Supplementary Materials

Heteropolyniobates from the group IIIA Elements

Yu Hou, May Nyman*, Todd M Alam and Mark A. Rodriguez

Table of Contents

General Methods and Materials.

Table S1. Crystal data and structure refinement for <u>K1</u>, <u>Rb1</u>, <u>Cs1</u>, and <u>K2</u>

Table S2. The bond length (Å) range in compounds <u>K1, K2, Rb1</u>, and <u>Cs1.</u>

Fig. S1. IR spectra of <u>K1</u>.

Fig. S2. IR spectra of <u>K2</u>.

Fig. S3. X-ray powder diffraction of observed and calculated plots for <u>K1</u>.

Fig. S4. X-ray powder diffraction of observed and calculated plots for <u>K2</u>.

Fig. S5. Thermogravimetric (blue) differential thermal analysis (red) of $\underline{K1}$.

Fig. S6. Thermogravimetric (blue) differential thermal analysis (red) of <u>**K2**</u>.

Fig. S7. ESI-MS for <u>K2</u>.

Table S3. Species observed by Electrospray ionization mass spectroscopy (ESI-MS) analysis of pure $\underline{K1}$ in H2O.

Table S4. Species observed by Electrospray ionization mass spectroscopy (ESI-MS) analysis of pure $\underline{K2}$ in H2O.

Figure S8. ¹⁷O NMR of K1 [GaNb₁₈O₅₄]¹⁵⁻

General Methods and Materials.

Alkali salts of the Lindqvist ion, $C_{8}[Nb_{6}O_{19}] \bullet 14H_{2}O$, $Rb_{8}[Nb_{6}O_{19}] \bullet 14H_{2}O$, and $K_8[Nb_6O_{19}] \cdot 16H_2O$ were obtained by methods reported prior, and purity was confirmed by infrared spectroscopy, X-ray powder diffraction and thermogravimetry. Ga(NO₃)₃•XH₂O was purchased from Strem Chemicals. Al(NO₃)^{•9}H₂O was purchased from Fisher Scientific company. Thermal analysis was performed with a TA Instruments SDT 2960 for simultaneous thermogravimetric and differential thermal analysis (TGA-DTA) under air flow with a heating rate of 10 °C/min. Powder X-ray powder diffraction data was performed on a Bruker D8 Advance with Cu-K α radiation. Infrared spectra (400-4000 cm⁻¹) were recorded on a Thermo Nicolet 380 Ft-IR equipped with a Smart Orbit (Diamond) ATR accessory. Solution ²⁷Al NMR in D₂O was performed on Bruker Ultrashield Plus 500 MHz. Solution ⁷¹Ga NMR in D₂O was performed on Bruker Avance III 600 MHz. Chemical shifts are referenced to pure Al(NO₃)₃ and $Ga(NO_3)_3$ as an external reference. Elemental composition was confirmed via energy dispersive spectroscopy (EDS) and referenced to known standards. ESI-MS spectrometry experiments have been carried out on an Aglient Technologies 6224 TOF MS instrument. The 1.0×10⁻⁶ M·L⁻¹ solutions of POMs were infused using a syringe pump (300 µl min⁻¹). Mass spectra were recorded in the negative ion detection mode. The spectrometer was previously calibrated with the standard tune mix to give a precision of about 2 ppm in the region of 50–3200 m/z. Spectra were taken with the following instrumental parameters: nebulizer gas pressure, 30 psi; dry gas flow rate, 5 l/min; dry gas temperature, 325 °C; capillary voltage and current, 3500 V, 0.029 µA; fragmentor voltage, 100V.

