1) to generate ketone (467 mg, 95% yield) as colorless rod-like crystals. mp: 164-168 °C; $[\alpha]_D^{27}$ -88.2 (*c* 0.76, CHCl₃); IR (KBr) cm⁻¹: 2927, 1712; ¹H-NMR (400 MHz, CDCl₃) δ : 3.74 (1H, dd, *J* = 12.1, 4.3 Hz), 2.82 (1H, s), 2.57-2.52 (1H, m), 2.48-2.41 (1H, m), 2.22-2.02 (3H, m), 2.00-1.93 (1H, m), 1.92-1.72 (5H, m), 1.67-1.54 (3H, m), 1.40-1.31 (7H, m), 1.26 (3H, s), 1.23 (3H, s); ¹³C-NMR (100 MHz, CDCl₃) δ : 213.8, 76.2, 75.6, 66.0, 64.8, 58.3, 51.2, 42.5, 39.0, 36.2, 35.6, 30.4, 27.2, 25.5, 23.6, 22.6, 22.3, 21.6, 19.1; ESIMS *m/z*: 341 (100); HRESIMS *m/z*: 341.1889 (Calcd for C₁₉H₂₉ClO₃: M⁺+H, 341.1883); *Anal*.: Calcd for C₁₉H₂₉ClO₃: C, 66.94; H, 8.57. Found: C, 66.98; H, 8.53.

To a solution of the above ketone (733 mg, 2.15 mmol) in MeOH/H₂O (8 : 1, 21.5 mL) were added NH₄Cl (1.04 g, 19.4 mmol) and NaN₃ (2.10 g, 32.3 mmol). The mixture was refluxed for 10 hr. The reaction mixture was filtered through silica gel pad. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (CHCl₃ : hexane : $Et_2O = 4 : 1 : 1$) to generate trans-decalin 13 (523 mg, 63% yield) as a pale yellow oil and cis-decalin 14 (261 mg, 32% yield) as a pale yellow oil. *trans*-decalin **13**: $[\alpha]_D^{25}$ +11.83 (c 1.07, CHCl₃); IR (neat) cm⁻¹: 3447, 2958, 2107, 1704; ¹H-NMR (400 MHz, CDCl₃) δ: 4.11 (1H, s), 3.74 (1H, dd, J = 12.4, 4.3 Hz), 2.49-2.25 (4H, m), 2.17-2.00 (3H, m), 1.90-1.77 (2H, m), 1.73-1.48 (6H, m), 1.37 (3H, s), 1.34 (3H, s), 1.33 (3H, s), 1.28 (3H, s), 0.88 (1H, m); ¹³C-NMR (100 MHz, CDCl₃) δ: 212.7, 121.2, 77.6, 76.2, 72.9, 71.0, 64.5, 47.3, 44.9, 42.4, 39.1, 37.5, 32.9, 31.0, 29.7, 27.4, 25.7, 22.9, 21.0; ESIMS m/z: 384 (100); HRESIMS m/z: 384.2054 (Calcd for C₁₉H₃₀ClN₃O₃: M⁺+H, 384.2054); Anal.: Calcd for C₁₉H₃₀ClN₃O₃: C, 59.44 ; H, 7.88 ; N, 10.95. Found: C, 59.42 ; H, 7.81 ; N, 10.83. *cis*-decalin 14: $\left[\alpha\right]_{D}^{25}$ -92.2 (c 1.75, CHCl₃); IR (neat) cm⁻¹: 3444, 2952, 2106, 1703; ¹H-NMR (400 MHz, CDCl₃) δ : 4.10 (1H, s), 3.73 (1H, dd, J = 12.4, 4.3 Hz), 2.49-2.24 (4H, m), 2.18-2.00 (3H, m), 1.90-1.84 (1H, m), 1.72-1.49 (7H, m), 1.37 (3H, s), 1.34 (3H, s), 1.32 (3H, s), 1.27 (3H, s), 0.97 (1H, m); ¹³C-NMR (100 MHz, CDCl₃) δ: 212.8, 77.6, 76.2, 72.9, 71.0, 64.5, 47.2, 44.9, 42.3, 39.1, 37.4, 32.9, 31.0, 29.0, 27.4, 25.7, 22.9, 21.4, 21.0; ESIMS m/z: 384 (100); HRESIMS m/z: 384.2069 (Calcd for $C_{19}H_{30}ClN_3O_3 : M^+ + H, 384.2054$; Anal.: Calcd for $C_{19}H_{30}ClN_3O_3 : C, 59.44$; H, 7.88; N, 10.95. Found: C, 59.52; H, 7.91; N, 10.77.

