One-pot synthesis of 4-substituted isoquinolinium zwitterionic salts

by Metal-free C-H bond activation

Hong Hou, Yuan Zhang, Chao-Guo Yan*,

[*] Prof. Dr. C. G. Yan, H. Hou, Y. Zhang

College of Chemistry & Chemical Engineering

Yangzhou University

Yangzhou 225002

E-mail: cgyan@yzu.edu.cn

Supporting Information

List of Contents

Experiment procedure	1
Crystal data of 4a, 4j, F	2-3
Characterization data:	
4a-4s	4-9
5a-5f	
¹ H NMR and ¹³ C NMR spectra	12-36

Experiment Procedure

Reagents and solvents were commercial available with analytical grade. Melting points were determined on a hot-plate microscope apparatus and were uncorrected. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminium plates with GF-254 indicator, visualized by irradiation with UV light. IR spectra were obtained on a Bruker Tensor27 spectrometer (KBr disc). ¹H NMR and ¹³C NMR spectra were measured with a Bruker AV-600 spectrover in DMSO-*d*₆ with chemical shift (δ) given in ppm relative to TMS as interstandard [(s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (Hz)]. High-resolution mass (ESI) were obtained with a Bruker MicroTOF spectrometer. X-ray data were collected on a Bruker Smart APEX-2 CCD diffractometer.

General procedure

One-pot reaction for the synthesis of 4a-4s, 5a-5f.

Isoquinoline (3.0 mmol, 0.388 g) and benzyl bromide (2.2mmol) were stirred in ethanol (10 mL) at 50 $^{\circ}$ C for about three hours. Aromatic aldehyde **3** (2.0 mmol) and 1,3-dicarbonyl compound **4** (2.0 mmol) and triethylamine (3.0 mmol, 0.303 g) were then added to the solution, and the mixture was stirred at reflux for overnight (TLC monitoring). The resulting precipitates were collected by filtration, washed with alcohol and chloroform and dried to give the corresponding product **4a-4s**, **5a-5f**.

Reaction of isoquinoline and *p*-nitrobenzyl bromide yields the dimer of the isoquinoline ylide (F).

Isoquinoline (3.0 mmol, 0.388 g) and *p*-nitrobenzyl bromide (2.2mmol) were stirred in ethanol (10 mL) at 50 °C for about three hours. Triethylamine (3.0 mmol, 0.303 g) were then added to the solution, and the mixture was stirred at reflux for one hour (TLC monitoring). The resulting precipitates were collected by filtration, washed with alcohol and dried to give the corresponding product **F**.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Crystal Data:

Fig. 1 X-ray structure of 4a

Crystal data for **4a**: C₃₂H₃₀N₂O₄, Mr = 506.58, monoclinic, $\alpha = 9.822(3)$ Å, b = 12.203(4) Å, c = 12.763(4) Å, U = 1476.6(8) Å³, T = 296(2) K, space group P -1, Z = 2, 12504 reflections measured, 6409 unique ($R_{int} = 0.0671$) which were used in all calculations. The final w*R* (F²) was 0.2677 (all data). CCDC 856821.

Fig. 2 X-ray structure of 4j

Crystal data for **4j**: C₂₉H₂₃ClN₂O₆, Mr = 530.94, monoclinic, $\alpha = 14.6580(19)$ Å, b = 10.0334(13) Å, c = 22.667(3) Å, U = 3323.5(7) Å³, T = 296(2) K, space group *P* 21/c, Z = 4, 28869 reflections measured, 7785 unique ($R_{int} = 0.0468$) which were used in all calculations. The final w*R* (F^2) was 0.1016 (all data). CCDC 856822.

Fig 3 X-ray structure of F

Crystal data for **F**: C₃₂H₂₆N₄O₄, Mr = 530.57, orthorhombic, $\alpha = 24.754(4)$ Å, b = 7.9738(13) Å, c = 13.336(2) Å, U = 2632.4(7) Å³, T = 296(2) K, space group *P* n a 21, Z = 4, 22296 reflections measured, 3162 unique ($R_{int} = 0.1396$) which were used in all calculations. The final w*R* (F^2) was 0.1396 (all data) CCDC 856823.

Characterization data of the 4a-4s:

4,4-dimethyl-1-((2-(4-nitrobenzyl)isoquinolinium-4-yl)(p-tolyl)methyl)-2,6-dioxoc yclohexan-1-ide (4a): Yellow solid, yield: 70%, m.p. 208-210 °C, IR (KBr) v = 3047, 2959, 2867, 1638, 1606, 1522, 1479, 1431, 1401, 1346, 1051, 995, 795 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.91 (s, 1H, ArH), 8.41 (d, *J* = 8.5 Hz, 2H, ArH), 8.20 (d, *J* = 8.5 Hz, 2H, ArH), 8.14 (t, *J* = 7.5 Hz, 1H, ArH), 7.99-7.96 (m, 2H, ArH), 7.62 (d, *J* = 8.5 Hz, 2H, ArH), 7.08 (d, *J* = 7.8 Hz, 2H, ArH), 6.98 (d, *J* = 7.8 Hz, 2H, ArH), 6.29 (s, 1H, CH), 6.09 (d, *J* = 13.0 Hz, 1H, CH), 6.05 (d, *J* = 13.0 Hz, 1H, CH), 2.23 (s, 3H, CH₃), 1.99 (d, *J* = 15.9 Hz, 2H, CH₂), 1.92 (d, *J* = 15.9 Hz, 2H, CH₂), 0.81 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 147.5, 146.3, 144.9, 141.6, 138.9, 136.6, 136.0, 135.5, 134.6, 130.6, 130.4, 129.6, 129.1, 128.4, 126.9, 124.5, 123.9, 110.6, 62.0, 49.4, 44.6, 31.2, 28.5, 20.6; MS (*m*/*z*): 505.47 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₂H₂₉N₂O₄ ([M-H]⁻): 505.2127. Found: 505.2129.

1-((4-methoxyphenyl)(2-(4-nitrobenzyl)isoquinolinium-4-yl)methyl)-4,4-dimethyl -2,6-dioxocyclohexan-1-ide (4b): Yellow solid, yield: 76%, m.p. 196-198 °C, IR (KBr) v = 3418, 2951, 1639, 1607, 1479, 1401, 1347, 1245, 1178, 1145, 1029, 839, 796, 759 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.79 (s, 1H, ArH), 8.52 (d, *J* = 8.7 Hz, 1H, ArH), 8.35 (d, *J* = 8.3 Hz, 1H, ArH), 8.21 (d, *J* = 8.5Hz, 2H, ArH), 8.11 (t, *J* = 7.7Hz, 1H, ArH), 8.00 (s, 1H, ArH), 7.94 (t, *J* = 7.6 Hz, 1H, ArH), 7.65 (d, *J* = 8.5 Hz, 2H, ArH), 7.15 (d, *J* = 8.4 Hz, 2H, ArH), 6.74 (d, *J* = 8.4 Hz, 2H, ArH), 6.30 (s, 1H, CH), 6.07 (d, *J* = 15.0 Hz, 1H, CH), 6.01 (d, *J* = 15.0 Hz, 1H, CH), 3.70 (s, 3H, OCH₃), 1.93 (d, *J* = 15.7 Hz, 2H, CH₂), 1.84 (d, *J* = 15.7 Hz, 2H, CH₂), 0.81 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 157.3, 147.5, 145.5, 141.7, 136.7, 135.8, 135.7, 134.4, 130.4, 130.3, 130.2, 129.6, 126.9, 124.8, 123.9, 123.0, 65.0, 55.9, 54.8, 50.4, 31.1, 28.7, 18.5; MS (*m*/*z*): 521.33 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₂H₂₉N₂O₅([M-H]⁻): 521.2076. Found: 521.2080.

