CuCl-Catalyzed *Ortho* Trifluoromethylation of Arenes and Heteroarenes with Pivalamido Directing Group Shangjun Cai,^a

Chao Chen,*^{*a*} Zelin Sun,^{*a*} Chanjuan Xi*^{*a,b*}

^{*a*} Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China

^b State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin
300071, China

Chenchao01@mails.tsinghua.edu.cn; cjxi@tsinghua.edu.cn

List of the contents:

1. General Comments
2. Preparation for Starting Materials
3. Reaction Condition Optimization
4. Experimental Section
5. Crystal Structure of 5bS15
6. Crystal Structure of 3c
7. Crystal Structure of Cupric Iodobenzoate 6
8. Capture of Trifluoromethyl Radical by EPRS18
9. Copies of ¹ H, ¹³ C and ¹⁹ F NMR SpectraS19
10. References

1. General Comments

All the reactions were carried out in pre-dried a screwcapped tube with a Teflon-lined septum under N₂ atmosphere. Togni reagent was prepared according to the literatues^[11]. All of the solvents were fresh distilled. Column chromatography was performed on silica gel (particle size 10-40 μ m, Ocean Chemical Factory of Qingdao, China). ¹H NMR and ¹³C NMR spectra were recorded on a JEOL AL-400MHz spectrometer at ambient temperature with CDCl₃ as the solvent. Chemical shifts (δ) were given in ppm, referenced to the residual proton resonance of CDCl₃ (7.26), to the carbon resonance of CDCl₃ (77.16). Coupling constants (*J*) were given in Hertz (Hz). The term m, dq, q, t, d, s referred to multiplet, doublet quartet, quartet, triplet, doublet, singlet. Mass spectra were obtained using Bruker Esquire ion trap mass spectrometer in positive mode. The reaction progress was monitored by ¹⁹F NMR. ¹⁹F NMR yields, using fluorobenzene as internal standard, were obtained in proportion to the integral area of fluorobenzene signal.

2. Preparation for Starting Materials

1) Preparation for N-Arylpivalamides

A sealed tube was charged with the mixture of Anilines (10 mmol), Et_3N (10 mmol), and stirred in EtOAc (15 mL) at room temperature, then Pivaloyl anhydride (10 mmol) was added. The tube was sealed and the mixture was allowed to stir at 40-80 °C overnight. After completion, the mixture was cooled to room temperature, then water (15 mL) was added and the mixture was extracted with EtOAc (15 mL x 2), dried by anhydrous Na₂SO₄. Evaporation of the solvent followed by recrystallization (petroleum ether and methanol as the solvents) provided the corresponding product.

2) Preparation for NHPiv-substituted heterocyclic compounds

A sealed tube was charged with the mixture of Halogenated heterocyclic compounds (5 mmol), Pivalamide (5 mmol), CuI (0.5 mmol, 100 mg) and K₃PO₄ (10 mmol, 2.12 g), then DMEDA (0.5 mmol, 54 μ L) and DMF (4 mL) were added under nitrogen atmosphere. The tube was sealed and the mixture was allowed to stir at 120 °C for 24 h. After completion, the mixture was cooled to room temperature, then water (30 mL) was added and the mixture was extracted with EtOAc (30 mL x 3), dried by anhydrous Na₂SO₄. Evaporation of the solvent followed by purification on silica gel (petroleum ether/ethyl acetate = 5/1) provided the corresponding product.

3. Reaction Condition Optimization

Screening the protecting-group:

	NHR	+	O) CF3		HR CF ₃ +	NHR + CF ₃	NHR CF ₃
	0.2 mmol	0.4	1 mmol	ma	ajor	nr r 	minor
No.	R	Catalyst	ं rent(1 mL)	Base	T(°C)	Time(h)	dl؛ کا
1	Piv	% CuCl	EtOAc		60	24	%
2	Piv	% CuCl	Ac		30	24	: %
3	Piv	% CuCl	OH	(2 eq.) 1,2,2,6,6- methylpiperidine	ə 30	24	n.r.
4	Piv	% CuCl	ОН	O ₄	30	24	%
5	Piv	% CuCl	ОН	(0.5 eq.) CsF	30	24	%
6	Boc	% CuCl	OH		30	24	%
7		% CuCl	t-BuOH		30	24	20%
8	Ac	20% CuCl	<i>t-</i> BuOH		30	24	17%

Screening the reaction conditions for producing **3a**:

NHF	Piv		uCl 20 mol%	NHPiv	NHPiv ↓	NHPiv
\bigcirc	+	CF ₃ T	olvent (1 mL) emp., N ₂ , 24 h	CF ₃		CE
0.2 mm	nol	0.4 mmol			ĊF3	013
1		2		3a	4a	5a
	No.	Solvent	Temp.	Conversion	ratio of 3a:	4a: 5a
	1	CH₃OH	30 °C	54%	32% :15%	:7%
	2	EtOAc	30 °C	87%	58% :23%	:6%
	3	CH ₃ CN	30 °C	83%	50% :22%	:11%
	4	1,4-dioxane	30 °C	43%	28% :10%	:5%
	5	CHCI ₃	30 °C	82%	47% :23%	:12%
	6	<i>t-</i> BuOH	30 °C	93%	67% :17%	:9%
	7	CH ₂ OHCH ₂ OH		trace		
	8	Toluene	30 °C	trace		
	9	THF	30 °C	trace		
	10	<i>t-</i> BuOH	60 °C	94%	62% :24%	:8%
	11 ^a	<i>t-</i> BuOH	30 °C	88%	55% :23%	:10%
	12 ^b	<i>t-</i> BuOH	30 °C	56%	40% :11%	:5%
	13 ^c	<i>t-</i> BuOH	30 °C	69%	48% :13%	:8%

^a 0.04 mmol of glycol was added as ligand. ^b 0.04 mmol of 1,10-phen was added as ligand. ^c 0.04 mmol of DMEDA was added as ligand.

	NHPiv +	0		NHPiv CF ₃	Ν	HPiv
	CH ₃ 0.2 mol	l CF ₃ 0.4 mmol		CH ₃ major	+ I m	CF ₃
No.	Catalyst	Solven mL)	Ligand)	Time(h)	MS Yield ^a
1 ^{<i>b</i>}	2 % CuCl	CH ₂ OH	% PPh ₃	60	12	: %
2 ^b	% Cul	CH ₂ OH	% PPh ₃	60	24	%
3 ^b	20 Ac) ₂	CH ₂ OH	% PPh ₃	60	24	%
4	% CuCl	CH ₂ OH	$20\% \text{ PPh}_3$	60	24	%
5	% CuCl	CH2 OH		80	24	%
6	% CuCl	CH ₃ CN		80	24	%
7	% CuCl	THF		80	24	~ %
8	% CuCl	EtOAc		80	24	%
9	% CuCl	MF		80	24	%
10	% CuCl	DCE		80	24	• %
11	% CuCl	I OH		80	24	%
12	: % CuCl	DCM		80	24	· %
13	% CuCl	EtOAc		80	24	%
14	% CuCl	EtOAc		80	24	%
15	1 eq. CuCl	EtOAc		80	24	%
16	£⁻% CuCl	EtOAc	2 %1,10-Phen	80	24	. %
17	%CuCl	EtOAc	MEDA	80	24	%
18		- Ac	20%TMEDA	80	24	%
19	20% CuCl	t-BuOH		30	24	40%
20		i		60	24	·

Screening the reaction conditions for producing **3b**:

^a GC-MS y major product. nmol togni reagent.

GC yield of the major product **3a** after different periods:

0.2 mmol

CuCl 20 mol% n-Dodecane (0.05 mmol) t-BuOH (1 mL) N₂, 30 °C, Time

0.5h:	51%;
1h:	67.7%
3h:	70.5%
6h:	71.7%
9h:	72.5%
18h:	74.5%
24h:	75%

4. Experimental Section

General procedure for the synthesis of N-(2-(trifluoromethyl)aryl)pivalamide

A sealed tube was charged with the mixture of N-Arylpivalamide **1** (0.4 mmol), togni reagent **2** (0.8 mmol, 252.8 mg), CuCl (0.08 mmol, 8 mg), then stirred in *t*-BuOH (1 mL) at room temperature under nitrogen atmosphere. Half an hour later, the tube was sealed and the mixture was allowed to stir at 30-120 °C for indicated time. After completion, the mixture was cooled to room temperature, then NaHCO₃ aq. (5 mL) was added and the mixture was extracted with EtOAc (5 mL x 3), dried by anhydrous Na₂SO₄. Evaporation of the solvent followed by purification on silica gel chromatography (petroleum ether/dichloromethane/ethyl acetate = 40/3/1) provided the corresponding product **3**.

