Palladium-catalyzed asymmetric addition of diarylphosphines to N-tosylimines

Miao Huang,^b Chun Li,^b Jiang Huang,^b Wei-Liang Duan^{*a} and Sheng Xu^b

^a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

^b School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

E-mail: wlduan@mail.sioc.ac.cn

Supporting Information

Table of Contents

General Methods	S2
Experimental Details and Characterization Data	S2–S10
Reference	S10
NMR Spectra	S11–S31
HPLC Charts	S32–S43

General Methods

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under nitrogen. ¹H, ¹³C and ³¹P NMR spectra were recorded on a Varian instrument (400 MHz, 100 MHz and 162 MHz, respectively). ¹H, ¹³C NMR chemical shifts are reported vs tetramethylsilane signal or residual protio solvent signals.

Toluene, Et₂O, THF, methyl *tert*-butyl ether (MTBE) and hexane were distilled over sodium benzophenone ketyl under nitrogen. Dichloromethane was distilled over CaH₂ under nitrogen.

The catalysts **4**,¹ diarylphosphines² and tosylimines³ were synthesized following the literature procedures. All other chemicals and solvents were purchased from commercial company and used as received.

Experimental Details and Characterization Data

Experimential Procedures for Entry 9, Table 1.

N-tosylimine **1a** (51.9 mg, 0.20 mmol) was added to a solution of (*S*,*S*)-**4** (2.7 mg, 4 µmol Pd) in methyl *tert*-butyl ether (MTBE) (5.0 mL) and the resulting solution was stirred for 15 min at -30 °C, then Diphenylphosphine (39.1 mg, 0.21 mmol) was added to it. The resulting solution was stirred for 4 h at -30 °C, then 10 min at room temperature. The S₈ (51.9 mg, 0.20 mmol) and THF (2 mL)were added to it, and the resulting mixture was stirred for 6.5 h at room temperature. After evaporated solvent under vacumm, the residue was purified by silica gel chromatography with hexane/EtOAc = 5/1 to afford product as a white solid (86.1 mg, 0.180 mmol; 90% yield).

Entry 9. White solid. 90% yield. The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 80/20, flow = 1.0 mL/min. Retention times: 17.0 min [(*S*)-enantiomer], 29.7 min [(*R*)-enantiomer]. 93% ee. $[\alpha]^{20}{}_{\rm D}$ = 162 (c 1.03, CH₂Cl₂), The absolute configuration was assigned by analogy with Table 2, entry 4. ¹H NMR (CDCl₃): δ 8.07 (dd, *J* = 12.1 and 6.8 Hz, 2H), 7.59-7.49 (m, 3H), 7.35-7.30 (m, 5H), 7.16 (td, *J* = 7.6 and 3.2 Hz, 2H), 6.96 (t, *J* = 8.4 Hz, 1H), 6.87-6.76 (m, 6H), 6.05 (dd, *J* = 10.0 and 6.4 Hz, 1H), 5.60 (dd, *J* = 11.6 and 10.4 Hz, 1H), 2.22 (s, 3H). ¹³C NMR (CDCl₃): δ 142.8, 137.3 (d, *J*_{CP} = 1.5 Hz), 132.0 (d, *J*_{CP} = 3.0 Hz), 131.9 (d, *J*_{CP} = 10.4 Hz), 131.75 (d, *J*_{CP} = 3.0 Hz), 131.74 (d, *J*_{CP} = 8.9 Hz), 129.9 (d, *J*_{CP} = 79.6 Hz), 128.94 (d, *J*_{CP} = 81.8 Hz), 128.90, 128.8, 128.3 (d, *J*_{CP} = 4.5 Hz), 128.0, 127.9, 127.6 (d, *J*_{CP} = 3.0 Hz), 127.2 (d, *J*_{CP} = 2.2 Hz), 126.8, 55.5 (d, *J*_{CP} = 57.3 Hz), 21.2. ³¹P{¹H} NMR (CDCl₃): δ 51.3 (s). HRMS (MALDI) calcd for C₂₆H₂₄NO₂PS₂Na [M+Na]⁺ 500.0878, found 500.0893.