1-((4-isopropylphenyl)(2-(4-nitrobenzyl)isoquinolinium-4-yl)methyl)-4,4-dimethy 1-2,6-dioxocyclohexan-1-ide (4c): Yellow solid, yield: 71%, m.p. 220-222 °C, IR (KBr) v = 3413, 2956, 1638, 1605, 1480, 1399, 1347, 1264, 1144, 1053, 841, 793, 736 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.81 (s, 1H, ArH), 8.54 (d, *J* = 8.7 Hz, 1H, ArH), 8.38 (d, *J* = 8.3 Hz, 1H, ArH), 8.20 (d, *J* = 8.7 Hz, 2H, ArH), 8.13 (t, *J* = 7.6 Hz, 1H, ArH), 8.00 (s, 1H, ArH), 7.95 (t, *J* = 7.6 Hz, 1H, ArH), 7.63 (d, *J* = 8.6 Hz, 2H, ArH), 7.09 (d, *J* = 8.0 Hz, 2H, ArH), 7.00 (d, *J* = 8.0 Hz, 2H, ArH), 6.32 (s, 1H, CH), 6.06 (d, *J* = 15.1 Hz, 1H, CH), 6.02 (d, *J* = 15.1 Hz, 1H, CH), 2.82-2.76 (m, 1H, CH), 1.93 (d, *J* = 15.7 Hz, 2H, CH₂), 1.85 (d, *J* = 15.7 Hz, 2H, CH₂), 1.85-1.14 (m, 6H, CH₃), 0.82 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 147.5, 145.7, 145.4, 141.6, 139.8, 136.8, 135.9, 135.7, 130.4, 130.3, 129.7, 129.1, 126.9, 125.4, 124.8, 123.9, 62.1, 50.3, 32.9, 31.1, 28.7, 23.9, 23.8; MS (*m*/*z*): 533.440 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₄H₃₃N₂O₄ ([M-H]⁻): 533.2440. Found: 533.2446.

1-((4-tert-butylphenyl)(2-(4-nitrobenzyl)isoquinolinium-4-yl)methyl)-4,4-dimethy 1-2,6-dioxocyclohexan-1-ide (4d): Yellow solid, yield: 55%, m.p. 220 °C, IR (KBr) v = 3442, 2959, 1638, 1606, 1521, 1476, 1431, 1402, 1345, 1266, 1172, 1145, 854, 794, 760, 735 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.82 (s, 1H, ArH), 8.57 (d, *J* = 8.7 Hz, 1H, ArH), 8.38 (d, *J* = 8.3 Hz, 1H, ArH), 8.21 (d, *J* = 8.3 Hz, 2H, ArH), 8.12 (t, *J* = 7.5 Hz, 1H, ArH), 8.00 (s, 1H, ArH), 7.96 (t, *J* = 7.6 Hz, 1H, ArH), 7.63 (d, *J* = 8.4 Hz, 2H, ArH), 7.13 (d, *J* = 8.1 Hz, 2H, ArH), 7.08 (d, *J* = 8.1 Hz, 2H, ArH), 6.32 (s, 1H, CH), 6.05 (d, *J* = 15.0 Hz, 1H, CH), 6.01 (d, *J* = 15.0 Hz, 1H, CH), 1.94 (d, *J* = 15.7 Hz, 2H, CH₂), 1.85 (d, *J* = 15.7 Hz, 2H, CH₂), 1.23 (s, 9H, CH₃), 0.82 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 188.0, 147.6, 147.5, 145.7, 145.5, 141.4, 139.3, 136.7, 135.9, 135.6, 130.5, 130.3, 129.8, 128.8, 126.9, 124.7, 124.3, 123.9, 109.6, 62.1, 56.0, 50.2, 38.8, 33.8, 31.1, 31.0, 28.7, 18.4; MS (*m*/*z*): 547.477 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₅H₃₅N₂O₄ ([M-H]⁻): 547.2597. Found: 547.2601.

1-((3-chlorophenyl)(2-(4-nitrobenzyl)isoquinolinium-4-yl)methyl)-4,4-dimethyl-2, 6-dioxocyclohexan-1-ide (4e): Yellow solid, yield: 60%, m.p. 218 °C, IR (KBr) v =3443, 3004, 2945, 1637, 1603, 1567, 1522, 1398, 1345, 1288, 1194, 1145, 1045, 998, 792 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.84 (s, 1H, ArH), 8.53 (d, *J* = 8.7 Hz, 1H, ArH), 8.38 (d, *J* = 8.3 Hz, 1H, ArH), 8.22 (d, *J* = 8.7 Hz, 2H, ArH), 8.13 (t, *J* = 7.7 Hz, 1H, ArH), 8.09 (s, 1H, ArH), 7.96 (t, *J* = 7.6 Hz, 1H, ArH), 7.67 (d, *J* = 8.6 Hz, 2H, ArH), 7.23-7.14 (m, 4H, ArH), 6.37 (s, 1H, CH), 6.09 (d, *J* = 14.9 Hz, 1H, CH), 6.04 (d, *J* = 14.9 Hz, 1H, CH), 1.94 (d, *J* = 15.7 Hz, 2H, CH₂), 1.87 (d, *J* = 15.7 Hz, 2H, CH₂), 0.81 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 147.6, 145.9, 145.6, 144.7, 141.7, 136.7, 135.9, 135.6, 132.4, 130.5, 130.4, 129.7, 129.4, 129.1, 127.9, 126.9, 125.5, 124.8, 123.9, 108.7, 62.0, 50.4, 31.2, 28.7; MS (*m*/*z*): 525.40 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₁H₂₆ClN₂O₄ ([M-H]⁻): 525.1581. Found: 525.1577.

