Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Supporting Information

Investigation of encapsulation of insulin biotemplate within C-methylresorcin[4]arenes Harshita Kumari,^a Steven R. Kline,^b and Jerry L. Atwood*^a

^aDepartment of Chemistry, University of Missouri-Columbia, 601 S. College Avenue, Columbia, MO 65211, USA. ^bNIST Center for Neutron Research, Gaithersburg, MD, 20899-6102, USA.^cMaterialsMeasurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD

In this section of supporting information, we report the buffer composition of insulin, BCA analyis of insulin, scattering length densities, full sets of fitting parameters of the Schulz sphere fits and bimodal Schulz sphere fits for insulin, *C*-methylresorcin[4]arene (RsC₁) and insulin with RsC₁ in D₂O/h6-acetone, D₂O/d6-acetone and D₂O/h6-acetone/d6-acetone solvent systems. Fitted values are compared in a tabulated result summary. All uncertinities reported are one standard deviation of that fitted parameter. Please find below the list of tables and data sets with corresponding explanations.

INUSLIN COMPOSITIONS AND DIALYSIS:

The concentration of humalog insulin was estimated to be around 10 mg/ml from the spectroscopic bicinchoninic acid (BCA) protein assay (supporting information). Humalog insulin (A chain 21; B chain 30 amino acids; Mol Wt: 5808 Da) is essentially a human insulin analogue formed by interchanging the amino acids position 28 (Pro) and position 29 (Lys) on the B-chain of insulin. LYSPRO or humalog insulin, obtained commercially, was dialyzed in D_2O buffer to obtain improved scattering statistics in deuterated solvent.

Buffer compostion for dialysis experiment:

Buffer composition/100 ml of D_2O : 16 mg glycerin, 1.88 mg dibasic sodium phosphate, 3.15 mg metacresol, zinc oxide content adjusted to provide 0.0197 mg zinc ion, trace amounts of phenol and pH adjusted to 7.0 to 7.8.

SOLVENT COMPOSITIONS:

Solvents systems were composed of (1) 4 equiv. of D₂O with 1 equiv. of *h*6-acetone ($3.7 \times 10^{-6} \text{Å}^{-2}$), (2) 4 equiv. of D₂O with 1 equiv. of *d*6-acetone (SLD = $6.3 \times 10^{-6} \text{Å}^{-2}$), and (3) 4 equiv. of D₂O with 0.5 equiv. of *d*6-acetone and 0.5 equiv. of *h*6-acetone ($5.0 \times 10^{-6} \text{Å}^{-2}$).

LIST OF TABLES

Table 1. BCA Protein Assay for Humalog insulin	3
Table 2. Scattering length densities (SLD)	4
Table 3. SANS Result Summary of Insulin and C-methylresorcin[4]arene templation experiment 2	5