Experimental Data for Table 2.

Entry 2. White solid. 98% yield. The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 80/20, flow = 1.0 mL/min. Retention times: 25.9 min [(*S*)-enantiomer], 48.7 min [(*R*)-enantiomer]. 96% ee. $[\alpha]^{20}{}_{\rm D}$ = 181 (c 1.04, CH₂Cl₂), The absolute configuration was assigned by analogy with Table 2, entry 4. ¹H NMR (CDCl₃): δ 8.08-8.02 (m, 2H), 7.59-7.50 (m, 3H), 7.37-7.17 (m, 7H), 6.90 (d, *J* = 8.0 Hz, 2H), 6.70 (dd, *J* = 8.8 and 2.0 Hz, 2H), 6.35 (d, *J* = 8.8 Hz, 2H), 5.94 (dd, *J* = 9.6 and 6.4 Hz, 1H), 5.55 (dd, *J* = 11.2 and 9.6 Hz, 1H), 3.64 (s, 3H), 2.26 (s, 3H). ¹³C NMR (CDCl₃): δ 159.2 (d, *J*_{CP} = 3.0 Hz), 142.8, 137.5 (d, *J*_{CP} = 1.5 Hz), 132.00 (d, *J*_{CP} = 3.0 Hz), 131.9 (d, *J*_{CP} = 9.6 Hz), 131.78 (d, *J*_{CP} = 9.7 Hz), 131.77 (d, *J*_{CP} = 3.0

Hz), 130.14 (d, $J_{CP} = 78.8$ Hz), 129.6 (d, $J_{CP} = 7.4$ Hz), 129.15 (d, $J_{CP} = 82.6$ Hz), 128.94, 128.9 (d, $J_{CP} = 12.6$ Hz), 128.0 (d, $J_{CP} = 11.9$ Hz), 126.9, 123.9, 112.8 (d, $J_{CP} = 2.2$ Hz), 55.09, 55.05 (d, $J_{CP} = 58.7$ Hz), 21.3. ³¹P{¹H} NMR (CDCl₃): δ 48.9 (s). HRMS (MALDI) calcd for C₂₇H₂₆NO₃PS₂Na [M+Na]⁺ 530.0984, found 530.0973.

Entry 3. White solid. 84% yield. The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 80/20, flow = 1.0 mL/min. Retention times: 17.4 min [(*S*)-enantiomer], 30.7 min [(*R*)-enantiomer]. 95% ee. $[\alpha]^{20}{}_{\rm D}$ = 172 (c 1.01, CH₂Cl₂), The absolute configuration was assigned by analogy with Table 2, entry 4. ¹H NMR (CDCl₃): δ 8.06 (dd, *J* = 12.0 and 6.8 Hz, 2H), 7.59-7.51 (m, 3H), 7.38-7.32 (m, 5H), 7.19-7.16 (m, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.72 (t, *J* = 8.4 Hz, 1H), 6.51 (d, *J* = 7.6 Hz, 1H), 6.33-6.30 (m, 2H), 6.04 (dd, *J* = 9.6 and 6.4 Hz, 1H), 5.58 (t, *J* = 10.8 Hz, 1H), 3.46 (s, 3H), 2.24 (s, 3H). ¹³C NMR (CDCl₃): δ 158.5 (d, *J*_{CP} = 2.2 Hz), 142.9, 137.3 (d, *J*_{CP} = 1.5 Hz), 133.1, 132.0 (d, *J*_{CP} = 3.8 Hz), 131.9 (d, *J*_{CP} = 9.6 Hz), 131.8 (d, *J*_{CP} = 3.0 Hz), 131.7 (d, *J*_{CP} = 8.9 Hz), 130.0 (d, *J*_{CP} = 79.6 Hz), 129.0 (d, *J*_{CP} = 12.7 Hz), 126.8, 121.1 (d, *J*_{CP} = 5.2 Hz), 114.3 (d, *J*_{CP} = 2.9 Hz), 112.9 (d, *J*_{CP} = 3.7 Hz), 55.5 (d, *J*_{CP} = 57.2 Hz), 54.8, 21.2. ³¹P{¹H} NMR (CDCl₃): δ 51.2 (s). HRMS (MALDI) calcd for C₂₇H₂₆NO₃PS₂Na [M+Na]⁺ 530.0984, found 530.0971.

