Electronic Supplementary Information

Efficient catalytic cyclizations of three and two imine assembly: Direct access to tetrahydroimidazo[1,5-c]imidazol-7-one and imidazole

Yasmin Saima, Saikat Khamarui, Krishnanka S. Gayen, Palash Pandit and Dilip K. Maiti*

*Corresponding author. Fax: 91-33-23519755, Tel: 91-9433379965 maitidk@yahoo.com

Table of Content

<u>Serial</u>	No. Content	Page Numbers
1.	Materials and methods	S 2
2.	Preparation of amino acid ester (1)	S2
3.	General Procedure for the preparation of fused tetrahydroimidazo[1,5- <i>c</i>]imidazoles (5a-l)	S2
4.	Characterization data of fused tetrahydroimidazo[1,5-c]imidazoles (5a-	· I) S3
5.	General Procedure for the preparation of 1,4-difunctionalized-2,5-diaryl imidazoles (7a-k)	S 9
6.	Characterization data of 1,4-difunctionalized-2,5-diaryl imidazoles (7a-	k) S9
7.	Characterization data of substituted tetrahydroimidazoles ($4a \& 4b$)	S15
8.	¹ H and ¹³ C NMR spectrum of compounds 5a-l , 7a-k , 4a-b .	S16
9.	Single crystal structure of 1,3,5-tris-(4-chlorophenyl)-6-ethoxycarbony 7-oxo-tetrahydroimidazo[1,5- <i>c</i>]imidazol-2-yl]-acetic acid ethyl ester (5 summary of data of CCDC 865937	lmethyl- a) and S41

1. Materials and Methods

All solvents were dried by standard methods. Chemicals were purchased from commercial suppliers and used without further purification. Column chromatography was performed on silica gel (60-120 mesh). TLC was done on glass sheets pre-coated with silica gel (with binder, 300 mesh, Merck). The ¹H- and ¹³C-NMR spectra were taken in CDCl₃ with TMS as an internal reference on Bruker Supercon NMR spectrometer (Model: AV 300 Digital) which operated at 300 MHz for ¹H and 75 MHz for ¹³C nuclei. The chemical shifts were reported as δ values (ppm) relative to tetramethylsilane. Proton multiplicities are represented as s (singlet), d (doublet), dd (double doublet), t (triplet), q (quartet), and m (multiplet). Infrared spectra were recorded on FT-IR spectrometer in KBr pellets and in NaCl cell (liquid sample) on a Perkin–Elmer RXI-FTIR spectrophotometer. Melting points of the samples were determined with a Fisher-John melting point apparatus and were uncorrected. HR-MS data were acquired by electrospray ionization technique on a Q-tof-micro quadriple mass spectrophotometer (Bruker). The carbonyl peaks for few compounds (e.g. **5f**) are overlapped one over another.

2. Preparation of amino acid ester (1)

A suspension of hydrochloride salt of amino acid ester (4.0 mmol) in dichloromethane (DCM, 20 mL) was taken in a separating funnel and shaken vigorously with ammonia solution. Free amino acid ester (1) thus formed was dissolved in DCM layer, collected, dried with anhydrous Na_2SO_4 and evaporated to dryness in a rotary evaporator under reduced pressure at room temperature.

3. General Procedure for the preparation of fused-tetrahydroimidazo[1,5-c]imidazoles (5a-l)

A solution of amino acid ester (1, 3.0 mmol) and aldehyde (2, 3 mmol) in toluene (10 mL) was taken in a round-bottom flask (25 mL) and the reaction mixture was refluxed for 3-5 h with continuous removal of generated water using a Dean-Stark apparatus until imine formation was complete (checked by TLC). After the reaction mixture cooled down, 7 mol% of *dl*-proline was added to it and stirred magnetically. It was heated at 100° C with continuous stirring until the reaction was complete (4.0-6.5 h). The progress of the reaction was checked by TLC. The post reaction mixture was cooled to room temperature and concentrated in a rotary evaporator under reduced pressure. It was transferred to a separating funnel using DCM and water, washed with 2x10 mL of saturated sodium bicarbonate solution and 1x10mL of brine solution, dried on activated sodium sulfate, and concentrated in a rotary evaporator under reduced pressure at room temperature. Thus, the reaction of glycine ethyl ester (1a, 309 mg, 3.0 mmol) with 4-chlorobenzaldehyde (2a, 420 mg, 3.0 mmol) afforded 5a after purification by column chromatography on silica gel (60-120 mesh) with ethyl acetate-petroleum ether (1:13, v/v) as an eluent in an isolated yield of 81% (510 mg, 0.81 mmol). The fused-tetrahydroimidazo[1,5-c]imidazoles (5a-I) were characterized by NMR, FT-IR and HR-MS spectral analysis.

4. Characterization data of fused-tetrahydroimidazo[1,5-c]imidazoles (5a-l)

Characteristic data of [1,3,5-tris-(4-chlorophenyl)-6-ethoxycarbonylmethyl-7-oxotetrahydro-imidazo[1,5-*c*]imidazol-2-yl]-acetic acid ethyl ester (5a)

Yield: 81% (510 mg, 0.81 mmol).