	<u>K1</u>	<u>Rb1</u>	<u>Cs1</u>	<u>K2</u>
Empirical Formula	H ₆₂ GaK ₁₄ NaNb ₁₈ O ₈₅	$H_{70}GaNb_{18}\overline{O_{89}Rb}_{15}$	$H_{24}Cs_{13}GaNa_2Nb_{18}O_{66}$	H ₆₃ AlK ₁₄ Nb ₁₈ O ₈₅
$Fw(g \cdot mol^{-1})$	3734.99	4518.71	4596.10	3670.26
T(K)	193(2)	293(2)	193(2)	193(2)
Radiation $(\lambda, Å)$	0.71073	0.71073	0.71073	0.71073
Crystal system	orthorhombic	triclinic	tetragonal	orthorhombic
Space group	P212121	P 1	P4 ₂ /ncm	P212121
a (Å)	18.6023(18)	15.0863(1)	16.8515(13)	18.582(3)
$b(\dot{A})$	18.6225(18)	17.94(12)	16.8515(13)	18.646(3)
c (Å)	24.567(2)	19.1713(13)	28.919(3)	24.646(4)
$\alpha(^{\circ})$	90	63.539(1)	90	90
$\beta(^{\circ})$	90	82.135(1)	90	90
$\gamma(^{\circ})$	90	79.927(1)	90	90
$V(Å^3)$	8510.7(14)	4563.3(5)	8212.1(12)	8539(2)
Z	4	2	4	4
$d_{\rm calcd}$, Mg·m ⁻³	2.915	3.289	3.717	2.855
μ, mm^{-1}	3.448	10.526	8.518	3.132
GOF	1.102	1.014	1.041	1.088
Final R indices $[R>2\sigma(I)]$	$R_1^{a} = 0.0253$ w $R_2^{b} = 0.0621$	$R_1^{a} = 0.0321$ w $R_2^{b} = 0.0744$	$R_1^{a} = 0.0531$ w $R_2^{b} = 0.1553$	$R_1^a = 0.0414$ w $R_2^b = 0.1019$
R indices (all data)	$R_1^{a} = 0.0271$ w $R_2^{b} = 0.0632$	$R_1^{a} = 0.0433$ w $R_2^{b} = 0.0791$	$R_1^{a} = 0.0594$ w $R_2^{b} = 0.1624$	$R_1^{a} = 0.0460$ w $R_2^{b} = 0.1050$

Table S2. The bond length (Å) range in compounds K1, K2, Rb1, and Cs1.					
Bond	<u>K1</u>	<u>K2</u>	<u>Rb1</u>	<u>Cs1</u>	
Ga(Al)-O	1.807-1.851	1.747-1.788	1.809-1.852	1.812-1.849	
Nb-O _t	1.733-1.781	1.726-1.781	1.739-1.797	1.734-1.789	
Nb-O _{b1}	1.820-2.117	1.801-2.109	1.814-2.116	1.823-2.045	
NT O	0.070 0.120	0.000 0.100	0.070.0.105	0.000 0.115	
Nb-O _{b2}	2.079-2.139	2.080-2.133	2.072-2.125	2.089-2.115	
Nh-O	2 250-2 524	2 243-2 522	2 246-2 510	2 265-2 492	
	2.230 2.324	2.275 2.522	2.240 2.510	2.203 2.472	
Nb-O _{c2}	2.079-2.106	2.092-2.128	2.082-2.099	2.092-2.092	
Nb-O _{c3}	2.260-2.309	2.289-2.333	2.256-2.307	2.274-2.293	
Nb-O _t	t=terminal or yl oxygen, bonded to one Nb				
Nb-O _{b1}	b=bridging oxygen, bonded to two Nb atoms				
Nb-O _{b2}	b=bridging oxygen, bonded to three Nb atoms				
Nb-O _{c1}	c=central oxygen, bonded to six Nb atoms				
Nb-O _{c2}	c=central oxygen, bonded to two Nb atoms and one Ga(Al) atom				
Nb-O _{c3}	c=central oxygen, bonded to three Nb atoms and one Ga(Al) atom				

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Fig. S1. IR spectra of K1.

Fig. S3. X-ray powder diffraction of observed and calculated plots for <u>K1</u>.