Entry 4. White solid. 93% yield. The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 80/20, flow = 1.0 mL/min. Retention times: 21.8 min [(*S*)-enantiomer], 37.8 min [(*R*)-enantiomer]. 94% ee. $[\alpha]_{D}^{20} = 165$ (c 1.11,

 CH_2Cl_2), The absolute configuration was determined to be *S* by the X-ray crystal diffraction analysis of the product.

¹H NMR (CDCl₃): δ 8.05 (dd, J = 12.8 and 7.6 Hz, 2H), 7.58-7.50 (m, 3H), 7.39-7.16 (m, 7H), 6.87 (d, J = 8.0 Hz, 2H), 6.64 (q, J = 8.0 Hz, 4H), 5.95 (dd, J = 10.0 and 6.4 Hz, 1H), 5.57 (t, J = 10.4 Hz, 1H), 2.25 (s, 3H), 2.13 (s, 3H). ¹³C NMR (CDCl₃): δ 142.8, 137.5 (d, $J_{CP} = 3.0$ Hz), 137.4 (d, $J_{CP} = 2.2$ Hz), 132.0 (d, $J_{CP} = 2.9$ Hz), 131.9 (d, $J_{CP} = 1.5$ Hz), 131.8 (d, $J_{CP} = 8.9$ Hz), 131.7 (d, $J_{CP} = 3.0$ Hz), 130.1 (d, $J_{CP} = 79.5$ Hz), 129.1 (d, $J_{CP} = 82.6$ Hz), 128.9, 128.8 (d, $J_{CP} = 11.9$ Hz), 128.7, 128.3 (d, $J_{CP} = 4.4$ Hz), 128.0 (d, $J_{CP} = 6.7$ Hz), 127.9 (d, $J_{CP} = 8.1$ Hz), 126.8, 55.4 (d, $J_{CP} = 58.1$ Hz), 21.3, 20.9. ³¹P{¹H} NMR (CDCl₃): δ 50.9 (s). HRMS (MALDI) calcd for C₂₇H₂₆NO₂PS₂Na [M+Na]⁺ 514.1035, found 514.1054.

Entry 5. White solid. 99% yield. The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 80/20, flow = 1.0 mL/min. Retention times: 22.9 min [(*S*)-enantiomer], 58.0 min [(*R*)-enantiomer]. 86% ee. $[\alpha]^{20}{}_{\rm D}$ = 179 (c 1.11, CH₂Cl₂), The absolute configuration was assigned by analogy with Table 2, entry 4. ¹H NMR (CDCl₃): δ 8.07-8.02 (m, 2H), 7.61-7.19 (m, 10H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.78 (d, *J* = 8.4 Hz, 2H), 6.69 (dd, *J* = 8.8 and 2.0 Hz, 2H), 5.97 (dd, *J* = 9.6 and 6.4 Hz, 1H), 5.56 (dd, *J* = 12.0 and 10.4 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (CDCl₃): δ 143.4, 137.2 (d, *J*_{CP} = 1.5 Hz), 133.9 (d, *J*_{CP} = 3.0 Hz), 132.2 (d, *J*_{CP} = 3.0 Hz), 132.1 (d, *J*_{CP} = 79.6 Hz), 129.6 (d, *J*_{CP} = 4.4 Hz), 129.1, 129.0 (d, *J*_{CP} = 11.9 Hz), 128.7 (d, *J*_{CP} = 82.6 Hz), 128.2 (d, *J*_{CP} = 12.6 Hz), 127.4 (d, *J*_{CP} = 2.2 Hz), 126.8, 54.9 (d, *J*_{CP} = 57.3 Hz), 21.3. ³¹P{¹H} NMR (CDCl₃): δ 50.9 (s). HRMS (MALDI) calcd for C₂₆H₂₃NO₂PS₂CINa [M+Na]⁺ 534.0489, found 534.0490.