1-((4-fluorophenyl)(2-(4-nitrobenzyl)isoquinolinium-4-yl)methyl)-4,4-dimethyl-2, 6-dioxocyclohexan-1-ide (4f): Yellow solid, yield: 59%, m.p. 242-244 °C, IR (KBr) v = 3428, 2946, 1637, 1603, 1476, 1397, 1344, 1265, 855, 798, 764 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.80 (s, 1H, ArH), 8.52 (d, J = 8.7 Hz, 1H, ArH), 8.37 (d, J = 8.3 Hz, 1H, ArH), 8.22 (d, J = 8.3 Hz, 2H, ArH), 8.13 (t, J = 7.8 Hz, 1H, ArH), 8.03 (s, 1H, ArH), 7.95 (t, J = 7.6 Hz, 1H, ArH), 7.66 (d, J = 8.3 Hz, 2H, ArH), 7.26 (t, J = 6.6 Hz, 2H, ArH), 7.00 (t, J = 8.5 Hz, 2H, ArH), 6.35 (s, 1H, CH), 6.12 (d, J = 15.0 Hz, 1H, CH), 6.04 (d, J = 15.0 Hz, 1H, CH), 1.94 (d, J = 15.7 Hz, 2H, CH₂), 1.85 (d, J = 15.7 Hz, 2H, CH₂), 0.81 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ(ppm): 187.2, 160.6 (d, J = 241.3 Hz), 147.6, 145.6, 141.8, 138.9, 136.7, 135.7 (d, J= 3.4 Hz), 131.2 (d, J = 7.6 Hz), 130.3 (d, J = 7.6 Hz), 129.6, 127.0, 124.9, 123.9, 114.2 (d, J = 20.7 Hz), 109.4, 62.0, 50.6, 31.1, 28.8; MS (*m*/*z*): 509.40 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₁H₂₆FN₂O₄ ([M-H]⁻): 509.1877. Found: 509.1874.

4,4-dimethyl-1-((2-(4-nitrobenzyl)isoquinolinium-4-yl)(phenyl)methyl)-2,6-dioxoc yclohexan-1-ide (4g): Yellow solid, yield: 81%, m.p. 219-221 °C, IR (KBr) v = 3441, 2992, 1638, 1577, 1521, 1435, 1392, 1344, 1258, 1107, 796 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.91 (s, 1H, ArH), 8.59 (d, J = 8.7 Hz, 1H, ArH), 8.44 (d, J = 8.3 Hz, 1H, ArH), 8.24 (t, J = 7.8 Hz, 1H, ArH), 8.20 (d, J = 8.5 Hz, 2H, ArH), 8.02 (t, J = 7.7 Hz, 1H, ArH), 7.95 (s, 1H, ArH), 7.62 (d, J = 8.4 Hz, 2H, ArH), 7.29 (d, J = 7.6 Hz, 2H, ArH), 7.25 (t, J = 7.4 Hz, 2H, ArH), 7.18 (t, J = 7.1 Hz, 1H, ArH), 6.14-6.03 (m, 3H, CH, CH₂), 1.36 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 164.7, 147.6, 146.8, 144.3, 142.2, 141.5, 136.7, 136.5, 135.4, 130.9, 130.5, 129.5, 129.0, 127.9, 127.2, 125.9, 124.5, 123.9, 99.4, 75.5, 62.2, 41.3, 25.9; MS (m/z): 495.27 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₂₉H₂₃N₂O₆ ([M-H]⁻): 495.1556. Found: 495.1561.

4,4-dimethyl-1-((2-(4-nitrobenzyl)isoquinolinium-4-yl)(p-tolyl)methyl)-2,6-dioxoc yclohexan-1-ide (4h): Yellow solid, yield: 73%, m.p. 222-224 °C, IR (KBr) v = 3442, 2990, 1639, 1580, 1525, 1437, 1388, 1343, 1256, 1212, 857, 797 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.89 (s, 1H, ArH), 8.58 (d, J = 8.7 Hz, 1H, ArH), 8.43 (d, J = 8.3 Hz, 1H, ArH), 8.24-8.19 (m, 3H, ArH), 8.00 (t, J = 7.7 Hz, 1H, ArH), 7.92 (s, 1H, ArH), 7.62 (d, J = 8.7 Hz, 2H, ArH), 7.16 (d, J = 8.0 Hz, 2H, ArH), 7.04 (d, J = 8.0 Hz, 2H, ArH), 6.10-1.01 (m, 3H, CH, CH₂), 2.26 (s, 3H, CH₃), 1.36 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 164.7, 147.6, 146.7, 144.5, 141.6, 139.2, 136.7, 136.4, 135.4, 134.8, 130.8, 130.5, 129.6, 128.9, 128.5, 127.1, 124.5, 123.8, 99.4, 75.6, 62.1, 40.9, 25.9, 20.6; MS (*m*/*z*): 509.33 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₀H₂₅N₂O₆ ([M-H]⁻): 509.1713. Found: 509.1730.

1-((4-methoxyphenyl)(2-(4-nitrobenzyl)isoquinolinium-4-yl)methyl)-4,4-dimethyl -2,6-dioxocyclohexan-1-ide (4i): Yellow solid, yield: 85%, m.p. 197-199 °C, IR (KBr) v = 3425, 2994, 1581, 1514, 1391, 1347, 1253, 1204, 927, 794, 750 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.80 (s, 1H, ArH), 8.50 (d, *J* = 8.7 Hz, 1H, ArH), 8.34 (d, *J* = 8.3 Hz, 1H, ArH), 8.15-8.10 (m, 3H, ArH), 7.92 (t, *J* = 7.6 Hz, 1H, ArH), 7.82 (s, 1H, ArH), 7.53 (d, *J* = 8.6 Hz, 2H, ArH), 7.12 (d, *J* = 8.5 Hz, 2H, ArH), 6.73 (d, *J* = 8.6 Hz, 2H, ArH), 6.00 (d, *J* = 16.0 Hz, 1H, CH), 5.94 (d, *J* = 16.0 Hz, 1H, CH), 5.90 (s, 1H, CH), 3.63 (s, 3H, OCH₃), 1.27 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 164.8, 157.6, 147.6, 146.7, 144.8, 141.6, 136.7, 136.4, 135.4, 133.9, 130.8, 130.5, 130.0, 129.6, 127.2, 124.5 123.8, 113.3, 99.4, 75.9, 62.1, 54.9, 40.6, 25.9; MS (*m*/*z*): 525.33 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₀H₂₅N₂O₇ ([M-H]⁻): 525.1662.

