Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic supplementary information

Formation of CC-type palladacycles with assistance from an apparently innocent NH(CO) functional group

Jhen-Yi Lee, Yao-Huei Huang, Shu-Ya Liu, Shun-Chu Cheng, Yan-Min Jhou, Jenn-Huei Lii and Hon Man Lee*

General consideration. All manipulations were performed under a dry nitrogen atmosphere using standard Schlenk techniques. Solvents were dried with standard procedures. Starting chemicals were purchased from commercial source and used as received. ¹H, ¹³C{¹H} and ³¹P{¹H} NMR spectra were recorded at 300.13, 75.48, and 121.49 MHz, respectively, on a Bruker AV-300 spectrometer. Infra-red spectra were acquired from a Varian Cary 640 infra-red spectrophotometer. Elemental analyses were performed on a Thermo Flash 2000 CHN-O elemental analyzer. Electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) mass spectrometer.

Synthesis of L¹. A mixture of 1-(4-fluorobenzyl)-2-methyl-1*H*-imidazole (10.9 g, 0.0570 mol) and 2-chloro-*N*-phenylacetamide¹ (9.70 g, 0.0570 mol) in THF (30 mL) was placed in a Schlenk flask. The mixture was heated under reflux for 2 d. After cooling, the white solid was collected on a frit, washed with THF, and dried under vacuum. Yield: 15.4 g (75%). Anal. Calc. for C₁₉H₁₉ClFN₃O: C, 63.42; H, 5.32; N, 11.67%. Found: C, 63.42; H, 5.37; N, 11.70 %. ¹H NMR (DMSO-*d*₆): δ 2.26 (s, 3H, C*H*₃), 5.29 (s, 2H, C*H*₂), 5.50 (s, 2H, C*H*₂), 7.10 (t, ³*J*_{HH} = 7.2 Hz, 1H, *p*-Ph-*H*), 7.25–7.46 (m, 6H, Ar-*H*, imi-*H*), 7.65 (d, ³*J*_{HH} = 7.5 Hz, 2H, *o*-Ph-*H*), 7.81–7.83 (m, 2H, Ar-*H*, imi-*H*), 11.22 (s,

1H, N*H*). ¹³C{¹H} NMR (DMSO-*d*₆): δ 10.3 (*C*H₃), 50.3 (N*C*H₂), 51.0 (*C*H₂CO), 116.3 (d, *J*_{CF} = 21.66 Hz, *C*H), 119.6, 121.7, 123.4, 124.1, 129.2, 130.6(d, *J*_{CF} = 8.38 Hz, *C*H), 131.2(d, *J*_{CF} = 3.02 Hz, *C*H), 138.9 (Ar-*C*, imi-*C*), 146.1 (N*C*N), 162.4 (d, *J*_{CF} = 301.6 Hz, *C*F), 163.9 (*C*O).

Synthesis of L². A mixture of 1-(naphthalen-1-ylmethyl)-2-phenyl-1*H*-imidazole (6.45 g, 0.0230 mol) and 2-chloro-N-phenylacetamide (3.46 g, 0.0230 mol) in dry THF (50 mL) was heated at 80°C for 2 d. The workup procedure is similar to that of L¹. Yield: 5.11 g (49 %). M.p.: 218.9–219.4°C. Anal. Calc. for C₂₈H₂₄ClN₃O: C, 74.08; H, 5.32; N, 9.25 %. Found: C, 73.82; H, 5.36; N, 9.28 %. ¹H NMR (DMSO-*d*₆): δ 5.17 (s, 2H, NpC*H*₂), 5.87 (s, 2H, *CH*₂C=O), 7.03–7.08 (m, 2H, Ar-*H*), 7.29 (t, ³*J*_{HH} = 8.1 Hz, 2H, Ar-*H*), 7.46 (t, ³*J*_{HH} = 7.8 Hz, 1H, *p*-Ar-*H*), 7.54–7.67 (m, 9H, Ar-*H*), 7.82-7.99 (m, 3H, Ar-*H*), 8.05 (d, ³*J*_{HH} = 1.5 Hz, 1H, imi-*H*), 8.20 (d, ³*J*_{HH} = 1.8 Hz, 1H, imi-*H*), 11.31 (s, 1H, N*H*). ¹³C{¹H} NMR (DMSO-*d*₆): δ 50.1 (*C*H₂), 51.6 (*C*H₂), 119.1, 121.2, 123.0, 124.2, 124.7, 125.5, 125.8, 126.8, 127.3, 129.1, 129.4, 129.8, 130.1, 130.5, 130.6, 132.9, 133.5, 138.7 (NC), 146.0 (NCN), 163.8 (CO).

Synthesis of L³. The compound was prepared with a similar procedure to that of L¹. A mixture of 1-(4-fluorobenzyl)-2-methyl-1*H*-imidazole (3.16 g, 0.0170 mol) and 2-chloro-*N*-methyl-*N*-phenylacetamide (3.04 g, 0.0170 mol) was used. A white solid was obtained. Yield: 2.73 g (77 %). M.p.: 235.8–236.2°C. Anal. Calc. for C₂₀H₂₁ClFN₃O: C, 64.25; H, 5.66; N, 11.23 %. Found: C, 64.51; H, 5.62; N, 11.24 %. ¹H NMR (DMSO-*d*₆): δ 2.56 (s, 3H, CCH₃), 3.21 (s, 3H, NCH₃), 7.26 (t, 2H, ³*J*_{HH} = 8.7 Hz, Ar-*H*), 7.32–7.86 (m, 9H, Ar-*H*, imi-*H*). ¹³C{¹H} NMR (DMSO-*d*₆): δ 10.2 (CCH₃), 37.8 (NCH₃), 50.2 (NCH₂, CH₂CO), 116.3 (d, *J*_{CF} = 21.66 Hz, CH), 121.5, 123.5, 128.0, 128.9, 130.4 (d, J_{CF} = 8.68 Hz, CH), 131.3(d, J_{CF} = 3.02 Hz, CH),141.8 (Ar-C, imi-C), 146.2 (NCN), 162.4 (d, J_{CF} = 245 Hz, CF), 164.4 (CO).