To a solution of *cis*-decalin **14** (18.7 mg, 48.7 μ mol) in EtOH (974 μ L) was added ^{*t*}BuOK (5.5 mg, 48.7 μ mol). After stirring for 2 hr at an ambient temperature, the reaction mixture was diluted with Et₂O, washed with H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (CHCl₃ : hexane : Et₂O = 4 : 1 :

1) to generate *trans*-decalin **13** (11.0 mg, 59% yield) as a pale yellow oil and *cis*-decalin **14** (7.4 mg, 40% yield) as a pale yellow oil.

(1*R*,2*R*,4a*S*,8*S*,8a*S*)-1-Azido-8-((2*R*,5*S*)-5-chloro-2,6,6-trimethyltetrahydro-2*H*-pyran-2-yl)-2-methyl-5-methylenedecahydronaphthalen-2-ol (15). To a cold (-78 °C) solution of *trans*-decalin 13 (46.0 mg, 120 µmol) and 2-(methylsulfonyl)benzothiazole (102 mg, 480 µmol) in THF (1.20 mL) was added LiHMDS (218 µL, 240 µmol, 1.1 M in THF). After stirring for 3 hr at same temperature, the reaction mixture was diluted with Et₂O, washed with sat. NH₄Cl aqueous solution, H₂O and brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 10 : 1) to generate *exo*-olefine 15 (40.3 mg, 88% yield) as colorless rod-like crystals. mp: 117-120 °C; $[α]_D^{25}$ -13.6 (*c* 0.98, CHCl₃); IR (KBr) cm⁻¹: 3551, 2935, 2102, 1648, 896; ¹H-NMR (400 MHz, CDCl₃) δ: 4.64 (1H, d, *J* = 1.5 Hz), 4.53 (1H, s), 4.47 (1H, s), 3.77 (1H, dd, *J* = 12.4, 4.5 Hz), 2.25 (1H, dt, *J* = 12.6, 3.6 Hz), 2.15-1.75 (8H, m), 1.70-1.47 (6H, m), 1.38 (6H, s), 1.33 (3H, s), 1.22 (3H, s), 0.91 (1H, m); ¹³C-NMR (100 MHz, CDCl₃) δ: 152.1, 104.3, 78.2, 76.2, 73.0, 69.0, 64.8, 48.6, 43.7, 38.4, 37.5, 35.7, 33.0, 31.5, 29.4, 29.1, 27.7, 24.7, 23.2, 19.7; ESIMS *m*/*z*: 339 (100), 382(5); HRESIMS *m*/*z*: 339.2086 (Calcd for C₂₀H₃₂ClN₃O₂: M⁺-N₃, 339.2091); *Anal.*: Calcd for C₂₀H₃₂ClN₃O₂: C, 62.89; H, 8.44; N, 11.00. Found: C, 62.62; H, 8.41; N, 10.79.

(1'S,4'S,4a'S,5'R,6'R,8a'S)-5'-Azido-4'-((2R,5S)-5-chloro-2,6,6-trimethyltetrahydro-2H-pyra n-2-yl)-6'-methyl-1-tosyloctahydro-2'H-spiro[aziridine-2,1'-naphthalen]-6'-ol (16). To solution of exo-olefine 15 (24.0 mg, 62.8 µmol) and 4A MS (1.1 mg) in CH₃CN (3.14 mL) were added Cu(OTf)₂ (1.1 mg, 3.14 umol) and PhI=NTs (47.0 mg, 126 umol). After stirring for 3 hr at ambient temperature, the reaction mixture was diluted with Et₂O and then filtered through celite pad. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (hexane : AcOEt = 3 : 1) to generate aziridine **16** (15.9 mg, 46% yield) as colorless rod-like crystals. mp: 181-187 °C; $[\alpha]_D^{25}$ -29.2 (c 0.15, CHCl₃); IR (KBr) cm⁻¹: 3501, 2955, 2103, 1383; ¹H-NMR (400 MHz, CDCl₃) δ: 7.79 (2H, d, J = 8.1 Hz), 7.30 (2H, d, J = 8.1 Hz), 4.47 (1H, s), 3.77 (1H, dd, *J* = 12.1, 4.8 Hz), 2.47 (1H, s), 2.43 (3H, s), 2.35 (1H, d, *J* = 1.5 Hz), 2.23-2.18 (1H, m), 2.13-2.02 (5H, m), 1.95-1.91 (1H, m), 1.81-1.78 (1H, m), 1.69-1.49 (5H, m), 1.39 (3H, s), 1.37 (3H, s), 1.30 (3H, s), 1.25 (3H, s), 1.03-0.88 (3H, m); ¹³C-NMR (100 MHz, CDCl₃) δ: 143.6, 138.2, 129.4, 127.2, 78.0, 76.3, 72.8, 68.8, 64.5, 55.0, 47.9, 41.5, 38.3, 36.8, 36.1, 32.6, 31.5, 30.3, 29.2, 27.6, 26.9, 23.3, 21.6, 20.9, 19.8; ESIMS m/z: 551 (100); HRESIMS m/z: 551.2463 (Calcd for C₂₇H₃₉ClN₄O₄S: M⁺+H, 551.2459); Anal.: Calcd for C₂₇H₃₉ClN₄O₄S: C, 58.84; H, 7.13; N, 10.17. Found: C, 59.13; H, 7.17; N, 9.89.