Characteristic: white solid.

Melting point: 134-136° C.

¹H NMR (300 MHz, CDCl₃): δ 1.12 (3H, t, *J* = 6.9 Hz), 1.22 (3H, t, *J* = 3.0Hz), 2.98-3.23 (3H, m), 3.80 (1H, d, *J* = 5.7Hz), 3.97 (2H, q, *J* = 6.9 Hz), 4.12 (2H, q, *J* = 3.0 Hz), 4.57 (2H, s), 5.07 (1H, s), 5.38 (1H, s), 6.82 (2H, d, *J* = 7.2 Hz), 7.17 (2H, d, *J* = 8.1Hz), 7.22 (4H, d, *J* = 19.8 Hz), 7.41 (4H, d, *J* = 8.4 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 41.4, 47.0, 60.5, 61.6, 65.6, 69.1, 78.8, 84.8, 127.9, 128.9, 129.1, 129.2, 130.3, 133.9, 134.9, 135.0, 136.0, 137.3, 138.0, 168.1, 169.8, 172.6. FT-IR (neat, cm⁻¹): 829, 953, 1084, 1716, 2926, 3437.

HR-MS (m/z): for C₃₁H₃₀Cl₃N₃O₅: Calculated 629.1251; Found 629.1260 (One of the major peaks).

Characteristic data of [1,3,5-tris-(4-chlorophenyl)-6-methoxycarbonylmethyl-7-oxotetrahydro-imidazo[1,5-c]imidazol-2-yl]-acetic acid methyl ester (5b)

Yield: 75% (450 mg, 0.75 mmol).

Characteristic: Yellow colored viscous liquid.

¹H NMR (300 MHz, CDCl₃): δ 3.01-3.26 (3H, m), 3.52 (3H, s), 3.72 (3H, s), 3.81 (1H, d, J= 5.7 Hz), 4.52-4.58 (2H, m), 5.07 (1H, s), 5.36 (1H, s), 6.81 (2H, d, J= 8.4 Hz), 7.14-7.19 (3H, m), 7.23-7.35 (3H, m), 7.39-7.43 (4H, m).

¹³C NMR (75 MHz, CDCl₃): δ 41.3, 46.8, 51.4, 52.4, 65.6, 69.0, 78.8, 84.9, 127.9, 128.0, 128.3, 128.7, 129.0, 129.2, 129.4, 129.6, 129.8, 130.3, 130.8, 133.9, 135.0, 135.9, 137.1, 137.9, 168.6, 170.3, 172.6.

FT-IR (neat, cm⁻¹): 1089, 1211, 1436, 1725, 2360, 2924, 3427.

HR-MS (m/z): for C₂₉H₂₆Cl₃N₃O₅: Calculated 601.0938; Found 601.0942 (One of the major peaks).

Characteristic data of [1,3,5-tris-(4-bromophenyl)-6-ethoxycarbonylmethyl-7-oxotetrahydro-imidazo[1,5-*c*]imidazol-2-yl]-acetic acid ethyl ester (5c)

Yield: 81% (615 mg, 0.81 mmol).

Characteristic: White solid.

Melting point: 142 °C.

¹H NMR (300 MHz, CDCl₃): δ 1.19 (3H, t, *J*= 7.2 Hz), 1.27 (3H, t, *J*= 7.2 Hz), 3.13 (2H, q, *J*= 17.4 Hz), 3.26 (1H, d, *J*= 18 Hz), 3.87 (1H, d, *J*= 5.7 Hz), 4.04 (2H, q, *J* = 6 Hz), 4.19 (2H, q, *J*= 3.6 Hz), 4.58-4.63 (2H, m), 5.13 (1H, s), 5.43 (1H, s), 6.82 (2H, d, *J*= 8.4 Hz), 7.38-7.61 (10H, m).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 14.2, 41.4, 46.9, 60.6, 61.6, 65.6, 69.0, 78.8, 84.8, 118.1, 122.0, 123.0, 123.2, 128.2, 129.5, 130.6, 131.7, 131.9, 132.1, 136.5, 137.8, 138.5, 162.3, 168.1, 169.9, 172.6.

FT-IR (neat, cm⁻¹): 1013, 1206, 1438, 1589, 1712, 2373, 2924, 2981.

HR-MS (m/z): for C₃₁H₃₀Br₃N₃O₅: Calculated: 760.9736; Found: 760.9745 (One of the major peaks).

Characteristic data of [1,3,5-tris-(4-bromophenyl)-6-methoxycarbonylmethyl-7-oxotetrahydro-imidazo[1,5-*c*]imidazol-2-yl]-acetic acid methyl ester (5d)

Yield: 78% (570 mg, 0.78 mmol).

Characteristic: Yellow colored viscous liquid.

¹H NMR (300 MHz, CDCl₃): δ 2.72 (2H, d, *J*= 6.6 Hz), 3.08 (3H, s), 3.13-3.23 (2H, m), 3.31 (3H, s), 3.36 (2H, d, *J*= 6.3 Hz), 3.96 (1H, d, *J*= 6.3 Hz), 4.64 (1H, s), 6.80 (3H, s), 6.90-7.08 (9H, m).

