Electronic supplementary information (ESI)

Enantioselective Friedel-Crafts reactions in water catalyzed by human telomeric G-quadruplex metalloenzyme

Changhao Wang,^{ab} Yinghao Li,^{ab} Guoqing Jia,^a Yan Liu,^a Shengmei Lu^a and Can Li*^a

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,

Chinese Academy of Sciences, Dalian 116023, China

^b Graduate School of Chinese Academy of Sciences, Beijing 100049, China

^{*}To whom correspondence should be addressed. E-mail: canli@dicp.ac.cn

Tel: (+86) 411-84379070; *Fax:* (+86) 411-84694447.

Table of Contents

General remarks	S3
Materials	S4
Typical procedure	
Calculation the conversion of 1a	S6
Scheme S1	S6
Figure S1	S6
Table S1	S7
Table S2	S8
Table S3	S9
References	S10
¹ H-NMR spectra and HPLC traces	S11

General remarks

Circular dichroism (CD) spectra were recorded on a dual beam DSM 1000 CD spectrophotometer (Olis, Bogart, GA) with a 10 mm quartz cell. Samples containing 10 μ M oligomer were prepared and treated as described above before collecting CD spectra. Each measurement was recorded from 230 to 320 nm at room temperature (about 20 °C). The average scan for each sample was subtracted by a background CD spectrum of corresponding buffer solution. ¹H-NMR spectrum was recorded on a Bruker DRX 400 MHz type (¹H, 400 MHz) with an internal reference tetramethylsilane. Data for ¹H NMR spectra were recorded as follows: chemical shift (δ , ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), intergration, coupling constant (Hz). High-performance liquid chromatography (HPLC) analysis was performed on an Agilent 1100 Series instrument with the eluents of hexane and isopropanol (*i*-PrOH), using a Daicel Chiralpak AD Column (250 × 4.6 mm).

Materials

DNA oligodeoxynucleotides: $5'-G_3(TTAG_3)_3-3'$ (ODN-1), $5'-G_3(TTTG_3)_3-3'$ (ODN-2), $5'-G_3(ATAG_3)_3-3'$ (ODN-**3**), 5'-G₃(TATG₃)₃-3' (ODN-4), $5'-G_3(AAAG_3)_3-3'$ (ODN-5), $5'-G_3(AATG_3)_3-3'$ (ODN-6), $5' - T_3(TTAT_3)_3 - 3'$ (ODN-7), 5'-A₃(TTAA₃)₃-3' (ODN-**8**), 5'-(TTA)₇-3' (ODN-9) and 3-(N-morpholino)propanesulfonic acid (MOPS) were purchased from Sangon (Shanghai, China), and the strand concentrations were determined by measuring the absorbance at 260 nm using the extinction coefficient values published in the literature.¹ Cu(NO₃)₂·3H₂O (>99%), Zn(NO₃)₂·6H₂O (>99%), Co(NO₃)₂·6H₂O (>99%), Ni(NO₃)₂·6H₂O (>99%), NaCl (>99%), KCl (>99%) and PEG200 were purchased from Alfa Aesar (Tianjin, China). 5-methoxyindole (98%), indole (99%), 5-chloroindole (98%), 1-methylindole (98%) and 1-methylindole (98%) were purchased from J&K (Beijing, China). Water was distilled and deionized using a Milli-Q A10 water purification system. Other reagents and solvents were obtained from commercial sources and used without further purification. α,β -unsaturated 2-acyl imidazoles **1a-e** were prepared according to the literature.^{2,3}

Typical procedure

To a MOPS buffer (1 mL, 20 mM, pH 6.5) containing NaCl (50 mM), an aqueous solution of ODN-1 (5'-G₃(TTAG₃)₃-3', final conc. 100 μ M) was added. After stirred for a half hour at 4 °C, a solution of Cu(NO₃)₂ (2 μ L of a 25 mM solution, final conc. 50 μ M) was added. Then, 2-acyl imidazole **1a** in DMSO (10 μ L of a 0.1 M solution) was added. The reaction was initiated by addition of nucleophile **2a** in DMSO (10 μ L of a 0.5 M solution, 5 equiv.) and the mixture was stirred for 24 hours, followed by the extraction with ethyl acetate (3 × 5 mL), and the solvent was removed under reduced pressure. After a short flash chromatography, the residue was directly analyzed by ¹H-NMR and HPLC.^{4,5}