N-(2-(trifluoromethyl)phenyl)pivalamide^[2]: White Solid, 63 mg (65% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.32 (s, 9H), 7.20 (t, $J_{\text{H-H}} = 7.6$ Hz, 1H), 7.54 (t, $J_{\text{H-H}} = 7.9$ Hz, 1H), 7.59 (d, $J_{\text{H-H}} = 7.9$ Hz, 1H), 7.79 (s, 1H), 8.24 (d, $J_{\text{H-H}} = 8.3$ Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.5, 40.0, 120.0 (q, $J_{\text{F-C}} = 29.5$ Hz), 124.2, 124.3, 124.4 (q, $J_{\text{F-C}} = 272.8$ Hz), 126.1 (q, $J_{\text{F-C}} = 5.4$ Hz), 133.0, 135.8, 176.8; ¹⁹F NMR (CDCl₃, 376 MHz): δ -60.69 (s); ESI-MS: [M+ Na]⁺ m/z 268.1; HRMS: calculated for C₁₂H₁₄F₃NO[M+H⁺]: 246.1100; found, 246.1101.

N-(4-(trifluoromethyl)phenyl)pivalamide^[3]: White Solid, 15 mg (15% yield), ¹H NMR (CDCl₃, 400 MHz): δ 1.32 (s, 9H), 7.49 (s, 1H), 7.55 (d, $J_{\text{H-H}} = 8.6$ Hz, 2H), 7.65 (d, $J_{\text{H-H}} = 8.6$ Hz, 2H); ¹⁹F NMR (CDCl₃, 376 MHz): δ -61.98 (s); ESI-MS: [M+ Na]⁺ m/z 268.2.

N-(4-methyl-2-(trifluoromethyl)phenyl)pivalamide: White Solid, 71 mg (69% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.31 (s, 9H), 2.35 (s, 3H), 7.34 (d, $J_{\text{H-H}} = 8.5$ Hz, 1H), 7.39 (s, 1H), 7.70 (s, 1H), 8.05 (d, $J_{\text{H-H}} = 8.5$ Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 20.9, 27.5, 39.8, 120.2 (q, $J_{\text{F-C}} = 29.0$ Hz), 124.4 (q, $J_{\text{F-C}} = 273.0$ Hz), 124.7, 126.4 (q, $J_{\text{F-C}} = 5.3$ Hz), 133.1, 133.4, 134.3, 176.8; ¹⁹F NMR (CDCl₃, 376 MHz): δ -60.66 (s); ESI-MS: [M+ Na]⁺ m/z 282.1; HRMS: calculated for C₁₃H₁₆F₃NO[M+Na⁺]: 260.1257; found, 260.1258.

N-(4-methyl-3-(trifluoromethyl)phenyl)pivalamide: White Solid, 13 mg (13% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.31 (s, 9H), 2.43 (s, 3H), 7.22 (d, $J_{\text{H-H}} = 8.3$ Hz, 1H), 7.39 (s, 1H), 7.65 (d, $J_{\text{H-H}} = 8.3$ Hz, 1H), 7.73 (s, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 18.8, 27.6, 39.7, 117.6 (q, $J_{\text{F-C}} = 5.8$ Hz), 123.1, 124.3 (q, $J_{\text{F-C}} = 273.9$

Hz), 129.3 (q, $J_{\text{F-C}} = 29.9$ Hz), 132.2, 132.5, 136.0, 176.9; ¹⁹F NMR (CDCl₃, 376 MHz): δ -61.77 (s); ESI-MS: [M+ Na]⁺ m/z 282.1.

N-(4-methoxy-2-(trifluoromethyl)phenyl)pivalamide: White Solid, 68 mg (63% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.30 (s, 9H), 3.82 (s, 3H), 7.06 (d, $J_{\text{H-H}} = 9.0$ Hz, 1H), 7.11 (s, 1H), 7.56 (s, 1H), 7.95 (d, $J_{\text{H-H}} = 9.0$ Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.5, 39.7, 55.8, 111.7 (q, $J_{\text{F-C}} = 5.4$ Hz), 117.7, 122.4 (q, $J_{\text{F-C}} = 28.8$ Hz), 123.9 (q, $J_{\text{F-C}} = 272.1$ Hz), 127.3, 128.3, 156.4, 176.9; ¹⁹F NMR (CDCl₃, 376 MHz): δ -61.95 (s); ESI-MS: [M+ Na]⁺ m/z 298.1.

