First enantioselective synthesis of tetracyclic intermediates en route to madangamine \mathbf{D}

Mercedes Amat,* Roberto Ballette, Stefano Proto, Maria Pérez, and Joan Bosch
Laboratory of Organic Chemistry, Faculty of Pharmacy and Institute of Biomedicine (IBUB), University of Barcelona, 08028-Barcelona, Spain,

Supporting Information Available

I) Experimental procedures and spectroscopic data for all compounds: pages 1-16
II) Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds: pages 17-34

Experimental procedures and spectroscopic data

General Procedures: All air sensitive manipulations were carried out under a dry argon or nitrogen atmosphere. THF and toluene were carefully dried and distilled from sodium/benzophenone prior to use. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried and distilled from CaH_{2}. Other solvents and all standard reagents were purchased from Aldrich, Fluka or Alfa Aesar and were used without further purification.
Analytical thin-layer chromatography was performed on SiO_{2} (Merck silica gel $60 \mathrm{~F}_{254}$), and the spots were located with 1% aqueous KMnO_{4}. Chromatography refers to flash chromatography and was carried out on SiO_{2} (SDS silica gel $60 \mathrm{ACC}, 35-75 \mathrm{~mm}, 230-240$ mesh ASTM). NMR spectra were recorded at 300 or $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and 75.4 or $100.6 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, and chemical shifts are reported in δ values downfield from TMS or relative to residual chloroform ($7.26 \mathrm{ppm}, 77.0$ $\mathrm{ppm})$ as an internal standard. Data are reported in the following manner: chemical shift, integrated intensity, multiplicity, coupling constant (J) in hertz (Hz), and assignment (when possible). Assignments and stereochemical determinations are given only when they are derived from definitive two-dimensional NMR experiments (HSQC-COSY). IR spectra were performed in a spectrophotometer Nicolet Avantar 320 FT-IR and only noteworthy IR absorptions (cm^{-1}) are listed. Optical rotations were measured on Perkin-Elmer 241 polarimeter. $[\alpha]_{D}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. High resolution mass spectra (HMRS; LC/MSD TOF Agilent Technologies) were performed by Centres Científics i Tecnològics de la Universitat de Barcelona.

(3R,7R,8S,8aR)-7,8-Diallyl-6-(methoxycarbonyl)-5-oxo-3-phenyl-2,3,6,7,8,8a-hexahydro-
5H-oxazolo[3,2-a]pyridine (2): $\mathrm{LiCl}(1.2 \mathrm{~g}, 28.4 \mathrm{mmol})$ was dried at $80^{\circ} \mathrm{C}$ for 1 h under vacuum $(10-15 \mathrm{mmHg})$ in a three-necked, 250 mL round-bottomed flask. Then, $\mathrm{CuI}(5.4 \mathrm{~g}$, $28.4 \mathrm{mmol})$ and THF (150 mL) were added under an inert atmosphere, and the mixture was stirred at room temperature for 5 min . The suspension was cooled to $-78{ }^{\circ} \mathrm{C}$, and allylmagnesium bromide (28.4 mL of a 1 M solution in $\mathrm{Et}_{2} \mathrm{O}, 28.4 \mathrm{mmol}$), $\mathrm{TMSCl}(3.6 \mathrm{~mL}$, $28.4 \mathrm{mmol})$, and unsaturated lactam $1(7.11 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ were successively added. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the resulting mixture was filtered through Celite ${ }^{\circledR}$. The aqueous layer was extracted with EtOAc, and the combined organic extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Flash chromatography ($9: 1$ to $7: 3$ hexane$\mathrm{EtOAc})$ of the resulting oil gave $2(2.05 \mathrm{~g}, 81 \%$ yield) as a mixture of C-6 epimers (ratio $2: 1)$. (6S)-2 (major): IR (film): $v=1665,1736(\mathrm{CO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.80(1 \mathrm{H}$, ddd, $J=14.1,12.0,9.0 \mathrm{~Hz}, \mathrm{CH}_{2}$ allyl), $2.16\left(1 \mathrm{H}, \mathrm{dt}, J=14.1,9.3,9.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ allyl $), 2.34(1 \mathrm{H}$, $\mathrm{dm}, J=12.0 \mathrm{~Hz}, \mathrm{H}-7), 2.44-2.70\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{CH}_{2}\right.$ allyl $), 3.43(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-6), 3.60$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.02(1 \mathrm{H}, \mathrm{dd}, J=9.3,1.8 \mathrm{~Hz}, \mathrm{H}-2), 4.15(1 \mathrm{H}, \mathrm{dd}, J=9.3,7.2 \mathrm{~Hz}, \mathrm{H}-2), 4.62(1$ $\mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}), 4.91(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, \mathrm{H}-3), 5.14\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\right), 5.68(1 \mathrm{H}$, dddd, $J=15.0,10.2,9.0,4.8 \mathrm{~Hz}, \mathrm{CH}=), 5.84(1 \mathrm{H}, \mathrm{dddd}, J=15.3,9.9,8.7,5.1 \mathrm{~Hz}, \mathrm{CH}=), 7.26-$ $7.33\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(75.4 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 31.6,31.8\left(\mathrm{CH}_{2}\right), 36.9(\mathrm{C}-7), 38.5(\mathrm{C}-8)$, $51.5(\mathrm{C}-6), 52.3\left(\mathrm{CH}_{3} \mathrm{O}\right), 59.6(\mathrm{C}-3), 73.9(\mathrm{C}-2), 89.4(\mathrm{C}-8 \mathrm{a}), 117.4,118.5\left(\mathrm{CH}_{2}=\right), 126.4,128.2$ (C-o, m), 127.4 (C-p), 134.4, $134.8(\mathrm{CH}=), 140.5$ (C-i), 162.3 (NCO), 170.6 (COO); m/z 355 $\left(\mathrm{M}^{+}, 1\right), 312$ (21), 296 (13), 282 (8), 272 (8), 254 (5). ($6 R$)-2 (minor): δ_{C} (75.4 MHz; CDCl_{3}; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 32.8,35.9\left(\mathrm{CH}_{2}\right), 36.5(\mathrm{C}-7), 41.9(\mathrm{C}-8), 52.5\left(\mathrm{CH}_{3} \mathrm{O}\right), 53.7(\mathrm{C}-6), 59.2(\mathrm{C}-3), 73.8(\mathrm{C}-$ $2), 89.8(\mathrm{C}-8 \mathrm{a}), 118.4,119.6\left(\mathrm{CH}_{2}=\right), 126.7-128.5(\mathrm{C}-o, m, p), 132.8,133.4(\mathrm{CH}=), 140.6(\mathrm{C}-i)$, 162.5 (NCO), 170.8 (COO); m/z 355 ($\mathrm{M}^{+}, 2$), 314 (5), 272 (8), 254 (4), 176 (6), 148 (11), 128 (7), 120 (17), 119 (12), 117 (20), 105 (13), 104 (100); HRMS (ESI) calcd for [$\left.\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}+\mathrm{H}\right]^{+}$: 356.1783 , found: 356.1779 .