Fig. S5. Thermogravimetric (blue) differential thermal analysis (red) of <u>K1</u>.

Fig. S6. Thermogravimetric (blue) differential thermal analysis (red) of <u>K2</u>.

Fig. S7. ESI-MS for <u>K2</u>.

Table S3. Detailed assignment of mass spectral data for compound K1.					
m/z observed	polyanion	Mass calculated	m/z calculated		
4-					
741.42	$[K_5Na_5H_2GaNb_{18}O_{57}]^{4-}$	2964.73	741.18		
737.43	$[K_8H_2GaNb_{18}O_{56}]^{4-}$	2950.68	737.67		
730.43	$[K_5Na_3H_4GaNb_{18}O_{57}]^{4-}$	2920.77	730.19		
726.44	$[K_4Na_4H_4GaNb_{18}O_{57}]^{4-}$	2904.80	726.20		
720.84	$[K_4Na_3H_5GaNb_{18}O_{57}]^{4-}$	2882.81	720.70		
716.95	$[K_3Na_4H_5GaNb_{18}O_{57}]^{4-}$	2866.84	716.71		
711.45	$[K_3Na_3H_6GaNb_{18}O_{57}]^{4-}$	2844.86	711.21		
707.45	$[K_{3}Na_{4}HGaNb_{18}O_{55}]^{4-}$	2830.82	707.70		
701.70	$[K_4Na_2GaNb_{18}O_{54}]^{4-}$	2806.80	701.70		
697.96	$[KNa_{4}H_{7}GaNb_{18}O_{57}]^{4-}$	2790.92	697.73		
697.71	$[K_3Na_3GaNb_{18}O_{54}]^{4-}$	2790.83	697.71		
692.47	$[KNa_{3}H_{8}GaNb_{18}O_{57}]^{4-}$	2768.95	692.24		
692.22	$[K_3Na_2HGaNb_{18}O_{57}]^{4-}$	2768.84	692.21		
687.97	$[K_2Na_3HGaNb_{18}O_{54}]^{4-}$	2752.87	688.22		
687.72	$[K_6H_5GaNb_{17}O_{54}]^{4-}$	2750.88	687.72		
682.72	$[K_2Na_2H_2GaNb_{18}O_{54}]^{4-}$	2730.89	682.72		
678.48	$[KNa_{3}H_{2}GaNb_{18}O_{54}]^{4-}$	2714.91	678.73		
678.23	$[K_2Na_2GaNb_{18}O_{53}]^{4-}$	2712.88	678.22		
673.49	$[Na_{3}H_{5}GaNb_{18}O_{55}]^{4-}$	2694.97	673.74		
673.23	$[KNa_{2}H_{3}GaNb_{18}O_{54}]^{4-}$	2692.93	673.23		
669.22	$[K_5H_2GaNb_{17}O_{52}]^{4-}$	2676.90	669.23		
668.99	$[K_5H_2GaNb_{17}O_{52}]^{4-}$	2676.90	669.23		
663.99	$[Na_2H_4GaNb_{18}O_{54}]^{4-}$	2654.98	663.74		
659.50	$[K_4H_3GaNb_{17}O_{52}]^{4-}$	2638.95	659.74		