Calculation the conversion of $1a^6$

Conversions of **1a** were calculated using the following formula:

Conversion of
$$1a$$
 (%) = $PA_{3a}/(PA_{3a} + PA_{1a}/f)$ Scheme S1

Where PA_{1a} and PA_{3a} are the peak areas of **1a** and **3a**, respectively. And *f* is the correction factor determined to be 1.27 from a fitting curve (Fig. S1).

Fig. S1 Determination of the correction factor. The HPLC ratios of peak areas (PA_{3a}/PA_{1a}) were determined with the standard molar ratios (n_{3a}/n_{1a}) of 1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10, 20. The correction factor (f = 1.27) was estimated from the fitting curve ($R^2 = 0.992$).

Table S1 Enantioselective Friedel-Crafts reactions catalyzed by ODN-1-Cu²⁺ by

tuning the concentration of K⁺ ions

^{*a*} Unless otherwise noted, all reactions were carried out in a typical procedure. ^{*b*} Determined by

chiral-phase HPLC for the crude product (Scheme S1, ESI[†]). ^c Determined by chiral-phase HPLC.

Table S2 Enantioselective Friedel-Crafts reactions catalyzed by ODN-1- Cu^{2+} by

varying the amount of PEG200

 a Unless otherwise noted, all reactions were carried out in a typical procedure. b Determined by

chiral-phase HPLC for the crude product (Scheme S1, ESI[†]). ^c Determined by chiral-phase HPLC.

Table S3 Enantioselective Friedel-Crafts reactions catalyzed by various 21mer

oligodeoxynucleotides combining with Cu²⁺ ions

^{*a*} Unless otherwise noted, all reactions were carried out in a typical procedure. ^{*b*} Determined by

chiral-phase HPLC for the crude product (Scheme S1, ESI[†]). ^c Determined by chiral-phase HPLC.

References

- 1 N. Kumar and S. Maiti, Nucleic Acid Res., 2005, 33, 6723.
- 2 D. A. Evans, K. R. Fandrick and H. J. Song, J. Am. Chem. Soc., 2005, 127, 8942.
- 3 M. C. Myers, A. R. Bharadwaj, B. C. Milgram and K. A. Scheidt, *J. Am. Chem. Soc.*, 2005, **127**, 14675.
- 4 A. J. Boersma, B. L. Feringa and G. Roelfes, Angew. Chem., Int. Ed., 2009, 48, 3346.
- 5 E. W. Dijk, A. J. Boersma, B. L. Feringa and G. Roelfes, *Org. Biomol. Chem.*, 2010, **8**, 3868.
- 6 N. S. Oltra and G. Roelfes, Chem. Commun., 2008, 6039.

¹H-NMR spectra and HPLC traces

3-(5-methoxy-1H-indol-3-yl)-1-(1-methyl-1H-imidazol-2-yl)butan-1-one (3a).

¹H-NMR (CDCl₃, 400 MHz) δ 1.40 (d, *J* = 6.9 Hz, 3H), 3.40 (dd, *J* = 15.6, 8.4 Hz, 1H), 3.57 (dd, *J* = 15.6, 6.1 Hz, 1H), 3.77-3.82 (m, 1H), 3.86 (s, 3H), 3.94 (s, 3H), 6.82 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.01 (d, *J* = 2.7 Hz, 2H), 7.15 (s, 2H), 7.20 (d, *J* = 8.8 Hz, 1H), 8.18 (s, 1H).

HPLC condition: Daicel chiralpak-AD, hexane/i-PrOH 80:20, 1.0 mL/min, 254 nm.

Racemic 3a.