Entry 6. White solid. 89% yield. The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 80/20, flow = 1.0 mL/min. Retention times: 12.2 min [(*S*)-enantiomer], 22.1 min [(*R*)-enantiomer]. 78% ee. $[\alpha]^{20}{}_{\rm D}$ = 128 (c 1.14, CH₂Cl₂), The absolute configuration was assigned by analogy with Table 2, entry 4. ¹H NMR (CDCl₃): δ 8.05 (dd, *J* = 12.4 and 7.2 Hz, 2H), 7.61-7.19 (m, 10H), 7.08 (d, *J* = 6.8 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.79, 6.68-6.63 (m, 2H), 5.98 (dd, *J* = 9.6 and 7.2 Hz, 1H), 5.52 (t, *J* = 10.8 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (CDCl₃): δ 143.3, 137.0 (d, *J*_{CP} = 1.5 Hz), 133.9, 132.2 (d, *J*_{CP} = 3.0 Hz), 132.1 (d, *J*_{CP} = 3.0 Hz), 131.9 (d, *J*_{CP} = 9.7 Hz), 131.7 (d, *J*_{CP} = 9.7 Hz), 131.3 (d, *J*_{CP} = 3.8 Hz), 130.5 (d, *J*_{CP} = 3.0 Hz), 129.6 (d, *J*_{CP} = 81.1 Hz), 129.1, 129.0 (d, *J*_{CP} = 11.9 Hz), 128.6 (d, *J*_{CP} = 2.2 Hz), 128.5 (d, *J*_{CP} = 3.0 Hz), 55.0 (d, *J*_{CP} = 55.6 Hz), 21.3. ³¹P{¹H} NMR (CDCl₃): δ 51.2 (s). HRMS (MALDI) calcd for C₂₆H₂₃NO₂BrPS₂Na [M+Na]⁺ 577.9983, found 577.9987.

Entry 7. White solid. 86% yield. The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 80/20, flow = 1.0 mL/min. Retention times: 21.1 min [(*S*)-enantiomer], 38.9 min [(*R*)-enantiomer]. 85% ee. $[\alpha]^{20}{}_{D}$ = 155 (c 1.07, CH₂Cl₂), The absolute configuration was assigned by analogy with Table 2, entry 4. ¹H NMR (CDCl₃): δ 8.13-8.08 (m, 2H), 7.61-7.54 (m, 4H), 7.42-7.23 (m, 9H), 7.18 (s, 1H), 7.10 (td, *J* = 7.6 and 2.8 Hz, 2H), 6.83 (d, *J* = 8.4 Hz, 1H), 6.59 (d, *J* = 8.0 Hz, 2H), 6.10 (dd, *J* = 10.0 and 6.4 Hz, 1H), 5.75 (t, *J* = 11.6 and 10.4 Hz, 1H), 1.89 (s, 3H). ¹³C NMR (CDCl₃): δ 143.0, 137.3 (d, *J*_{CP} = 1.5 Hz), 132.5 (d, *J*_{CP} = 2.2 Hz), 132.1 (d, *J*_{CP} = 3.0 Hz), 132.0 (d, *J*_{CP} = 9.7 Hz), 131.9, 131.8

(d, $J_{CP} = 9.7$ Hz), 130.3 (d, $J_{CP} = 79.6$ Hz), 129.0, 128.90 (d, $J_{CP} = 82.5$ Hz), 128.86 (d, $J_{CP} = 6.0$ Hz), 128.7, 128.4 (d, $J_{CP} = 5.9$ Hz), 128.0 (d, $J_{CP} = 11.9$ Hz), 127.8 (d, $J_{CP} = 1.5$ Hz), 127.2 (d, $J_{CP} = 1.4$ Hz), 126.9 (d, $J_{CP} = 1.5$ Hz), 126.7, 126.1, 125.8, 125.7 (d, $J_{CP} = 3.0$ Hz), 55.8 (d, $J_{CP} = 57.3$ Hz), 20.9. ³¹P{¹H} NMR (CDCl₃): δ 50.7 (s). HRMS (MALDI) calcd for C₂₆H₂₃NO₂BrPS₂Na [M+Na]⁺ 577.9983, found 577.9987.