¹³C NMR (75 MHz, CDCl₃): δ 47.6, 51.3, 52.4, 66.7, 68.1, 79.0, 121.9, 129.2, 129.6, 131.8, 139.1, 139.3, 170.5, 172.9.

FT-IR (neat, cm⁻¹): 1070, 1424, 1591, 1738, 2849, 2917.

HR-MS (m/z): for C₂₉H₂₆Br₃N₃O₅: Calculated 732.9423; Found: 732.9430 (One of the major peaks)

Characteristic data of [1,3,5-tris-(2-chlorophenyl)-6-ethoxycarbonylmethyl-7-oxotetrahydro-imidazo[1,5-*c*]imidazol-2-yl]-acetic acid ethyl ester (5e)

Yield: 76% (475 mg, 0.76 mmol).

Characteristic: Pale yellow colored viscous liquid.

¹H NMR (300 MHz, CDCl₃): δ 0.79 (3H, t, *J*= 6 Hz), 1.14 (3H, t, *J*= 6 Hz), 3.18 (2H, q, *J*= 15 Hz), 3.38-3.44 (2H, m), 3.68-3.74 (2H, m), 3.96 (2H, q, *J*= 6 Hz), 4.44 (1H, d, *J*= 9 Hz), 5.24 (1H, d, *J*= 9 Hz), 5.53 (2H, s), 7.16-7.41 (10H, m), 7.67 (1H, d, *J*= 6 Hz), 7.98 (1H, d, *J*= 6 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 13.4, 14.0, 48.6, 60.5, 61.1, 63.1, 63.4, 75.9, 126.8, 127.6, 128.7, 128.8, 129.0, 129.2, 129.8, 129.9, 130.0, 135.1, 135.2, 135.8, 136.2, 170.0, 171.4.

FT-IR (neat, cm⁻¹): 1036, 1395, 1588, 1672, 1732, 2921, 3445.

HR-MS (m/z): for C₃₁H₃₀Cl₃N₃O₅: Calculated 629.1251; Found: 629.1246 (One of the major peaks).

Characteristic data of [6-ethoxycarbonylmethyl-1,3,5-tris-(4-nitrophenyl)-7-oxotetrahydro-imidazo[1,5-c]imidazol-2-yl]-acetic acid ethyl ester (5f)

Yield: 68% (450 mg, 0.68 mmol)

Characteristic: Yellow colored viscous liquid

¹H NMR (300 MHz, CDCl₃): δ 1.19 (3H, t, J = 7.2 Hz), 1.28 (3H, t, J = 7.2 Hz), 3.24 (2H, d, J = 2.2 Hz), 3.88 (1H, d, J = 3.3 Hz), 4.07 (2H, q, J = 6.9 Hz), 4.24-4.31 (4H, m), 4.63 (1H, d, J = 6.3 Hz), 5.30 (1H, s), 5.33 (1H, d, J = 19.2 Hz), 7.69 (2H, d, J = 8.7 Hz), 7.79 (2H, d, J = 8.4 Hz), 8.24-8.27 (8H, m).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 14.2, 48.1, 53.4, 60.8, 61.9, 66.8, 68.4, 78.7, 123.7, 123.8, 123.9, 128.5, 129.0, 147.4, 147.6, 147.9, 148.4, 169.7, 171.6.

FT-IR (neat, cm⁻¹): 1028, 1324, 1606, 1731, 2354, 2918, 3462.

HR-MS (*m*/*z*): for C₃₁H₃₀N₆O₁₁: Calculated 662.1973; Found: 662.1981.

Characteristic data of [6-ethoxycarbonylmethyl-1,3,5-tris-(3-nitrophenyl)-7-oxotetrahydro-imidazo[1,5-c]imidazol-2-yl]-acetic acid ethyl ester (5g)

Yield: 78% (516mg, 0.78 mmol).

Characteristic: Yellow colored viscous liquid.

¹H NMR (300 MHz, CDCl₃): δ 1.17-1.40 (6H, m), 3.25 (2H, d, J= 5.1 Hz), 3.85 (1H, d, J= 5.7 Hz), 4.03-4.35 (7H, m), 4.61 (1H, d, J= 6.6 Hz), 5.34 (1H, s), 7.56-7.63 (4H, m), 7.89 (1H, d, J= 7.8 Hz), 7.96 (1H, d, J= 7.8 Hz), 8.18-8.27 (4H, m), 8.34 (1H, s), 8.45 (1H, s). ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 14.2, 48.1, 60.8, 61.8, 66.8, 68.4, 78.7, 122.8, 123.1, 123.2, 123.8, 129.7, 129.8, 133.5, 134.2, 142.5, 142.9, 148.5, 162.3, 169.7, 171.8. FT-IR (neat, cm⁻¹): 1196, 1350, 1531, 1736, 2923, 3437 HR-MS (m/z): for C₃₁H₃₀N₆O₁₁: Calculated 662.1973; Found: 662.1975.

