A Straightforward Access to Guaiazulene Derivatives using Palladium-Catalysed sp² or sp³ C-H Bond Functionalisation

Liqin Zhao,^a Christian Bruneau,^a Henri Doucet^{*a}

^a Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1 "Organométalliques: Matériaux et Catalyse", 35042 Rennes Cedex, France. Tel: 33 (0)2 23 23 63 84; E-mail: henri.doucet@univ-rennes1.fr.

Contents

	Page
1. General	S-1
2. Procedures for the synthesis of compounds 1a-17a, 1b, 6b-8b, 14b, 18b,	1c and 14c and characterization
	S-1
3. NMR spectra	S-10

General. All reactions were perfomed in Schlenck tubes under argon. DMAc or ethylbenzene analytical grade were not distilled before use. Potassium acetate 99+, cesium acetate and potassium carbonate 99% were used. Commercial guaiazulene and aryl bromides were used without purification. ¹H (400 or 500 MHz), ¹³C (100 or 125 MHz) spectra were recorded in CDCl₃ solutions. Chemical shifts are reported in ppm relative to CDCl₃ (¹H: 7.29 and ¹³C: 77.0). Flash chromatography was performed on silica gel (230-400 mesh) using pentane/ether.

General procedure for the synthesis of 1a-17a

As a typical experiment, reaction of the aryl bromide (1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) at 150 °C during 16 h in DMAc (5 mL) in the presence of PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) under argon afforded the corresponding arylation products after extraction with dichloromethane, evaporation and filtration on silica gel.

4-(7-Isopropyl-1-methylazulen-4-ylmethyl)-benzonitrile (1a)

From 4-bromobenzonitrile (0.182 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) **1a** was obtained in 61% (0.182 g) yield as a blue oil. Eluent pentane:diethylether 10:1

¹H NMR (400 MHz, CDCl₃): δ 8.16 (s, 1H), 7.58 (d, J = 3.2 Hz, 1H), 7.45 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 9.7 Hz, 1H), 7.29 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 3.2 Hz, 1H), 6.86 (d, J = 9.7 Hz, 1H), 4.46 (s, 2H), 3.02 (sept.,

J = 6.8 Hz, 1H), 2.60 (s, 3H), 1.29 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 146.2, 144.2, 140.7, 137.3, 137.2, 136.8, 135.1, 133.7, 132.3, 129.2, 126.0, 125.0, 119.0, 113.1, 110.1, 43.3, 38.3, 24.7, 12.9. Elemental analysis: calcd (%) for C₂₂H₂₁N (299.41): C 88.25, H 7.07; found: C 88.10, H 7.14.

4-(7-Isopropyl-1-methylazulen-4-ylmethyl)-benzaldehyde (2a)

From 4-bromobenzaldehyde (0.185 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) **2a** was obtained in 45% (0.136 g) yield as a blue oil. Eluent pentane:diethylether 10:1

¹H NMR (400 MHz, CDCl₃): δ 9.87 (s, 1H), 8.15 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 3.2 Hz, 1H), 7.40-7.33 (m, 3H), 7.23 (d, *J* = 3.2 Hz, 1H), 6.89 (d, *J* = 10.7 Hz, 1H), 4.49 (s, 2H), 3.02 (sept., *J* = 6.8 Hz, 1H), 2.60 (s, 3H), 1.29 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 147.9, 144.8, 140.5, 137.4, 137.1, 136.8, 135.1, 134.8, 133.7, 130.0, 129.2, 125.9, 125.1, 113.1, 43.5, 38.3, 24.7, 12.9. Elemental analysis: calcd (%) for C₂₂H₂₂O (302.41): C 87.38, H 7.33; found: C 87.57, H 7.50.