Synthesis of 1. Method A: To a 50 mL Schlenk fask, $PdCl_2$ (0.0940 g, 0.530 mmol), L^1 (0.190 g, 0.530 mmol), and K₂CO₃ (0.290 g, 2.12 mmol) were added and dissolved in dry pyridine (10 mL) under nitrogen atmosphere. The solution was allowed to stir at 80°C overnight. The solvent was then completely removed under vacuum. The residue was re-dissolved in dichloromethane and washed with water. The extract was dried over anhydrous MgSO₄ and evaporated to dryness under vacuum to give a light orange solid. Yield: 0.190 g (66%). Method B: To a 20 mL Schlenk flask, 3 (0.0500 g, 0.092 mmol) and dry pyridine (5 mL) were added. The solution was then stirred at 80°C overnight. The solvent was removed completely under vacuum. The residue was washed with diethyl ether. The light orange solid was then filtered on a frit and dried under vacuum. Yield: 0.0490 g (97%). Mp: 142.3-144.8°C. Anal. Calc. for C₂₄H₂₂ClFN₄OPd: C, 53.05; H, 4.08; N, 10.31. Found: C, 52.76; H, 4.15; N, 10.05 %. ¹H NMR (CDCl₃): δ 1.97 (d, ²J_{HH} = 15.3 Hz, 1H, PdCH_aH_b), 2.44 (d, ²J_{HH} = 15.3 Hz, 1H, PdCH_aH_b), 4.89, 4.97 (ABq, ${}^{2}J_{AB} = 15.3$ Hz, $\Delta v_{AB} = 12.3$ Hz, 2H, NCH₂), 5.32 (s, 1H, CHC=O), 6.68–7.31 (m, 11H, Ar-H, imi-H, py-H), 7.62–7.72 (m, 3H, py-H, Ar-H), 8.70 (d, ${}^{3}J_{HH}$ = 5.1 Hz, 2H, *o*-py-*H*), 9.89 (s, 1H, N*H*). ¹³C{¹H} NMR (CDCl₃): δ 4.1 (PdCH₂), 49.2 (ArCH₂), 49.5 (CHC=O), 116.3 (d, J_{CF} = 21.8 Hz, CH), 119.1, 120.8, 122.5, 124.2, 124.7 (py-C), 124.9, 128.8, 129.3 (d, $J_{CF} = 8.3$ Hz, CH), 137.2 (py-C), 138.5, 150.3 (py-C), 152.4 ($J_{CF} = 127.2$ Hz, CF), 161.2 (NCN), 174.1 (C=O). IR (KBr/pellet, cm⁻¹): 3359 (br, w), 3160 (br, w), 2998 (br, w), 1675 (w), 1625 (s), 1521 (m), 1502 (w), 1457 (s), 1423 (s), 1319 (w), 1272 (m), 1238 (m), 1205 (m), 1166 (br, m),

1054 (m), 989 (w), 927 (w), 875 (w), 808 (m), 775 (w), 711 (s), 680 (s), 582 (w), 539 (w), 476 (w), 420 (w). ESI-MS: m/z 585.9 [M - Cl + py]⁺, 548.1 [M - Cl + CH₃CN]⁺, 507.1 [M - Cl]⁺, 501.0 [M - Cl - py + DMF]⁺, 469.0 [M - Cl - py + CH₃CN]⁺.

Synthesis of 2. Method A: A mixture of 1 (0.0340 g, 0.0625 mmol) and PPh₃ (0.0164 g, 0.0625 mmol) inf dichloromethane (10 mL) was stirred at ambient temperature overnight. The solvent was removed completely under vacuum. The residue was washed thoroughly with diethyl ether to afford a yellowish solid. Yield: 0.0382 g (84 %). Method B: A mixture of 4 (0.0810 g, 0.111 mmol) in dry pyridine (5 mL) was stirred at 80°C overnight. The solvent was removed completely under vacuum. The residue was washed with diethyl ether. The solid was then filtered on a frit and dried under vacuum. Yield: 0.0702 g (87%). M.p.: 183.5–184.7°C. Anal. Calc. for C₃₇H₃₂ClFN₃OPPd: C, 61.16; H, 4.43; N, 5.78 %. Found: C, 61.34; H, 4.53; N, 5.36 %. ¹H NMR (CDCl₃): δ 1.32 (dd, ²J_{HH} = 16.2 Hz, ${}^{3}J_{HP} = 7.5$ Hz, 1H, PdCH_aH_b), 1.77 (dd, ${}^{2}J_{HH} = 16.8$ Hz, ${}^{3}J_{HP} = 7.5$ Hz, 1H, PdCH_aH_b), 4.59 (s, 2H, NCH₂), 5.30 (d, 1H, ${}^{3}J_{PH}$ = 11.1 Hz, CHCO), 6.82–7.69 (m, 26H, Ar-H, imi-H), 9.99 (s, 1H, NH). ¹³C{¹H} NMR (CDCl₃): δ 7.6 (d, J_{PC} = 7.4 Hz, PdCH₂), 49.5 (ArCH₂), 60.2 (d, J_{PC} = 97.6 Hz, CHCO), 116.2 (d, $J_{CF} = 21.8$ Hz, CH), 119.3, 121.2. (d, $J_{PC} = 3.7$ Hz, Ph-C), 122.2, 122.5, 128.1 (d, $J_{PC} = 9.5$ Hz, CH), 128.5, 129.2, 129.6 (d, $J_{CF} = 8.5$ Hz, CH), 130.0 (d, $J_{PC} = 1.9$ Hz, CH), 131.6, 132.1, 134.5 (d, J_{PC} = 12.1 Hz, CH), 139.8, 161.3 (d, J_{PC} = 9.2 Hz, NCN), 162.7 (J_{CF} = 248.9 Hz, CF), 173.7 (d, $J_{PC} = 3.8$ Hz, CO). ³¹P{¹H} NMR (CDCl₃): δ 23.4. IR (KBr/pellet, cm⁻¹): 3315 (br, w), 3197 (w), 3153 (w), 3087 (w), 3016 (w), 1675 (m), 1629 (s), 1560 (s), 1519 (m), 1459 (s), 1421 (m), 1303 (w), 1272 (m), 1234 (w), 1207 (m), 1168 (m), 1118 (m), 1083 (m), 971 (w), 910 (w), 871 (w),