(3R,6aR,10aS,10bR)-6-(Methoxycarbonyl)-5-oxo-3-phenyl-2,3,6,6a,7,10,10a,10b-octahydro -5H-oxazolo[2,3-a]isoquinoline (3): Second-generation Grubbs catalyst (642 mg) was added to a solution of lactam $2(3.58 \mathrm{~g}, 10.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.44 \mathrm{~L})$. The mixture was stirred for 18 h at room temperature, and the resulting suspension was concentrated. Flash chromatography ($4: 1$ to 3:2 hexane-EtOAc) of the residue gave tricyclic lactam 3 as a mixture of C-6 epimers (2.8 g , 85% yield). Compound ($6 R$)-3 (major): IR (film): $v=1667,1738(\mathrm{CO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.43(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.50(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 6a), $2.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10 \mathrm{a}), 3.18(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.96(1 \mathrm{H}, \mathrm{dd}, J=9.0,1.2$ $\mathrm{Hz}, \mathrm{H}-2), 4.12(1 \mathrm{H}, \mathrm{dd}, J=9.0,6.9 \mathrm{~Hz}, \mathrm{H}-2), 4.85(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}-10 \mathrm{~b}), 4.92(1 \mathrm{H}, \mathrm{dd}, J$ $=6.9,1.2 \mathrm{~Hz}, \mathrm{H}-3), 5.69(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9), 7.22-7.35\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(75.4 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 25.1(\mathrm{C}-10), 28.0(\mathrm{C}-7), 32.6(\mathrm{C}-10 \mathrm{a}), 33.5(\mathrm{C}-6 \mathrm{a}), 52.2\left(\mathrm{CH}_{3} \mathrm{O}\right), 53.9(\mathrm{C}-6), 59.4(\mathrm{C}-3)$, 73.6 (C-2), 87.1 (C-10b), 124.4, 124.8 (C-8, C-9), 126.8, 128.0 (C-o, m), 127.2 (C-p), 140.6 (Ci), 162.0 (NCO), 170.2 (COO). Compound ($6 S$) $\mathbf{- 3}$ (minor): δ_{C} (75.4 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si} ;$ selected resonances) $24.7(\mathrm{C}-10), 32.6(\mathrm{C}-10 \mathrm{a}), 36.7(\mathrm{C}-6 \mathrm{a}), 51.8\left(\mathrm{CH}_{3}\right), 53.7(\mathrm{C}-6), 59.6(\mathrm{C}-3)$, 73.3 (C-2), 86.6 (C-10b), 140.9 (C-i), 162.4 (NCO), 169.1 (COO). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.76 ; \mathrm{H}, 6.53 ; \mathrm{N}, 4.22$. Found: C, $68.82 ; \mathrm{H}, 6.90 ; \mathrm{N}, 4.20$.

(3R,6R,6aR,10aS,10bR)-6-[3-(1,3-Dioxolan-2-yl)propyl]-6-(methoxycarbonyl)-5-oxo-3-phenyl-2,3,6,6a,7,10,10a,10b-octahydro-5H-oxazolo[3,2-a]isoquinoline (4): A solution of isoquinoline 3 ($880 \mathrm{mg}, 2.691 \mathrm{mmol}$) in DMF (2 mL) was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{NaH}(161 \mathrm{mg}$ of a 60% dispersion in mineral oil, 4.031 mmol) in anhydrous DMF (20 mL) under an inert atmosphere, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . 2-(3-Bromopropyl)-1,3-dioxolane ($1.94 \mathrm{~g}, 13.4 \mathrm{mmol}$) and TBAI ($198 \mathrm{mg}, 0.538 \mathrm{mmol}$) were added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred overnight at room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with diethyl ether and then with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried, filtered, and concentrated under reduced pressure. Flash
chromatography (hexane to 6:4 hexane-EtOAc) of the resulting oil afforded lactam 4 (905 mg , 80%): $[\alpha]_{\mathrm{D}}{ }^{22}=-29.7$ (c 2.1 in CHCl_{3}); IR (film): $v=1668,1737(\mathrm{CO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; CDCl_{3}; $\mathrm{Me}_{4} \mathrm{Si}$) 1.13-1.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathbf{2}^{\prime}$), 1.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), 1.81-1.97 ($3 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-1$ ', H-7), 2.11-2.20 ($2 \mathrm{H}, 3 \mathrm{~m}, \mathrm{H}-7, \mathrm{H}-10$), 2.28 ($1 \mathrm{H}, \mathrm{ddd}, J=12.4,6.0,4.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), 2.45 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 10), $2.54(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10 \mathrm{a}), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.77,3.89\left(4 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.07(1 \mathrm{H}, \mathrm{dd}, J=$ $9.2,1.6 \mathrm{~Hz}, \mathrm{H}-2), 4.15(1 \mathrm{H}, \mathrm{dd}, J=9.2 \mathrm{~Hz}, \mathrm{H}-2), 4.61(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}, \mathrm{H}-4$ '), $4.91(2 \mathrm{H}, \mathrm{m}$, H-3, H-10b), 5.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9$), $7.20-7.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 19.9 (C-2'), 25.6, 25.7 (C-7, C-10), 33.6 (C-10a), 34.1 (C-3'), 37.4 (C-1'), 39.5 (C-6a), 51.9 $\left.\left(\mathrm{CH}_{3} \mathrm{O}\right), 58.9(\mathrm{C}-6), 59.8(\mathrm{C}-3), 64.6,64.7\left(2 \mathrm{CH}_{2} \mathrm{O}\right), 73.5(\mathrm{C}-2), 87.5(\mathrm{C}-10 \mathrm{~b}), 104.4(\mathrm{C}-4)^{\prime}\right)$, 124.3, 124.7 (C-8, C-9), 126.8, 128.3 (C-o, m), 127.5 (C-p), 141.6 (C-i), 165.4 (NCO), 172.1 (CCO); HRMS calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{6}+\mathrm{H}^{+}: 442.2224\right.$, found: 442.2227.

(4R,4aR,8aS)-2-(tert-Butoxycarbonyl)-4-[3-(1,3-dioxolan-2-yl)propyl]-4-(hydroxymethyl)-1,2,3,4,4a,5,8,8a-octahydroisoquinoline (5): Fisrt step: Liquid ammonia (15 mL) was condensed at $-78^{\circ} \mathrm{C}$ in a three-necked 100 mL round-bottomed flask equipped with a coldfinger condenser charged with dry ice-acetone, and then a solution of lactam 4 ($200 \mathrm{mg}, 0.452 \mathrm{mmol}$) in THF (10 mL) was added. The temperature was raised to $-33^{\circ} \mathrm{C}$ and metal sodium was added in small portions until the blue color persisted. The mixture was stirred at $-33^{\circ} \mathrm{C}$ for 2 min . The reaction was quenched by the addition of solid $\mathrm{NH}_{4} \mathrm{Cl}$ until the blue colour disappeared, and the mixture was stirred at room temperature for 4 h . The residue was digested at room temperature with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting suspension was filtered through Celite ${ }^{\circledR}$. The solution was concentrated under reduced pressure.

Second step: Lithium aluminum hydride ($257 \mathrm{mg}, 6.78 \mathrm{mmol}$) was added under an argon atmosphere to a solution of the above residue in anhydrous dioxane (15 mL) and the mixture was stirred at reflux overnight. The resulting suspension was cooled to $0{ }^{\circ} \mathrm{C}$, and the reaction was quenched with distilled water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic extracts were dried, filtered, and concentrated to afford the crude amino alcohol as a yellow oil, which was used in the next step without purification.
Third step: Di-tert-butyl dicarbonate ($107 \mathrm{mg}, 0.497 \mathrm{mmol}$) was added dropwise to a solution of the above crude amino alcohol in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at room temperature under an inert atmosphere, and the resulting mixture was stirred for 20 h . The solution was then poured into
saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Flash chromatography ($9: 1$ to 1:1 hexane-EtOAc) of the residue gave carbamate 5 (72 $\mathrm{mg}, 42 \%):[\alpha]_{\mathrm{D}}{ }^{22}=-14.4\left(c 2.6\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{KBr}): v=3480(\mathrm{OH}), 1688(\mathrm{CO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(400$ $\left.\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.45\left[11 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), \mathrm{H}-2^{\prime}\right], 1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}\right), 1.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right)$, $1.81(1 \mathrm{H}, \mathrm{d}, J=18.0 \mathrm{~Hz}, \mathrm{H}-8), 1.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 1.99(1 \mathrm{H}, \mathrm{dm}, J=18.8 \mathrm{~Hz}, \mathrm{H}-5), 2.09(1$ H, dm, $J=18.8 \mathrm{~Hz}, \mathrm{H}-5), 2.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.23(1 \mathrm{H}, \mathrm{d}, J=18.0 \mathrm{~Hz}, \mathrm{H}-8), 2.70-2.97(2 \mathrm{H}$, m, H-1, H-3), 3.42 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}$), 3.52-3.63 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3$), $3.85,3.95\left(4 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}\right.$), $\left.4.87(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}, \mathrm{H}-4)^{2}\right), 5.59(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7)$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 17.6$ (C-2'), 21.4 (C-5), 27.8 (C-8a), $\left.28.3\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)\right], 28.5(\mathrm{C}-8), 30.7(\mathrm{C}-1$ '), 34.2 (C-3', C-4a), 40.8 (C-4), 43.7-45.7 (C-1, C-3), 63.6, $\left.64.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 64.7,64.8\left(2 \mathrm{CH}_{2} \mathrm{O}\right), 79.4\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)\right], 104.4$ (C-4'), 124.5 (C-6, C-7), 155.0 (NCOO); HRMS (ESI) calcd for [$\left.\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{5}+\mathrm{H}\right]^{+}: 382.2588$, found: 382.2585 .