1-[4-(7-Isopropyl-1-methylazulen-4-ylmethyl)-phenyl]-propan-1-one (3a)

From 4-bromopropiophenone (0.213 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K₂CO₃ (0.552 g, 4 mmol) in the presence of PdCl(C₃H₅)(dppb) (12.2 mg, 0.02 mmol) **3a** was obtained in 46% (0.152 g) yield as a blue oil. Eluent pentane:diethylether 10:1 ¹H NMR (400 MHz, CDCl₃): δ 8.15 (s, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.58 (s, 1H), 7.35 (d, J = 10.7 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.17 (s, 1H), 6.89 (d, J = 10.7 Hz, 1H), 4.46 (s, 2H), 3.00 (sept., J = 6.8 Hz, 1H), 2.86 (q, J = 7.6 Hz, 2H), 2.60 (s, 3H), 1.29 (d, J = 6.8 Hz, 6H), 1.12 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.4, 146.0, 145.2, 140.4, 137.5, 137.0, 136.7, 135.1, 135.1, 133.6, 128.8, 128.3, 125.8, 125.1,

113.1, 43.2, 38.3, 24.7, 12.9, 8.3. Elemental analysis: calcd (%) for $C_{24}H_{26}O$ (330.46): C 87.23, H 7.93; found: C 87.14, H 7.99.

Ethyl 4-(7-isopropyl-1-methylazulen-4-ylmethyl)-benzoate (4a)

From ethyl 4-bromobenzoate (0.229 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) **4a** was obtained in 67% (0.232 g) yield as a blue oil. Eluent pentane:diethylether 10:1

¹H NMR (400 MHz, CDCl₃): δ 8.14 (s, 1H), 7.84 (d, J = 8.1 Hz, 2H), 7.57 (d, J = 3.5 Hz, 1H), 7.33 (d, J = 10.7 Hz, 1H), 7.28-7.22 (m, 3H), 6.87 (d, J = 10.7 Hz, 1H), 4.46 (s, 2H), 4.25 (q, J = 7.6 Hz, 2H), 3.00 (sept.,

 $J = 6.8 \text{ Hz}, 1\text{H}, 2.60 \text{ (s, 3H)}, 1.30-1.25 \text{ (m, 9H)}. {}^{13}\text{C NMR} (100 \text{ MHz}, \text{CDCl}_3): \delta 166.5, 145.9, 145.3, 140.3, 137.5, 137.0, 136.7, 135.1, 133.6, 129.8, 128.7, 128.6, 125.8, 125.1, 113.1, 60.8, 43.2, 38.3, 24.7, 14.3, 12.9. Elemental analysis: calcd (%) for C₂₄H₂₆O₂ (346.46): C 83.20, H 7.56; found: C 83.34, H 7.40.$

7-Isopropyl-1-methyl-4-(4-trifluoromethylbenzyl)-azulene (5a)

From 4-(trifluoromethyl)bromobenzene (0.225 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K₂CO₃ (0.552 g, 4 mmol) in the presence of PdCl(C₃H₅)(dppb) (12.2 mg, 0.02 mmol) **5a** was obtained in 68% (0.233 g) yield as a blue oil. Eluent pentane:diethylether 10:1 ¹H NMR (400 MHz, CDCl₃): δ 8.14 (s, 1H), 7.58 (d, *J* = 3.6 Hz, 1H), 7.40 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 10.7 Hz, 1H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.23 (d, *J* = 3.6 Hz, 1H), 6.87 (d, *J* = 10.7 Hz, 1H), 4.45 (s, 2H), 3.00 (sept., *J* = 6.8 Hz, 1H), 2.59 (s, 3H), 1.28 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 145.0, 144.7, 140.5, 137.5, 137.1, 136.8, 135.1, 133.7, 128.9, 128.6 (q, *J* = 32.2 Hz), 125.9, 125.3 (q, *J* = 3.7 Hz), 125.1, 124.2 (q, *J* = 271.9 Hz), 113.1, 43.0, 38.3, 24.7, 13.0. Elemental analysis: calcd (%) for C₂₂H₂₁F₃ (342.40): C 77.17, H 6.18; found: C 77.25, H 6.07.