Entry 8. White solid. 90% yield. The ee was determined on a Daicel Chiralpak IC column with hexane/2-propanol = 80/20, flow = 1.0 mL/min. Retention times: 21.8 min [(*S*)-enantiomer], 25.8 min [(*R*)-enantiomer]. 91% ee. $[\alpha]^{20}_{D}$ = 114 (c 1.00, CH₂Cl₂), the absolute configuration was assigned by analogy with Table 2, entry 4. ¹H NMR (CDCl₃): δ 8.08-8.01 (m, 2H), 7.60-7.47 (m, 5H), 7.39-7.23 (m, 5H), 6.97 (d, *J* = 8.4 Hz, 2H), 6.91 (dt, *J* = 5.2 and 1.2 Hz, 1H), 6.56-6.54 (m, 1H), 6.51 (dd, *J* = 4.8 and 4.0 Hz, 1H), 5.91 (q, *J* = 10.4 Hz, 1H), 5.90-8.83 (m, 1H), 2.29 (s, 3H). ¹³C NMR (CDCl₃): δ 142.9, 137.3 (d, *J*_{CP} = 1.1 Hz), 134.9, 132.0 (d, *J*_{CP} = 2.9 Hz), 131.9 (d, *J*_{CP} = 3.5 Hz), 131.8 (d, *J*_{CP} = 7.0 Hz), 131.6 (d, *J*_{CP} = 7.0 Hz), 129.8 (d, *J*_{CP} = 12.8 Hz), 128.06, 126.7, 126.3 (d, *J*_{CP} = 2.9 Hz), 125.85 (d, *J*_{CP} = 2.3 Hz), 52.2 (d, *J*_{CP} = 62.8 Hz), 21.3. ³¹P{¹H} NMR (CDCl₃): δ 51.7 (s). HRMS (ESI) calcd for C₂₄H₂₂NO₂PS₃Na [M+Na]⁺ 483.0550, found 483.0560.

Entry 9. White solid. 95% yield. The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 80/20, flow = 1.0 mL/min. Retention times: 20.3 min [(*S*)-enantiomer], 26.5 min [(*R*)-enantiomer]. 86% ee. $[\alpha]_{D}^{20} = 122$ (c 1.01, CH₂Cl₂), the absolute configuration was assigned by analogy with Table 2, entry 4.

¹H NMR (CDCl₃): δ 8.01 (dd, J = 12.4 and 7.2 Hz, 2H), 7.58-7.51 (m, 3H), 7.43-7.34 (m, 5H), 7.24-7.18 (m, 2H), 6.91 (d, J = 8.0 Hz, 2H), 6.76 (dd, J = 4.8 and 3.2 Hz, 1H), 6.66 (s, 1H), 6.55 (d, J = 4.8 Hz, 1H), 6.93-5.88 (m, 1H), 5.77 (t, J = 10.4 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (CDCl₃): δ 142.8, 137.3 (d, $J_{CP} = 1.5$ Hz), 132.8 (d, $J_{CP} = 0.8$ Hz), 131.9 (d, $J_{CP} = 2.9$ Hz), 131.8, 131.7 (d, $J_{CP} = 9.7$ Hz), 131.6 (d, $J_{CP} = 10.1$ Hz), 129.9 (d, $J_{CP} = 79.1$ Hz), 129.0 (d, $J_{CP} = 83.6$ Hz), 128.9, 128.7 (d, $J_{CP} = 11.2$ Hz), 128.0 (d, $J_{CP} = 12.2$ Hz), 126.8 (d, $J_{CP} = 3.0$ Hz), 126.6, 124.4 (d, $J_{CP} = 1.4$ Hz), 124.3 (d, $J_{CP} = 7.0$ Hz), 52.1 (d, $J_{CP} = 60.6$ Hz), 21.3. ³¹P{¹H} NMR (CDCl₃): δ 50.2 (s).