Characteristic data of (6-ethoxycarbonylmethyl-7-oxo-1,3,5-triphenyl-tetrahydroimidazo[1,5-*c*]imidazol-2-yl)-acetic acid ethyl ester (5h)

Yield: 78% (409 mg, 0.78 mmol).

Characteristic: Pale yellow colored viscous liquid.

¹H NMR (300 MHz, CDCl₃): δ 1.13 (3H, t, *J*= 7.2 Hz), 1.25 (3H, t, *J*= 7.2 Hz), 3.04-3.29 (3H, m), 3.90 (1H, d, *J*= 5.7 Hz), 4.01 (2H, q, *J*= 5.7 Hz), 4.23 (2H, q, *J*= 3.6 Hz), 4.63 (2H, d, *J*= 6 Hz), 5.13 (1H, s), 5.44 (1H, s), 6.85-6.87 (2H, m), 7.17-7.32 (9H, m), 7.52-7.54 (4H, m).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 14.2, 41.6, 47.2, 60.3, 61.5, 66.1, 69.2, 79.2, 85.6, 126.6, 127.0, 128.3, 128.7, 128.8, 129.2, 137.6, 138.8, 140.6, 168.4, 170.4, 173.6.

FT-IR (neat, cm⁻¹): 1028, 1431, 1613, 1720, 2922, 3440.

HR-MS (*m/z*): for C₃₁H₃₃N₃O₅: Calculated 527.2420; Found. 527.2424.

Characteristic data of (6-methoxycarbonylmethyl-7-oxo-1,3,5-triphenyl-tetrahydroimidazo[1,5-c]imidazol-2-yl)-acetic acid methyl ester (5i)

Yield: 72% (358mg, 0.72 mmol).

Characteristic: Pale yellow colored viscous liquid.

¹H NMR (300 MHz, CDCl₃): δ 3.12-3.31 (3H, m), 3.51 (3H, s), 3.73 (3H, s), 3.91 (1H, d, J= 5.7 Hz), 4.57-4.63 (2H, m), 5.12 (1H, s), 5.41 (1H, s), 6.83-6.86 (2H, m), 7.16-7.32 (9H, m), 7.50-7.53 (4H, m).

¹³C NMR (75 MHz, CDCl₃): δ 41.5, 47.1, 51.2, 52.3, 66.2, 69.2, 79.3, 85.7, 126.5, 127.9, 128.4, 128.7, 128.8, 129.1, 129.2, 137.5, 138.8, 140.0, 168.7, 170.7, 173.3.

FT-IR (neat, cm⁻¹): 1114, 1418, 1606, 1708, 2356, 3435

HR-MS (*m/z*): for C₂₉H₂₉N₃O₅: Calculated 499.2107; Found: 499.2112.

Characteristic data of [6-ethoxycarbonylmethyl-1,3,5-tris-(4-methoxyphenyl)-7-oxotetrahydro-imidazo[1,5-*c*]imidazol-2-yl]-acetic acid ethyl ester (5j)

Yield: 75% (462 mg, 0.75mmol).

Characteristic: Yellow colored semisolid.

¹H NMR (300 MHz, CDCl₃): δ 1.12 (3H, t, *J*= 7.2 Hz), 1.23 (3H, t, *J*= 7.2 Hz), 3.05-3.25 (3H, m), 3.68 (3H, s), 3.70 (3H, s), 3.73 (3H, s), 3.84 (1H, d, *J*= 5.7 Hz), 3.94 (2H, q, *J*= 5.7 Hz), 4.12 (2H, q, *J*= 3.3 Hz), 4.49-4.55 (2H, m), 4.98 (1H, s), 5.35 (1H, s), 6.69 (2H, d, *J*= 8.7 Hz), 6.78-6.84 (6H, m), 7.41 (4H, d, *J*= 8.7 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 14.2, 41.5, 47.1, 55.2, 60.3, 61.4, 65.7, 69.2, 79.0, 85.1, 113.7, 114.0, 114.1, 127.8, 129.1, 129.9, 130.2, 131.0, 132.0, 159.4, 159.8, 160.1, 168.3, 170.4, 173.3.

FT-IR (neat, cm⁻¹):1028, 1250, 1611, 1735, 2364, 2851, 2926.

HR-MS (*m/z*): for C₃₄H₃₉N₃O₈: Calculated 617.2737; Found: 617.2744.

Characteristic data of [1,3,5-tris-(4-cyanophenyl)-6-ethoxycarbonylmethyl-7-oxotetrahydro-imidazo[1,5-*c*]imidazol-2-yl]-acetic acid ethyl ester (5k)

Yield: 70% (420 mg, 0.70mmol).

Characteristic: Yellow solid.

Melting point: 133 °C.

¹H NMR (300 MHz, CDCl₃): δ 0.85, (3H, t, *J*= 6.9 Hz), 1.18 (3H, t, *J*= 9 Hz), 3.21 (2H, q, *J*= 17.4 Hz), 3.47-3.53 (2H, m), 3.73-3.81 (2H, m), 4.03 (2H, q, *J*= 7.2 Hz), 4.40 (1H, d, *J*= 9.3 Hz), 4.76 (1H, d, *J*= 9.3 Hz), 5.16 (1H, s), 5.30 (1H, s), 7.26 (2H, s), 7.53 (3H, d, *J*= 8.1 Hz), 7.64 (3H, d, *J*= 8.1 Hz), 7.76 (4H, s).