4-(4-Chlorobenzyl)-7-isopropyl-1-methyl-azulene (6a)

From 4-bromochlorobenzene (0.191 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) **6a** was obtained in 66% (0.203 g) yield as a blue oil. Eluent pentane

¹H NMR (400 MHz, CDCl₃): δ 8.14 (s, 1H), 7.58 (d, *J* = 3.6 Hz, 1H), 7.34 (d, *J* = 9.7 Hz, 1H), 7.24 (d, *J* = 3.6 Hz, 1H), 7.10 (s, 4H), 6.87 (d, *J* = 9.7 Hz, 1H), 4.38 (s, 2H), 3.00 (sept., *J* = 6.8 Hz, 1H), 2.60 (s, 3H), 1.28 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 145.7, 140.3, 139.1, 137.4, 136.9, 136.7, 135.1, 133.5, 132.0, 130.0, 128.6, 125.7, 125.0, 113.0, 42.5, 38.3, 24.7, 12.9. Elemental analysis: calcd (%) for C₂₁H₂₁Cl (308.84): C 81.67, H 6.85; found: C 81.40, H 6.99.

4-(4-Fluorobenzyl)-7-isopropyl-1-methyl-azulene (7a)

From 4-bromofluorobenzene (0.175 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C₃H₅)(dppb) (12.2 mg, 0.02 mmol) **7a** was obtained in 52% (0.152 g) yield as a blue oil. Eluent pentane:diethylether 20:1

¹H NMR (400 MHz, CDCl₃): δ 8.13 (s, 1H), 7.58 (d, J = 3.7 Hz, 1H), 7.34 (d, J = 9.3 Hz, 1H), 7.27 (d, J = 3.7 Hz, 1H), 7.17-7.12 (m, 2H), 6.90-6.80 (m, 3H), 4.39 (s, 2H), 3.00 (sept., J = 6.8 Hz, 1H), 2.60 (s, 3H), 1.28 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 161.7 (d, J = 246.5 Hz), 146.1, 140.2, 137.4, 136.9,

136.6, 136.2, 135.1, 133.5, 130.0 (d, J = 7.9 Hz), 125.7, 125.0, 115.2 (d, J = 21.3 Hz), 112.9, 42.4, 38.3, 24.7, 12.9. Elemental analysis: calcd (%) for C₂₁H₂₁F (292.39): C 86.26, H 7.24; found: C 86.15, H 7.16.

7-Isopropyl-1-methyl-4-(4-methylbenzyl)-azulene (8a)

From 4-bromotoluene (0.171 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) **8a** was obtained in 42% (0.121 g) yield as a blue oil. Eluent pentane

¹H NMR (400 MHz, CDCl₃): δ 8.12 (s, 1H), 7.57 (s, 1H), 7.32 (d, J = 10.7 Hz, 1H), 7.18 (s, 1H), 7.09 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 10.7 Hz, 1H), 4.39 (s, 2H), 2.99 (sept., J = 6.8 Hz, 1H), 2.59 (s, 3H), 2.21 (s, 3H), 1.27 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 146.8, 139.9, 137.6, 137.5, 136.7, 136.5, 135.7, 135.1, 133.3, 129.1, 128.6, 125.5, 125.1, 112.9, 42.7, 38.2, 24.7, 21.0, 12.9. Elemental analysis: calcd (%) for C₂₂H₂₄ (288.43): C 91.61, H 8.39; found: C 91.75, H 8.30.

4-(4-tert-Butylbenzyl)-7-isopropyl-1-methyl-azulene (9a)

From 4-*tert*-butylbromobenzene (0.213 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C₃H₅)(dppb) (12.2 mg, 0.02 mmol) **9a** was obtained in 48% (0.158 g) yield as a blue oil. Eluent pentane

¹H NMR (400 MHz, CDCl₃): δ 8.12 (s, 1H), 7.57 (d, *J* = 3.2 Hz, 1H), 7.35-7.25 (m, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 10.7 Hz, 1H), 4.39 (s, 2H), 2.98 (sept., *J* = 6.8 Hz, 1H), 2.59 (s, 3H), 1.27 (d, *J* = 6.8 Hz, 6H), 1.20 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 149.0, 146.8, 139.9, 137.7, 137.5, 136.7, 136.5, 135.2, 133.4, 128.3, 125.5, 125.4, 125.3, 113.0, 42.7, 38.3, 34.4, 31.4, 24.8, 13.0. Elemental analysis: calcd (%) for C₂₅H₃₀ (330.51): C 90.85, H 9.15; found: C 90.74, H 9.20.