1-((4-chlorophenyl)(2-(4-nitrobenzyl)isoquinolinium-4-yl)methyl)-4,4-dimethyl-2, 6-dioxocyclohexan-1-ide (4j): Yellow solid, yield: 77%, m.p. 196-198 °C, IR (KBr) v = 3440, 2991, 1577, 1391, 1346, 1257, 1206, 1095, 1016, 919, 794, 751 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.92 (s, 1H, ArH), 8.55 (d, *J* = 8.7 Hz, 1H, ArH), 8.44 (d, *J* = 8.3 Hz, 1H, ArH), 8.24-8.20 (m, 3H, ArH), 8.01 (t, *J* = 7.7 Hz, 1H, ArH), 7.99 (s, 1H, ArH), 7.64 (d, *J* = 8.7 Hz, 2H, ArH), 7.32 (s, 4H, ArH), 6.12 (d, *J* = 15.0 Hz, 1H, CH), 6.07-6.04 (m, 2H, CH), 1.35 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 164.7, 147.6, 147.1, 143.7, 141.6, 141.3, 136.6, 136.5, 135.4, 130.9, 130.6, 130.5, 129.6, 127.8, 127.2, 124.4, 123.9, 99.4, 75.3, 62.1, 40.8, 25.9; MS (*m*/*z*): 529.33 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₂₉H₂₂ClN₂O₆ ([M-H]⁻): 529.1166. Found: 529.1167.

1-((3-chlorophenyl)(2-(4-nitrobenzyl)isoquinolinium-4-yl)methyl)-4,4-dimethyl-2, 6-dioxocyclohexan-1-ide (4k): Yellow solid, yield: 71%, m.p. 204-206 °C, IR (KBr) ν = 3447, 2990, 1639, 1578, 1521, 1390, 1347, 1258, 1201, 1112, 999, 791 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.94 (s, 1H, ArH), 8.55 (d, *J* = 8.7 Hz, 1H, ArH), 8.45 (d, *J* = 8.3 Hz, 1H, ArH), 8.23 (t, *J* = 8.2 Hz, 1H, ArH), 8.22 (d, *J* = 8.8 Hz, 2H, ArH), 8.02 (t, *J* = 7.7 Hz, 1H, ArH), 7.98 (s, 1H, ArH), 7.64 (d, *J* = 8.7 Hz, 2H, ArH), 7.30-7.22 (m, 4H, ArH), 6.13-6.03 (m, 3H, CH, CH₂), 1.35 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ(ppm): 164.7, 152.2, 147.2, 142.8, 136.5, 135.2, 132.7, 131.1, 130.5, 129.7, 129.6, 128.8, 127.7, 127.5, 127.4, 127.2, 126.0, 124.4, 123.9, 122.9, 99.5, 75.0, 62.1, 41.1, 25.9; MS (*m*/*z*): 529.33 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₂₉H₂₂ClN₂O₆ ([M-H]⁻): 529.1166. Found: 529.1167.

5-((2-(4-nitrobenzyl)isoquinolinium-4-yl)(phenyl)methyl)-2,4,6-trioxohexahydrop yrimidin-5-ide (4l): Yellow solid, yield: 88%, m.p. 297-299 °C, IR (KBr) v = 3429, 1686, 1569, 1523, 1448, 1378, 1347, 1201, 1172, 776 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.96 (s, 1H, ArH), 9.24 (s, 2H, NH), 8.68 (d, *J* = 8.7 Hz, 1H, ArH), 8.41 (d, *J* = 8.3 Hz, 1H, ArH), 8.21-8.17 (m, 4H, ArH), 7.99-7.95 (m, 1H, ArH), 7.68 (d, *J* = 8.6 Hz, 2H, ArH), 7.29 (d, *J* = 7.6 Hz, 2H, ArH), 7.22 (t, *J* = 7.4 Hz, 2H, ArH), 7.16 (t, *J* = 7.2 Hz, 1H, ArH), 6.25 (s, 1H, CH), 6.09 (d, *J* = 15.0 Hz, 1H, CH), 6.04 (d, *J* = 15.0 Hz, 1H, CH); ¹³C NMR (150 MHz, DMSO-*d*₆) δ(ppm): 163.9, 152.1, 147.6, 146.3, 143.8, 141.9, 141.7, 135.9, 136.4, 135.9, 130.7, 130.4, 129.6, 129.0, 127.8, 127.2, 125.8, 124.5, 123.9, 85.4, 62.2, 40.2, 35.7, 30.7; MS (*m*/z): 479.33 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₂₇H₁₉N₄O₅ ([M-H]⁻): 479.1355. Found: 479.1368.

5-((2-(4-nitrobenzyl)isoquinolinium-4-yl)(p-tolyl)methyl)-2,4,6-trioxohexahydrop yrimidin-5-ide (4m): Yellow solid, yield: 96%, m.p. 298-300 °C, IR (KBr) v = 3424, 1684, 1572, 1521, 1449, 1378, 1348, 1220, 1174, 791 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.84 (s, 1H, ArH), 9.22 (s, 1H, NH), 9.20 (s, 1H, NH), 8.67 (d, *J* = 8.7 Hz, 1H, ArH), 8.40 (d, *J* = 8.3 Hz, 1H, ArH), 8.20-8.15 (m, 4H, ArH), 7.97 (t, *J* = 7.6 Hz, 1H, ArH), 7.68 (d, *J* = 8.7 Hz, 2H, ArH), 7.16 (d, *J* = 7.9 Hz, 2H, ArH), 7.01 (d, *J* = 7.9 Hz, 2H, ArH), 6.19 (s, 1H, CH), 6.10 (d, *J* = 15.0 Hz, 1H, CH), 6.03 (d, *J* = 15.0 Hz, 1H, CH), 2.24 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 164.4, 152.6, 148.1, 146.7, 144.4, 142.2, 139.4, 137.5, 136.9, 136.4, 135.2, 131.2, 130.9, 130.2, 129.4, 128.9, 127.7, 124.9, 124.4, 86.0, 62.7, 40.6, 21.0; MS (*m*/z): 493.27 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₂₈H₂₁N₄O₅ ([M-H]⁻): 493.1512. Found: 493.1514.

5-((4-chlorophenyl)(2-(4-nitrobenzyl)isoquinolinium-4-yl)methyl)-2,4,6-trioxohex ahydropyrimidin-5-ide (4n): Yellow solid, yield: 96%, m.p. 289-291 °C, IR (KBr) v = 3426, 1686, 1572, 1523, 1488, 1449, 1380, 1349, 1221, 852 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm): 9.87 (s, 1H, ArH), 9.24 (s, 2H, NH), 8.67 (d, J = 8.7 Hz, 1H, ArH), 8.41 (d, J = 8.3 Hz, 1H, ArH), 8.22-8.17 (m, 4H, ArH), 7.98 (t, J = 7.6 Hz, 1H, ArH), 7.70 (d, J = 8.7 Hz, 2H, ArH), 7.32 (d, J = 8.5 Hz, 2H, ArH), 7.28 (d, J = 8.5 Hz, 2H, ArH), 6.23 (s, 1H, CH), 6.13 (d, J = 14.9 Hz, 1H, CH), 6.03 (d, J = 14.9 Hz, 1H, CH); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 164.1, 162.3, 152.1, 147.6, 146.5, 143.1, 141.7, 141.0, 136.9, 136.5, 135.9, 130.9, 130.8, 130.5, 130.4, 129.7, 127.7, 127.2, 124.4, 123.9, 85.2, 62.1, 35.7, 30.7; MS (m/z): 513.27 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₂₇H₁₈ClN₄O₅ ([M-H]⁻): 513.0966. Found: 513.0967.