Retention times: 15.8 (+) and 21.9 (-) mins.

Product **3a** from the F-C reaction catalyzed by ODN-**1**-Cu²⁺ containing 50 mM NaCl (75% ee).

Retention times: 16.1 (+) and 22.2 (-) mins.

3-(1H-indol-3-yl)-1-(1-methyl-1H-imidazol-2-yl)butan-1-one (3b).

¹H-NMR (CDCl₃, 400 MHz) δ 1.41 (d, *J* = 6.9 Hz, 3H), 3.46 (dd, *J* = 15.9, 8.2 Hz, 1H), 3.56 (dd, *J* = 15.9, 6.3 Hz, 1H), 3.93 (s, 3H), 6.99 (s, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.11–7.06 (m, 1H), 7.18–7.12 (m, 2H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 8.23 (s, 1H).

HPLC condition: Daicel chiralpak-AD, hexane/i-PrOH 85:15, 1.0 mL/min, 254 nm.

Racemic 3b.

Retention times: 19.9 (+) and 28.7 (-) mins.

Product **3b** from the F-C reaction catalyzed by ODN-**1**-Cu²⁺ containing 50 mM NaCl (67% ee).

Retention times: 19.9 (+) and 28.7 (-) mins.

Area Percent Report -----

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	A	rea	Heig	ght	Area
#	[min]		[min]	mAU	* 5	[mAU]	*
1	19.889	вв	0.5965	4619	33008	119.9	90215	83.4122
2	28.696	BB	0.8477	918	.62451	16.4	19621	16.5878
Tota]	ls :			5537	95459	136.3	39836	

______ *** End of Report ***

3-(5-chloro-1H-indol-3-yl)-1-(1-methyl-1H-imidazol-2-yl)butan-1-one (3c).

¹H-NMR (CDCl₃, 400 MHz) δ 1.40 (d, *J* = 6.9 Hz, 3H), 3.46 (dd, *J* = 10.8, 7.3 Hz, 2H), 3.83–3.71 (m, 1H), 3.93 (s, 3H), 7.02 (s, 1H), 7.05 (d, *J* = 2.3 Hz, 1H), 7.10 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.16 (s, 1H), 7.22 (d, *J* = 8.6 Hz, 1H), 7.56 (d, *J* = 1.8 Hz, 1H), 8.31–8.22 (m, 1H).

HPLC condition: Daicel chiralpak-AD, hexane/i-PrOH 90:10, 1.0 mL/min, 254 nm.

Racemic 3c.

Retention times: 25.3 (+) and 32.7 (-) mins.

Product 3c from the F-C reaction catalyzed by ODN-1-Cu²⁺ containing 50 mM NaCl (66% ee).

VWD1 A, Wavelength=254 nm (H:\HPLC\3C-DNA.D) Norm. 25221 80 60 40 33.073 20 0 20 25 35 10 15 30 _____ _____ Area Percent Report Sorted By -Signal 1.0000 Multiplier: : Dilution: 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] ŝ # 0.7195 3786.17114 1 25.221 BB 81.76723 83.2115 2 33.073 BB 0.9421 763.88385 12.44414 16.7885 Totals : 4550.05499 94.21137 _____ *** End of Report ***

Retention times: 25.2 (+) and 33.1 (-) mins.

1-(1-methyl-1H-imidazol-2-yl)-3-(1-methyl-1H-indol-3-yl)butan-1-one (3d).

¹H-NMR (CDCl₃, 400 MHz) δ1.41 (d, *J* = 6.9 Hz, 3H), 3.44 (dd, *J* = 15.8, 8.0 Hz, 1H), 3.56 (dd, *J* = 15.8, 6.5 Hz, 1H), 3.71 (s, 3H), 3.83 (dd, *J* = 14.2, 7.0 Hz, 1H), 3.91 (s, 3H), 6.92 (s, 1H), 6.97 (s, 1H), 7.10–7.04 (m, 1H), 7.13 (d, *J* = 0.8 Hz, 1H), 7.21–7.15 (m, 1H), 7.27–7.23 (m, 1H), 7.65 (d, *J* = 7.9 Hz, 1H).