3-(7-Isopropyl-1-methylazulen-4-ylmethyl)-benzonitrile (10a)

From 3-bromobenzonitrile (0.182 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) **10a** was obtained in 54% (0.161 g) yield as a blue oil. Eluent pentane:diethylether 10:1

¹H NMR (400 MHz, CDCl₃): δ 8.16 (s, 1H), 7.59 (d, *J* = 3.6 Hz, 1H), 7.50-7.30 (m, 4H), 7.24 (t, *J* = 7.7 Hz, 1H), 7.20-7.15 (m, 1H), 6.87 (d, *J* = 10.7 Hz, 1H), 4.43 (s, 2H), 3.02 (sept., *J* = 6.8 Hz, 1H), 2.60 (s, 3H), 1.30 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 144.3, 142.1, 140.7, 137.3, 137.2, 136.9, 135.1, 133.8, 133.0, 132.0, 130.1, 129.2, 126.1, 124.9, 118.9, 113.0, 112.5, 42.8, 38.2, 24.7, 12.9. Elemental analysis: calcd (%) for C₂₂H₂₁N (299.41): C 88.25, H 7.07; found: C 88.01, H 7.17.

1-[3-(7-Isopropyl-1-methylazulen-4-ylmethyl)-phenyl]-ethanone (11a)

From 3-bromoacetophenone (0.199 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) **11a** was obtained in 51% (0.161 g) yield as a blue oil. Eluent pentane:diethylether 10:1

¹H NMR (400 MHz, CDCl₃): δ 8.14 (s, 1H), 7.86 (s, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.59 (d, J = 3.6 Hz, 1H), 7.30-7.20 (m, 4H), 6.9 (d, J = 10.7 Hz, 1H), 4.47 (s, 2H), 3.00 (sept., J = 6.8 Hz, 1H), 2.60 (s, 3H), 2.48 (s, 3H), 1.28 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 198.3, 145.5, 141.2, 140.3, 137.4, 137.3, 136.9, 136.8, 135.1, 133.6, 133.3, 128.7, 128.4, 126.5, 125.8, 125.0, 113.0, 43.1, 38.3, 26.7, 24.7, 12.9. Elemental analysis: calcd (%) for C₂₃H₂₄O (316.44): C 87.30, H 7.64; found: C 87.48, H 7.51.

7-Isopropyl-1-methyl-4-(3-trifluoromethyl-benzyl)-azulene (12a)

From 3-(trifluoromethyl)bromobenzene (0.225 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K₂CO₃ (0.552 g, 4 mmol) in the presence of PdCl(C₃H₅)(dppb) (12.2 mg, 0.02 mmol) **12a** was obtained in 71% (0.243 g) yield as a blue oil. Eluent pentane:diethylether 10:1 ¹H NMR (400 MHz, CDCl₃): δ 8.15 (s, 1H), 7.58 (d, *J* = 1.6 Hz, 1H), 7.50 (s, 1H), 7.40-7.30 (m, 3H), 7.30-7.20 (m, 2H), 6.87 (d, *J* = 10.7 Hz, 1H), 4.46 (s, 2H), 3.00 (sept., *J* = 6.8 Hz, 1H), 2.60 (s, 3H), 1.28 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 145.0, 141.5, 140.4, 137.5, 137.1, 136.8, 135.1, 133.6, 132.0, 130.8 (q, *J* = 32.0 Hz), 128.9, 125.9, 125.3 (s, *J* = 3.8 Hz), 124.9, 124.1 (q, *J* = 272.3 Hz), 123.2 (q, *J* = 3.7 Hz), 113.0, 42.9, 38.3, 24.7, 12.9. Elemental analysis: calcd (%) for C₂₂H₂₁F₃ (342.40): C 77.17, H 6.18; found: C 77.45, H 6.24.