N-((1S,4S,4aS,5R,6R,8aS)-5-Amino-4-((2R,5S)-5-chloro-2,6,6-trimethyltetrahydro-2H-pyra n-2-yl)-6-hydroxy-1,6-dimethyldecahydronaphthalen-1-yl)-4-methylbenzenesulfonamide (17).

To a cold (0 °C) solution of aziridine **16** (22.0 mg, 39.9 µmol) in MeOH/THF (3 : 1, 798 µL) were added NiCl₂·6H₂O (15.2 mg, 63.8 mmol) and NaBH₄ (6.8 mg, 180 µmol). After stirring for 10 min at the same temperature, the mixture stirred at r.t. for 3 hr. The reaction mixture was diluted with AcOEt, and then filtered through celite pad. The filtrate was washed with brine and phosphate buffer (pH 7.5, EDTA 10 mM), and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (AcOEt : MeOH = 10 : 1) to amine (17.6 mg, 84% yield) as colorless needles. mp: 198-201 °C; $[\alpha]_D^{25}$ -4.10 (*c* 0.95, CHCl₃); IR (KBr) cm⁻¹: 3377, 2926, 1383, 1157; ¹H-NMR (400 MHz, CDCl₃) &: 7.79 (2H, d, *J* = 8.3 Hz), 7.29 (2H, d, *J* = 8.3 Hz), 3.73 (1H, dd, *J* = 12.1, 4.8 Hz), 3.24 (1H, s), 2.48 (1H, s), 2.42 (3H, s), 2.43-2.42 (1H, m), 2.26-2.21 (1H, dt, *J* = 13.2, 3.6 Hz), 2.14-1.89 (6H, m), 1.67-1.49 (6H, m), 1.36 (3H, s), 1.36-1.30 (2H, m), 1.30 (3H, s), 1.27 (3H, s), 1.27-1.22 (1H, m), 1.22 (3H, s), 1.10-0.95 (2H, m); ¹³C-NMR (100 MHz, CDCl₃) &: 143.6, 138.3, 129.4, 129.4, 127.2, 127.2, 77.5, 76.0, 72.4, 64.5, 57.6, 55.6, 49.1, 42.2, 38.6, 36.7, 36.5, 32.0, 31.3, 30.9, 29.6, 27.5, 27.0, 22.4, 21.6, 20.6, 18.9; ESIMS *m/z*: 525 (100); HRESIMS *m/z*: 525.2538 (Calcd for C₂₇H₄₁ClN₂O₄S: M⁺+H, 525.2554); *Anal.*: Calcd for C₂₇H₄₁ClN₂O₄S: C, 61.75; H, 7.87; N, 5.33. Found: C, 61.95; H, 8.07; N, 5.11.