LIST OF FIGURES

Figure 1. Contrast variation: (left) Natural contrast; (middle) the SLD of solvent is equal to that of solvent
that makes shell visible; (right) the SLD of shell is equal to that of solvent that makes core visible
Figure 2. SANS Smeared bimodal Schulz sphere fitting for RsC_1 in a solvent with SLD of $3.7x10^{-6}$ Å ⁻² 6
Figure 3. SANS Smeared Schulz sphere fitting for RsC_1 in a solvent with SLD of $3.7x10^{-6}$ Å ⁻² 7
Figure 4. SANS Smeared Schulz sphere fitting for RsC1 in a solvent with SLD of 6.3x10 ⁻⁶ Å ⁻²
Figure 5. SANS Smeared bimodal Schulz sphere fitting for RsC1 in a solvent with SLD of 6.3x10 ⁻⁶ Å ⁻² 9
Figure 6. SANS Smeared bimodal Schulz sphere fitting for RsC1 in a solvent with SLD of 5.0x10 ⁻⁶ Å ⁻² 10
Figure 7. SANS Smeared Schulz sphere fitting for RsC1 in a solvent with SLD of 5.0x10 ⁻⁶ Å ⁻² 11
Figure 8. SANS Smeared Schulz sphere fitting for solvent with SLD of 3.7x10 ⁻⁶ Å ⁻² 12
Figure 9. SANS Smeared Schulz sphere fitting for solvent with SLD of 6.3x10 ⁻⁶ Å ⁻² 13
Figure 10. SANS Smeared Schulz sphere fitting for solvent with SLD of 5.0x10 ⁻⁶ Å ⁻² 14
Figure 11. SANS Smeared bimodal Schulz sphere fitting for insulin in a solvent with SLD of 6.3x10 ⁻⁶ Å ⁻²
Figure 12. SANS Smeared bimodal Schulz sphere fitting for insulin in a solvent with SLD of 5.0x10 ⁻⁶ Å ⁻²
Figure 13. SANS Smeared bimodal Schulz sphere fitting for insulin in a solvent with SLD of 3.7x10 ⁻⁶ Å ⁻²
Figure 14. SANS Smeared bimodal Schulz sphere fitting for RsC ₁ with insulin in a solvent with SLD of
3.7x10 ⁻⁶ Å ⁻²
Figure 15. SANS Smeared bimodal Schulz sphere fitting for RsC1 with insulin in a solvent with SLD of
6.3x10 ⁻⁶ Å ⁻²
Figure 16. SANS Smeared bimodal Schulz sphere fitting for RsC1 with insulin in a solvent with SLD of
5.0x10 ⁻⁶ Å ⁻²

	2 0			dro 1.5	y = 0.0011x + 0.1764	A K ² = 0.9933			Concentration (µ/ml)		l 1:20 dilution μg/ml mg/ml 1:100 μg/ml mg/ml	L8 0.744 516 10.32 0.278 92.36364 9.236364	32 0.746 517.8182 10.35636 0.274 88.72727 8.872727	45 0.747 518.7273 10.37455 0.308 119.6364 11.96364	94 10.3503 10.02424		l 1:20 dilution μg/ml mg/ml 1:100 μg/ml mg/ml	32 0.828 592.3636 11.84727 0.288 101.4545 10.14545	L8 0.833 596.9091 11.93818 0.308 119.6364 11.96364	45 0.863 624.1818 12.48364 0.303 115.0909 11.50909	11.20606 12.0897 11.20606	
								- 0001	Concentratio		mg/ml	10.32	10.35636	10.37455	10.3503		mg/ml	11.84727	11.93818	12.48364	12.0897	lin in ma /m _
-											lm/gu	516	517.8182	518.7273			hg/ml	592.3636	596.9091	624.1818		
ст.	о С	e r	-> oue	orb 1.5	⊢ vpsqv	A 7		5			1:20 dilution	0.744	0.746	0.747			1:20 dilution	0.828	0.833	0.863		
											mg/ml	9.241818	10.04182	9.514545	9.599394		mg/ml	10.64182	11.07818	9.614545	10.44485	
Absorbance	0.107	0.145	0.314	0.491	0.815	1.032	1.389	1.766	2.394		lm/gµ	924.1818	1004.182	951.4545			hg/ml	1064.182	1107.818	961.4545		
Conc. (µg/ml)	0	25	125	250	500	750	1000	1500	2000	Insulin:H ₂ O	1:10 dilution	1.193	1.281	1.223		Insulin: buffer	1:10 dilution	1.347	1.395	1.234		

'n J) 5

Supporting information: Small-angle neutron scattering (SANS)

Contrast Variation Method:

Figure 1. Contrast variation: (left) Natural contrast; (middle) the SLD of solvent is equal to that of solvent that makes shell visible; (right) the SLD of shell is equal to that of solvent that makes core visible