808 (w), 769 (m), 719 (s), 688 (m), 570 (w), 539 (m), 518 (m), 476 (m), 439 (w). APCI-MS: *m/z* 725.5 [M + H]⁺, 690.1 [M - Cl]⁺.

Synthesis of 3. To a 20 mL Schlenk fask, $PdCl_2$ (0.0990 g, 0.556 mmol), L^1 (0.200 g, 0.556 mmol), and K₂CO₃ (0.308 g, 2.22 mmol) were dissolved in dry pyridine (10 mL) under nitrogen atmosphere. The solution was allowed to stir at ambient temperature for 5 h. The workup procedure was similar to that of 1 (method A). A yellowish solid was obtained. Yield: 0.154 g (51%). M.p.: 176.7-178.9°C. Anal. Calc. for C₂₄H₂₂ClFN₄OPd: C, 53.05; H, 4.08; N, 10.31 %. Found: C, 53.20; H, 4.12; N, 10.23 %. ¹H NMR (CDCl₃): δ 2.80 (s, 3H, CH₃), 4.56 (s, 1H, PdCH), 5.10 (s, 2H, ArCH₂), 6.85–7.21 (m, 12H, Ar-H, imi-H, py-H), 7.65 (t, 1H, ${}^{3}J_{HH} = 7.5$ Hz, py-H), 7.74 (s, 1H, imi-H), 8.52 (d, ${}^{3}J_{HH} = 4.8$ Hz, 2H, py-o-H). ${}^{13}C{}^{1}H{}$ NMR (DMSO-d₆): δ 10.6 (CH₃), 50.0 (CH₂), 79.5 (CHCO), 116.1 (d, J_{CF} = 21.7 Hz, CH), 121.2, 121.5, 122.7, 123.2, 124.3 (py-C), 127.9, 130.0 (d, J_{CF} = 8.3 Hz, CH), 131.3, 136.5 (py-C), 145.3, 146.6 (NCN), 150.0 (py-C), 162.3 (J_{CF} = 244.6 Hz, *C*F), 170.7 (*C*O). IR (KBr/pellet, cm⁻¹): 3288 (br, w), 3197 (w), 1654 (s), 1594 (w), 1569 (w), 1544 (m), 1471 (s), 1438 (s), 1344 (w), 1276 (m), 1209 (m), 1130 (w), 1054 (m), 937 (w), 879 (w), 806 (m), 719 (m), 680 (m), 644 (m), 563 (w), 501 (w), 455 (s), 431 (s). ESI-MS: m/z 585.9 [M - Cl + $[py]^+$, 543.0 $[M + H]^+$, 507.1 $[M - C1]^+$, 466.1 $[M - py + H]^+$, 428.1 $[M - C1 - py]^+$.

Synthesis of 4. A mixture of **3** (0.0516 g, 0.0940 mmol) and PPh₃ (0.0249 g, 0.0940 mmol) in dichloromethane (10 mL) was stirred at ambient temperature overnight. The solvent was removed completely under vacuum. The residue was washed thoroughtly with diethyl ether to afford a yellowish solid. Yield: 0.0650 g (94 %). Mp: 178.6–180.5°C. Anal. Calc. for C₃₇H₃₂ClFN₃OPPd: C,