¹³C NMR (75 MHz, CDCl₃): δ 13.5, 14.1, 48.0, 53.3, 60.7, 61.3, 64.7, 67.3, 79.5, 112.0, 113.3, 128.7, 129.0, 131.9, 132.7, 143.5, 144.4, 169.7, 170.3.

IR (neat, cm⁻¹): 1080, 1731, 2228, 2365, 2926, 3437.

HR-MS (*m/z*): for C₃₄H₃₀N₆O₅: Calculated 602.2278; Found: 602.2269

Characteristic data of (6-ethoxycarbonylmethyl-1,3,5-tri-naphthalen-2-yl-7-oxo-tetrahydro-imidazo[1,5-c]imidazol-2-yl)-acetic acid ethyl ester (5l)

Yield: 77% (521 mg, 0.77mmol).

Characteristic: Yellow colored viscous solid.

¹H NMR (300 MHz, CDCl₃): δ 0.49 (3H, t, *J*= 7.2 Hz), 1.05 (3H, t, *J*= 7.2 Hz), 3.15-3.29 (4H, m), 3.54-3.58 (2H, m), 3.90 (2H, q, *J*= 6.9 Hz), 4.38 (1H, d, *J*= 9.3 Hz), 4.86 (1H, d, *J*= 9.3 Hz), 5.24 (1H, d, *J* = 12.6 Hz), 5.26 (1H, s), 7.39-7.47 (6H, m), 7.55 (2H, dd, *J*= 8.7, 7.2 Hz), 7.75-7.92 (11H, m), 8.04 (2H, s).

¹³C NMR (75 MHz, CDCl₃): δ 13.2, 14.0, 47.8, 60.3, 60.9, 64.7, 67.6, 80.0, 125.1, 125.9, 126.1, 126.3, 126.4, 127.6, 127.8, 127.9, 128.0, 128.2, 128.9, 133.2, 133.4, 134.0, 136.0, 136.4, 170.5, 171.3.

FT-IR (neat, cm⁻¹):1195, 1733, 2919, 2980, 3347.

HR-MS (*m/z*): for C₄₃H₃₉N₃O₅: Calculated 677.2890; Found 677.2892

4. General Procedure for the preparation of 1,4-difunctionalized-2,5-diaryl imidazoles (7a-k)

A solution of amino acid ester (1, 2.0 mmol) and aldehyde (2, 2 mmol) in xylene (10 mL) was taken in a round-bottom flask (25 mL) and content of the reaction mixture was refluxed for 3-5 h with continuous removal of generated water using a Dean-Stark apparatus until imine formation was complete (checked by TLC). After cooling the reaction mixture to ambient temperature 3 mol% of Cu(OTf)₂ and 10 mol% of Ag₂O was added and stirred magnetically. It was heated at 130° C with continuous stirring until the reaction was complete (4.5-7.5 h). Progress of the reaction was monitored by TLC. The post reaction mixture was cooled to room temperature and concentrated by distilling out the solvent under reduced pressure. It was transferred to a separating funnel using DCM and water, washed with 2x10 mL of saturated sodium bicarbonate solution and 1x10 mL of brine solution, dried on activated sodium sulfate, and concentrated in a rotary evaporator under reduced pressure at room temperature. Thus, the reaction of glycine ethyl ester (1a, 206 mg, 2.0 mmol) with 4-chloro benzaldehyde (2a, 280 mg, 2.0 mmol) afforded 7a, after purification by column chromatography on silica gel (60-120 mesh) with ethyl acetate-petroleum ether (1:6, v/v) as an eluent in an isolated yield of 78% (347mg, 0.78 mmol). The 1,4-difunctionalized-2,5-diaryl imidazoles (7a-k) were characterized by NMR, FT-IR and HR-MS spectral analysis.

5. Characterization data of 1,4-difunctionalized-2,5-diaryl imidazoles (7a-k)

Characteristic data of 2,5-bis-(4-chlorophenyl)-1-ethoxycarbonylmethyl-1*H*-imidazole-4-carboxylic acid ethyl ester (7a)

Yield: 78% (347mg, 0.78 mmol) Characteristic: Yellow semisolid ¹H NMR (300 MHz, CDCl₃): δ 1.10-1.28 (6H, m), 4.14 (2H, q, *J* = 6.9 Hz), 4.27 (2H, q, *J* = 6.9 Hz), 4.44 (2H, s), 7.34 (2H, d, *J* = 7.5 Hz), 7.44-7.49 (4H, m), 7.56 (2H, d, *J* = 7.2 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 14.2, 46.8, 60.5, 62.2, 127.2, 127.8, 128.8, 129.0, 130.3, 130.6, 130.8, 131.7, 135.8, 136.1, 138.6, 139.2, 162.6, 167.4. FT-IR (neat, cm⁻¹): 1096, 1402, 1726, 2354, 2854, 2922, 3435. HR-MS (*m*/*z*): for C₂₂H₂₀Cl₂N₂O₄ Calculated: 446.0800; Found: 446.0808 (One of the major peaks). Characteristic data of 2,5-bis-(4-chlorophenyl)-1-methoxycarbonylmethyl-1*H*-imidazole-4-carboxylic acid methyl ester (7b)

Yield: 70% (293 mg, 0.70 mmol).