To a cold (0 °C) solution of the above amine (16.5 mg, 31.4 µmol) in THF (628 µL) was added LiBHEt₃ (471 µL, 471 µmol, 1.0 M in THF). After stirring for 1.5 hr at 40 °C, the reaction mixture was cooled to 0 °C, added with H₂O, diluted with AcOEt, washed with brine, and then dried over MgSO₄. Removal of the solvent gave a residue, which was purified by silica gel column chromatography (AcOEt) to generate tosylamine **17** (13.7 mg, 83% yield) as a pale yellow oil. $[\alpha]_D^{25}$ -10.7 (*c* 0.15, CHCl₃); IR (neat) cm⁻¹: 3366, 2952, 1383, 1153; ¹H-NMR (400 MHz, CDCl₃) δ : 7.75 (2H, d, *J* = 8.4 Hz), 7.26 (2H, d, *J* = 8.3 Hz), 4.57 (1H, s), 3.68 (1H, dd, *J* = 12.1, 4.3 Hz), 3.20 (1H, d, *J* = 2.0 Hz), 2.41 (3H, s), 2.12-1.83 (4H, m), 1.62-1.34 (11H, m), 1.32 (4H, s), 1.27 (3H, s), 1.25 (3H, s), 1.17 (3H, s), 1.10 (3H, s), 0.88 (1H, m); ¹³C-NMR (100 MHz, CDCl₃) δ : 142.8, 140.8, 129.4, 129.4, 127.0, 127.0, 77.5, 77.2, 75.9, 72.3, 64.5, 60.2, 57.7, 48.9, 41.5, 39.3, 38.6, 38.4, 32.5, 30.8, 29.6, 23.2, 22.4, 21.5, 21.4, 19.6, 18.9; ESIMS *m/z*: 527 (100); HRESIMS *m/z*: 527.2679 (Calcd for C₂₇H₄₃CIN₂O₄S: M⁺+H, 527.2710).

Kalihinol A (1). To a solution of naphthalene (10.3 mg, 80.6 μ mol) in THF (3.06 mL) was added Li (11.1 mg, 161 mmol). The mixture was ultrasonicated till a color of the mixture turned into dark green and cooled to -78 °C. A solution of tosylamine 17 (42.5 mg, 80.6 μ mmol) in THF (5.0 mL) was added to the mixture. The mixture was warmed to r.t., stirred for 1 hr and then added with H₂O. The mixture was filtered through celite pad. The filtrare was concentrated under reduced presser to give crude diamine, which was used the next reaction without further purification.

To a solution of the above crude diamine in CH_2Cl_2 (8.06 mL) was added acetic formic anhydride (5.0 mL). After stirring for 4 hr at r.t., the mixture was filtered through silica gel pad. The filtrare was concentrated under reduced presser to give crude formamide, which was used the next reaction without further purification.

To a solution of the above crude formamide in CH₂Cl₂ (537 µL) were added pyridine (6.52 µL, 80.6 µmol) and TsCl (15.4 mg, 80.6 µmol). After stirring for 12 hr at r.t., the reaction mixture was concentrated under reduced presser. The residue was purified by silica gel column chromatography (AcOEt : MeOH = 3 : 1) to give kalihinol A (1) (23.4 mg, 74% yield, three steps) as rod-like crystals. mp : 232-235 °C; $[\alpha]_D^{25}$ +12.4 (*c* 0.64, CHCl₃); IR (KBr) cm⁻¹: 3410, 2943, 2145, 1456, 1385; ¹H-NMR (400 MHz, CDCl₃) δ : 4.52 (1H, brs), 3.74 (1H, dd, *J* = 11.9, 4.8 Hz), 2.08-1.98 (4H, m), 1.87-1.73 (4H, m), 1.70-1.46 (7H, m), 1.41 (3H, s), 1.34 (6H, s), 1.30 (3H, s), 1.16 (3H, s), 0.97 (1H, ddd, *J* = 14.2, 14.1, 3.3 Hz); ¹³C-NMR (100 MHz, CDCl₃) δ : 157.2 (t, *J* = 5.6 Hz), 153.0 (t, *J* = 4.0 Hz), 76.8, 75.9, 70.4, 64.1, 63.8 (t. *J* = 5.6 Hz), 59.8 (t, *J* = 5.6 Hz), 48.4, 42.3, 39.7, 37.9, 35.9, 32.5, 30.5, 28.8, 27.3, 22.8, 21.9, 21.6, 20.7, 19.1; ESIMS *m/z*: 366 (100), 393 (30); HRESIMS *m/z*: 393.2314 (Calcd for C₂₂H₃₃ClN₂O₂: M⁺+H, 393.2309); *Anal*.: Calcd for C₂₂H₃₃ClN₂O₂: C, 67.24; H, 8.46; N, 7.13. Found: C, 67.01; H, 8.48; N, 6.83.