S.No.	SAMPLE	Formula	Density	λ (Å)	SLD (Å ⁻²)
			(g/ml)		
1	4 D ₂ O : 1 d-acetone	D_8O_4 C_3D_6O	1.06	6	6.3x10 ⁻⁶
2	4 D ₂ O : 1 h-acetone	D_8O_4 C_3D_6O	1.06	6	3.7x10 ⁻⁶
3	4 D ₂ O : 1 d-acetone: 1 h-acetone	D_8O_4 C_3D_6O C_3H_6O	1.06	6	5.0x10 ⁻⁶
4	RsC ₁ Hexamer	$C_{240}H_{240}O_{48}$	1.4	6	2.11x10 ⁻⁶
5	Insulin Monomer	$C_{257}H_{383}N_{65}O_{77}S_6$	1.105	6	1.54 x10 ⁻⁶
6	Insulin Dimer	$(C_{257}H_{383}N_{65}O_{77}S_6)*2$	1.105	6	1.54 x10 ⁻⁶
7	Insulin Hexamer	$(C_{257}H_{383}N_{65}O_{77}S_6)*6$	1.105	6	1.54 x10 ⁻⁶
8	RsC1 octamer+Insulin Monomer	$(C_{40}H_{40}O_8)_8 + C_{257}H_{383}N_{65}O_{77}S_6 = C_{577}H_{703}N_{65}O_{141}S_6$	1.4	6	2.03x10 ⁻⁶
9	24 RsC ₁ +Insulin Monomer	$(C_{40}H_{40}O_8)_{24} + C_{257}H_{383}N_{65}O_{77}S_6 = C_{1217}H_{1343}N_{65}O_{269}S_6$	1.4	6	2.08 x10 ⁻⁶

Table 2. Scattering	length densities	(SLD)
---------------------	------------------	-------

NOTE: The scattering length densities of the three solvent systems (S.No. 1-3), macrocycle (S.No. 4), insulin (S. No. 5-7) and macrocyle with insulin (S. No. 8-9) have been calculated. These scattering length densities are used for data analyses of small-angle neutron scattering data curves. The scattering length densities for insulin monomer, dimer and hexamer do not change with change in molecular mass.

EXPERIMENT DETAILS:

Two sets of experiments were prepared to investigate the reproducibility of results. For the experiment 1, the scattering data for the RsC_1 is fitted to Schulz sphere while that of Insulin and Insulin with RsC_1 is fitted to bimodal Schulz sphere model. For experiment 2, insulin and insulin with RsC_1 samples are fitted to bimodal Schulz sphere model. RsC_1 scattering data is fitted to both bimodal Schulz sphere and Schulz sphere and Schulz sphere model to investigate the presence of any larger species. The following section has a table summarizing the experimental samples followed by individual data sets fitted to either Schulz sphere or bimodal Schulz sphere models.

EXPERIMENT

EXPERIMENT SET 2									
Sample Code	SLD Solvent (Å ⁻²)	R1 (Å)	R2 (Å)	Sqrt(x^2/N)	SLD R1 (Å ⁻²)	SLD R2 (Å ⁻²)	MODEL		
$A = RsC_1$	3.70E-06	6.9	10.1	3.63	2.11E-06	2.11E-06	Bimodal Schulz Sphere		
$A = RsC_1$	3.70E-06	7.0		7.60	2.11E-06		Schulz Sphere		
$B = RsC_1$	6.30E-06	8.5		2.03	2.11E-06		Schulz Sphere		
$B = RsC_1$	6.30E-06	7.2	10.2	1.55	2.11E-06	2.11E-06	Bimodal Schulz Sphere		
$C = RsC_1$	5.00E-06	7.0	10.0	2.84	2.11E-06	2.11E-06	Bimodal Schulz Sphere		
$C = RsC_1$	5.00E-06	7.3		4.27	2.11E-06		Schulz Sphere		
$L = D_2O_hAc$	3.70E-06	6.4		2.09	2.11E-06		Schulz Sphere		
$K = D_2O_dAc$	6.30E-06	7.0		1.18	2.11E-06		Schulz Sphere		
M= D ₂ O_hdAc	5.00E-06	5.9		1.41	2.11E-06		Schulz Sphere		
E = Insulin	6.30E-06	10.7	25	2.99	1.54E-06	1.54E-06	Bimodal Schulz Sphere		
E2 = Insulin	5.00E-06	10.1	28	1.48	1.54E-06	1.54E-06	Bimodal Schulz Sphere		
E3 = Insulin	3.70E-06	10.9	25	2.18	1.54E-06	1.54E-06	Bimodal Schulz Sphere		
$G = RsC_1 + Insulin$	3.70E-06	7.0	16.3	1.62	2.11E-06	2.03E-06	Bimodal Schulz Sphere		
$H=RsC_1+Insulin$	6.30E-06	6.8	16.4	1.89	2.11E-06	2.03E-06	Bimodal Schulz Sphere		
$J = RsC_1 + Insulin$	5.00E-06	7.0	16.5	1.43	2.11E-06	2.03E-06	Bimodal Schulz Sphere		