61.16; H, 4.43; N, 5.78. Found: C, 61.19; H, 4.86; N, 5.31 %. ¹H NMR (DMSO-*d*₆): δ 2.32 (s, 3H, CH₃), 4.09 (s, 1H, PdCH), 5.09 (s, 2H, PhCH₂), 6.08 (t, 1H, ³J_{HH} = 6.9 Hz, Ph-*H*), 7.05–7.99 (m, 25H, Ar-*H*, imi-*H*). ¹³C{¹H} NMR (DMSO-*d*₆): δ 10.0 (CH₃), 31.1 (CHCO), 49.7 (CH₂), 116.2 (d, *J*_{CF} = 21.7 Hz, CH), 120.0, 121.2, 123.6, 127.8, 128.5 (d, *J*_{PC} = 10.1 Hz, Ph-C), 129.2 (d, *J*_{CF} = 11.8 Hz, CH), 130.7, 131.1 (d, *J*_{PC} = 8.5 Hz, Ph-*C*), 131.7, 131.9 (d, *J*_{PC} = 9.7 Hz, Ph-C), 132.3, 134.4 (d, *J*_{PC} = 11.8 Hz, Ph-C), 147.4 ((NCN), 162.5 (*J*_{CF} = 245.3 Hz, CF), 172.6 (CO). ³¹P{¹H} NMR (CDCl₃): δ 28.4. IR (KBr/pellet, cm⁻¹): 3326 (br, w), 2996 (w), 1720 (m), 1654 (s), 1639 (s), 1596 (w), 1542 (s), 1500 (m), 1459 (s), 1425 (m), 1400 (m), 1342 (m), 1245 (m), 1213 (m), 1185 (m), 1081 (m), 919 (w), 800 (m), 728 (s), 676 (m), 553 (m), 522 (m), 482 (m), 447 (m), 424 (m). APCI-MS: *m*/z 726.1 [M + H⁺], 690.1 [M - CI]⁺.

Synthesis of 5. Method A: The compound was prepared with a procedure similar to that of 1 (method A). A mixture of PdCl₂ (0.0781 g, 0.441 mmol), L² (0.200 g, 0.441 mmol), and K₂CO₃ (0.243 g, 1.76 mmol) was used. A yellowish solid was obtained. Yield: 0.220 g (80 %). Method B: The compound was prepared with a procedure similar to that of 1 (method B). A pyridine solution of **6** (0.0500 g, 0.0780 mmol) was used. Yield: 0.0470 g (94%). M.p.: 198.3–199.1°C. Anal. Calc. for $C_{33}H_{27}CIN_4OPd$: C, 62.17; H, 4.26; N, 8.78. Found: C, 62.20; H, 4.42; N, 8.63 %. ¹H NMR (CDCl₃): δ 5.89, 5.98 (ABq, ²*J*_{AB} = 15.9 Hz, Δv_{AB} = 13.7 Hz, 2H, NC*H*₂), 6.10 (s, 1H, C*H*C=O), 6.78–7.96 (m, 22H, Ar-*H*, imi-*H*, py-*H*), 8.88 (d, ³*J*_{HH} = 4.5 Hz, 2H, *o*-py-*H*), 9.14 (s, 1H, N*H*). ¹³C{¹H} NMR (DMSO-*d*₆): δ 49.9 (NCH), 51.1 (*C*H₂), 118.1, 122.4, 122.6, 123.2, 124.9 (py-C), 125.8, 126.7, 127.3, 127.7, 128.9, 129.1, 129.3, 129.5, 130.1, 131.1, 132.5, 133.4, 133.7, 138.0 (py-C), 139.7,

149.8 (NCN), 152.3 (py-C), 153.3, 172.4 (*C*=O). IR (KBr/pellet, cm⁻¹): 3372 (br, w), 3207 (w), 3087 (w), 2979 (w), 1687 (m), 1637 (s), 1560 (s), 1508 (m), 1457 (s), 1425 (m), 1334 (w), 1276 (m), 1228 (m), 1197 (m), 1133 (br, m), 1049 (w), 991 (w), 927 (w), 827 (m), 777 (m), 736 (m), 709 (m), 680 (s), 599 (w), 547 (w), 520 (w), 491 (w), 449 (w), 426 (w). ESI-MS: m/z 600.9 [M – Cl]⁺, 562.7 [M – Cl – py + CH₃CN]⁺, 522.1 [M – Cl – py]⁺.

Synthesis of 6. A mixture of PdCl₂ (0.0780 g, 0.441 mmol), L^2 (0.200 g, 0.441 mmol), and K₂CO₃ (0.240 g, 1.76 mmol) in pyridine (10 mL) was stirred at room temperature overnight. The workup procedure was similar to that of 1 (method A). A yellowish solid was obtained. Yield: 0.18 g (65 %). M.p.: = 185.8–187.1°C. Anal. Calc. for $C_{33}H_{27}CIN_4OPd$: C, 62.17; H, 4.26; N, 8.78. Found: C, 61.60; H, 4.35; N, 8.36 %. ¹H NMR (CDCl₃): δ 4.56 (s, 1H, PdCH), 5.46 (s, 2H, CH₂), 6.25–7.89 (m, 22H, 8.50 (d, ${}^{3}J_{HH} = 4.8$ Hz, 2H, *o*-py-*H*). ${}^{13}C{}^{1}H$ NMR (DMSO-*d*₆): δ 49.9 (*C*H₂), 121.7, 122.0, 123.0, 123.2, 124.3 (py-C), 124.7, 125.8, 126.8, 127.3, 127.9, 129.1, 129.3, 129.7, 129.9, 130.6, 130.9, 132.6, 133.4, 136.5 (py-C), 146.4 (NCN), 150.0 (py-C), 153.4, 171.0 (C=O). IR (KBr/pellet, cm⁻¹): 3293 (br, w), 3174 (w), 3143 (w), 3008 (w), 1685 (w), 1654 (w), 1608 (m), 1562 (w), 1544 (m), 1508 (s), 1473 (s), 1413 (s), 1349 (w), 1274 (w), 1226 (w), 1197 (m), 1130 (m), 1049 (m), 987 (w), 827 (m), 777 (m), 736 (m), 682 (s), 559 (w), 520 (w), 484 (w), 458 (w), 431 (w). ESI-MS: *m/z* $675.9 [M - Cl + DMF]^{+}, 638.8 [M + H]^{+}, 601.1 [M - Cl]^{+}, 594.9 [M - Cl - py + DMF]^{+}, 562.9 [M - DMF]^{+},$ $Cl - py + CH_3CN^{+}$, 560.9 $[M - py]^{+}$, 522.1 $[M - Cl - py]^{+}$.