5-((4-fluorophenyl)(2-(4-nitrobenzyl)isoquinolinium-4-yl)methyl)-2,4,6-trioxohex ahydropyrimidin-5-ide (4o): Yellow solid, yield: 90%, m.p. 263-265 °C, IR (KBr) v = 3422, 1686, 1572, 1521, 1447, 1377, 1220, 1159, 1047, 797 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.87 (s, 1H, ArH), 9.24 (s, 2H, NH), 8.66 (d, *J* = 8.7 Hz, 1H, ArH), 8.41 (d, *J* = 8.3 Hz, 1H, ArH), 8.22-8.16 (m, 4H, ArH), 7.98 (t, *J* = 7.6 Hz, 1H, ArH), 7.69 (d, *J* = 8.6 Hz, 2H, ArH), 7.33 (q, *J* = 8.0 Hz, 2H, ArH), 7.04 (t, *J* = 8.8 Hz, 2H, ArH), 6.23 (s, 1H, CH), 6.12 (d, *J* = 14.9 Hz, 1H, CH), 6.03 (d, *J* = 14.9 Hz, 1H, CH); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 164.0, 160.6 (d, *J* = 239.8 Hz), 152.1, 147.6, 146.4, 143.6, 141.7, 138.0 (d, *J* = 2.6 Hz), 136.9, 136.4, 135.8, 130.9 (d, *J* = 7.9 Hz), 130.7, 130.4, 129.6, 127.2, 124.4, 123.9, 114.4 (d, *J* = 21.0 Hz), 104.3, 85.6, 62.1; MS (*m*/*z*): 497.33 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₂₇H₁₈FN₄O₅ ([M-H]⁻): 497.1261. Found: 497.1259.

5-((2-(4-nitrobenzyl)isoquinolinium-4-yl)(3-nitrophenyl)methyl)-2,4,6-trioxohexa hydropyrimidin-5-ide (4p): Yellow solid, yield: 92%, m.p. 270-272 °C, IR (KBr) v =3419, 1681, 1573, 1525, 1449, 1379, 1349, 1251, 1171, 780 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.91 (s, 1H, ArH), 9.31 (s, 2H, NH), 8.70 (d, J = 8.7 Hz, 1H, ArH), 8.43 (d, J = 8.3 Hz, 1H, ArH), 8.24-8.18 (m, 4H, ArH), 8.08 (d, J = 8.0 Hz, 1H, ArH), 8.00 (t, J = 7.6 Hz, 1H, ArH), 7.95 (s, 1H, ArH), 7.73 (d, J = 7.7 Hz, 1H, ArH), 7.70 (d, J = 8.7 Hz, 2H, ArH), 7.55 (t, J = 7.9 Hz, 1H, ArH), 6.37 (s, 1H, CH), 6.11 (d, J = 14.8 Hz, 1H, CH), 6.03 (d, J = 14.9 Hz, 1H, CH); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 164.0, 162.3, 152.1, 147.7, 147.6, 146.9, 144.5, 142.6, 141.7, 136.5, 136.0, 135.7, 130.8, 130.5, 129.6, 129.2, 127.3, 124.5, 123.8, 121.1, 84.6, 62.1, 35.7, 30.7; MS (*m*/*z*): 524.33 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₂₇H₁₈N₅O₇ ([M-H]⁻): 524.1206. Found: 524.1205.

1,3-dimethyl-5-((2-(4-nitrobenzyl)isoquinolinium-4-yl)(phenyl)methyl)-2,4,6-trio xohexahydropyrimidin-5-ide (4q): Yellow solid, yield: 89%, m.p. 267-269 °C, IR (KBr) v = 3056, 2997, 1674, 1638, 1600, 1567, 1519, 1428, 1325, 1263, 1110, 997, 798 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6) δ (ppm): 9.89 (s, 1H, ArH), 8.63 (d, *J* = 8.6 Hz, 1H, ArH), 8.43 (d, *J* = 8.3 Hz, 1H, ArH), 8.22-8.20 (m, 4H, ArH), 7.98 (t, *J* = 7.5 Hz, 1H, ArH), 7.67 (d, *J* = 8.2Hz, 2H, ArH), 7.24-7.09 (m, 4H, ArH), 7.15 (t, *J* = 6.7 Hz, 1H, ArH), 6.36 (s, 1H, CH), 6.09 (q, *J* = 14.9 Hz, 2H, CH), 3.02 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 161.8, 152.8, 147.6, 146.5, 143.4, 141.9, 141.6, 136.9, 136.6, 136.0, 130.8, 130.4, 129.7, 128.9, 127.8, 127.2, 125.8, 124.3, 123.8, 85.6, 62.2, 40.9, 26.9; MS (*m*/*z*): 507.39 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₂₉H₂₃N₄O₅([M-H]⁻): 507.1668. Found: 507.1675.

1,3-dimethyl-5-((2-(4-nitrobenzyl)isoquinolinium-4-yl)(p-tolyl)methyl)-2,4,6-triox ohexahydropyrimidin-5-ide (4r): Yellow solid, yield: 92%, m.p. 284 °C, IR (KBr) v = 3007, 1670, 1638, 1575, 1518, 1429, 1305, 1265, 1111, 787 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.88 (s, 1H, ArH), 8.61 (d, *J* = 8.7 Hz, 1H, ArH), 8.42 (d, *J* = 8.3 Hz, 1H, ArH), 8.22-8.17 (m, 4H, ArH), 7.98 (t, *J* = 7.8 Hz, 1H, ArH), 7.67 (d, *J* = 8.4 Hz, 2H, ArH), 7.10 (d, *J* = 7.7 Hz, 2H, ArH), 7.00 (d, *J* = 7.7 Hz, 2H, ArH), 6.31 (s, 1H, CH), 6.12 (d, J = 15.0 Hz, 1H, CH), 6.05 (d, J = 14.9 Hz, 1H, CH), 3.01 (s, 6H, CH₃), 2.24 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 161.8, 152.8, 147.6, 146.4, 143.6, 141.6, 138.8, 136.9, 136.5, 136.0, 134.6, 130.8, 130.4, 129.8, 128.8, 128.4, 127.1, 124.2, 123.8, 85.8, 62.1, 55.9, 40.6, 26.9, 20.5, 18.5; MS (m/z): 521.39 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₀H₂₅N₄O₅ ([M-H]⁻): 521.1825. Found: 521.1833.