(4R,4aR,8aS)-2-(tert-Butoxycarbonyl)-4-[3-(1,3-dioxolan-2-yl)propyl]-4-[(methanesulfonyl-oxy)methyl]-1,2,3,4,4a,5,8,8a-octahydroisoquinoline: Anhydrous $\mathrm{Et}_{3} \mathrm{~N}(430 \mu \mathrm{~L}, 3.11 \mathrm{mmol})$ and methanesulfonyl chloride ($410 \mu \mathrm{~L}, 5.3 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$ under an inert atmosphere to a stirred solution of compound $\mathbf{5}(396 \mathrm{mg}, 1.04 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature for 4 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Flash chromatography ($9: 1$ to 6:4 hexane-EtOAc) of the residue afforded the mesylate derivative ($470 \mathrm{mg}, 97 \%$) as a yellow oil: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right)$, 1.45, $\left.1.46\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)\right], 1.64(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ', $\mathrm{H}-3$ '), $1.83(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}, \mathrm{H}-8), 1.94$ (1 H, m, H-4a), $1.99(1 \mathrm{H}, \mathrm{dm}, J=17.2 \mathrm{~Hz}, \mathrm{H}-5), 2.10(1 \mathrm{H}, \mathrm{dm}, J=17.2 \mathrm{~Hz}, \mathrm{H}-5), 2.16(1 \mathrm{H}, \mathrm{m}$, H-8a), $2.25(1 \mathrm{H}, \mathrm{dm}, J=17.6 \mathrm{~Hz}, \mathrm{H}-8), 2.78-2.81(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}-1, \mathrm{H}-3), 3.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~S}\right)$, 3.66-3.73 ($2 \mathrm{H}, 2 \mathrm{~m}, \mathrm{H}-1, \mathrm{H}-3$), 3.84, $3.95\left(4 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OS}\right), 4.86(1 \mathrm{H}, \mathrm{t}$, $J=4.4 \mathrm{~Hz}, \mathrm{H}-4$ '), $5.60(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 17.2$ (C-2'), 21.4 (C5), 27.8 (C-8a), $\left.28.3\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), \mathrm{C}-8\right], 31.0\left(\mathrm{C}-1{ }^{\prime}\right), 33.5(\mathrm{C}-4 \mathrm{a}), 34.3\left(\mathrm{C}-3{ }^{\prime}\right), 37.1\left(\mathrm{CH}_{3} \mathrm{SO}\right), 39.8$ (C-4), 43.4-44.6 (C-1, C-3), 64.7, $\left.64.8\left(2 \mathrm{CH}_{2} \mathrm{O}\right), 70.2\left(\mathrm{CH}_{2} \mathrm{OS}\right), 79.8\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)\right], 104.1(\mathrm{C}-4)$,
123.8, 124.5 (C-6, C-7), 155.0 (NCOO); HRMS calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{NO}_{7} \mathrm{~S}+\mathrm{NH}_{4}\right]^{+}: 477.2629$, found: 477.2621.

(4R,4aR,8aS)-4-(Azidomethyl)-2-(tert-butoxycarbonyl)-4-[3-(1,3-dioxolan-2-yl)propyl]-
$\mathbf{1 , 2 , 3 , 4 , 4 a , 5 , 8 , 8 a - 0 c t a h y d r o i s o q u i n o l i n e}: \mathrm{NaN}_{3}(404 \mathrm{mg}, 6.22 \mathrm{mmol})$ was added to a solution of the above mesylate ($476 \mathrm{mg}, 1.04 \mathrm{mmol}$) in anhydrous DMF (2 mL) , and the mixture was heated to $90{ }^{\circ} \mathrm{C}$. After 48 h , more $\mathrm{NaN}_{3}(404 \mathrm{mg}, 6.22 \mathrm{mmol})$ was added, and the resulting mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for an additional 24 h and quenched with distilled water. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were dried and concentrated under reduced pressure to give an oil. Flash chromatography (9:1 hexane-EtOAc) of the oil afforded the corresponding azide ($335 \mathrm{mg}, 70 \%$): $[\alpha]_{\mathrm{D}}^{22}=-45.3\left(c 0.9\right.$ in CHCl_{3}); IR (film): $v=2098\left(\mathrm{~N}_{3}\right), 1688(\mathrm{CO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-{ }^{\prime}\right), 1.42$ [$\left.10 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), \mathrm{H}-1$ '] , $1.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1\right.$ '), $1.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 1.81(1 \mathrm{H}, \mathrm{d}, J=18.4 \mathrm{~Hz}$, H-8), $1.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 1.95(1 \mathrm{H}, \mathrm{dm}, J=17.6 \mathrm{~Hz}, \mathrm{H}-5), 2.08(1 \mathrm{H}, \mathrm{dm}, J=17.6 \mathrm{~Hz}, \mathrm{H}-5)$, $2.16(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.61-2.74(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3), 3.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$, 3.62-3.73 ($2 \mathrm{H}, 2 \mathrm{~m}, \mathrm{H}-1, \mathrm{H}-3$), 3.85, $3.95\left(4 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.82(1 \mathrm{H}, \mathrm{t}, J=4.4 \mathrm{~Hz}, \mathrm{H}-4$ '), 5.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}^{2}\right) 17.7$ (C-2'), 21.5 (C-5), 27.8 (C-8a), 28.3 [($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}$), C-8], 31.7 (C-1'), 34.5 (C-4a), 34.8 (C-3'), 42.2 (C-4), 43.5-45.0 (C-1, C-3), 54.0 $\left.\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 64.8\left(2 \mathrm{CH}_{2} \mathrm{O}\right), 79.7\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)\right], 104.3\left(\mathrm{C}-4{ }^{\prime}\right), 123.9,124.6(\mathrm{C}-6, \mathrm{C}-7), 155.0(\mathrm{NCOO})$. HRMS calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{H}\right]^{+}: 407.2653$, found: 407.2645.

(4R,4aR,6S,7S,8aS)-2-(tert-Butoxycarbonyl)-4-[3-(1,3-dioxolan-2-yl)propyl]-7-hydroxy-6,4-(iminomethano)-9-(p-toluenesulfonyl)perhydroisoquinoline (7): First step: mChloroperoxybenzoic acid ($161 \mathrm{mg}, 0.72 \mathrm{mmol}$) was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of the above azide ($147 \mathrm{mg}, 0.36 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL}$), and the mixture was allowed to warm slowly to room temperature. After 5 h , the reaction was quenched with saturated aqueous
NaHCO_{3} and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure to give azido epoxide 6 .