Entry 10. White solid. 97% yield. The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 80/20, flow = 1.0 mL/min. Retention times: 11.5 min [(*S*)-enantiomer], 32.7 min [(*R*)-enantiomer]. 86% ee. $[\alpha]^{20}_{D}$ = 158 (c 1.03, CH₂Cl₂), The absolute configuration was assigned by analogy with Table 2, entry 4. ¹H NMR (CDCl₃): δ 7.98 (dd, *J* = 12.0 and 8.4 Hz, 2H), 7.48 (dd, *J* = 8.4 and 2.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.24-7.21 (m, 2H), 7.18 (s, 1H), 7.16 (dd, *J* = 8.4 and 2.4 Hz, 2H), 7.02 (t, *J* = 6.8 Hz, 1H), 6.89-6.79 (m, 6H), 6.03-5.99 (m, 1H), 5.56 (t, *J* = 11.2 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (CDCl₃): δ 143.2, 139.0 (d, *J*_{CP} = 3.0 Hz), 138.8 (d, *J*_{CP} = 3.7 Hz), 137.1 (d, *J*_{CP} = 12.6 Hz), 129.0, 128.4 (d, *J*_{CP} = 6.4 Hz), 128.3, 128.2 (d, *J*_{CP} = 57.2 Hz), 128.0 (d, *J*_{CP} = 2.9 Hz), 127.5 (d, *J*_{CP} = 2.9 Hz), 127.4 (d, *J*_{CP} = 59.5 Hz), 126.8, 55.7 (d, *J*_{CP} = 58.7 Hz), 21.3. ³¹P{¹H} NMR (CDCl₃): δ 49.9 (s). HRMS (MALDI) calcd for C₂₆H₂₂NO₂PS₂Cl₂Na [M+Na]⁺ 568.0099, found 568.0093.

Entry 11. White solid. 89% yield. The ee was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 70/30, flow = 1.0 mL/min. Retention times: 19.5 min [(*S*)-enantiomer], 34.7 min [(*R*)-enantiomer]. 84% ee. $[\alpha]^{20}_{D}$ = 158 (c 1.04, CH₂Cl₂), The absolute configuration was assigned by analogy with Table 2, entry 4. ¹H NMR (CDCl₃): δ 7.94 (dd, *J* = 11.6 and 8.4 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.24 (dd, *J* = 12.4 and 8.4 Hz, 2H), 7.01 (dd, *J* = 8.8 and 2.4 Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.73 (dd, *J* = 8.8 and 2.8 Hz, 2H), 6.69 (dd, *J* = 8.8 and 2.4 Hz, 2H), 6.39 (d, *J* = 8.4 Hz, 2H), 5.95-5.91 (m, 1H), 5.43 (dd, *J* = 11.2 and 10.4 Hz, 1H), 3.87 (s, 3H), 3.73 (s, 3H), 3.66 (s, 3H), 2.27 (s, 3H). ¹³C NMR (CDCl₃): δ 162.5 (d, *J*_{CP} = 3.1 Hz), 162.3 (d, *J*_{CP} = 3.1 Hz), 159.2 (d, *J*_{CP} = 2.7 Hz), 142.7, 137.6 (d, *J*_{CP} = 1.5 Hz), 133.9 (d, *J*_{CP} = 11.6 Hz), 133.6 (d, *J*_{CP} = 10.8 Hz), 129.6 (d, *J*_{CP} = 4.7 Hz), 128.9, 126.9, 124.3, 120.9 (d, *J*_{CP} = 12.6 Hz), 120.5 (d, *J*_{CP} = 89.4 Hz), 114.4 (d, *J*_{CP} = 13.2 Hz), 113.5 (d, *J*_{CP} = 2.4 Hz). ³¹P{¹H} NMR (CDCl₃): δ 49.6 (s). HRMS (MALDI) calcd for C₂₉H₃₀NO₅PS₂Na [M+Na]⁺ 590.1195, found 590.1176.

Entry 12. White solid. 96% yield. dr = 1 : 0.9.