Table 3. SANS Result Summary of Insulin and C-methylresorcin[4]arene templation experiment

NOTE: The results reveal the radius of \sim 7Å and \sim 10Å for RsC₁ that corresponds to a dimer and a hexamer respectively. The insulin sample fits to bimodal Schulz sphere model and yields radius of \sim 10Å & \sim 24Å that corresponds to an insulin monomer and an insulin trimer. RsC₁ with insulin samples reveals presence of two species of radius \sim 10 Å and \sim 16.5 Å. For RsC₁ with insulin sample, the 10Å species corresponds to the radius of either an insulin monomer or RsC₁ hexamer while \sim 16 Å species corresponds to insulin templated with RsC₁ macrocycle.

1) Bimodal Schulz sphere fit results for ReC₁ in D₂O/h6-acetone solvent

Figure 2. SANS Smeared bimodal Schulz sphere fitting for RsC₁ in a solvent with SLD of 3.7×10^{-6} Å⁻

volume fraction(1)	0.224834	±	0.00361554
Radius (1) (Å)	6.91071±	0.0	0322399
polydispersity(1)	0.200847	±	8.40673e-05
SLD(1) (Å^-2)	2.11e-06	±	0
volume fraction(2)	0.110196	±	0.00128328
Radius (2)	10.1481±	0.0	104009
polydispersity(2)	0.198482	±	0.000216823
SLD(2)	2.11e-06	±	0
SLD (solvent)	3.7e-06 ±	0	
background (cm-1 sr-1)	0.00906032	±	0.00039851

chisq = 2485.75 Npnts = 188 Sqrt(χ^2/N) = 3.63622 Fitted range = [0,187] = 0.008936 < Q < 0.4578

NOTE: The SANS data for RsC₁ for D₂O with h6-acetone (SLD $3.7 \times 10^{-6} \text{ Å}^{-2}$) fits well to the bimodal Schulz sphere model with $\chi^2 = 3.6$. The χ^2 value is reasonable with small error bars on the parameters and gives a reasonable representation of the data.

2) Schulz sphere fit results for RsC₁ in D₂O/h6-acetone solvent

Figure 3. SANS Smeared Schulz sphere fitting for RsC_1 in a solvent with SLD of $3.7x10^{-6}$ Å⁻²

Volume Fraction (scale)	0.520961	±	0.00103244
mean radius (Å)	7.03388	±	0.00108475
polydisp (sig/avg)	0.194957	±	1.73937e-05
SLD sphere (Å^-2)	2.11e-06	±	0
SLD solvent (Å^-2)	3.7e-06	±	0
bkg (cm-1 sr-1)	-0.0162878	±	0.000270899

chisq = 10865.5 Npnts = 188 Sqrt(χ^2/N) = 7.60233 Fitted range = [0,187] = 0.008936 < Q < 0.4578

NOTE: The SANS data for RsC₁ in D₂O with h6-acetone (SLD $3.7 \times 10^{-6} \text{ Å}^{-2}$) fits poor to the Schulz sphere model with $\chi^2 = 7.6$. The χ^2 value is high and visually the model does not give a good representation of the data.