Synthesis of 7. The compound was prepared with a procedure similar to that of 4. A mixture of 6 (0.0238 g, 0.0909 mmol), PPh₃ (0.0580 g, 0.0909 mmol) was used. A yellowish product was

obtained. Yield: 0.0680 g (92 %). M.p.: 178.1–181.2°C. Anal. Calc. for C₄₆H₃₇ClN₃OPPd: C, 67.32; H, 4.54; N, 5.12. Found: C, 67.04; H, 4.70; N, 4.83 %. ¹H NMR (DMSO-*d*₆): δ 4.00 (s, 1H, PdC*H*), 5.59 (s, 2H, C*H*₂), 6.79–7.97 (m, 34H, Ar-*H*, imi-*H*). ¹³C{¹H} NMR (CDCl₃): δ 10.6 (CH₃), 50.0 (CH₂), 79.5 (CHC=O), 116.1 (d, *J*_{CF} = 21.7 Hz, CH), 121.2, 121.5, 122.7, 123.2, 124.3 (py-C), 127.9, 130.0 (d, *J*_{CF} = 8.3 Hz, CH), 131.3, 136.5 (py-C), 145.3, 146.6 (NCN), 150.0 (py-C), 162.3 (*J*_{CF} = 244.6 Hz, CF), 170.7 (*C*=O). ³¹P{¹H} NMR (DMSO-*d*₆): δ 28.3. IR (KBr/pellet, cm⁻¹): 3461 (br, w), 3056 (w), 2933 (w), 1695 (w), 1681 (w), 1621 (s), 1589 (m), 1486 (m), 1434 (m), 1363 (m), 1263 (w), 1184 (m), 1097 (m), 1027 (w), 998 (w), 879 (w), 786 (m), 750 (m), 696 (s), 534 (s), 511 (m), 451 (w), 433 (w). ESI-MS: *m/z* 860.1 [M + K]⁺, 856.8 [M – Cl + DMF]⁺, 824.5 [M – Cl + CH₃CN]⁺, 820.2 [M + H]⁺, 784.3 [M – Cl]⁺.

Synthesis of 8. To a 20 mL Schlenk flask, PdCl₂ (0.0948 g, 0.534 mmol), L³ (0.200 g, 0.534 mmol), and K₂CO₃ (0.295 g, 2.14 mmol) were added and dissolved in dry pyridine (10 mL) under nitrogen atmosphere. The solution was allowed to stir at 80°C overnight. The solvent was then completely removed under vacuum. The residue was re-dissolved in dichloromethane and washed with water. The extract was dried over anhydrous MgSO₄ and evaporated to dryness under vacuum to give a solid. Diethyl ether was added and the yellowish solid formed was collected on frit, washed with more diethyl ether and methanol, and dried under vacuum. Yield: 0.143 g (48 %). M.p.: 164.8–165.6°C. Anal. Calc. For $C_{25}H_{24}ClFN_4OPd$: C, 53.87; H, 4.34; N, 10.05. Found: C, 53.10; H, 4.44; N, 10.13 %. ¹NMR (CDCl₃): δ 2.82 (s, 3H, imi-CH₃), 3.38 (s, 3H, N-CH₃), 4.98, 5.18 (ABq, ³J_{AB}= 15.6 Hz, Δv_{AB} = 29.7 Hz, 2H, CH₂), 5.61 (s, 1H, PdCH), 6.57–7.29 (m, 12H, Ar-H, imi-H,

Py-H), 7.66 (t, ${}^{3}J_{\text{HH}} = 8.1$ Hz, 1H, Py-*p*-H), 8.80 (d, ${}^{3}J_{\text{HH}} = 4.8$ Hz, 2H, Py-*o*-H). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (DMSO-*d*₆): δ 14.0 (*C*H₃), 33.3 (*C*H₃), 48.7 (*C*HC=O), 49.7 (*C*H₂), 116.0 (d, *J*_{CF} = 21.6 Hz, *C*H), 116.4, 123.4, 124.2, 124.6, 124.3, 129.9 (d, *J*_{CF} = 8.2 Hz, *C*H), 131.8, 137.6, 144.3 (NCN), 162.2 (*J*_{CF} = 244.5 Hz, *C*F), 169.7 (*C*=O). IR (KBr/pellet, cm⁻¹): 3394 (w), 3345 (w), 3318 (w), 3232 (w), 3176 (w), 3100 (w), 3018 (w), 1656 (m), 1617 (m), 1585 (s), 1544 (s), 1484 (s), 1438 (w), 1402 (m), 1319 (m), 1278 (m), 1243 (m), 1203 (s), 1139 (m), 1083 (m), 958 (m), 908 (br, m), 802 (m), 734 (m), 711 (m), 630 (w), 578 (w), 514 (w), 476 (m), 420 (w). ESI-MS: *m*/*z* 521.0 [M - Cl - py + 2CH₃CN]⁺, 514.9 [M - Cl - py + DMF]⁺, 482.9 [M - Cl - py + CH₃CN]⁺.