Ref.

mp : 233 °C; $[\alpha]_D$ +16 (*c* 1.0, CHCl₃); IR (CHCl₃) cm⁻¹: 3595, 3390, 2135, 2100, 1385, 1378, 1105; ¹H-NMR (300 MHz, CDCl₃) δ : 4.51 (1H, brs), 3.72 (1H, dd, *J* = 12, 5 Hz), 2.04-1.96 (3H, m), 1.72-1.44 (7H, m), 1.40 (3H, s), 1.33 (6H, s), 1.29 (3H, brt, *J* = 2 Hz), 1.24 (1H, m), 1.15 (3H, s), 0.98 (1H, ddd, *J* = 14, 14, 3 Hz); EILRMS *m*/*z*: 357 (4), 330 (7), 216 (9), 202 (8), 163 (71), 162 (18), 161 (94), 107 (58), 105 (22), 93 (34), 81 (41), 79 (25), 71 (36), 67 (53), 59 (45), 55 (40), 53 (31), 43 (58), 41 (100); EIHRMS *m*/*z*: 357.2561 (Calcd for C₂₂H₃₃N₂O₂: M⁺-Cl, 357.2542), 330.2424 (Calcd for C₂₁H₃₂NO₂ : M⁺-Cl-HCN, 330.2433).

Crystal data and structure refinement for 11a.

Identification code	compound 11a		
Empirical formula	C19 H29 Cl O3		
Formula weight	340.87		
Temperature	90 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 6.1306(15) Å	<i>α</i> = 90°.	
	b = 18.463(5) Å	β= 90°.	
	c = 31.983(8) Å	$\gamma = 90^{\circ}.$	
Volume	3620.1(16) Å ³		
Z	8		
Density (calculated)	1.251 Mg/m^3		
Absorption coefficient	0.224 mm ⁻¹		
F(000)	1472		
Crystal size	$0.18 \text{ x} 0.10 \text{ x} 0.06 \text{ mm}^3$	0.18 x 0.10 x 0.06 mm ³	
Theta range for data collection	1.27 to 27.69°.		
Index ranges	-7<=h<=8, -23<=k<=24,	-7<=h<=8, -23<=k<=24, -41<=l<=41	
Reflections collected	41645		
Independent reflections	8372 [R(int) = 0.0637]	8372 [R(int) = 0.0637]	
Completeness to theta = 27.69°	99.5 %	99.5 %	
Absorption correction	Empirical	Empirical	
Max. and min. transmission	0.9867 and 0.9608	0.9867 and 0.9608	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	8372 / 0 / 423	8372 / 0 / 423	
Goodness-of-fit on F ²	1.035		
Final R indices [I>2sigma(I)]	R1 = 0.0373, wR2 = 0.08	R1 = 0.0373, wR2 = 0.0812	
R indices (all data)	R1 = 0.0495, wR2 = 0.08	R1 = 0.0495, wR2 = 0.0859	
Absolute structure parameter	-0.03(4)	-0.03(4)	
Largest diff. peak and hole	0.244 and -0.200 e.Å ⁻³	0.244 and -0.200 e.Å ⁻³	

Crystal data and structure refinement for 16.

Identification code	compound 16		
Empirical formula	C27 H39 Cl N4 O4 S		
Formula weight	551.13		
Temperature	90 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21		
Unit cell dimensions	a = 8.366(5) Å	<i>α</i> = 90°.	
	b = 6.180(4) Å	β=93.033(6)°.	
	c = 26.368(15) Å	$\gamma = 90^{\circ}.$	
Volume	1361.4(13) Å ³		
Z	2		
Density (calculated)	1.344 Mg/m ³		
Absorption coefficient	0.258 mm ⁻¹		
F(000)	588		
Crystal size	0.35 x 0.11 x 0.07 mm ³		
Theta range for data collection	1.55 to 27.66°.		
Index ranges	-10<=h<=10, -8<=k<=7, -34<=l<=34		
Reflections collected	13835		
Independent reflections	6037 [R(int) = 0.0692]		
Completeness to theta = 27.66°	97.2 %		
Absorption correction	Empirical		
Max. and min. transmission	0.9822 and 0.9153		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6037 / 1 / 340		
Goodness-of-fit on F ²	1.016		
Final R indices [I>2sigma(I)]	R1 = 0.0494, $wR2 = 0.1318$		
R indices (all data)	R1 = 0.0599, $wR2 = 0.1430$		
Absolute structure parameter	0.03(6)		
Largest diff. peak and hole	0.498 and -0.626 e.Å ⁻³		