3) Schulz sphere fit results for RsC₁ in D₂O/d6-acetone solvent

Figure 4. SANS Smeared Schulz sphere fitting for RsC1 in a solvent with SLD of 6.3x10⁻⁶ Å⁻²

Volume Fraction (scale)	0.00540242	±	3.66138e-05
mean radius (Å)	8.49774	±	0.0147914
polydisp (sig/avg)	0.193473	±	0.000581531
SLD sphere (Å^-2)	2.11e-06	±	0
SLD solvent (Å^-2)	6.3e-06	±	0
bkg (cm-1 sr-1)	0.000803747	±	7.59234e-05

chisq = 751.6 Npnts = 182 Sqrt(X^2/N) = 2.03216 Fitted range = [6,187] = 0.01404 < Q < 0.4578

NOTE: The SANS data for RsC₁ in D₂O with d6-acetone (SLD $6.3 \times 10^{-6} \text{ Å}^{-2}$) fits to the Schulz sphere model with $\chi^2 = 2.0$. The χ^2 value is low but the polydispersity is a little higher. However, the error bars on the parameters are low.

4) Bimodal Schulz sphere fit results for RsC₁ in D₂O/d6-acetone solvent

Figure 5. SANS Smeared bimodal Schulz sphere fitting for RsC_1 in a solvent with SLD of $6.3x10^{-6}$ Å⁻²

volume fraction(1)	0.00317392	±	0.00017386
Radius (1) (Å)	7.16258	±	0.028233
polydispersity(1)	0.2	±	0.000772398
SLD(1) (Å^-2)	2.11e-06	±	0
volume fraction(2)	0.00211357	±	7.91294e-05
Radius (2)	10.2	±	0.0564399
polydispersity(2)	0.2	±	0.00203875
SLD(2)	2.11e-06	±	0
SLD (solvent)	6.3e-06	±	0
background (cm-1 sr-1)	0.00123961	±	0.000121532

chisq = 438.747 Npnts = 182 Sqrt(χ^2/N) = 1.55264 Fitted range = [6,187] = 0.01404 < Q < 0.4578

NOTE: The SANS data for RsC₁ in D₂O with d6-acetone (SLD $6.3 \times 10^{-6} \text{ Å}^{-2}$) fits well to the Schulz sphere model with $\chi^2 = 1.6$. The χ^2 value is small with small the error bars on the parameters and give a good representation of the data.

5) Bimodal Schulz sphere fit results for RsC1 in D2O/d6-acetone/h6-acetone solvent

Figure 6. SANS Smeared bimodal Schulz sphere fitting for RsC_1 in a solvent with SLD of $5.0x10^{-6}$ Å⁻²

volume fraction(1)	0.0169962	±	0.000325926
Radius (1) (Å)	9.9855	±	0.00535286
polydispersity(1)	0.192959	±	7.65902e-05
SLD(1) (Å^-2)	2.11e-06	±	0
volume fraction(2)	0.0438748	±	0.000867433
Radius (2)	6.99957	±	0.00610695
polydispersity(2)	0.198993	±	0.000135316
SLD(2)	2.11e-06	±	0
SLD (solvent)	5e-06	±	0
background (cm-1 sr-1)	0.00719799	±	0.000305478

chisq = 1516.38 Npnts = 188 Sqrt(χ^2/N) = 2.84004 Fitted range = [0,187] = 0.008936 < Q < 0.4578

NOTE: The SANS data for RsC₁ for D₂O withd6/ h6-acetone (SLD 5.0x10⁻⁶ Å⁻²) fits well to the bimodal Schulz sphere model with $\chi^2 = 2.8$. The χ^2 value is fine with small error bars on the parameters and gives a reasonable representation of the data.