N-(4-isopropyl-2-(trifluoromethyl)phenyl)pivalamide: White Solid, 63 mg (55% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.24 (d, $J_{\text{H-H}} = 6.9$ Hz, 6H), 1.31 (s, 9H), 2.92 (sept, $J_{\text{H-H}} = 6.9$ Hz, 1H), 7.40 (d, $J_{\text{H-H}} = 8.6$ Hz, 1H), 7.43 (s, 1H), 7.71 (s, 1H), 8.08 (d, $J_{\text{H-H}} = 8.5$ Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 23.9, 27.5, 33.7, 39.9, 120.2 (q, $J_{\text{F-C}} = 29.0$ Hz), 123.9 (q, $J_{\text{F-C}} = 5.2$ Hz), 124.5 (q, $J_{\text{F-C}} = 273.1$ Hz), 124.8, 130.9, 133.4, 145.3, 176.8; ¹⁹F NMR (CDCl₃, 376 MHz): δ -60.54 (s); ESI-MS: [M+ Na]⁺ m/z 310.1.

N-(4-fluoro-2-(trifluoromethyl)phenyl)pivalamide: White Solid, 44 mg (42% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.31 (s, 9H), 7.21-7.28 (m, 1H), 7.31 (dd, J = 8.5, 2.9 Hz, 1H), 7.67 (s, 1H), 8.14 (dd, J = 9.1, 5.0 Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.4, 39.9, 113.4 (dq, $J_{F-C} = 26.0, 5.4$ Hz), 119.7 (d, $J_{F-C} = 21.8$ Hz), 122.1 (dq, $J_{F-C} = 30.5, 7.6$ Hz), 123.4 (q, $J_{F-C} = 273.2$ Hz), 127.1 (d, $J_{F-C} = 7.7$ Hz), 131.9, 158.7 (d, $J_{F-C} = 246.4$ Hz), 176.9; ¹⁹F NMR (CDCl₃, 376 MHz): δ -115.85 (s), -61.28 (s); ESI-MS: [M+ Na]⁺ m/z 286.1.

N-(4-chloro-2-(trifluoromethyl)phenyl)pivalamide: White Solid, 36 mg (32% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.31 (s, 9H), 7.50 (d, $J_{\text{H-H}} = 9.0$ Hz, 1H), 7.57 (s, 1H), 7.75 (s, 1H), 8.23 (d, $J_{\text{H-H}} = 9.0$ Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.4, 40.0, 121.2 (q, $J_{\text{F-C}} = 30.5$ Hz), 123.5 (q, $J_{\text{F-C}} = 273.3$ Hz), 125.6, 126.2 (q, $J_{\text{F-C}} = 5.5$ Hz), 129.6, 132.9, 134.5, 176.8; ¹⁹F NMR (CDCl₃, 376 MHz): δ -61.12 (s); ESI-MS: [M+ Na]⁺ m/z 302.1, 304.2.

N-(4-bromo-2-(trifluoromethyl)phenyl)pivalamide: Light Yellow Solid, 63 mg (49% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.31 (s, 9H), 7.65 (dd, $J_{\text{H-H}}$ = 8.9, 1.9 Hz,

1H), 7.72 (d, $J_{\text{H-H}} = 1.9$ Hz, 1H), 7.75 (s, 1H), 8.19 (d, $J_{\text{H-H}} = 8.8$ Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.4, 40.1, 116.8, 121.3 (q, $J_{\text{F-C}} = 30.0$ Hz), 123.4 (q, $J_{\text{F-C}} = 273.7$ Hz), 125.7, 129.1 (q, $J_{\text{F-C}} = 5.5$ Hz), 135.0, 135.9, 176.8; ¹⁹F NMR (CDCl₃, 376 MHz): δ -61.06 (s); ESI-MS: [M+ Na]⁺ m/z 346.1, 348.0.

ethyl 4-pivalamido-3-(trifluoromethyl)benzoate: Oil, 38 mg (30% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.32 (s, 9H), 1.40 (t, $J_{\text{H-H}} = 7.2$ Hz, 3H), 4.38 (q, $J_{\text{H-H}} = 7.2$ Hz, 2H), 7.98 (s, 1H), 8.19 (d, $J_{\text{H-H}} = 8.7$ Hz, 1H), 8.28 (s, 1H), 8.50 (d, $J_{\text{H-H}} = 8.7$ Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 14.4, 27.4, 40.3, 61.5, 118.7 (q, $J_{\text{F-C}} = 30.1$ Hz), 122.6, 124.0 (q, $J_{\text{F-C}} = 272.4$ Hz), 125.8, 127.8 (q, $J_{\text{F-C}} = 5.3$ Hz), 134.3, 139.8, 165.1, 176.8; ¹⁹F NMR (CDCl₃, 376 MHz): δ -60.88 (s); ESI-MS: [M+ Na]⁺ *m*/*z* 340.1.