Second step: $\mathrm{Me}_{3} \mathrm{P}$ ($540 \mu \mathrm{l}$ of a 1 M solution in THF, 0.54 mmol) was added to a solution of the above azido epoxide 6 (0.36 mmol) in THF (6 mL), and the mixture was stirred at room temperature for 2 hours. Water (0.6 mL) was added, and the resulting mixture was stirred overnight at room temperature and concentrated under reduced pressure to afford a tricyclic amino derivative.

Third step: $\mathrm{Et}_{3} \mathrm{~N}(55 \mu \mathrm{~L}, 0.397 \mathrm{mmol})$ was added dropwise to a stirring solution of the above tricyclic amine in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. A solution of p-toluenesulfonyl chloride ($75 \mathrm{mg}, 0.397 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was transferred via a cannula to the former solution, and the stirring was continued for 2.5 h at $0{ }^{\circ} \mathrm{C}$. The reaction was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford the protected compound 7 ($80 \mathrm{mg}, 40 \%$ overall yield from the azide) after flash chromatography ($9: 1$ to 7:3 hexane-EtOAc): $[\alpha]_{\mathrm{D}}{ }^{22}=+36.1$ (c 3.1 in CHCl_{3}); IR (film): $v=$ $3500(\mathrm{OH}), 1689(\mathrm{CO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.19\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}\right), 1.43[9 \mathrm{H}$, s, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 1.60-1.71(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,2 \mathrm{H}-8), 1.94(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}, \mathrm{H}-$ 5), $2.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right), 2.60-2.78(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3), 3.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 10), $3.28(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-10), 3.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 3.87(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{O}$), $3.80(2 \mathrm{H}$, masked, $\mathrm{H}-3, \mathrm{H}-1), 4.00(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 4.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$) $) 7.27(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{H}-m \mathrm{Ts}$), $7.69(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{o} \mathrm{Ts}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 17.3$ (C-2'), $21.4\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 21.9(\mathrm{C}-5), 28.3\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 30.3(\mathrm{C}-8 \mathrm{a}), 32.5(\mathrm{C}-8), 32.8(\mathrm{C}-4), 34.0(\mathrm{C}-3$ '), 34.9 (C-4a), 36.1 (C-1'), 46.0-50.0 (C-10, C-1, C-3), 50.8 (C-6), 64.7, $64.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 67.7$ (C-7), 79.8 $\left[\left(\mathrm{CH}_{3}\right)_{3} C\right], 104.0(\mathrm{C}-4$ '), 126.8 (C-o Ts), 129.6 (C-m Ts), 136.5 (C-i Ts), 143.1 (C-p Ts), 155.5 (NCOO); HRMS calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}+\mathrm{H}\right]^{+}: 551.2785$, found: 551.2788.

(4R,4aR,6S,7S,8aS)-7-(Benzyloxy)-2-(tert-butoxycarbonyl)-4-[3-(1,3-dioxolan-2-yl)propyl]-6,4-(iminomethano)-9-(p-toluenesulfonyl)perhydroisoquinoline: NaH (17 mg of a 60% dispersion in mineral oil, 0.427 mmol) was added to a solution of tricyclic compound 7 (157 $\mathrm{mg}, 0.285 \mathrm{mmol}$) in anhydrous DMF (6 mL), and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Then,
benzyl bromide ($100 \mu \mathrm{~L}, 0.855 \mathrm{mmol}$, previously filtered over a neutral alumina pad) and a solution of tetrabutylammonium iodide ($21 \mathrm{mg}, 0.057 \mathrm{mmol}$) were added at room temperature, and the resulting suspension was stirred overnight. The reaction was quenched by the addition of distilled water, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Flash chromatography ($9: 1$ to $1: 1$ hexane-EtOAc) of the residue gave the corresponding benzyloxy derivative ($137 \mathrm{~g}, 77 \%$) as a colourless oil: $[\alpha]_{\mathrm{D}}{ }^{22}=+38.8\left(c 0.75\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; IR (film): $v=1689(\mathrm{CO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.25\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}\right), 1.42[11 \mathrm{H}$, s, H-3', $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.50(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-8), 1.70(1 \mathrm{H}, \mathrm{dm}, J=13.6 \mathrm{~Hz}, \mathrm{H}-5), 1.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 8), $1.92(1 \mathrm{H}, \mathrm{dt}, J=13.6,2.4 \mathrm{~Hz}, \mathrm{H}-5), 1.99(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right)$, 2.62-2.70 (2 H, 2m, H-1, H-3), 3.04 ($1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-10$), $3.32(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-10), 3.40(1 \mathrm{H}$, br. s, H-7), 3.52-3.62 (2 H, 2m, H-1, H-3), 3.84, 3.95 ($4 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}$), 4.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 4.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Bn}$), $4.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4\right.$ '), $7.10-7.60\left(9 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{Ts}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 17.3\left(\mathrm{C}-2\right.$ '), $21.4\left(\mathrm{CH}_{3} \mathrm{Ts}\right.$), $22.6(\mathrm{C}-5), 28.4\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 29.9(\mathrm{C}-8), 30.8(\mathrm{C}-8 \mathrm{a}), 31.9(\mathrm{C}-$ 4), 34.2 (C-3'), 35.0 (C-4a), 36.1 (C-1'), 43.9 (C-3'), 47.0-49.9 (C-1, C-3), 48.2 (C-10), 51.0 (C-6), $64.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.5\left(\mathrm{CH}_{2} \mathrm{Bn}\right), 73.4(\mathrm{C}-7), 79.8\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 104.1(\mathrm{C}-4)$), 126.7-129.6 (C-o, $m \mathrm{Ts}, \mathrm{C}-o, m, p \mathrm{C}_{6} \mathrm{H}_{5}$), 137.4 (C-i Ts), 138.5 ($\mathrm{C}-i \mathrm{C}_{6} \mathrm{H}_{5}$), 143.0 (C-p Ts), 155.5 (NCOO); HRMS calcd for $\left[\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}+\mathrm{H}\right]^{+}: 641.3255$, found: 641.3255 .

(4R,4aR,6S,7S,8aS)-7-(Benzyloxy)-4-[3-(1,3-dioxolan-2-yl)propyl]-6,4-(iminomethano)-9-(p-toluenesulfonyl)perhydroisoquinoline: TFA $(2 \mathrm{~mL})$ was added to a solution of the above tricycle ($137 \mathrm{mg}, 0.213 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and the mixture was stirred for 30 minutes at room temperature. Toluene (2 mL) was added, and the resulting solution was concentrated under reduced pressure to give the corresponding secondary amine: $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right), 1.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}\right), 1.52\left(3 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-3^{\prime}, \mathrm{H}-1^{\prime}\right), 1.65(1 \mathrm{H}$, m, H-4a), 1.78 ($2 \mathrm{H}, \mathrm{dm}, J=13.6 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-8$), $1.90(1 \mathrm{H}, \mathrm{dm}, J=13.6 \mathrm{~Hz}, \mathrm{H}-8), 1.98$ (1 H , $\mathrm{dm}, J=13.6 \mathrm{~Hz}, \mathrm{H}-5), 2.25(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right), 2.78,2.98-3.05(4 \mathrm{H}, 2 \mathrm{~m}, \mathrm{H}-$ $1, \mathrm{H}-3), 3.31$ ($1 \mathrm{H}, \mathrm{br}$ s, H-7), 3.48 ($1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-10$), 3.53 ($1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-$ 10), 3.82, 3.94 ($4 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}$), 4.18 (1 H , br. s, H-6), 4.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Bn}$), 4.79 ($1 \mathrm{H}, \mathrm{t}, J=$ 4.4 Hz, H-4'), 7.15-7.57 ($9 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{Ts}$); $\boldsymbol{\delta}_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 17.0\left(\mathrm{C}-\mathbf{2}^{\prime}\right), 21.4$
$\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 22.5$ (C-5), 27.7 (C-8a), 28.9 (C-8), 32.3 (C-4a), 33.1 (C-4), 33.6 (C-3’), 36.0 (C-1’), 46.2 (C-10), 47.6, $47.8(\mathrm{C}-1, \mathrm{C}-3), 48.7(\mathrm{C}-6), 64.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.7\left(\mathrm{CH}_{2} \mathrm{Bn}\right), 72.8(\mathrm{C}-7), 103.7$ (C-4'), 126.6-129.8 (C-o, $m \mathrm{Ts}, \mathrm{C}-o, m, p \mathrm{C}_{6} \mathrm{H}_{5}$), 137.2 (C-i Ts), $138.0\left(\mathrm{C}-i \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 143.4 (C-p Ts); HRMS calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}+\mathrm{H}\right]^{+}$: 541.2731, found: 541.2736.