4-(3-Chlorobenzyl)-7-isopropyl-1-methyl-azulene (13a)

From 3-bromochlorobenzene (0.191 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C₃H₅)(dppb) (12.2 mg, 0.02 mmol) **13a** was obtained in 69% (0.212 g) yield as a blue oil. Eluent pentane

¹H NMR (400 MHz, CDCl₃): δ 8.22 (s, 1H), 7.66 (d, J = 3.6 Hz, 1H), 7.42 (d, J = 10.7 Hz, 1H), 7.33 (d, J = 3.6 Hz, 1H), 7.27 (s, 1H), 7.20-7.15 (m, 3H), 6.96 (d, J = 10.7 Hz, 1H), 4.46 (s, 2H), 3.09 (sept., J = 6.8 Hz, 1H), 2.68 (s, 3H), 1.36 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 142.6, 140.3, 137.5, 137.0, 136.7, 135.1, 134.2, 133.6, 129.7, 128.7, 126.9, 126.5, 125.8, 125.0, 113.0, 42.9, 38.3, 24.7, 13.0. Elemental analysis: calcd (%) for C₂₁H₂₁Cl (308.84): C 81.67, H 6.85; found: C 81.79, H 6.70.

7-Isopropyl-1-methyl-4-(3-methylbenzyl)-azulene (14a)

From 3-bromotoluene (0.171 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) **14a** was obtained in 54% (0.155 g) yield as a blue oil. Eluent pentane

¹H NMR (400 MHz, CDCl₃): δ 8.12 (s, 1H), 7.57 (s, 1H), 7.35-7.25 (m, 2H), 7.10-6.95 (m, 3H), 6.95-6.88 (m, 2H), 4.38 (s, 2H), 2.98 (sept., *J* = 6.8 Hz, 1H), 2.59 (s, 3H), 2.20 (s, 3H), 1.27 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 146.7, 140.5, 139.9, 138.1, 137.7, 136.8, 136.5, 135.1, 133.4, 129.5, 128.4, 127.0, 125.8, 125.5, 125.2, 113.0, 43.1, 38.3, 24.8, 21.4, 13.0. Elemental analysis: calcd (%) for C₂₂H₂₄ (288.43): C 91.61, H 8.39; found: C 91.77, H 8.57.

4-(2-Fluorobenzyl)-7-isopropyl-1-methyl-azulene (15a)

From 2-bromofluorobenzene (0.175 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K₂CO₃ (0.552 g, 4 mmol) in the presence of PdCl(C₃H₅)(dppb) (12.2 mg, 0.02 mmol) **15a** was obtained in 63% (0.184 g) yield as a blue oil. Eluent pentane:diethylether 10:1 ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, *J* = 2.0 Hz, 1H), 7.57 (s, 1H), 7.34 (dd, *J* = 10.4, 2.0 Hz, 1H), 7.15-6.80 (m, 6H), 4.44 (s, 2H), 2.99 (sept., *J* = 6.8 Hz, 1H), 2.59 (s, 3H), 1.28 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 160.8 (d, *J* = 246.0 Hz), 145.1, 140.3, 137.5, 136.9, 136.7, 135.0, 133.5, 130.6 (d, *J* = 4.2 Hz), 127.9 (d, *J* = 8.1 Hz), 127.2 (d, *J* = 15.7 Hz), 125.6, 124.7, 124.0 (d, *J* = 3.5 Hz), 115.2 (d, *J* = 22.3 Hz), 112.9, 38.3, 35.4, 24.7, 12.9. Elemental analysis: calcd (%) for C₂₁H₂₁F (292.39): C 86.26, H 7.24; found: C 86.44, H 7.51.

7-Isopropyl-1-methyl-4-naphthalen-2-ylmethylazulene (16a)

From 2-bromonaphthalene (0.207 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) **16a** was obtained in 45% (0.146 g) yield as a blue oil. Eluent pentane

¹H NMR (400 MHz, CDCl₃): δ 8.15 (s, 1H), 7.70-7.60 (m, 4H), 7.59 (d, J = 3.6 Hz, 1H), 7.40-7.28 (m, 5H), 6.94 (d, J = 10.7 Hz, 1H), 4.58 (s, 2H), 3.00 (sept., J = 6.8 Hz, 1H), 2.61 (s, 3H), 1.27 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 146.3, 140.1, 138.2, 137.7, 136.9, 136.6, 135.1, 133.6, 133.4, 132.2, 128.1, 127.7, 127.6, 127.3, 127.0, 125.9, 125.6, 125.4, 125.2, 113.0, 43.3, 38.3, 24.7, 13.0. Elemental analysis: calcd (%) for C₂₅H₂₄ (324.46): C 92.54, H 7.46; found: C 92.67, H 7.66.