654.51	$[K_{3}H_{6}GaNb_{17}O_{53}]^{4-}$	2619.00	654.76		
650.51	$[K_{3}H_{4}GaNb_{17}O_{52}]^{4-}$	2600.99	650.25		
	3-				
948.93	$[K_3Na_3H_7GaNb_{18}O_{57}]^{3-1}$	2845.87	948.62		
956.26	$[K_3Na_4H_6GaNb_{18}O_{57}]^{3-1}$	2867.85	955.95		
961.58	$[K_4Na_3H_6GaNb_{18}O_{57}]^{3-1}$	2883.82	961.27		
968.91	$[K_4Na_4H_5GaNb_{18}O_{57}]^{3-1}$	2905.80	968.60		
974.24	$[K_5Na_3H_5GaNb_{18}O_{57}]^{3-1}$	2921.78	973.93		
975.24	$[K_5Na_4H_2GaNb_{18}O_{56}]^{3-1}$	2925.75	975.25		
981.56	$[K_5Na_4H_4GaNb_{18}O_{57}]^{3-1}$	2943.76	981.25		
981.90	$[K_4Na_5H_6GaNb_{18}O_{58}]^{3-1}$	2945.80	981.93		
986.89	$[K_6Na_3H_4GaNb_{18}O_{57}]^{3-1}$	2959.73	986.58		
988.23	$[K_6Na_4HGaNb_{18}O_{56}]^{3-1}$	2963.70	987.90		
987.56	$[K_5Na_4H_6GaNb_{18}O_{58}]^{3-1}$	2961.77	987.26		
987.89	$[K_6Na_4HGaNb_{18}O_{56}]^{3-1}$	2963.71	987.90		
996.23	$[K_9H_2GaNb_{18}O_{56}]^{3-1}$	2989.64	996.55		
5-					
561.37	$[K_8GaNb_{17}O_{53}]^{5-}$	2807.77	561.56		
557.77	$[K_7H_3GaNb_{17}O_{54}]^{5-}$	2787.83	557.57		
553.77	$[K_7HGaNb_{17}O_{53}]^{5-}$	2769.82	553.97		
550.18	$[K_2Na_3GaNb_{18}O_{54}]^{5-1}$	2751.86	550.37		
546.18	$[K_6H_2GaNb_{17}O_{53}]^{5-1}$	2731.86	546.37		
542.58	$[K_6GaNb_{17}O_{52}]^{5-1}$	2713.85	542.77		
538.59	$[K_5H_3GaNb_{17}O_{53}]^{5-1}$	2693.91	538.78		
534.99	$[K_5HGaNb_{17}O_{52}]^{5-}$	2675.90	535.18		
530.99	$[K_4H_4GaNb_{17}O_{53}]^{5-}$	2655.95	531.19		
527.39	$[K_4H_2GaNb_{17}O_{52}]^{5-1}$	2637.94	527.59		
523.79	$[K_4GaNb_{17}O_{51}]^{5-}$	2619.93	523.99		
519.80	$[K_{3}H_{3}GaNb_{17}O_{52}]^{5}$	2599.98	519.99		
516.20	$[K_{3}HGaNb_{17}O_{51}]^{5}$	2581.97	516.40		
512.20	$[K_2H_4GaNb_{17}O_{52}]^{5-1}$	2562.03	512.41		
508.60	$[K_2H_2GaNb_{17}O_{51}]^{5-}$	2544.02	508.80		