N-(5-methoxy-2-(trifluoromethyl)phenyl)pivalamide: Oil, 44 mg (40% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.31 (s, 9H), 3.85 (s, 3H), 6.69 (d, $J_{\text{H-H}} = 8.6$ Hz, 1H), 7.47 (d, $J_{\text{H-H}} = 8.8$ Hz, 1H), 7.85 (s, 1H), 7.99 (s, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.4, 40.1, 55.7, 108.0, 110.4, 111.4 (q, $J_{\text{F-C}} = 29.8$ Hz), 124.8 (q, $J_{\text{F-C}} = 271.8$ Hz), 127.3 (q, $J_{\text{F-C}} = 5.0$ Hz), 137.6, 163.0, 176.9; ¹⁹F NMR (CDCl₃, 376 MHz): δ -59.25 (s); ESI-MS: [M+ Na]⁺ m/z 298.1.

N-(3-methoxy-4-(trifluoromethyl)phenyl)pivalamide: White Solid, 17 mg (16% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.33 (s, 9H), 3.90 (s, 3H), 6.80 (d, $J_{\text{H-H}} = 8.3$ Hz, 1H), 7.45 (d, $J_{\text{H-H}} = 8.3$ Hz, 1H), 7.46 (s, 1H), 7.76 (s, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.7, 40.0, 56.1, 103.6, 110.1, 114.2 (q, $J_{\text{F-C}} = 31.2$ Hz), 123.8 (q, $J_{\text{F-C}} = 271.6$ Hz), 127.6 (q, $J_{\text{F-C}} = 5.0$ Hz), 142.9, 158.5, 177.2; ¹⁹F NMR (CDCl₃, 376 MHz): δ -61.77 (s); ESI-MS: [M+ Na]⁺ m/z 298.4.

N-(4,5-dimethyl-2-(trifluoromethyl)phenyl)pivalamide: Oil, 52 mg (48% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.31 (s, 9H), 2.25 (s, 3H), 2.29 (s, 3H), 7.33 (s, 1H), 7.67 (s, 1H), 7.97 (s, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 19.4, 20.1, 27.5, 39.9, 117.8 (q, $J_{\text{F-C}} = 29.2 \text{ Hz}$), 124.6 (q, $J_{\text{F-C}} = 272.5 \text{ Hz}$), 125.7, 126.8 (q, $J_{\text{F-C}} = 5.2 \text{ Hz}$), 133.0, 133.2, 142.0, 176.8; ¹⁹F NMR (CDCl₃, 376 MHz): δ -60.05 (s); ESI-MS: [M+ Na]⁺ m/z 296.1.

N-(4-chloro-5-methoxy-2-(trifluoromethyl)phenyl)pivalamide: White Solid, 49 mg (40% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.32 (s, 9H), 3.96 (s, 3H), 7.56 (s, 1H), 7.87 (s, 1H), 8.17 (s, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.4, 40.3, 56.6, 106.7,

111.6 (q, $J_{F-C} = 30.7$ Hz), 117.2, 124.0 (q, $J_{F-C} = 272.1$ Hz), 127.5 (q, $J_{F-C} = 5.4$ Hz), 136.2, 158.1, 177.1; ¹⁹F NMR (CDCl₃, 376 MHz): δ -59.46 (s); ESI-MS: [M+ Na]⁺ m/z 332.0, 334.1.

N-(1-(trifluoromethyl)naphthalen-2-yl)pivalamide: Light Yellow Solid, 63 mg (54% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.36 (s, 9H), 7.50 (t, $J_{\text{H-H}} = 7.8$ Hz, 1H), 7.58 (t, $J_{\text{H-H}} = 6.9$ Hz, 1H), 7.84 (d, $J_{\text{H-H}} = 8.0$ Hz, 1H), 7.95 (d, $J_{\text{H-H}} = 9.1$ Hz, 1H), 8.10 (d, $J_{\text{H-H}} = 9.1$ Hz, 1H), 8.18 (d, $J_{\text{H-H}} = 7.2$ Hz, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.5, 40.0, 114.3 (q, $J_{\text{F-C}} = 27.4$ Hz), 123.8, 124.5 (q, $J_{\text{F-C}} = 4.7$ Hz), 125.9, 128.0, 128.7, 125.9 (q, $J_{\text{F-C}} = 275.3$ Hz), 130.1, 131.4, 133.0, 135.6, 177.1; ¹⁹F NMR (CDCl₃, 376 MHz): δ -50.98 (s); ESI-MS: [M+ Na]⁺ m/z 318.1.