(4R,4aR,6S,7S,8aS)-7-(Benzyloxy)-4-[3-(1,3-dioxolan-2-yl)propyl]-6,4-(iminomethano)-2-(7-octenoyl)-9-(p-toluenesulfonyl)perhydroisoquinoline (9): Preparation of 7-octenoyl chloride: Oxalyl chloride ($990 \mu \mathrm{~L}$ of a 2 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.98 \mathrm{mmol}$) was added to a solution of 7 -octenoic acid $(230 \mu \mathrm{~L}, 1.53 \mathrm{mmol})$ in 2 drops of DMF, and the resulting mixture was stirred at room temperature for 15 min . Ether was added, and the resulting mixture was filtered and concentrated under reduced pressure to give crude 7 -octenoyl chloride.

Acylation step: $\mathrm{Et}_{3} \mathrm{~N}(120 \mu \mathrm{~L}, 0.918 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ to a solution of the above secondary amine $(0.306 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . A solution of 7 -octenoyl chloride (1.53 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and at room temperature overnight. Distilled water was added, and the resulting mixture was stirred for 20 minutes. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 8:2 hexane-EtOAc) of the residue afforded amide $9(116 \mathrm{mg}, 57 \%$, overall yield from the Boc derivative): $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 1.20-1.50 (10 H, m, H-1', H-2', H-3', H-4'’, H-5''), 1.59 (3 H, m, H-4a, 2H-3''), $1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.69(1 \mathrm{H}, \mathrm{dm}, J=13.2 \mathrm{~Hz}, \mathrm{H}-5), 1.78(1 \mathrm{H}, \mathrm{td}$, $J=14.8,5.6 \mathrm{~Hz}, \mathrm{H}-8), 1.93(1 \mathrm{H}, \mathrm{dt}, J=13.2,2.8 \mathrm{~Hz}, \mathrm{H}-5), 2.06\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, 2 \mathrm{H}-6{ }^{\prime}{ }^{\prime}\right)$, 2.182.30 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ ', $\mathrm{H}-3 \mathrm{ax}$), 2.39 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}$), 2.53, 3.06 ($1 \mathrm{H}, 2 \mathrm{dd}, J=13.2,2.8 \mathrm{~Hz}, \mathrm{H}-1$), $2.86(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{H}-3), 3.00,3.27(1 \mathrm{H}, 2 \mathrm{~d}, J=13.6 \mathrm{~Hz}, \mathrm{H}-10), 3.05,3.36(1 \mathrm{H}, 2 \mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, \mathrm{H}-10), 3.37,4.30(1 \mathrm{H}, 2 \mathrm{~d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-3), 3.40,3.56(1 \mathrm{H}, 2 \mathrm{br} . \mathrm{s}, \mathrm{H}-7), 3.54,4.43$ ($1 \mathrm{H}, 2 \mathrm{~d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-1$), 3.82, $3.93\left(4 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.14,4.22(1 \mathrm{H}, 2 \mathrm{br} . \mathrm{s}, \mathrm{H}-6), 4.50$ (1 $\left.\mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.73,4.79(1 \mathrm{H}, 2 \mathrm{t}, J=4.8 \mathrm{~Hz}$, H-4'), 4.93-5.04 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=$), $5.80(1 \mathrm{H}, \mathrm{tdt}, J=13.2,13.2,10.0,6.8,6.8 \mathrm{~Hz}, \mathrm{CH}=), 7.05-$ $7.60\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Ts}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 17.3,17.4(\mathrm{C}-2 '), 21.4\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 22.3$, 22.6 (C-5), 24.9 (C-3'’), 28,6, 28.7, 28.8, 28.9 (C-4'', C-5''), 29.7, 30.0 (C-8), 30.4, 31.0 (C-

8a), 33.1, 33.2 (C-2''), 33.5 (C-6''), 34.4 (C-3'), 34.6, 34.8 (C-4a), 34.9, 35.3 (C-4), 36.1, 36.2 (C-1'), 43.9, 50.5 (C-1), 46.5, 46.8 (C-10), 47.8, 48.4 (C-6), 48.0, 52.2 (C-3), 64.7, 64.8 $\left(2 \mathrm{CH}_{2} \mathrm{O}\right), 70.5,70.8\left(\mathrm{CH}_{2} \mathrm{Bn}\right), 73.7,74.7(\mathrm{C}-7), 103.9,104.0(\mathrm{C}-4), 114.3,144.4\left(\mathrm{CH}_{2}=\right)$, 126.6-129.6 (C-o, $m \mathrm{Ts}, \mathrm{C}-o, m, p \mathrm{C}_{6} \mathrm{H}_{5}$), 137.4-138.8 ($\mathrm{C}-i \mathrm{Ts}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}=$), 143.0, 143.2 (C-p Ts), 172.6, 172.7 (NCO); HRMS calcd for $\left[\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}+\mathrm{H}\right]^{+}: 665.3619$, found: 665.3608 .

(4R,4aR,6S,7S,8aS)-7-(Benzyloxy)-6,4-(iminomethano)-2-(7-octenoyl)-9-(p-toluenesulfonyl)
-4-perhydroisoquinolinebutyraldehyde: TFA (2 mL) was added to a solution of amide 9 (100 $\mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and water $(4 \mathrm{~mL})$, and the resulting mixture was stirred at room temprature for 2 h . The reaction was quenched by addition of saturated aqueous NaHCO_{3}, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give a yellow oil, which was used in the next step without further purification: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.25-$ 1.49 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ ', H-2', H-4' ', H-5'’), 1.58-1.65 (4 H, m, H-8, H-4a, 2H-3''), 1.74 (1 H, dm, J $=14.0 \mathrm{~Hz}, \mathrm{H}-5), 1.79(1 \mathrm{H}, \mathrm{dd}, J=14.0,6.4 \mathrm{~Hz}, \mathrm{H}-8), 1.96(1 \mathrm{H}, \mathrm{dm}, J=14.0 \mathrm{~Hz}, \mathrm{H}-5), 2.07$ (3 H, m, H-8a, 2H-6''), 2.26 (4 H, t, $J=7.6 \mathrm{~Hz}, \mathrm{H}-2 '$ ', H-3'), 2.35, $2.90(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-3)$, $2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right), 2.55,3.08(1 \mathrm{H}, \mathrm{dd}, J=13.2,3.2 \mathrm{~Hz}, \mathrm{H}-1), 2.98,3.03(1 \mathrm{H}, 2 \mathrm{~d}, J=13.6$ Hz, H-10), 3.29, 3.38 ($1 \mathrm{H}, 2 \mathrm{~d}, J=13.6 \mathrm{~Hz}, \mathrm{H}-10$), $3.33,3.50(1 \mathrm{H}, 2 \mathrm{br} . \mathrm{s}, \mathrm{H}-7), 3.41,4.34(1 \mathrm{H}$, $2 \mathrm{~d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-3), 3.55,4.45(1 \mathrm{H}, 2 \mathrm{~d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-1), 4.14,4.22(1 \mathrm{H}, 2 \mathrm{br} . \mathrm{s}, \mathrm{H}-6), 4.48$ $\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Bn}\right), 7.13-7.60\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Ts}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 9.67, $9.75(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 15.3,15.5(\mathrm{C}-2 '), 21.0,21.4\left(\mathrm{CH}_{3}\right.$ Ts), 22.4, 22.5 (C-5), 24.9 (C-3'’), 28.6, 28.7, 28.8, 28.9 (C-4'', C-5' '), 29.7, 30.0 (C-8), 30.5, 31.0 (C-8a), 31.5 (C-4), 33.1, 33.2 (C-2''), 33.5 (C-6'’), 34.6, 34.9 (C-4a), 35.4, 35.5 (C-1'), 43.9 (C-3'), 46.5, 50.1 (C-1), 46.6 (C-10), 47.8, 52.1 (C-3), 47.9, 48.4 (C-6), 70.4, 70.7 (CH_{2} $\mathrm{Bn}), 73.2$, $74.2(\mathrm{C}-7), 114.3,144.4\left(\mathrm{CH}_{2}=\right), 126.6-129.6\left(\mathrm{C}-o, m \mathrm{Ts}, \mathrm{C}-o, m, p \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 137.3138.9 (C-i Ts, $\left.\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{CH}=\right), 143.0(\mathrm{C}-p \mathrm{Ts}), 172.5,172.7$ (NCO), 201.4, 201.5 (CHO); HRMS (maldi) calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}+\mathrm{Na}\right]^{+}$: 643.32, found: 643.30.