Characteristic: Yellow solid.

Melting point: 86 °C.

¹H NMR (300 MHz, CDCl₃): δ 3.61 (3H, s), 3.73 (3H, s), 4.40 (2H, s), 7.16-7.49 (8H, m). ¹³C NMR (75 MHz, CDCl₃): δ 51.9, 53.0, 53.3, 126.4, 126.8, 127.7, 128.2, 128.5, 128.7, 129.0, 129.2, 129.4, 130.7, 130.9, 131.9, 136.3, 138.8, 167.8, 168.4. FT-IR (neat, cm⁻¹):1091, 1206, 1402, 1600, 1665, 1737, 2925, 3161.

HR-MS (m/z): for C₂₀H₁₆Cl₂N₂O₄ Calculated: 418.0487; Found: 418.0493 (One of the major peaks).

Characteristic data of 2,5-bis-(4-bromophenyl)-1-ethoxycarbonylmethyl-1*H*-imidazole-4-carboxylic acid ethyl ester (7c)

Yield: 71% (380 mg, 0.71 mmol) Characteristic: yellow colored solid

Melting point: 122 °C

¹H NMR (300 MHz, CDCl₃): δ 1.15-1.24 (6H, m), 4.13 (2H, q, *J* = 7.2 Hz), 4.26 (2H, q, *J* = 7.2 Hz), 4.42 (2H, s), 7.26 (3H, t, *J* = 3.3 Hz), 7.46 (2H, d, *J* = 8.7 Hz), 7.59 (3H, dd, *J* = 1.5, 8.4 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 14.2, 47.1, 60.7, 62.3, 124.3, 124.7, 127.8, 130.9, 131.8, 132.1, 147.8, 162.3, 167.4.

FT-IR (neat, cm⁻¹): 1111, 1384, 1621, 2346, 2363, 2926, 3446.

HR-MS (m/z): for C₂₂H₂₀Br₂N₂O₄; Calculated: 533.9790; Found: 533.9794 (One of the major peaks).

Characteristic data of 2,5-bis-(4-bromophenyl)-1-methoxycarbonylmethyl-1*H*-imidazole-4-carboxylic acid methyl ester (7d)

Yield: 78% (396 mg, 0.78 mmol). Characteristic: yellow colored solid. Melting point: 68 °C. ¹H NMR (300 MHz, CDCl₃): δ 3.61 (3H, s), 3.73 (3H, s), 4.40 (2H, s), 7.37-7.63 (8H, m). ¹³C NMR (75 MHz, CDCl₃): δ 41.7, 52.0, 53.0, 125.3, 126.4, 128.3, 128.6, 131.0, 131.9, 132.0, 132.2, 132.5, 138.8, 170.3. FT-IR (neat, cm⁻¹): 1206, 1401, 1596, 1661, 1727, 2353, 2928, 3168. HR-MS (*m*/*z*): for C₂₀H₁₆Br₂N₂O₄ Calculated: 505.9477; Found: 505.9467 (One of the major peaks).

Characteristic data of 2,5-bis-(2-chloro-phenyl)-1-ethoxycarbonylmethyl-1H-imidazole-4-carboxylic acid ethyl ester (7e)

Yield: 76% (339 mg, 0.76 mmol).

Characteristic: yellow colored viscous liquid. ¹H NMR (300 MHz, CDCl₃): δ 1.11-1.24 (6H, m), 3.88 (2H, q, *J* = 7.2 Hz), 4.13-4.34 (2H, m), 4.41 (2H, d, *J* = 6.9 Hz), 7.25-7.52 (8H, m). ¹³C NMR (75 MHz, CDCl₃): δ 13.9, 14.1, 46.5, 60.9, 62.0, 126.9, 127.2, 129.7, 131.4, 132.1, 133.2, 133.5, 134.1, 134.5, 136.0, 145.9, 166.1, 171.4. FT-IR (KBr, cm⁻¹): 1080, 1442, 1663, 1739, 2924, 3422. HR-MS (m/z): for C₂₂H₂₀Cl₂N₂O₄ Calculated: 446.0800; Found: 446.0807 (One of the major peaks).

Characteristic data of 1-ethoxycarbonylmethyl-2,5-bis-(4-nitrophenyl)-1*H*-imidazole-4-carboxylic acid ethyl ester (7f)

Yield: 76% (355mg, 0.76 mmol).

Characteristic: yellow colored viscous liquid.

¹H NMR (300 MHz, CDCl₃): δ 1.07 (3H, t, *J* = 6.9 Hz), 1.14 (3H, t, *J* = 6.9 Hz), 4.22-4.27 (2H, m), 4.45 (2H, q, *J* = 7.8 Hz), 4.88 (2H, s), 7.56 (3H, t, *J* = 9 Hz), 7.81 (1H, d, *J* = 8.7 Hz), 8.06 (3H, t, *J* = 8.7 Hz), 8.33-8.39 (1H, m).