5-((4-chlorophenyl)(2-(4-nitrobenzyl)isoquinolinium-4-yl)methyl)-1,3-dimethyl-2, 4,6-trioxohexahydropyrimidin-5-ide (4s): Yellow solid, yield: 83%, m.p. 272-274 °C, IR (KBr) v = 2984, 1672, 1638, 1574, 152, 1430, 1346, 1304, 1181, 1090, 855, 779 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.90 (s, 1H, ArH), 8.60 (d, *J* = 8.6 Hz, 1H, ArH), 8.43 (d, *J* = 8.3 Hz, 1H, ArH), 8.23-8.19 (m, 4H, ArH), 7.99 (t, *J* = 7.6 Hz, 1H, ArH), 7.68 (d, *J* = 8.3 Hz, 2H, ArH), 7.26 (t, *J* = 9.7 Hz, 4H, ArH), 6.34 (s, 1H, CH), 6.14 (d, *J* = 14.8 Hz, 1H, CH), 6.07 (d, *J* = 14.8 Hz, 1H, CH), 3.02 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 161.8, 152.8, 147.6, 146.7, 142.9, 141.7, 141.0, 136.9, 136.6, 136.0, 130.8, 130.5, 130.4, 129.7, 127.7, 127.2, 124.3, 123.8, 85.4, 62.1, 40.5, 26.9; MS (*m*/*z*): 541.34 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₂₉H₂₂ClN₄O₅ ([M-H]⁻): 541.1279. Found: 541.1283. Characterization data of the 5a-5f:

5-((2-benzylisoquinolinium-4-yl)(p-tolyl)methyl)-2,2-dimethyl-4,6-dioxo-1,3-diox an-5-ide (5a): yellow solid, yield: 78%, m.p. 294 °C, IR (KBr) v = 3448, 2991, 1639, 1588, 1509, 1446, 1389, 1257, 1201, 1101, 792, 749 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.88 (s, 1H, ArH), 8.55 (d, *J* = 8.7 Hz, 1H, ArH), 8.43 (d, *J* = 8.3 Hz, 1H, ArH), 8.19 (t, *J* = 7.8 Hz, 1H, ArH), 8.00-7.97 (m, 2H, ArH), 7.38-7.35 (m, 5H, ArH), 7.16 (d, *J* = 7.9 Hz, 2H, ArH), 7.05 (d, *J* = 7.9 Hz, 2H, ArH), 6.00 (s, 1H, CH), 5.88 (d, *J* = 14.4 Hz, 1H, CH), 5.84 (d, *J* = 14.4 Hz, 1H, CH), 2.29 (s, 3H, CH₃), 1.36 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 164.7, 146.2, 144.3, 139.3, 136.6, 136.2, 135.4, 134.8, 134.4, 130.7, 130.4, 128.9, 128.8, 128.5, 128.3, 127.1, 99.3, 79.1, 75.7, 63.3, 40.9, 25.9, 20.6; MS (*m*/*z*): 464.40 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₀H₂₆NO₄([M-H]⁻): 464.1862. Found: 464.1872.

5-((2-benzylisoquinolinium-4-yl)(p-tolyl)methyl)-2,4,6-trioxohexahydropyrimidin -**5-ide (5b):** Yellow solid, yield: 89%, m.p.296-298 °C, IR (KBr) v = 3451, 2821, 1567, 1460, 1382, 1298, 1123, 881, 831, 792 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.84 (s, 1H, ArH), 9.01 (s, 2H, NH), 8.62 (d, *J* = 8.7 Hz, 1H, ArH), 8.41 (d, *J* = 8.3 Hz, 1H, ArH), 8.19 (s, 1H, ArH), 8.16 (t, *J* = 7.7 Hz, 1H, ArH), 7.97 (t, *J* = 7.7 Hz, 1H, ArH), 7.39-7.37 (m, 5H, ArH), 7.16 (d, *J* = 7.9 Hz, 2H, ArH), 7.03 (d, *J* = 7.9 Hz, 2H, ArH), 6.16 (s, 1H, CH), 5.89 (d, *J* = 14.4 Hz, 1H, CH), 5.83 (d, *J* = 14.3 Hz, 1H, CH), 2.28 (s, 3H, CH₃); The ¹³C NMR spectroscopy of product can't be obtained due to it's bad solubility. MS (*m/z*): 448.17 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₂₈H₂₂N₃O₃ ([M-H]⁻): 448.1661. Found: 448.1671.

5-((2-benzylisoquinolinium-4-yl)(p-tolyl)methyl)-1,3-dimethyl-2,4,6-trioxohexahy dropyrimidin-5-ide (5c): Yellow solid, yield: 70%, m.p. 306-308 °C, IR (KBr) v =3425, 3237, 1670, 1578, 1508, 1426, 1264, 1171, 1040, 797, 783, 760 cm⁻¹; ¹H NMR (600MHz, DMSO-*d*₆) δ (ppm): 9.87 (s, 1H, ArH), 8.58 (d, *J* = 8.7 Hz, 1H, ArH), 8.41 (d, *J* = 8.3Hz, 1H, ArH), 8.27 (s, 1H, ArH), 8.17 (t, *J* = 7.7 Hz, 1H, ArH), 7.96 (t, *J* = 7.6 Hz, 1H, ArH), 7.42-7.40 (m, 2H, ArH), 7.37-7.36 (m, 3H, ArH), 7.10 (d, *J* = 7.9 Hz, 2H, ArH), 7.02 (d, *J* = 7.9 Hz, 2H, ArH), 6.29 (s, 1H, CH), 5.91 (d, *J* = 14.3 Hz, 1H, CH), 5.85 (d, *J* = 14.3 Hz, 1H, CH), 3.02 (s, 6H, CH₃), 2.27 (s, 3H, CH₃); The ¹³C NMR spectroscopy of product can't be obtained due to it's bad solubility; MS (*m/z*): 476.13 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₀H₂₆N₃O₃ ([M-H]⁻): 476.1974. Found: 476.1985.

4,4-dimethyl-1-((2-(4-methylbenzyl)isoquinolinium-4-yl)(p-tolyl)methyl)-2,6-diox ocyclohexan-1-ide (5d): Yellow solid, yield: 64%, m.p. 246-248°C, IR (KBr) v =3461, 2951, 1638, 1608, 1567, 1477, 1398, 1268, 1172, 1147, 816, 790 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 9.29 (s, 1H, ArH), 8.63 (d, J = 8.0 Hz, 1H, ArH), 8.07 (d, J = 7.7 Hz, 1H, ArH), 8.00 (s, 1H, ArH), 7.95 (d, J = 7.7 Hz 1H, ArH), 7.70 (t, J = 7.6 Hz 1H, ArH), 7.13-7.08 (m, 6H, ArH), 6.98 (d, J = 7.6 Hz, 2H, ArH), 6.44 (s, 1H, CH), 5.56 (d, J = 14.0 Hz, 1H, CH), 5.37 (d, J = 14.0 Hz, 1H, CH), 2.31 (s, 3H, CH₃), 2.30 (s, 3H, CH₃), 2.21 (d, J = 16.2Hz, 2H, CH₂), 2.13 (d, J = 16.1Hz, 2H, CH₂), 0.94 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 140.1, 137.6, 136.2, 135.9, 135.6, 130.4, 130.2, 129.4, 129.1, 129.0, 128.9, 127.4, 125.9, 111.7, 64.1, 58.3, 40.7, 31.6, 28.8, 21.2, 21.0, 18.4; MS (*m/z*): 474.44 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₃H₃₂NO₂ ([M-H]⁻): 474.2433. Found: 474.2434.