(4R,4aR,6S,7S,8aS)-7-(Benzyloxy)-6,4-(iminomethano)-2-(7-octenoyl)-4-(4-pentenyl)-9-(ptoluenesulfonyl)perhydroisoquinoline (10): $\mathrm{KOtBu}(750 \mu \mathrm{~L}$ of a 1 M solution in THF, 0.75 mmol) was added dropwise to a solution of $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}(375 \mathrm{mg}, 1.05 \mathrm{mmol})$ in THF (4 mL), and the solution was stirred at room temperature for 1 h . The resulting mixture was added to a solution of the above aldehyde (0.150 mmol) in THF (4 mL), and the mixture was stirred at room temperature overnight. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the aqueous layer was extracted with ether. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure.. Flash chromatography (hexane to 6:4 hexane-EtOAc) of the resulting oil afforded diene $\mathbf{1 0}$ (73 mg , 80%): $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right.$) 1.08-1.43 ($8 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-1$ ', $2 \mathrm{H}-2^{\prime}, 2 \mathrm{H}-4$ ', $2 \mathrm{H}-5^{\prime \prime}$), 1.55 (1 H, m, H-4a), 1.61 ($3 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-3^{\prime}$ ', H-8), 1.71 ($1 \mathrm{H}, \mathrm{dm}, J=14.8 \mathrm{~Hz}, \mathrm{H}-5$), 1.80 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$, H-8), 1.91 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ '), 1.94 ($1 \mathrm{H}, \mathrm{dm}, J=14.8 \mathrm{~Hz}, \mathrm{H}-5$), 2.06 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ '', H-8a), 2.20, $2.84(1 \mathrm{H}, 2 \mathrm{~d}, J=14.0 \mathrm{~Hz}, \mathrm{H}-3), 2.26(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}-2$ ' $)$), $2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ts}\right), 2.54$, 3.07 ($1 \mathrm{H}, 2 \mathrm{dd}, J=12.8,2.8 \mathrm{~Hz}, \mathrm{H}-1$), 2.98, $3.04(1 \mathrm{H}, 2 \mathrm{~d}, J=13.6 \mathrm{~Hz}, \mathrm{H}-10), 3.26,3.36(1 \mathrm{H}$, $2 \mathrm{~d}, J=13.8 \mathrm{~Hz}, \mathrm{H}-10), 3.36,4.31(1 \mathrm{H}, 2 \mathrm{~d}, J=14.0 \mathrm{~Hz}, \mathrm{H}-3), 3.40,3.57$ ($1 \mathrm{H}, 2 \mathrm{br} . \mathrm{s}, \mathrm{H}-7$), 4.14, $4.23(1 \mathrm{H}, 2 \mathrm{~d}, J=12.8 \mathrm{~Hz}, \mathrm{H}-1), 4.51\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.56(1 \mathrm{H}, \mathrm{d}, J=12.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Bn}\right), 4.95\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\right)$, 5.61-5.90 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=$), $7.08-7.60\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Ts}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}$ (100.6 MHz; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 21.0,21.4\left(\mathrm{CH}_{3} \mathrm{Ts}\right), 22.2,22.3$, 22.4, 22.6 (C-2', C-5), 24.7, 25.0 (C-3'"), 28.7, 28.8, 28.9 (C-4', C-5'’), 30.1, 30.6 (C-8), 31.1, 31.5 (C-8a), 33.2, 33.3 (C-2'’), 33.6 (C-6’'), 34.0 (C-3'), 34.8, 35.3 (C-4a), 35.7, 35.8 (C-1'), 36.6 (C-4), 46.5, 50.6 (C-1), 46.7, 46.8 (C-10), 47.9, 48.4 (C-6), 48.2, 52.3 (C-3), 70.5, $70.9\left(\mathrm{CH}_{2} \mathrm{Bn}\right), 73.7,74.7$ (C-7), 114.3, 114.4, 114.8, 115.1 ($2 \mathrm{CH}=$), 126.7-129.6 ($\mathrm{C}-o, m$ Ts, $\mathrm{C}-o, m, p \mathrm{C}_{6} \mathrm{H}_{5}$), 137.4, 138.0, 138.1, 138.4, 138.5 ($2 \mathrm{CH}=$, C-i Ts, $\mathrm{C}_{6} \mathrm{H}_{5}$), 143.1, 143.3 (C-p Ts), 172.6, 172.7 (NCO).

[^0]for 12 h and then concentrated under reduced pressure. Flash chromatography (hexane to 1:1 hexane-EtOAc) of the residue afforded the corresponding tetracyclic compound ($37 \mathrm{mg}, 54 \%$) as a mixture of E / Z isomers. HRMS (maldi) calcd for $\left[\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}+\mathrm{Na}\right]^{+}: 613.3$, found: 613.3 Second step: PtO_{2} ($5.3 \mathrm{mg}, 40 \%$ in weight) was added to a solution of the above lactam (12 mg , $0.02 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, and the resulting mixture was stirred under a hydrogen atmosphere at room temperature for 2 h to afford alcohol $\mathbf{1 1}(8 \mathrm{mg}, 78 \%)$ as a single product: δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$, selected resonances) $1.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a})$, 1.63-1.79 ($3 \mathrm{H}, \mathrm{m}, 3 \mathrm{H}-8$, H-5), $1.86(1 \mathrm{H}, \mathrm{dm}, J=13.2 \mathrm{~Hz}, \mathrm{H}-5), 2.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.43(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{Ts}\right), 2.75(1 \mathrm{H}, \mathrm{dd}, J=13.6,4.4 \mathrm{~Hz}, \mathrm{H}-1), 2.95(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H}-3), 3.12(1 \mathrm{H}, \mathrm{d}, J=$ $12.8 \mathrm{~Hz}, \mathrm{H}-10)$, 3.37 ($1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H}-10$), $3.41(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{H}-7), 3.59(1 \mathrm{H}, \mathrm{d}, J=13.2$ Hz, H-3), 3.88 (1 H , br. s, H-6), 4.10 ($1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}, \mathrm{H}-1$), 7.31 ($2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-m$ Ts), $7.68(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{o} \mathrm{Ts}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 20.7\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right.$ Ts), 22,1 (C-5), 22.7-27.4 (CH_{2}), $30.0\left(\mathrm{C}-8, \mathrm{CH}_{2}\right), 30.1(\mathrm{C}-8 \mathrm{a}), 33.8,35.2\left(\mathrm{CH}_{2}\right), 37.0(\mathrm{C}-4 \mathrm{a})$, 37.1 (C-4), 45.5 (C-10), 46.8 (C-1), 48.9 (C-6), 51.5 (C-3), 75.2 (C-7), 126.9 (C-o Ts), 129.5 (C-m Ts), 136.8 (C-i Ts), 143.4 (C-p Ts), 173.9 (NCO); HRMS (maldi) calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right.$ $+\mathrm{Na}]^{+}: 525.2$, found: 525.2.