Synthesis of 9. In a 20 mL Schlenk flask, a THF (5 mL) solution of 8 (0.0826 g, 0.148 mmol) was heated at 50 °C for 3 h. The solid was collected on a frit, washed with THF, and dried under vacuum. Yield: 0.0636 g (90%). M.p.: 202.1–203.0 °C. Anal. Calc. for $C_{40}H_{38}Cl_2F_2N_6O_2Pd_2$: C, 50.22; H, 4.00; N, 8.78. Found: C, 49.97; H, 3.80; N, 8.85 %. ¹H NMR (DMSO- d_6): δ 2.58 (s, 6H, CC H_3), 3.20 (s, 6H, NC H_3), 5.34 (s, 4H, NC H_2), 5.52 (s, 2H, PdCH), 6.81–7.69 (m, 20H, Ar-H, imi-H). ¹³C {¹H} NMR (DMSO- d_6): δ 14.0 (CH₃), 33.3 (NCH₃), 48.7 (CHCO), 49.7 (CH₂), 116.0 (d, $J_{CF} = 21.6$ Hz, CH), 116.4, 123.4, 124.2, 124.6, 124.3, 129.9 (d, $J_{CF} = 8.2$ Hz, CH), 131.8, 137.6, 144.3 (NCN), 162.2 ($J_{CF} = 244.5$ Hz, CF), 169.7 (CO). IR (KBr/pellet, cm⁻¹): 3324 (br, w), 3180 (w), 3043 (w), 2886 (w), 1718 (m), 1685 (m), 1654 (s), 1639 (s), 1594 (s), 1560 (m), 1542 (s), 1527 (s), 1498 (s), 1475 (s), 1438 (m), 1398 (m), 1276 (w), 1245 (m), 1214 (m), 1166 (w), 1139 (m), 1083 (m), 966 (w), 889 (w), 794 (m), 765 (w), 725 (m), 632 (w), 599 (m), 499 (m), 482 (s), 464 (m), 430 (m). ESI-MS: m/z 920.8 [M – CII⁺, 514.9 [M/2 – CI + DMFI⁺, 482.9 [M/2 – CI + CH₃CNI⁺.

X-ray diffraction studies. Crystal structures were collected at 150(2) K on a Bruker APEX II equipped with a CCD area detector and a graphite monochromater utilizing Mo K α radiation (λ = 0.71073 Å). The unit cell parameters were obtained by least-squares refinement. Data collection and reduction were performed using the Bruker APEX2 and SAINT software.² Absorption corrections were performed using the SADABS program.³ All the structures were solved by direct methods and refined by full-matrix least squares methods against F^2 with the SHELXTL software package.⁴ All non-H atoms were refined anisotropically. All H-atoms were fixed at calculated positions and refined with the use of a riding model. In the structure of $7 \cdot C_3 H_7 NO$, the DMF solvent is disordered with two orientations of 50:50 occupancy ratio. The disordered molecule was successfully refined as a rigid group. The SIMU instruction is used for C47 to O2 and C47a to O2A. Crystallographic data are listed in Table 1. CCDC-850737 (1), -850738 (2), -850739 (4.0.5C4H10O.C3H7NO), -850740 $(5 \cdot CH_2Cl_2)$, -850741 $(7 \cdot C_3H_7NO)$, and -850742 $(9 \cdot 4C_3H_7NO)$ contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Computational details. All computational results were calculated with Gaussian 09 program.⁵ Density functional theory (DFT) with B3LYP/LANL2DZ level of theory was applied for all calculations. For solvent correction, a Polarized Continuum (overlapping spheres) model (PCM) with pyridine as solvent was used. The computational results for three most stable structural isomers **S1**, **S2**, **S3** and proposed transition state **TS1** are listed in the Table 5S. As shown in the Table 5S, the solvent effect is very small (barrier reduced from 38.1 to 35.3 kcal/mole). However, this barrier reduced significantly (from 38.1 to 25.9 kcal/mole) when additional pyridine molecule is added into the system. Although the complex **TS1+Pyridine** (Figure S3) might be an intermediate instead of transition state (since the imaginary frequency is only -18 cm⁻¹), the results suggest that pyridine might play a catalytic role in the reaction.

Table S1. Crystallogral	phic data.					
	1	2	$4\cdot 0.5C_4H_{10}O\cdot C_3H_7NO$	$5 \cdot CH_2 CI_2$	$7 \cdot C_3 H_7 NO$	9-4C ₃ H ₇ NO
empirical formula	$C_{25}H_{24}Cl_3FN_4OPd$	C ₃₇ H ₃₂ CIFN ₃ OPPd	C ₃₇ H ₃₂ CIFN ₃ OPPd	$C_{33}H_{27}CIN_4OPd$	C ₄₆ H ₃₇ CIN ₃ OPPd	$C_{40}H_{38}Cl_2F_2N_6O_2Pd_2$
			$\cdot 0.5 C_4 H_{10} O \cdot C_3 H_7 NO$	$\cdot CH_2Cl_2$	$\cdot C_3H_7NO$	$\cdot 4C_3H_7NO$
formula weight	628.23	726.48	836.13	722.36	893.70	1248.85
crystal system	triclinic	triclinic	triclinic	triclinic	triclinic	triclinic
space group	Pī	Pī	Pī	Pī	Pī	Pī
$a, m \AA$	9.5854(5)	9.3340(4)	14.5982(11)	9.8587(2)	12.507(6)	9.4686(11)
$b, m \AA$	10.3690(6)	10.4256(4)	16.6492(13)	11.1511(3)	13.088(12)	11.5276(14)
$c, m \AA$	14.3676(7)	18.9156(8)	17.5208(15)	15.0170(4)	14.438(7)	13.1627(16)
α , deg	83.969(2)	80.502(3)	81.635(6)	80.665(2)	103.747(9)	90.963(7)
$oldsymbol{eta}, ext{deg}$	71.762(2)	77.272(2)	70.792(5)	89.264(2)	115.434(6)	106.242(6)
γ , deg	72.577(2)	68.741(2)	82.732(4)	73.218(2)	90.425(9)	94.606(7)
$V, Å^3$	1293.95(12)	1665.96(12)	3964.4(5)	1558.65(7)	2057(2)	1373.8(3)
T, \mathbf{K}	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
Ζ	2	2	4	2	2	1
no. of unique data	6602	8601	17316	8024	10604	5937
no. of params refined	316	407	954	388	550	340
R_1^a $[I > 2\sigma(I)]$	0.0466	0.0529	0.0588	0.0631	0.0663	0.0514
wR_2^b (all data)	0.1048	0.1013	0.1387	0.1592	0.1846	0.1371
		0 				