4,4-dimethyl-1-((2-(4-methylbenzyl)isoquinolinium-4-yl)(p-tolyl)methyl)-2,6-diox ocyclohexan-1-ide (5e): Yellow solid, yield: 88%, m.p. 220-222 °C, IR (KBr) v =3451, 2987, 1584, 1511, 1440, 1386, 1257, 1206, 1168, 1097, 817, 790 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.88 (s, 1H, ArH), 8.50 (d, J = 8.6 Hz, 1H, ArH), 8.44 (d, J = 8.3 Hz, 1H, ArH), 8.19 (t, J = 7.6 Hz, 1H, ArH), 7.99-7.97 (m, 2H, ArH), 7.31-7.26 (m, 6H, ArH), 7.17 (d, J = 7.8 Hz, 2H, ArH), 6.02 (s, 1H, CH), 5.85 (d, J = 14.2 Hz, 1H, CH), 5.80 (d, J = 14.1 Hz, 1H, CH), 2.29 (s, 3H, CH₃), 1.35 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 164.7, 146.0, 144.2, 139.3, 138.4, 136.5, 136.1, 135.3, 134.7, 131.4, 130.7, 130.5, 129.4, 128.9, 128.5, 127.1, 124.4, 99.3, 75.6, 63.2, 41.0, 25.9, 20.7, 20.6; MS (*m*/*z*): 478.39 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₁H₂₈NO₄([M-H]⁻): 478.2018. Found: 478.2021.

1-((4-chlorophenyl)(2-(4-methylbenzyl)isoquinolinium-4-yl)methyl)-4,4-dimethyl -2,6-dioxocyclohexan-1-ide (5f): Yellow solid, yield: 81%, m.p. 226-228 °C, IR (KBr) v = 3450, 2987, 1639, 1582, 1492, 1287, 1257, 1203, 1170, 1093, 917, 793 cm⁻¹; ¹HNMR (600 MHz, DMSO-*d* $₆) <math>\delta$ (ppm): 9.88 (s, 1H, ArH), 8.50 (d, *J* = 8.6 Hz, 1H, ArH), 8.44 (d, *J* = 8.3 Hz, 1H, ArH), 8.19 (t, *J* = 7.6 Hz, 1H, ArH), 7.99-7.97 (m, 2H, ArH), 7.31-7.26 (m, 6H, ArH), 7.17 (d, *J* = 7.8 Hz, 2H, ArH), 6.02 (s, 1H, CH), 5.85 (d, *J* = 14.2 Hz, 1H, CH), 5.80 (d, *J* = 14.1 Hz, 1H, CH), 2.29 (s, 3H, CH₃), 1.35 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 164.6, 146.3, 143.4, 141.5, 138.5, 136.4, 136.2, 135.1, 131.4, 130.8, 130.7, 130.5, 129.5, 128.5, 127.8, 127.1, 124.4, 90.4, 75.3, 63.1, 40.8, 25.9, 20.7; MS (*m*/*z*): 498.28 ([M-H]⁻, 100%); HRMS (ESI) Calcd. for C₃₀H₂₅ClNO₄ ([M-H]⁻): 498.1472. Found: 498.1456.

Т

150

ppm (t1)

Copies of NMR spectra of products

100

50

0

0

31

	Int	ermediate	А		Int	ermediate	te B		Int	ermediate	G	
C	-5.97055	0 575734	-0.43979	\sim	1 121929	-2.14956	-0.52544	C	-4.91156	-1.76287	-0.45341	
C	0	0.373734	8	C	4.431030	3	7	C	3	7	4	
C	-4.76277	1 237110	-0.46152	C	3 1//315	-1.67459	-0.78809	C	-3.78831	-1.26914	-1.08875	
C	2	1.23/110	6	C	5.144515	2	7	C	3	2	1	
C	-3.56128	0 546452	-0.13118	\sim	2 775220	-0.38359	0.411100	C	-3.00539	-0.24614	-0.49907	
C	0	0.340432	1	C	2.113229	0	-0.411100	C	2	9	8	
C	-3.64316	-0.83949	0 221/28	\sim	2 717044	0 161825	0 210605	C	-3.40272	0 266815	0 772662	
C	3	8	0.221420	C	5./1/944	0.404655	0.210003	C	1	0.200813	0.775002	
C	-4.89591	-1.48719	0 227270	C	5 006740	-0.02217	0 166250	C	-4.55585	-0.24645	1 400541	
U	4	9	0.237270	C	5.000749	1	0.400230	C	6	2	1.409341	
C	-6.04599	-0.79394	-0.08830		5 2(1200	-1.32259	0 107927	C	-5.29490	-1.24491	0.000507	
C	0	2	2	C	5.361209	9	0.10/82/	C	9	2	0.802597	
тт	-2.20792	2 211507	-0.47253	тт	4 70 (201	-3.15951	-0.81661	TT	-5.50421	-2.54796	-0.91475	
н	5	2.211507	3	н	4./06281	5	4	н	5	6	3	
	-6.88062	1 111704	-0.69484		0 410514	-2.31547	-1.28519		-3.46980	-1.64550	-2.05638	
Н	9	1.111/04	9	н	2.419514	2	1	н	4	6	7	
	-4.71283		-0.73267		2 22 (020	1.025020	0.5007.40	0	-1.84905	0.000100	-1.23044	
Н	1	2.288349	7	C	3.326028	1.83/020	0.529/48	С	7	0.223109	1	
a	-2.31151	1 1 5 (2 0 1	-0.17217						-4.85403	0.1.40.20.6		
C	2	1.176301	4	Н	5.734477	0.629028	0.944767	Н	2	0.149396	2.377883	
	-4.94225	-2.53845	0 510700		() () 71 (-1.68682	0.214624		-6.18043	-1.63625	1.000000	
н	4	3	0.510/88	н	0.363/16	8	0.314634	н	4	2	1.296965	
	-7.00905	-1.29500	-0.07490				0.054001	~	-1.49981	1 = 2 = 4		
Н	3	7	5	С	2.09/01/	2.304471	0.254801	С	0	1./325/4	0.672590	
~	-1.23002	-0.80755				•			-0.83875			
C	6	1	0.532/30	Н	4.06/302	2.499182	0.968771	Н	5	2.500911	1.059188	
	-0.30544	-1.25014	0.044077		1 00 5000	2 2205777	0 4660 47	. т	-1.17920	1 202076	-0.57356	
Н	3	2	0.866877	н	1.805998	3.329577	0.466247	Ν	6	1.2038/6	3	
• •	-1.13974		0 1 400 50		1 000 001	1 500004	-0.37313	a	1 202115	1 000 40 5	-0.75315	
Ν	2	0.537854	0.142259	Ν	1.080601	1.538204	2	C	1.303115	1.009407	7	
a		0 = 1 1 0 0 0	0 0 7 4 9 0 7		-1.02322	0.000001		a	1 400 600	-0.38392	-0.89108	
С	1.375121	0.711209	0.074305	С	5	0.282301	0.304404	С	1.402607	8	3	
~		-0.59240	-0.35859	~	-1.74287		-0.75317	~	• • • • • • • • • •		-0.20412	
С	1.760950	9	9	С	9	0.861005	4	С	2.375000	1.722692	4	
~				_	-1.70383	-0.51640		_		-1.05409	-0.48621	
С	2.434790	1.614462	0.393921	С	1	2	1.237582	С	2.551211	3	2	
~		-0.96814	-0.42574		-3.10957		-0.88388			-0.92819	-1.31479	
С	3.091049	9	9	8	С	3	0.642413	9	Η	0.562856	7	6
		-1.29979	-0.70195		-1.21814		-1.45488	_				
Η	1.014719	4	1	Η	1	1.501200	8	С	3.534977	1.066991	0.204397	
С	3.761153	1.242597	0.328979	С	-3.07008	-0.74485	1.119273	Н	2.308221	2.802454	-0.09656	