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 14.2, 47.8, 61.9, 62.7, 122.9, 123.7, 123.9, 124.3, 124.8, 127.3, 127.9, 129.3, 130.4, 130.6, 131.9, 158.9, 167.9, 171.2.

FT-IR (neat, cm⁻¹): 1018, 1524, 1603, 1742, 2923, 3405.

HR-MS (*m/z*): for C₂₂H₂₀N₄O₈ Calculated: 468.1281; Found: 468.1275

Characteristic data of 1-ethoxycarbonylmethyl-2,5-diphenyl-1*H*-imidazole-4-carboxylic acid ethyl ester (7g)

Yield: 74% (279 mg, 0.74 mmol). Characteristic: Yellow colored viscous liquid. ¹H NMR (300 MHz, CDCl₃): δ 1.05-1.19 (6H, m), 4.04 (2H, q, *J* = 7.2 Hz), 4.18 (2H, q, *J* = 7.2 Hz), 4.42 (2H, s), 7.19 (3H, s), 7.29-7.42 (5H, m), 7.53-7.55(2H, m). ¹³C NMR (75 MHz, CDCl₃): δ 13.9, 14.0, 53.3, 128.6, 129.0, 130.4, 167.1, 171.4. FT-IR (neat, cm⁻¹): 1094, 1199, 1401, 1608, 1736, 2856, 2924, 3157. HR-MS (*m*/*z*): for C₂₂H₂₂N₂O₄ Calculated: 378.1580; Found: 378.1589. Characteristic data of 1-ethoxycarbonylmethyl-2,5-bis-(4-methoxyphenyl)-1*H*-imidazole-4-carboxylic acid ethyl ester (7h)

Yield: 73% (318 mg, 0.73mmol). Characteristic: Yellow viscous liquid. ¹H NMR (300 MHz, CDCl₃): δ 1.07-1.17 (6H, m), 3.78 (6H, s), 4.06 (2H, q, *J*=7.2 Hz), 4.19 (2H, q, *J* = 6.9 Hz), 4.43 (2H, s), 6.91 (4H, d, *J* = 4.8 Hz), 7.27 (2H, d, *J*= 8.1 Hz), 7.49 (2H, d, *J* = 8.1 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 14.1, 47.2, 55.3, 55.4, 62.2, 114.1, 114.4, 131.1, 131.8, 161.1, 161.8, 167.5. FT-IR (neat, cm⁻¹): 1179, 1251, 1502, 1613, 1730, 2922, 3433. HR-MS (*m*/*z*): for C₂₄H₂₆N₂O₆ Calculated: 438.1791; Found: 438.1784.

Characteristic data of 1-ethoxycarbonylmethyl-2,5-bis-(2-methoxyphenyl)-1*H*-imidazole-4-carboxylic acid ethyl ester (7i)

Yield: 72% (314 mg, 0.72mmol).

Characteristic: Yellow semisolid

¹H NMR (300 MHz, CDCl₃): δ 1.06-1.23 (6H, m), 3.66-3.82 (7H, m), 3.97 (3H, s), 4.19-4.27 (2H, m), 6.82-7.05 (6H, m), 7.29-7.34 (2H, m).

¹³C NMR (75 MHz, CDCl₃): δ 14.2, 55.6, 55.9, 60.5, 111.0, 111.2, 116.9, 120.4, 121.6, 129.4, 130.2, 130.6, 132.0, 144.2, 156.2, 156.7, 167.3, 168.7.

FT-IR (neat, cm⁻¹): 1245, 1465, 1595, 1712, 2367, 2852, 2925, 3419.

HR-MS (*m/z*): for C₂₄H₂₆N₂O₆ Calculated: 438.1791; Found: 438.1798

Characteristic data of 1-ethoxycarbonylmethyl-2,5-di-naphthalen-2-yl-1*H*-imidazole-4-carboxylic acid ethyl ester (7j)

Yield: 73% (348 mg, 0.73 mmol). Characteristic: yellow solid.

Characteristic. yellow so

Melting point: 65 °C.

¹H NMR (300 MHz, CDCl₃): δ 1.15-1.95 (3H,m), 1.25 (3H, t, J = 7.2 Hz), 3.31 (1H, d, J = 17.7 Hz), 4.09-4.12 (2H, m), 4.19-4.24 (2H, m), 4.50 (1H, d, J = 17.7 Hz), 7.28-7.81 (14H, m).

¹³C NMR (75 MHz, CDCl₃): δ 14.1, 14.2, 42.0, 61.6, 61.8, 126.1, 126.3, 126.6, 126.7, 126.8, 126.9, 127.5, 127.7, 127.8, 127.8, 127.9, 128.3, 128.5, 128.7, 128.8, 129.0, 129.2, 129.6, 132.5, 132.6, 133.0, 133.1, 133.3, 133.6, 142.4, 167.1, 170.2.

FT-IR (neat, cm⁻¹): 1018, 1199, 1376, 1453, 1671, 1746, 2924, 3421.