 ${}^{a}R_{1} = \mathcal{I}(||F_{0}| - |F_{c}||)/\mathcal{L}|F_{0}|. \ ^{b}wR_{2} = [\mathcal{I}(|F_{0}|^{2} - |F_{c}|^{2})^{2}/\mathcal{L}(F_{0}^{2})]^{1/2}$

S12

	1		2
Pd1—C7	2.034(4)	Pd1—C1	2.036(4)
Pd1—C8	2.059(4)	Pd1—P1	2.0373(11)
Pd1—N1	2.101(3)	Pd1—Cl1	2.3810(12)
Pd1—Cl1	2.4093(3)	Pd1—C5	2.122(4)
C7—Pd1—C8	86.02(14)	C1—Pd1—C5	83.99(18)
C8—Pd1—Cl1	96.07(10)	C5—Pd1—Cl1	90.27(13)
Cl1—Pd1—N1	89.76(8)	P1—Pd1—Cl1	95.02(4)
C7—Pd1—N1	88.16(13)	C1—Pd1—P1	90.66(13)
C8—Pd1—N1	173.63(13)	C5—Pd1—P1	171.01(13)
C7—Pd1—Cl1	177.88(11)	C1—Pd1—Cl1	174.26(14)

Table S2. Selected bond distances (Å) and angles (°) of 1 and 2.

Table S3. Selected bond distances (Å) and angles (°) of $4 \cdot 0.5C_4H_{10}O \cdot C_3H_7NO.^a$

2.018(5)	Pd2—C39	2.036(5)
2.088(4)	Pd2—N6	2.078(4)
2.3960(15)	Pd2—C12	2.4010(14)
2.2317(16)	Pd2—P2	2.2408(16)
98.30(17)	C39—Pd2—P2	100.14(16)
67.0(2)	C39—Pd2—N6	66.63(19)
103.02(13)	N6—Pd2—Cl2	102.24(12)
91.48(6)	Cl2—Pd2—P2	91.07(5)
169.70(16)	C39—Pd2—Cl2	168.74(16)
164.86(13)	N6—Pd2—P2	166.29(12)
	2.018(5) $2.088(4)$ $2.3960(15)$ $2.2317(16)$ $98.30(17)$ $67.0(2)$ $103.02(13)$ $91.48(6)$ $169.70(16)$ $164.86(13)$	2.018(5) Pd2—C39 2.088(4) Pd2—N6 2.3960(15) Pd2—C12 2.2317(16) Pd2—P2 98.30(17) C39—Pd2—P2 67.0(2) C39—Pd2—N6 103.02(13) N6—Pd2—C12 91.48(6) C12—Pd2—P2 169.70(16) C39—Pd2—C12 164.86(13) N6—Pd2—P2

^{*a*} There are two independent molecules.

	5		7
Pd1—C26	2.035(5)	Pd1—C21	2.043(5)
Pd1-C20	2.008(5)	Pd1—N3	2.068(4)
Pd1—Cl1	2.4217(14)	Pd1—P1	2.234(2)
Pd1—N3	2.124(5)	Pd1—Cl1	2.3585(15)
C20—Pd1—C26	87.6(2)	C21—Pd1—N3	65.41(16)
C20—Pd1—N3	94.1(2)	C21—Pd1—P1	103.25(13)
C26—Pd1—Cl1	88.19(16)	N3—Pd1—N1	166.22(12)
N3—Pd1—Cl1	89.86(13)	C21—Pd1—Cl1	164.29(12)
C26—Pd1—N3	177.5(2)	N3—Pd1—Cl1	99.87(11)
C20—Pd1—Cl1	173.24(16)	P1—Pd1—Cl1	92.06(5)

Table S4. Selected bond distances (Å) and angles (°) of $5 \cdot CH_2Cl_2$ and $7 \cdot C_3H_7NO$.