Table S4. Detailed assignment of mass spectral data for compound <u>K2</u> .					
m/z observed	polyanion	Mass calculated	m/z calculated		
4-					
653.02	$[KNaH_2AlNb_{18}O_{53}]^{4-}$	2611.00	652.75		
662.51	$[KNa_2H_3AlNb_{18}O_{54}]^{4-}$	2650.99	662.75		
667.50	$[K_2Na_2AINb_{18}O_{53}]^{4-}$	2670.93	667.73		
681.49	$[K_3Na_2HAlNb_{18}O_{54}]^{4-}$	2726.90	681.73		
672.00	$[K_2Na_2H_2AINb_{18}O_{54}]^{4-}$	2688.94	672.24		
676.99	$[K_2Na_2H_4AlNb_{18}O_{55}]^{4-}$	2706.95	676.74		
686.98	$[K_3N_{a3}AlNb_{18}O_{54}]^{4-}$	2748.88	687.22		
690.98	$[K_4Na_2AlNb_{18}O_{54}]^{4-}$	2764.86	691.21		
696.47	$[K_3Na_3H_4AlNb_{18}O_{56}]^{4-}$	2784.90	696.23		
700.47	$[K_4Na_2H_4AlNb_{18}O_{56}]^{4-}$	2800.88	700.22		
705.96	$[K_4Na_3H_3AlNb_{18}O_{56}]^{4-}$	2822.86	705.72		
709.96	$[K_5Na_2H_3AlNb_{18}O_{56}]^{4-}$	2838.83	709.71		
715.96	$[K_4Na_4H_4AlNb_{18}O_{57}]^{4-}$	2862.85	715.71		
719.45	$[K_6Na_2H_2AlNb_{18}O_{56}]^{4-}$	2876.79	719.20		
	4	5-			
507.81	$[K_{3}HAINb_{17}O_{51}]^{5}$	2540.03	508.01		
511.41	$[K_{3}H_{3}AlNb_{17}O_{52}]^{5}$	2558.04	511.61		
515.01	$[K_{3}H_{5}AlNb_{17}O_{53}]^{5}$	2576.05	515.21		
519.00	$[K_4H_2AlNb_{17}O_{52}]^{5-}$	2596.00	519.20		
522.61	$[K4H_4AlNb_{17}O_{53}]^{5-}$	2614.01	522.80		
526.60	$[K_5HAINb_{17}O_{52}]^{5-}$	2633.95	526.79		
530.20	$[K_5H_3AlNb_{17}O_{53}]^{5-1}$	2651.96	530.39		
533.80	$[K_5H_5AlNb_{17}O_{54}]^{5-}$	2669.97	534.00		
537.40	$[K_2Na_2HAlNb_{18}O_{54}]^{5-}$	2687.94	537.59		
541.79	$[K_2Na_3AlNb_{18}O_{54}]^{5-}$	2709.92	541.98		
544.99	$[K_3Na_2AlNb_{18}O_{54}]^{5-}$	2725.89	545.18		
549.39	$[K_2Na_3H_4AlNb_{18}O_{56}]^{5}$	2745.94	549.19		
552.58	$[K_3Na_2H_4AlNb_{18}O_{56}]^{5}$	2761.91	552.38		
3-					
921.64	$[K_4Na_2HAlNb_{18}O_{54}]^{3}$	2765.86	921.96		
934.29	$[K_5Na_2AlNb_{18}O_{54}]^{3-2}$	2803.82	934.61		
946.94	$[K_5Na_2H_4AlNb_{18}O_{56}]^{5-1}$	2839.84	946.61		
954.27	$[K_5Na_3H_3AlNb_{18}O_{56}]^{5}$	2861.82	953.94		
959.60	$[K_6Na_2H_3AlNb_{18}O_{56}]^{5-}$	2877.80	959.27		
966.92	$[K_6Na_3H_2AINb_{18}O_{56}]^{5-}$	2899.78	966.59		
972.25	$[K_7Na_2H_2AINb_{18}O_{56}]^{5-}$	2915.75	971.92		
981.59	$[K_6Na_5AlNb_{18}O_{56}]^{5-}$	2943.74	981.25		
984.91	$[K_8Na_2HA1Nb_{18}O_{56}]^{3-1}$	2953.77	984.59		
986.91	$[K_7Na_4AlNb_{18}O_{56}]^{3-1}$	2959.72	986.57		
992.91	$[K_7Na_4H_2AlNb_{18}O_{57}]^{3-1}$	2977.73	992.58		

Figure S8. ¹⁷O NMR spectrum of K-salt of $[GaNb_{18}O_{54}]^{15-}$ dissolved in 1 ml D₂O with 50 microliters 17OH₂ (28%) added. Sharp peaks between 430 to 442 ppm are bridging μ_2 -oxo ligands of the polyniobate. Broader peaks between 630 to 670 ppm are the terminal Nb=O resonances of the polyniobate. The Ga-bound aqua ligands were not observable, like due to broadening and masking by the large peak of free water.