The optimized structure of intermediates at B3LYP/6-31G(d) level

					7	7					0
Н2	.181457	2.622602	0.711224	Н	-1.15634 5	-0.96324 6	2.063444	С	3.603019	-0.31539 2	0.057349
C 4	.092822	-0.05984 2	-0.07019 6	С	-3.75621 3	-0.16229 5	0.054201	Н	2.648361	-2.12822 0	-0.58508 8
Н3	.375056	-1.95607 0	-0.76800 6	Н	-3.68140 8	1.085064	-1.69024 5	Н	4.373645	1.602205	0.632111
Н4	.554161	1.933842	0.587346	Н	-3.60937 1	-1.35777 1	1.830805	N	4.822113	-1.01758 3	0.488990
N 5	.481619	-0.46247 7	-0.13141 7	N	-5.19898 7	-0.39768 0	-0.07869 4	0	5.732431	-0.34162 2	0.968862
06	.343167	0.375208	0.164478	0	-5.74524 5	-1.10576 8	0.768660	0	4.859676	-2.23927 3	0.345449
05	.736877	-1.62359 4	-0.47629 0	0	-5.78064 3	0.125601	-1.03004 0	С	0.048534	1.724522	-1.21810 1
C 0	.051144	1.224325	0.152760	С	0.442676	0.477383	0.436619	Н	0.127219	2.799028	-1.02247 5
H -	0.07936 3	2.299162	0.174090	Н	0.846159	0.337187	1.438891	Н	-0.10107 5	1.573608	-2.28828 5
C -	2.41440 1	-1.47275 9	0.560735	С	1.405487	0.136478	-0.68056 8	С	-2.58956 2	1.291238	1.349515
н -	2.40992 4	-2.50928 5	0.885563	Н	0.941530	-0.21975 5	-1.60101 5	Н	-2.83687 9	1.715231	2.317972

The total energy (E), zero point energy (ZPE), sum of electronic and zero-point energy(E_0) and relative energy (ΔE) of intermediate at B3LYP/6-31G(d) level

	\mathbf{s}_{j}										
species	E/ Hartree	ZPE/Hartree	E ₀ /Hartree	$\triangle E/kJ \cdot mol^{-1}$							
А	-876.747888	0.247716	-876.500172	0.00							
В	-876.741810	0.247753	-876.494057	16.06							
G	-876.725534	0.247854	-876.477680	59.05							

 $E_0 = E + ZPE$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Mulliken atomic charges: Atomic charges with hydrogens summed into heavy atoms

	Wiu			iges.	Atomic charge	5 with hy	diogens summe	a mi	o neavy atoms		
	А		В		G		А		В		G
С	-0.129953	С	-0.132766	С	-0.133335	С	0.012326	С	0.003523	С	0.002636
С	-0.191413	С	-0.198090	С	-0.145909	С	-0.052492	С	-0.063226	С	-0.002711
С	0.091624	С	0.160147	С	-0.039376	С	0.091624	С	0.160147	С	-0.039376
С	0.160490	С	0.106195	С	0.159479	С	0.160490	С	0.106195	С	0.159479
С	-0.182349	С	-0.199608	С	-0.184965	С	-0.041780	С	-0.065700	С	-0.053200
С	-0.139532	С	-0.127063	С	-0.128103	С	0.001336	С	0.008688	С	0.009752
Η	0.168341	Н	0.136289	Η	0.135971	Н	0.000000	Н	0.000000	Н	0.000000
Н	0.142279	Н	0.134864	Η	0.143198	Н	0.000000	Н	0.000000	Н	0.000000
Н	0.138921	С	-0.154441	С	-0.003959	Н	0.000000	С	-0.017709	С	-0.003959
						С	0.157950	Н	0.000000	Н	0.000000
					38	Н	0.000000	Н	0.000000	Н	0.000000
						Н	0.000000	С	0.144639	С	0.221319
						С	0.249485	Н	0.000000	Н	0.000000
						ц	0.00000	п	0.000000	N	0 388674

С	-0.010391	Н	0.133908	Н	0.131766
Н	0.140569	Н	0.135751	Н	0.137855
Н	0.140868	С	-0.007423	С	0.065591
С	0.053724	Н	0.136732	Н	0.155729
Н	0.195761	Н	0.152062	Ν	-0.388674
Ν	-0.390048	Ν	-0.412821	С	0.173013
С	0.204354	С	0.215358	С	-0.182020
С	-0.227518	С	-0.205573	С	-0.200223
С	-0.208623	С	-0.199321	С	-0.148746
С	-0.151527	С	-0.149076	Н	0.175393
Н	0.135838	Н	0.169333	С	-0.147759
С	-0.150418	С	-0.155754	Н	0.140633
Н	0.130746	Н	0.142910	С	0.275485
С	0.267592	С	0.275838	Н	0.185696
Н	0.173813	Н	0.182405	Н	0.183337
Н	0.174255	Н	0.182110	Ν	0.379840
Ν	0.359367	Ν	0.376839	0	-0.396315
0	-0.420046	0	-0.399531	0	-0.393214
0	-0.422613	0	-0.398377	С	-0.227685
С	-0.129651	С	-0.113093	Н	0.155018
Н	0.144865	Н	0.158794	Н	0.197673
С	-0.229706	С	-0.108436	С	-0.220506
Н	0.160380	Н	0.161837	Н	0.145113

HOMO of intermediate A

HOMO of intermediate G The highest occupied molecular orbital (HOMO) of intermediates

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

The ESP of intermediate G