NHPiv 3m

N-(2-(trifluoromethyl)thiophen-3-yl)pivalamide: White Solid, 86 mg (86% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.30 (s, 9H), 7.41 (d, $J_{\text{H-H}} = 5.5$ Hz, 1H), 7.93 (d, $J_{\text{H-H}}$ = 5.5 Hz, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.5, 39.7, 111.5 (q, $J_{\text{F-C}} = 36.3$ Hz), 123.3 (q, $J_{\text{F-C}} = 268.3$ Hz), 123.8, 127.5, 137.6, 175.8; ¹⁹F NMR (CDCl₃, 376 MHz): δ -53.50 (s); ESI-MS: [M+ Na]⁺ m/z 274.1.

N-(5-(trifluoromethyl)thiophen-2-yl)pivalamide: White Solid, 52 mg (52% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.33 (s, 9H), 6.57 (d, $J_{H-H} = 3.8$ Hz, 1H), 7.19 (d, J_{H-H} = 3.8 Hz, 1H), 8.23 (s, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.5, 39.1, 109.9, 122.9 (q, J_{F-C} = 38.0 Hz), 123.2 (q, J_{F-C} = 268.1 Hz), 125.6 (q, J_{F-C} = 4.0 Hz), 142.4, 175.4; ¹⁹F NMR (CDCl₃, 376 MHz): δ -54.67 (s); ESI-MS: [M+ Na]⁺ m/z 274.1.

N-(2-(trifluoromethyl)pyridin-3-yl)pivalamide: Light Yellow Solid, 50 mg (51% yield); ¹H NMR (CDCl₃, 400 MHz): δ 1.36 (s, 9H), 7.50 (dd, $J_{\text{H-H}} = 8.4$, 4.5 Hz, 1H), 7.88 (s, 1H), 8.41 (d, $J_{\text{H-H}} = 4.5$ Hz, 1H), 8.71 (d, $J_{\text{H-H}} = 8.4$ Hz, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 27.4, 40.2, 122.4 (q, $J_{\text{F-C}} = 274.9$ Hz), 127.2, 131.6, 133.4, 136.3 (q, $J_{\text{F-C}} = 32.4$ Hz), 144.3, 177.2; ¹⁹F NMR (CDCl₃, 376 MHz): δ -64.35 (s); ESI-MS: [M+ Na]⁺ m/z 269.3.

5. Crystal Structure of 5b

Ortep drawing of $C_{13}H_{16}NOF_3$ with 35% probability ellipsoids, showing the atomic numbering scheme.

6. Crystal Structure of 3c

Ortep drawing of $C_{13}H_{16}F_3NO_2$ with 30% probability ellipsoids, showing the atomic numbering scheme.

7. Crystal Structure of Cupric Iodobenzoate 6

Ortep drawing of $[Cu(C_7H_4IO_2)_2(CH_3OH)]_2$ with 50% probability ellipsoids, showing the atomic numbering scheme.

8. Capture of Trifluoromethyl Radical by EPR

A sealed tube was charged with the mixture of N-Phenylpivalamide **1a** (0.1 mmol), Togni reagent **2** (0.2 mmol, 63.2 mg), CuCl (0.02 mmol, 2 mg), PBN (4.7 mg), then *t*-BuOH (1 mL) was added under nitrogen atmosphere, the reaction was proceeded under 40 $^{\circ}$ C, and 5 minutes later, the reaction was detected by EPR.

The experimental results are consistent with the simulatio.

9. Copies of ¹H, ¹³C and ¹⁹F NMR Spectra

531

ľ

17.A467 —
р.

10. References:

- 1. A. T. Parsons and S. L. Buchwald, Angew. Chem. Int. Ed., 2011, 123, 9286.
- 2. K. Smith, G. A. El-Hiti, P. J. Gareth and H. Anna, J. Chem. Soc., Perk. Trans. 1,

1999, 16, 2299.

3. S. Kaname and C. David, Org. Lett., 2011, 13, 2256.