HR-MS (*m/z*): for C₃₀H₂₆N₂O₄ Calculated: 478.1893; Found: 478.1888.

Characteristic data of 1-*tert*-butoxycarbonylmethyl-2,5-bis-(4-chlorophenyl)-1*H*-imidazole-4-carboxylic acid *tert*-butyl ester (7k)

Yield: 79% (397 mg, 0.79mmol).

Characteristic: yellow solid.

Melting point: 78 °C.

¹H NMR (300 MHz, CDCl₃): δ 1.25 (9H, s), 1.29 (9H, s), 4.22 (2H, s), 7.24 (2H, d, J = 8.1 Hz), 7.35-7.37 (4H, m), 7.47 (2H, d, J = 8.1 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 27.7, 28.0, 47.8, 81.4, 83.7, 127.0, 127.5, 128.4, 128.6, 128.7, 128.9, 129.1, 129.5, 130.7, 132.0, 135.8, 136.5, 137.6, 147.5, 161.1, 166.5.

FT-IR (KBr, cm⁻¹): 1013, 1153, 1481, 1722, 2925, 2976, 3409.

HR-MS (m/z): for C₂₆H₂₈Cl₂N₂O₄ Calculated: 502.1426; Found: 502.1434 (One of the major peaks).

6. Characterization data of substituted tetrahydroimidazoles (4a and 4b)

Characteristic data of 1-*tert*-butoxycarbonylmethyl-4,5-bis-(4-chlorophenyl)imidazolidine-2-carboxylic acid tert-butyl ester (4a)

Yield: 69% (347mg, 0.69 mmol) Characteristic: Yellow viscous liquid. ¹H NMR (300 MHz, CDCl₃): δ 1.31-1.42 (18H, m), 3.03 (2H, d, *J* = 8.1Hz), 3.68 (1H, d, *J* = 6.9 Hz), 4.08 (1H, d, *J* = 6.9Hz), 4.30-4.33 (1H, m), 5.15 (1H, s), 7.32-7.52 (8H, m). ¹³C NMR (75 MHz, CDCl₃): δ 28.0, 28.1, 48.5, 67.2, 68.6, 78.6, 81.3, 81.9, 128.7, 128.8, 129.2, 129.4, 130.9, 133.6, 134.3, 138.8, 139.5, 169.3, 171.5. FT-IR (neat, cm⁻¹):1086, 1411, 1632, 1730, 2926, 3431. HR-MS (*m*/*z*): for C₂₆H₃₂Cl₂N₂O₄ Calculated: 506.1739; Found: 506.1743 (One of the major peaks).

Characteristic data of 2,5-bis-(4-cyanophenyl)-1-ethoxycarbonylmethyl-imidazolidine-4carboxylic acid ethyl ester (4b)

Yield: 78% (335 mg, 0.78 mmol). Characteristic: White solid. Melting point: 139° C ¹H NMR (300 MHz, CDCl₃): δ 1.13- 1.29 (6H, m), 3.21 (2H, d, *J* = 5.1 Hz), 3.80 (1H, d, *J* = 6.3 Hz), 4.05 (2H, q, *J* = 7.2 Hz), 4.13-4.36 (3H, m), 4.55 (1H, d, *J* = 6.3 Hz), 5.26 (1H, s), 7.56-7.86 (8H, m). ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 48.1, 60.7, 61.7, 66.8, 68.7, 78.9, 112.0, 112.7, 118.6, 128.3, 128.7, 132.4, 132.5, 145.8, 169.7, 171.8. FT-IR (neat, cm⁻¹): 1095,1409,1661,1738, 2230, 2359, 2924, 3344. HR-MS (*m*/*z*): for C₂₄H₂₄N₄O₄ Calculated: 432.1798; Found: 432.1789.

7. ¹H and ¹³C NMR spectrum of compounds 5a-l, 7a-k, 4a-b.

¹H and ¹³C NMR of compound **5a**

¹H and ¹³C NMR of compound **5b**

¹H and ¹³C NMR of compound **5**c

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of compound $\mathbf{5d}$

ppm

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

¹H and ¹³C NMR of compound **5**j

¹H and ¹³C NMR of compound **7b**

 1 H and 13 C NMR of compound **7**c

¹H and ¹³C NMR of compound 4a

¹H and ¹³C NMR of compound **4b**

9. Single crystal structure of 1,3,5-tris-(4-chlorophenyl)-6-ethoxycarbonylmethyl-7-oxo-tetrahydroimidazo[1,5-c]imidazol-2-yl]-acetic acid ethyl ester (5a) and summary of data of CCDC 865937

- . Chemical formula and formula weight (M): C31H30Cl3N3O5 and 630.93
- . Crystal system:

monoclinic

. Unit-cell dimensions (angstrom or pm,	
degrees) and volume, with esds:	a 65.4100 b 11.6990 c 25.1520,
-	90.00, 95.619(5), 90.00, 19154(11)
. Temperature:	296(2)
. Space group symbol:	C2/c
. No. of formula units in unit cell (Z):	24
. Number of reflections measured and/or	
number of independent reflections, Rint:	6450
. Final R values (and whether quoted for all	
or observed data):	0.0469