Figure 7. SANS Smeared Schulz sphere fitting for RsC1 in a solvent with SLD of 5.0x10⁻⁶ Å⁻²

Volume Fraction (scale)	0.0762006	±	0.000205149
mean radius (Å)	7.3307	±	0.00227844
polydisp (sig/avg)	0.200824	±	0.000120436
SLD sphere (Å^-2)	2.11e-06	±	0
SLD solvent (Å^-2)	5e-06	±	0
bkg (cm-1 sr-1)	-0.000389152	±	0.000196865

chisq = 3429.76

Npnts = 188 Sqrt(χ^2/N) = 4.27123 Fitted range = [0,187] = 0.008936 < Q < 0.4578

NOTE: The SANS data for RsC₁ for D₂O with d6/h6-acetone (SLD 5.0x10⁻⁶ Å⁻²) fits to the Schulz sphere model with $\chi^2 = 4.3$. The χ^2 value is higher than the bimodal Schulz sphere fit. Therefore, the bimodal fit gives a better representation of the data.

Figure 8. SANS Smeared Schulz sphere fitting for solvent with SLD of $3.7 \times 10^{-6} \text{ Å}^{-2}$

Volume Fraction (scale)	0.514398	±	0.0011891
mean radius (Å)	$6.4098 \pm$	0.0	0119736
polydisp (sig/avg)	0.201238	±	3.60556e-05
SLD sphere (Å^-2)	2.11e-06	±	0
SLD solvent (Å^-2)	3.7e-06	±	0
bkg (cm-1 sr-1)	-0.00192676	±	0.000265317

chisq = 826.648

Npnts = 188 Sqrt(X^2/N) = 2.09692 Fitted range = [0,187] = 0.008936 < Q < 0.4578

NOTE: The SANS data for D₂O with h6-acetone (SLD $3.7 \times 10^{-6} \text{ Å}^{-2}$) fits well to the Schulz sphere model with $\chi^2 = 2.1$. The χ^2 value is fine with small error bars on the parameters and gives a reasonable representation of the data.

8) Schulz sphere fit results for D₂O/d6-acetone solvent

Figure 9. SANS Smeared Schulz sphere fitting for solvent with SLD of $6.3 \times 10^{-6} \text{ Å}^{-2}$

Volume Fraction (scale)	0.00179017	±	3.81739e-05
mean radius (A)	6.98313	±	0.0150534
polydisp (sig/avg)	0.199408	±	0.000459761
SLD sphere (A-2)	2.11e-06	±	0
SLD solvent (A-2)	6.3e-06	±	0
bkg (cm-1 sr-1)	0.000253573	±	7.0095e-05

chisq = 252.689

Npnts = 188 Sqrt(X^2/N) = 1.15935 Fitted range = [0,187] = 0.008936 < Q < 0.4578

NOTE: The SANS data for D₂O with d6-acetone (SLD $3.7 \times 10^{-6} \text{ Å}^{-2}$) fits well to the Schulz sphere model with $\chi^2 = 1.2$. The χ^2 value is good with small error bars on the parameters and gives a reasonable representation of the data.

9) Schulz sphere fit results for D₂O/d6-acetone/h6-acetone solvent

Figure 10. SANS Smeared Schulz sphere fitting for solvent with SLD of 5.0x10⁻⁶ Å⁻²

Volume Fraction (scale)	0.0985031	±	0.00037264
mean radius (A)	5.89853	±	0.000611643
polydisp (sig/avg)	0.129994	±	9.86534e-06
SLD sphere (A-2)	2.11e-06	±	0
SLD solvent (A-2)	5e-06	±	0
bkg (cm-1 sr-1)	-0.00895711	±	0.000198135

chisq = 375.4 Npnts = 188 Sqrt(X^2/N) = 1.41308 Fitted range = [0,187] = 0.008936 < Q < 0.4578

NOTE: The SANS data for D₂O with d6/h6-acetone (SLD 5.0x10⁻⁶ Å⁻²) fits well to the Schulz sphere model with $\chi^2 = 1.40$. The χ^2 value is good with small error bars on the parameters and gives a reasonable representation of the data.

