Electronic Supplementary Information

Paper Ref: C3CC41468J - Chemical Communications

A molecular probe for recognizing the size of hydrophobic cavities based on near-infrared absorbing diradical– Pt^{II} complexes

Kousaku Tamura, Atsuko Masuya, Hitoshi Hoshino and Nobuhiko Iki*

Graduate School of Environmental Studies, Tohoku University, 6-6-07, Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan

Contents	
Experimental details	
Supplementary data	
Continuous variation plots	Figures S1 and S3
Estimation of the size of the complexes	Figure S2

Corresponding Author

*Fax: +81-22-795-7293; E-mail: iki@m.tohoku.ac.jp

Experimental Details

Material

Pt^{II}-DBA was synthesized according to a method as described in the literature¹. Human serum albumin (MW 66 kDa) and α -chymotrypsin, from bovine pancreas (MW 25 kDa) were purchased from Sigma-Aldrich. β - And γ -cyclodextrin (CD) were purchased from Wako Pure Chemical Co., Ltd (Osaka). All reagents were used without further purification.

Equipment

¹H NMR spectra were measured on a Bruker Biospin DPX-400 (400 MHz) using D₂O as solvents and (3-trimethylsilyl)propanesulfonic acid sodium salt (DSS) as an external standard. Absorption spectra were measured on a SHIMADZU UV-1800 spectrophotometer. The cyclic voltammetric measurements were performed with a Hokuto Denko HAB-151 potentiostat/galvanostat using a glassy carbon working electrode, an Ag/AgCl reference electrode, and a Pt counter electrode in aqueous solution containing 0.2 M Na₂HPO₄ as the supporting electrolyte and NaOH to adjust pH under N₂. pH of the solutions were measured by using a TOA-DKK HM-25R pH meter equipped with a GST-5731C combined electrode.

Supporting Data

Fig. S1 Continuous variation plot of Pt^{II} -DBA/ β -CD system using ¹H NMR chemical shift of H3 as a probe. [Pt^{II}-DBA] + [β -CD] = 5.0 mM, pD 12.60.

Fig. S2 Estimation of the key molecular dimensions using spacefilling model of crystallographic structure of Pt^{II} -DABS² and Pt^{II} -DAB³ as the surrogate for **1** and **2**, respectively. The models are drawn by using Mercury 3.0.⁴

Fig. S3 Continuous variation plot of Pt^{II} -DBA/ γ -CD system using absorbance at 850 nm. [Pt^{II} -DBA] + [γ -CD] = 1.0 × 10⁻⁴ M, pH 12.25.

References

- 1. K. Tamura, A. Masuya, N. Iki, Y. Ohba, S. Yamauchi and H. Hoshino, *Inorg. Chim. Acta*, 2012, **378**, 81.
- 2. A. Masuya, N. Iki, C. Kabuto, Y. Ohba, S. Yamauchi and H. Hoshino, *Eur. J. Inorg. Chem.*, 2010, **22**, 3458.
- 3. Y. Konno and N. Matsushita, Bull. Chem. Soc. Jpn., 2006, 79, 1046.
- 4. Structure visualization program developed by the Cambridge Crystallographic Data Centre available at http://www.ccdc.cam.ac.uk/free_services/mercury/ .