	S1	S2	S 3	TS1		
	Gas	Phase				
Energy (a.u.)	-1463.4543713	-1463.4630939	-1463.4533703	-1463.4023038		
Rel. Energy (kcal/mol)	5.5	0	6.1	38.1		
Rel. Free Energy (kcal/mol)	5.6	0	8.2	36.8		
Dipole Moment (Debye)	4.4	10.5	4.0	6.2		
Imaginary Frequencies (cm ⁻¹)	None	None	None	-110		
Solu	tion (in Pyridin	e, PCM, Single-	Point)			
Energy (a.u.)	-1463.4861961	-1463.4950107	-1463.4836895	-1463.4386789		
Rel. Energy (kcal/mol)	5.5	0	7.1	35.3		
Dipole Moment (Debye)	5.3	13.2	5.6	7.8		
	S1+Pyridine	S2+Pyridine	S3+Pyridine	TS1+Pyridine		
	S1+Pyridine Gas	S2+Pyridine Phase	S3+Pyridine	TS1+Pyridine		
Energy (a.u.)	S1+Pyridine Gas -1711.6989045	S2+Pyridine Phase -1711.7122670	S3+Pyridine -1711.7028196	TS1+Pyridine -1711.6710328		
Energy (a.u.) Rel. Energy (kcal/mol)	S1+Pyridine Gas -1711.6989045 8.4	S2+Pyridine Phase -1711.7122670 0	S3+Pyridine -1711.7028196 5.9	TS1+Pyridine -1711.6710328 25.9		
Energy (a.u.) Rel. Energy (kcal/mol) Rel. Free Energy (kcal/mol)	S1+Pyridine Gas -1711.6989045 8.4 8.3	S2+Pyridine Phase -1711.7122670 0 0	S3+Pyridine -1711.7028196 5.9 8.4	TS1+Pyridine -1711.6710328 25.9 30.3		
Energy (a.u.) Rel. Energy (kcal/mol) Rel. Free Energy (kcal/mol) Dipole Moment (Debye)	S1+Pyridine Gas -1711.6989045 8.4 8.3 2.8	S2+Pyridine Phase -1711.7122670 0 0 10.3	S3+Pyridine -1711.7028196 5.9 8.4 4.5	TS1+Pyridine -1711.6710328 25.9 30.3 11.4		
Energy (a.u.) Rel. Energy (kcal/mol) Rel. Free Energy (kcal/mol) Dipole Moment (Debye) Imaginary Frequencies (cm ⁻¹)	S1+Pyridine Gas -1711.6989045 8.4 8.3 2.8 None	S2+Pyridine Phase -1711.7122670 0 0 10.3 None	\$3+Pyridine -1711.7028196 5.9 8.4 4.5 None	TS1+Pyridine -1711.6710328 25.9 30.3 11.4 -18		
Energy (a.u.) Rel. Energy (kcal/mol) Rel. Free Energy (kcal/mol) Dipole Moment (Debye) Imaginary Frequencies (cm ⁻¹) Solu	S1+Pyridine Gas -1711.6989045 8.4 8.3 2.8 None tion (in Pyridin	S2+Pyridine Phase -1711.7122670 0 0 10.3 None he, PCM, Single -	\$3+Pyridine -1711.7028196 5.9 8.4 4.5 None Point)	TS1+Pyridine -1711.6710328 25.9 30.3 11.4 -18		
Energy (a.u.) Rel. Energy (kcal/mol) Rel. Free Energy (kcal/mol) Dipole Moment (Debye) Imaginary Frequencies (cm ⁻¹) Solu Energy (a.u.)	S1+Pyridine Gas -1711.6989045 8.4 8.3 2.8 None tion (in Pyridin -1711.7347341	S2+Pyridine Phase -1711.7122670 0 0 10.3 None he, PCM, Single -1711.7446522	S3+Pyridine -1711.7028196 5.9 8.4 4.5 None Point) -1711.7331231	TS1+Pyridine -1711.6710328 25.9 30.3 11.4 -18 -1711.7106291		
Energy (a.u.) Rel. Energy (kcal/mol) Rel. Free Energy (kcal/mol) Dipole Moment (Debye) Imaginary Frequencies (cm ⁻¹) Solu Energy (a.u.) Rel. Energy (kcal/mol)	S1+Pyridine Gas -1711.6989045 8.4 8.3 2.8 None tion (in Pyridin -1711.7347341 6.2	S2+Pyridine Phase -1711.7122670 0 0 10.3 None ne, PCM, Single -1711.7446522 0	S3+Pyridine -1711.7028196 5.9 8.4 4.5 None Point) -1711.7331231 7.2	TS1+Pyridine -1711.6710328 25.9 30.3 11.4 -18 -1711.7106291 21.3		

Table S5. Computational results for S1, S2, S3 and TS1 (at B3LYP/LANL2DZ theory)

Figure S1. Molecular structures of $9.4C_3H_7NO$ with 50% probability ellipsoids for non-H atoms. Hydrogen atoms and solvent molecules were omitted for clarity. The dimeric compound lies about an inversion centre. Selected bond distances (Å) and angles (deg): Pd1—C12 2.034(4), Pd1—C20 1.989(4), Pd1—C11 2.4295(11), Pd1—C11A 2.4774(11); C12—Pd1—C20 82.79(17), C11—Pd1—C11A 83.24(4), C12—Pd1—C11A 99.49(12), C20—Pd1—C11 95.11(12), C11A—Pd1—C20 168.93(12), C12—Pd1—C11 175.89(11). Symmetry code for A: 1-x. -y, 1-z.

Figure S2. DFT optimized structures for S1—S3. H atoms are omitted for clarity. Selected distances (Å) are indicated.

Figure S3. DFT optimized structure for TS1 + Pyridine. H atoms except those on methyl group are omitted for clarity. Selected distances (Å) are indicated.

References

- 1. C.-Y. Liao, K.-T. Chan, P.-L. Chiu, C.-Y. Chen and H. M. Lee, Organometallics, 2007, 26, 1692-1702.
- 2. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA., 2007.
- 3. G. M. Sheldrick, *SADABS*. University of Göttingen, Germany, 1996.
- 4. G. Sheldrick, Acta Crystallogr., 2008, A64, 112-122.
- M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Lyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich,

S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.
Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.;

Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian, Inc., Pittsburgh PA, 2009.