10) Bimodal Schulz sphere fit results for insulin in D₂O/d6-acetone solvent

Figure 11. SANS Smeared bimodal Schulz sphere fitting for insulin in a solvent with SLD of 6.3×10^{-6} Å⁻²

volume fraction(1)	0.000800676	±	6.31943e-05
Radius (1) (Å)	$10.6801 \pm$	0.9	09249
polydispersity(1)	$0.2 \pm$	0.0	477876
SLD(1) (Å^-2)	1.54e-06	±	0
volume fraction(2)	0.000897045	±	4.43761e-05
Radius (2)	25.0012±	0.928568	
polydispersity(2)	0.200078	±	0.0193765
SLD(2)	1.54e-06	±	0
SLD (solvent)	$6.3e-06 \pm$	0	
background (cm-1 sr-1)	0.00165025	±	0.000126041

chisq = 1519.05 Npnts = 169 Sqrt(χ^2/N) = 2.99808 Fitted range = [19,187] = 0.0251 < Q < 0.4578

NOTE: The SANS data for insulin in D₂O with d6-acetone (SLD $6.3 \times 10^{-6} \text{ Å}^{-2}$) fits well to the bimodal Schulz sphere model with $\chi^2 = 3.0$. The χ^2 value is fine with small error bars on the parameters and gives a reasonable representation of the data.

11) Bimodal Schulz sphere fit results for insulin in D₂O/d6-acetone/h6-acetone solvent

Figure 12. SANS Smeared bimodal Schulz sphere fitting for insulin in a solvent with SLD of 5.0×10^{-6} Å⁻²

volume fraction(1)	0.00126557	±	7.71984e-05
Radius (1) (A)	$10.1235 \pm$	0.1	76015
polydispersity(1)	0.113143	±	0.0018584
SLD(1) (A^-2)	1.54e-06	±	0
volume fraction(2)	0.000208089	±	2.35004e-05
Radius (2)	$28.0404 \pm$	3.5	1929
polydispersity(2)	0.2 ±	0.0	724347
SLD(2)	1.54e-06	±	0
SLD (solvent)	5e-06 ±	0	
background (cm-1 sr-1)	0.00129761	±	8.77663e-05

chisq = 356.65

Npnts = 162 Sqrt(X^2/N) = 1.48376Fitted range = [13,174] = 0.019997 < Q < 0.51793

NOTE: The SANS data for insulin in D₂O with d6-acetone/h6-acetone (SLD $5.0 \times 10^{-6} \text{ Å}^{-2}$) fits well to the bimodal Schulz sphere model with $\chi^2 = 1.5$. The χ^2 value is fine with small error bars on the parameters and gives a reasonable representation of the data. The radius value of 28.0 Å ± 3 Å agrees well with 25 Å species of pure deuterated insulin sample E.

12) Bimodal Schulz sphere fit results for insulin in D₂O/h6-acetone solvent

Figure 13. SANS Smeared bimodal Schulz sphere fitting for insulin in a solvent with SLD of 3.7×10^{-6} Å⁻²

volume fraction(1)	0.00123037	±	0.00024338
Radius (1) (A)	$10.9502 \pm$	0.0	0201098
polydispersity(1)	0.0593514	±	7.99332e-05
SLD(1) (A^-2)	1.54e-06	±	0
volume fraction(2)	0.000246417	±	5.81943e-05
Radius (2)	$24.9505 \pm$	2.0)1593
polydispersity(2)	0.190133	±	0.00747531
SLD(2)	1.54e-06	±	0
SLD (solvent)	3.37e-06	±	0
background (cm-1 sr-1)	0.00137975	±	0.000100033

chisq = 832.729Npnts = 175 Sqrt(X^2/N) = 2.18139Fitted range = [0,174] = 0.0089374 < Q < 0.51793

NOTE: The SANS data for insulin in D₂O with d6-acetone (SLD $3.7 \times 10^{-6} \text{ Å}^{-2}$) fits well to the bimodal Schulz sphere model with $\chi^2 = 2.2$. The χ^2 value is fine with small error bars on the parameters and gives a reasonable representation of the data. The radius value of 24.9 Å ± 2 Å agrees well with 25 Å species of pure deuterated insulin sample E.