HPLC condition: Daicel chiralpak-AD, hexane/*i*-PrOH 95:5, 1.0 mL/min, 254 nm.

Racemic 3d.

Retention times: 16.1 (-) and 26.2 (+) mins.

Product **3d** from the F-C reaction catalyzed by ODN-**1**-Cu²⁺ containing 50 mM NaCl (-8% ee).

Retention times: 16.1 (-) and 26.3 (+) mins.

Area Percent Report

Sorted By		:	Sigr	nal	
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	æ	Dilution	Factor	with	ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	A	rea	Heid	ght	Area	
#	[min]		[min]	mAU	* s	[mAU]	8	
1	16.122	BB	0.4374	1985.	.38806	70.0	88864	54.0762	
2	26.330	BB	0.6948	1686.	.07874	37.0	61511	45.9238	
Total	i د .			3671	46680	108 3	50375		

1-(1-methyl-1H-imidazol-2-yl)-3-(2-methyl-1H-indol-3-yl)butan-1-one (3e).

¹H-NMR (CDCl₃, 400 MHz) δ 1.46 (d, *J* = 7.1 Hz, 3H), 2.41 (s, 3H), 3.61 (dd, *J* = 7.3, 1.7 Hz, 2H), 3.78 (dd, *J* = 14.7, 7.1 Hz, 1H), 3.85 (s, 3H), 6.93 (s, 1H), 7.08–7.00 (m, 2H), 7.09 (d, *J* = 0.8 Hz, 1H), 7.21 (dt, *J* = 8.1, 3.3 Hz, 1H), 7.65 (dd, *J* = 8.1, 6.7 Hz, 1H), 7.78–7.69 (m, 1H).

HPLC condition: Daicel chiralpak-AD, hexane/i-PrOH 85:15, 1.0 mL/min, 254 nm.

Racemic 3e.

Retention times: 22.3 (-) and 33.2 (+) mins.

Product **3e** from the F-C reaction catalyzed by ODN-**1**-Cu²⁺ containing 50 mM NaCl (-44% ee).

Retention times: 21.9 (-) and 32.8 (+) mins.

Area Percent Report

Sort	ted By		:	Sigr	nal	
Mult	tiplier:			:	1	1.0000
Dilı	ation:			:	1	1.0000
Use	Multiplier	ő	Dilution	Factor	with	ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	21.877	BB	0.6299	742.38391	18.22075	72.1411
2	32.811	BB	0.8585	286.68857	4.88252	27.8589
Total	ls :			1029.07248	23.10326	

3-(5-methoxy-1*H*-indol-3-yl)-1-(1-methyl-1*H*-imidazol-2-yl)-3-phenyl-1-propanon e (3f).

¹H-NMR (CDCl₃, 400 MHz) δ 3.70 (s, 3H), 3.83 (dd, *J* = 16.4, 7.8 Hz, 1H), 3.88 (s, 3H), 3.99 (dd, *J* = 16.5, 7.5 Hz, 1H), 5.05 (t, *J* = 7.6 Hz, 1H), 6.98 (dd, *J* = 12.8, 6.2 Hz, 3H), 7.14 (dd, *J* = 11.2, 6.3 Hz, 3H), 7.22 (d, *J* = 7.4 Hz, 3H), 7.39 (d, *J* = 7.5 Hz, 2H), 7.48 (d, *J* = 7.9 Hz, 1H).

HPLC condition: Daicel chiralpak-AD, hexane/i-PrOH 80:20, 1.0 mL/min, 254 nm.

Racemic 3f.

Retention times: 29.5 and 38.6 mins.

Product **3f** from the F-C reaction catalyzed by ODN-**1**-Cu²⁺ containing 50 mM NaCl (21% ee).

Retention times: 29.6 and 38.6 mins.

3-(4-bromophenyl)-3-(5-methoxy-1*H*-indol-3-yl)-1-(1-methyl-1*H*-imidazol-2-yl)

propan-1-one (3g).