Major diastereomer: ¹H NMR (CDCl₃): δ 7.52 (dd, J = 12.6 and 7.8 Hz, 2H), 7.44-7.30 (m, 5H), 6.97 (d, J = 7.8 Hz, 2H), 6.73 (t, J = 7.8, 1H), 6.50 (d, J = 8.4 Hz, 1H), 6.22 (d, J = 7.5 Hz, 1H), 6.15-6.09 (m, 2H), 4.90 (t, J = 9.9 Hz, 1H), 3.44 (s, 3H), 2.26 (s, 3H), 2.22 (d, J = 6.9 Hz, 3H). ³¹P{¹H} NMR (CDCl₃): δ 50.3 (s).

Minor diastereomer: ¹H NMR (CDCl₃): δ 7.82 (dd, J = 12.9 and 7.5 Hz, 2H), 7.57-7.43 (m, 3H), 7.31 (d, J = 8.1 Hz, 2H), 7.10 (t, J = 8.1, 1H), 6.93 (d, J = 8.1 Hz, 2H), 6.76-6.71 (m, 1H), 6.67 (s, 1H), 5.96 (t, J = 8.1 Hz, 1H), 4.82 (t, J = 11.7 and 9.0 Hz, 1H), 3.66 (s, 3H), 2.29 (s, 3H), 1.64 (d, J = 12.9 Hz, 3H). ³¹P{¹H} NMR (CDCl₃): δ 48.7 (s).

Entry 13. White solid. 87% yield. dr = 1.5:1. The ee of the minor diastereomer was determined on a Daicel Chiralpak AD-H column with hexane/2-propanol = 80/20, flow = 1.0 mL/min. Retention times: 12.1 min, 13.8 min. 16% ee.

Major diastereomer: ¹H NMR (CDCl₃): δ 7.86 (dd, J = 12.6 and 8.1 Hz, 2H), 7.57-7.46 (m, 3H), 7.33 (d, J = 8.1 Hz, 2H), 7.16 (t, J = 5.1, 1H), 6.98 (d, J = 7.8 Hz, 2H), 6.86-6.82 (m, 1H), 6.82 (t, J = 4.8 Hz, 1H), 5.76 (dd, J = 9.0 and 6.3 Hz, 1H), 5.21 (dd, J = 11.1 and 9.6 Hz, 1H), 2.31 (s, 3H), 1.75 (d, J = 12.9 Hz, 3H). ³¹P{¹H} NMR (CDCl₃): δ 49.0 (s).

Minor diastereomer: ¹H NMR (CDCl₃): δ 7.64 (dd, J = 8.4 and 7.2 Hz, 2H), 7.60-7.33 (m, 5H), 7.04 (d, J = 8.1 Hz, 2H), 6.87 (t, J = 5.1, 1H), 6.49 (d, J = 3.9 Hz, 1H), 6.40-6.37 (m, 1H), 5.95 (dd, J = 9.9 and 4.5 Hz, 1H), 5.28 (t, J = 11.5 Hz, 1H), 2.29 (s, 3H), 2.24 (d, J = 12.6 Hz, 3H). ³¹P{¹H} NMR (CDCl₃): δ 50.5 (s). HRMS (ESI) calcd for C₁₉H₂₀NO₂PS₃Na [M+Na]⁺ 421.0394, found 421.0406.

References:

- (1) Feng.; J.-J.; Chen, X.-F.; Shi, M.; Duan, W.-L. J. Am. Chem. Soc. 2010, 132, 5562.
- (2) Herseczki, Z.; Gergely, I.; Hegedüs, C.; Szöllősy, A.; Bakos, J. *Tetrahedron: Asymmetry* **2004**, *15*, 1673.
- (3) Fan, R.; Pu, Do., Qin, L., Wen, F., Yao, G., Wu, J. J. Org. Chem. 2007, 72, 3149.

100

150

、___

50

Ó

-50

PPM

HLPC Charts

20

Peak Table

25

Height 13598

332

13930

30

35

Area % 96.225 3.775

100.000

10

ŝ

Ret. Time 16.950

29.664

tector A Chl 254n

Peak#

1

Total

15

Area 452582 17753

470333

t

40 min