13) Bimodal Schulz sphere fit results for RsC1 with insulin in D2O/h6-acetone solvent

Figure 14. SANS Smeared bimodal Schulz sphere fitting for RsC_1 with insulin in a solvent with SLD of $3.7x10^{-6}$ Å⁻²

volume fraction(1)	0.410847	±	0.00191969
Radius (1) (Å)	$7.0008 \pm$	0.0	00126996
polydispersity(1)	0.199932	±	3.13124e-05
SLD(1) (Å^-2)	2.11e-06	±	0
volume fraction(2)	0.0201735	±	0.000400964
Radius (2)	16.2904±	0.1	114009
polydispersity(2)	0.198779	±	0.00129361
SLD(2)	2.03e-06	±	0
SLD (solvent)	$3.7e-06 \pm$	0	
background (cm-1 sr-1)	-0.000627838	±	0.000297076

chisq = 491.705 Npnts = 188 Sqrt(χ^2/N) = 1.61724 Fitted range = [0,187] = 0.008936 < Q < 0.4578

NOTE: The SANS data for insulin+octameric RsC₁ in D₂O with h6-acetone (SLD $3.7 \times 10^{-6} \text{ Å}^{-2}$) fits well to the bimodal Schulz sphere model with $\chi^2 = 1.6$. The χ^2 value is good with small error bars on the parameters and gives a reasonable representation of the data.

14) Bimodal Schulz sphere fit results for RsC1 with insulin in D2O/d6-acetone solvent

Figure 15. SANS Smeared bimodal Schulz sphere fitting for RsC_1 with insulin in a solvent with SLD of $6.3x10^{-6}$ Å⁻²

volume fraction(1)	0.00831521	±	9.80527e-05
Radius (1) (A)	$6.84996 \pm$	0.0	0698206
polydispersity(1)	0.101857	±	0.000117753
SLD(1) (A^-2)	2.11e-06	±	0
volume fraction(2)	0.000959888	±	9.73064e-06
Radius (2)	$16.3505 \pm$	0.0	169858
polydispersity(2)	0.0098698	±	6.49497e-06
SLD(2)	2.03e-06	±	0
SLD (solvent)	6.3e-06 ±	0	
background (cm-1 sr-1)	-0.00150767	±	0.000107212

chisq = 629.482Npnts = 175 Sqrt(X^2/N) = 1.89659Fitted range = [13,187] = 0.02 < Q < 0.4578

NOTE: The SANS data for insulin + octameric RsC₁ for D₂O with d6-acetone (SLD $6.3 \times 10^{-6} \text{ Å}^{-2}$) fits well to the bimodal Schulz sphere model with $\chi^2 = 1.9$. The χ^2 value is good with small error bars on the parameters and gives a reasonable representation of the data.

15) Bimodal Schulz sphere fit results for RsC1 with insulin in D2O/h6-acetone/d6-acetone solvent

Figure 16. SANS Smeared bimodal Schulz sphere fitting for RsC₁ with insulin in a solvent with SLD of 5.0x10⁻⁶ Å⁻²

volume fraction(1)	0.071979	±	0.000441769
Radius (1) (A)	$6.99879 \pm$	0.0	000449895
polydispersity(1)	0.100019	±	4.4619e-06
SLD(1) (A^-2)	2.11e-06	±	0
volume fraction(2)	0.00400791	±	6.18437e-05
Radius (2)	$16.4673 \pm$	0.0	0713023
polydispersity(2)	$0.10205 \pm$	0.0	000454781
SLD(2)	2.03e-06	±	0
SLD (solvent)	5e-06 ±	0	
background (cm-1 sr-1)	-0.00401367	±	0.000227834

chisq = 380.063Npnts = 185 Sqrt(X^2/N) = 1.43332Fitted range = [3,187] = 0.01149 < Q < 0.4578

NOTE: The SANS data for insulin + octameric RsC₁ in D₂O withd6/ h6-acetone (SLD 5.0x10⁻⁶ Å⁻²) fits well to the bimodal Schulz sphere model with $\chi^2 = 1.4$. The χ^2 value is good with small error bars on the parameters and gives a reasonable representation of the data.