¹H-NMR (CDCl₃, 400 MHz) δ 3.76 (s, 3H), 3.81 (dd, *J* = 16.8, 8.0 Hz, 1H), 3.91 (s, 3H), 3.95 (dd, *J* = 16.8, 7.2 Hz, 1H), 4.95 (t, *J* = 7.6 Hz, 1H), 6.79 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.86 (d, *J* = 2.4 Hz, 1H), 7.00 (s, 1H), 7.09 (d, *J* = 2.1 Hz, 1H), 7.15 (d, *J* = 0.8 Hz, 1H), 7.19 (d, *J* = 8.8 Hz, 1H), 7.25 (d, *J* = 9.5 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 8.11–8.01 (m, 1H).

HPLC condition: Daicel chiralpak-AD, hexane/i-PrOH 80:20, 1.0 mL/min, 254 nm.

Racemic 3g.

Retention times: 34.6 and 41.4 mins.

Product **3g** from the F-C reaction catalyzed by ODN-**1**-Cu²⁺ containing 50 mM NaCl (7% ee).

Retention times: 33.4 and 40.5 mins.

Totals :

*** End of Report ***

14.88135

1236.72559

 $\label{eq:2.1} 3- (4-chlorophenyl)-3- (5-methoxy-1H-indol-3-yl)-1- (1-methyl-1H-imidazol-2-yl) proved to the second statement of the second statemen$

opan-1-one (3h).

¹H-NMR (CDCl₃, 400 MHz) δ 3.72 (s, 3H), 3.80 (dd, *J* = 16.4, 8.0 Hz, 1H), 3.92 (s, 3H), 3.96 (dd, *J* = 16.8, 7.6 Hz, 1H), 4.98 (t, *J* = 7.6 Hz, 1H)), 6.80 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.86 (d, *J* = 2.4 Hz, 1H), 7.00 (s, 1H), 7.11 (d, *J* = 2.1 Hz, 1H), 7.15 (d, *J* = 0.8 Hz, 1H), 7.21 (d, *J* = 8.4 Hz, 3H), 7.25 (d, *J* = 8.8 Hz, 2H), 7.96–7.89 (m, 1H).

HPLC condition: Daicel chiralcel-OD, hexane/i-PrOH 80:20, 1.0 mL/min, 254 nm.

Racemic 3h.

Retention times: 13.1 (+) and 15.3 (-) mins.

Product **3h** from the F-C reaction catalyzed by ODN-**1**-Cu²⁺ containing 50 mM NaCl (-7% ee).

Retention times: 13.1 (+) and 15.3 (-) mins.

3-(5-methoxy-1H-indol-3-yl)-3-(4-methoxyphenyl)-1-(1-methyl-1H-imidazol-2-yl)

propan-1-one (3i).

¹H-NMR (CDCl₃, 400 MHz) δ 3.73 (s, 3H), 3.75 (s, 3H), 3.81 (dd, *J* = 16.3, 8.2 Hz, 1H), 3.89 (s, 3H), 3.95 (dd, *J* = 16.3, 7.1 Hz, 1H), 4.95 (t, *J* = 7.6 Hz, 1H), 6.80–6.73 (m, 3H), 6.92 (d, *J* = 2.3 Hz, 1H), 6.98 (s, 1H), 7.05 (d, *J* = 2.1 Hz, 1H), 7.16 (d, *J* = 9.0 Hz, 2H), 7.27 (d, *J* = 8.8 Hz, 2H), 8.23 (s, 1H).

HPLC condition: Daicel chiralpak-AD, hexane/i-PrOH 80:20, 1.0 mL/min, 254 nm.

Racemic 3i.

Retention times: 53.4 (-) and 59.6 (+) mins.

Product **3i** from the F-C reaction catalyzed by ODN-**1**-Cu²⁺ containing 50 mM NaCl (-9% ee).

Retention times: 53.1 (-) and 59.5 (+) mins.