(4R,4aR,6S,8aS)-4-(11-Benzyloxyundecyl)-2-(tert-butoxycarbonyl)-6,4-(iminomethano)-9-(p-methoxybenzenesulfonyl)-7-oxoperhydroisoquinoline: Dess-Martin periodinane (82 mg , 0.19 mmol) was added under an inert atmosphere at room temperature to a solution of tricyclic compound $8(0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. After 4 h of stirring at room temperature, a saturated aqueous solution of $\mathrm{NaHCO}_{3}-\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1)$ was slowly added. The resulting mixture was stirred vigorously for 1 h and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Flash chromatography ($9: 1$ to $4: 6$ hexane-EtOAc) of the residue afforded the corresponding ketone ($43 \mathrm{mg}, 78 \%$) as a colourless oil: $[\alpha]_{\mathrm{D}}{ }^{22}=+13.3$ (c 1.7 in CHCl_{3}); IR (film): $v=3408,3279$ $(\mathrm{OH}, \mathrm{NH}), 1692(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.27\left(18 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.35[9 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.62\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{H}-5\right), 1.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 1.74(1 \mathrm{H}, \mathrm{dd}, J=16.8,11.6 \mathrm{~Hz}, \mathrm{H}-8)$, $2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.43(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{H}-5), 2.88-2.60(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 3, H-1, H-10), 3.47 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}-11^{\prime}$), 3.57, 3.66-4.00 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-1, \mathrm{H}-10$), 3.82
($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O} \mathrm{Mbs}$), $4.38(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 6.89(2 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-m$ $\mathrm{Mbs}), 7.29\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.34\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.65(2 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-o \mathrm{Mbs}) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 23.0\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 28.3\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 29.3(\mathrm{C}-5), 29.5-30.1\left(\mathrm{CH}_{2}\right), 33.7$ (C-8a), 34.4 (C-4), 35.6, $35.8\left(\mathrm{CH}_{2}\right), 36.6$ (C-4a), 43.2 (C-8), 47.4-49.9 (C-1, C-3, C-10), 55.4 $\left(\mathrm{CH}_{3} \mathrm{O} \mathrm{Mbs}\right), 56.9(\mathrm{C}-6), 70.5(\mathrm{C}-11$ ' $), 72.8\left(\mathrm{CH}_{2} \mathrm{Bn}\right), 80.1\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 113.9(\mathrm{C}-m \mathrm{Mbs}), 127.4$ $\left(\mathrm{C}-p \mathrm{C}_{6} \mathrm{H}_{5}\right), 127.6,128.3\left(\mathrm{C}-\mathrm{o}, m \mathrm{C}_{6} \mathrm{H}_{5}\right), 129.1(\mathrm{C}-i \mathrm{Mbs}), 129.8(\mathrm{C}-o \mathrm{Mbs}), 138.7\left(\mathrm{C}-i \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $155.0(\mathrm{NCOO}), 163.8(\mathrm{C}-p \mathrm{Mbs}), 205.6(\mathrm{C}=\mathrm{O})$; HRMS (ESI) calcd for $\left[\mathrm{C}_{40} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}+\mathrm{Na}\right]^{+}$: 733.3857 , found: 733.3867.

(4R,4aR,6S,8aS)-4-(11-Benzyloxyundecyl)-2-(tert-butoxycarbonyl)-6,4-(iminomethano)-9-(p-methoxybenzenesulfonyl)perhydroisoquinolin-7-one ethylene acetal (12): 1,2-Bis(trimethylsilyloxy) ethane ($47 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$) was added to a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of trimethylsilyl triflate $(2.3 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. A solution of the above ketone ($91 \mathrm{mg}, 0.13 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , heated to reflux for 1 h , and poured into saturated sodium bicarbonate aqueous solution. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic extracts were dried, filtered, and concentrated under reduced pressure to give an oil. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ of the residue gave acetal $\mathbf{1 2}(55 \mathrm{mg}, 57 \%)$ as an oil: $[\alpha]_{\mathrm{D}}{ }^{22}=+45.3\left(c 1.8\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; IR (film): $v=1689(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 1.27\left(18 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.40\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.56(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 1.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$ '), $1.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.78(1 \mathrm{H}, \mathrm{dt}, J=13.6,2.8,2.8 \mathrm{~Hz}, \mathrm{H}-5), 1.97(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-8, \mathrm{H}-5)$, 2.40-2.60 (3 H, 3m, H-3, H-1), $3.08(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{H}-10), 3.14(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{H}-$ 10), 3.47 ($2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}-11^{\prime}$), $3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O} \mathrm{Mbs}\right.$), $3.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.02$ (5 H, m, H-6, H-3, H-1, CH2O), $4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Bn}\right), 6.92(2 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-m \mathrm{Mbs}), 7.29$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.34\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.79(2 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Mbs}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 22.8\left(\mathrm{CH}_{2}\right), 25.1(\mathrm{C}-5), 26.2\left(\mathrm{CH}_{2}\right), 28.4\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 29.5-30.2\left(\mathrm{CH}_{2}\right), 33.5(\mathrm{C}-$ 4a), 34.7 (C-4), 35.6 (C-8a), $35.9\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 48.8-50.9$ (C-1, C-3, C-10), 51.0 (C-6), 55.4 $\left(\mathrm{CH}_{3} \mathrm{O} \mathrm{Mbs}\right), 64.3,65.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.5(\mathrm{C}-11$ ' $), 72.8\left(\mathrm{CH}_{2} \mathrm{Bn}\right), 80.0\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 107.8\left(\mathrm{CO}_{2}\right)$, 113.7 (C-m Mbs), $127.4\left(\mathrm{C}-p \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 127.6, 128.3 (C-o, $m \mathrm{C}_{6} \mathrm{H}_{5}$), 129.5 (C-o Mbs), 132.5 (C-i Mbs), $138.7\left(\mathrm{C}-i \mathrm{C}_{6} \mathrm{H}_{5}\right), 155.0(\mathrm{NCOO}), 162.5$ (C-p Mbs); HRMS (ESI) calcd for [$\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$ $+\mathrm{H}]^{+}: 755.4300$, found: 755.4304.

(4R,4aR,6S,8aS)-2-(tert-Butoxycarbonyl)-4-(11-hydroxyundecyl)-6,4-(iminomethano)-9-(p-methoxybenzenesulfonyl)perhydroisoquinoline-7-one ethylene acetal: A solution of acteal $12(54 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ containing $\mathrm{Pd} / \mathrm{C}(6 \mathrm{mg})$ was hydrogenated at room temperature for 96 h . The catalyst was removed by filtration, and the solvent was evaporated. Flash chromatography ($9: 1$ to $6: 4$ hexane-EtOAc) of the residue afforded the corresponding alcohol (35 mg, 73\%): $[\alpha]_{\mathrm{D}}{ }^{22}=+60.2\left(c 2.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; IR (film): $v=3490(\mathrm{OH}), 1686(\mathrm{C}=\mathrm{O})$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.27\left(18 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.40\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.48(1 \mathrm{H}, \mathrm{m}$, H-8a), $1.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.78(1 \mathrm{H}, \mathrm{dt}, J=13.6,2.8,2.8 \mathrm{~Hz}, \mathrm{H}-5), 1.97$ (3 H, m, H-4a, H-8, H-5), 2.40-2.80 (2 H, 3m, H-3, H-1), 3.08 ($1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{H}-10$), 3.16 (1 $\mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{H}-10), 3.64\left(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}-11^{\prime}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O} \mathrm{Mbs}\right), 3.86(2 \mathrm{H}$, m, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.87\left(2 \mathrm{H}\right.$, masked, H-3, H-1), $4.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.03(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 6.92(2 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}, \mathrm{H}-m \mathrm{Mbs}), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-o \mathrm{Mbs}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 22.8$ $\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.9(\mathrm{C}-5), 28.4\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 29.4-30.2\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 33.5(\mathrm{C}-4 \mathrm{a}), 34.7$ (C-4), 35.9 (C-8a), $36.0\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 45.9-49.9(\mathrm{C}-1, \mathrm{C}-3, \mathrm{C}-10), 50.3(\mathrm{C}-6), 55.4\left(\mathrm{CH}_{3} \mathrm{O} \mathrm{Mbs}\right)$, $63.0(\mathrm{C}-11 '), 64.3,65.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 79.8\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 107.8(\mathrm{C}-7), 113.7(\mathrm{C}-\mathrm{m} \mathrm{Mbs}), 129.5$ (C-o Mbs), 132.3 (C-i Mbs), 156.0 (NCOO), 162.5 (C-p Mbs); HRMS (ESI) calcd for [$\mathrm{C}_{35} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$ $+\mathrm{H}]^{+}: 665.3830$, found: 665.3828.

(4R,4aR,6S,8aS)-2-(tert-Butoxycarbonyl)-7,7-(ethylenedioxy)-6,4-(iminomethano)-9-(p-methoxybenzenesulfonyl)-4-perhydroisoquinolineundecanoic acid (13): PDC (483 mg, 1.26 mmol) was added to a solution of the above alcohol ($56 \mathrm{mg}, 0.084 \mathrm{mmol}$) in DMF (2.5 mL), and the resulting mixture was stirred overnight at room temperature. The reaction was quenched with water, and the resulting mixture was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Flash
chromatography (8:2 to 3:7 hexane-EtOAc) of the residue afforded carboxylic acid $\mathbf{1 3}$ (36 mg , $63 \%): \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.20-1.25\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.42\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.49(1$ H, s, H-8a), 1.63 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$) , 1.72 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.78 ($1 \mathrm{H}, \mathrm{dt}, J=13.6,2.8,2.8 \mathrm{~Hz}, \mathrm{H}-5$), 1.95 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-5, \mathrm{H}-8$), 2.35 ($2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-10$ '), 2.53-2.82 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3$), $3.08(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{H}-10), 3.16(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}, \mathrm{H}-10), 3.60(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3), 3.84$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O} \mathrm{Mbs}\right), 3.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 4.04\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 6.92(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{m}$ Mbs), 7.79 ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{o} \mathrm{Mbs}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 22.7\left(\mathrm{CH}_{2}\right), 24.6(\mathrm{C}-$ ${ }^{\prime}$), $25.6(\mathrm{C}-5), 25.8\left(\mathrm{CH}_{2}\right), 28.4\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 29.0-30.1\left(\mathrm{CH}_{2}\right), 33.5(\mathrm{C}-4 \mathrm{a}), 33.8\left(\mathrm{C}-10^{\prime}\right), 34.6(\mathrm{C}-$ 4), 35.5 (C-8a), 35.9 (C-8), 45.9-48.8 (C-1, C-3, C-10), 50.3 (C-6), $55.4\left(\mathrm{CH}_{3} \mathrm{O} \mathrm{Mbs}\right), 64.3,65.0$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 79.9\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 107.8(\mathrm{C}-7), 113.7(\mathrm{C}-m \mathrm{Mbs}), 129.5(\mathrm{C}-o \mathrm{Mbs}), 132.5$ (C-i Mbs), 155.6 (NCOO), 162.4 (C-p Mbs), 178.6 (COOH); HRMS (ESI) calcd for $\left[\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}+\mathrm{H}\right]^{+}$: 679.3623, found: 679.3613 .

ABCD system 14. First step: TFA ($600 \mu \mathrm{~L}, 0.058 \mathrm{mmol}$) was added to a solution of acid $\mathbf{1 3}$ ($39 \mathrm{mg}, 0.058 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL}$), and the mixture was stirred for 30 minutes at room temperature. Toluene (2 mL) was added to the resulting solution, and the mixture was concentrated under reduced pressure.

Second step: A solution of the above residue in $\mathrm{DMF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1,16 \mathrm{~mL})$ was added over 6 h to a solution of $\mathrm{HOBt}(40 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $\mathrm{EDCI}(56 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMF}$ ($9: 1$, 116 mL) cooled to $0{ }^{\circ} \mathrm{C}$. The resulting solution was stirred overnight at this temperature and concentrated under reduced pressure. A 1 N aqueous HCl solution was added to the residue, and the resulting mixture was extracted with EtOAc. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.6: 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}\right)$ of the residue afforded tetracyclic compound $\mathbf{1 4}(14 \mathrm{mg}, 43 \%)$: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.25\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.42(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.80\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1\right.$ ', H-5), $2.02\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{H}-5\right), 2.10(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-8 \mathrm{a}), 2.34(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz}, \mathrm{H}-10^{\prime}\right), 2.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.61(1 \mathrm{H}, \mathrm{dd}, J=13.2,2.8 \mathrm{~Hz}, \mathrm{H}-1), 2.78(1 \mathrm{H}, \mathrm{d}, J=13.6$ Hz, H-3), $3.16(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{H}-10), 3.46(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}, \mathrm{H}-10), 3.56(1 \mathrm{H}, \mathrm{d}, J=$ $13.6 \mathrm{~Hz}, \mathrm{H}-3$), 3.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O} \mathrm{Mbs}$), $3.82-3.96$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}-6$), 4.38 ($1 \mathrm{H}, \mathrm{d}, J=13.2$ $\mathrm{Hz}, \mathrm{H}-1), 6.95$ ($2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{Mbs}$), 7.79 ($2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Mbs}$); $\delta_{\mathrm{C}}(100.6 \mathrm{MHz}$;
$\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 20.8-24.9 $\left(\mathrm{CH}_{2}\right), 25.4(\mathrm{C}-5), 26.6\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 29.5(\mathrm{C}-8 \mathrm{a}), 31.9\left(\mathrm{CH}_{2}\right)$, 33.2 (C-10'), 33.4 (C-8), 36.6 (C-1'), 36.5 (C-4), 37.6 (C-4a), 43.8 (C-10), 46.3 (C-1), 50.8 (C6), $53.5(\mathrm{C}-3), 55.6\left(\mathrm{OCH}_{3} \mathrm{Mbs}\right), 64.4,65.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 107.4(\mathrm{C}-7), 113.8(\mathrm{C}-m \mathrm{Mbs}), 129.5(\mathrm{C}-o$ Mbs), 131.2 (C-i Mbs), 162.4 (C-p Mbs), 164.7 (NCO). (CI) $m / z(\%): 560\left(\mathrm{M}^{+}, 1\right), 391$ (5), 390 (27), 342 (8), 389 (100), 346 (4), 317 (8), 248 (6), 246 (4), 170 (8), 123 (8), 112 (5), 108 (8), 107 (14); HRMS (ESI) calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}+\mathrm{H}\right]^{+}: 561.2993$, found: 561.2988.

$300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

Electronic Supplementary Material (ESI) for Chemical Communications

$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

Electronic Supplementary Material (ESI) for Chemical Communications

Bn
$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

[^0]: ABCD system 11: First step: A solution of diene 10 ($72 \mathrm{mg}, 0.116 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was slowly added via syringe pump (3 h) to a refluxed solution of second generation Grubbs catalyst ($20 \mathrm{mg}, 0.023 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(580 \mathrm{~mL})$. The resulting mixture was heated to reflux