3-(7-Isopropyl-1-methylazulen-4-ylmethyl)-pyridine (17a)

From 3-bromopyridine (0.158 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), CsOAc (0.767 g, 4 mmol) and K_2CO_3 (0.552 g, 4 mmol) in the presence of PdCl(C_3H_5)(dppb) (12.2 mg, 0.02 mmol) **17a** was obtained in 61% (0.168 g) yield as a blue oil. Eluent pentane

¹H NMR (400 MHz, CDCl₃): δ 8.55 (s, 1H), 8.35 (d, *J* = 3.8 Hz, 1H), 8.14 (s, 1H), 7.59 (d, *J* = 3.6 Hz, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.35 (d, *J* = 10.7 Hz, 1H), 7.25 (d, *J* = 3.6 Hz, 1H), 7.04 (dd, *J* = 7.7, 4.0 Hz, 1H), 6.88 (d, *J* = 10.7 Hz, 1H), 4.40 (s, 2H), 3.00 (sept., *J* = 6.8 Hz, 1H), 2.60 (s, 3H), 1.28 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 149.9, 147.8, 144.8, 140.5, 137.3, 137.1, 136.8, 136.1, 135.8, 135.1, 133.6, 125.9, 124.9, 123.4, 113.0, 40.4, 38.3, 24.7, 12.9. Elemental analysis: calcd (%) for C₂₀H₂₁N (275.39): C 87.23, H 7.69; found: C 87.45, H 7.87.

General procedure for the synthesis of 1b, 6b-8b, 14b and 18b

As a typical experiment, reaction of the aryl bromide (1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), and KOAc (0.784 g, 8 mmol) at 150 °C during 16 h in ethylbenzene (5 mL) in the presence of $PdCl(C_3H_5)(dppb)$ (12.2 mg, 0.02 mmol) under argon afforded the corresponding arylation product after extraction with dichloromethane, evaporation and filtration on silica gel.

4-(7-Isopropyl-1,4-dimethylazulen-2-yl)-benzonitrile (1b)

From 4-bromobenzonitrile (0.182 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), KOAc (0.784 g, 8 mmol) in ethylbenzene in the presence of $PdCl(C_3H_5)(dppb)$ (12.2 mg, 0.02 mmol) **1b** was obtained in 38% (0.114 g) yield (containing around 10% of **1c**) as a blue oil. Eluent pentane:diethylether 100:1

¹H NMR (400 MHz, CDCl₃): δ 8.21 (s, 1H), 7.67 (s, 4H), 7.37 (d, J = 10.6 Hz, 1H), 7.25 (bs, 1H), 7.01 (d, J = 10.6 Hz, 1H), 3.04 (sept., J = 6.8 Hz, 1H), 2.81 (s, 3H), 2.63 (s, 3H), 1.31 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 145.6, 145.2, 143.3, 141.5, 137.9, 136.8, 135.6, 134.4, 132.1, 130.2, 126.3, 121.6, 119.2, 113.2, 110.3, 38.4, 24.8, 24.2, 11.6. Elemental analysis: calcd (%) for C₂₂H₂₁N (299.41): C 88.25, H 7.07; found: C 88.20, H 7.21.

2-(4-Chlorophenyl)-7-isopropyl-1,4-dimethylazulene (6b)

From 4-bromochlorobenzene (0.191 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), KOAc (0.784 g, 8 mmol) in ethylbenzene in the presence of $PdCl(C_3H_5)(dppb)$ (12.2 mg, 0.02 mmol) **6b** was obtained in 53% (0.163 g) yield as a blue oil. Eluent pentane:diethylether 100:1

¹H NMR (400 MHz, CDCl₃): δ 8.18 (s, 1H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 10.6 Hz, 1H), 7.24 (s, 1H), 6.99 (d, *J* = 10.6 Hz, 1H), 3.02 (sept., *J* = 6.8 Hz, 1H), 2.77 (s, 3H), 2.62 (s, 3H), 1.30 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 146.8, 144.2, 141.1, 137.8, 136.9, 136.7, 134.7, 133.6, 133.0, 130.9, 128.6, 126.0, 121.3, 113.2, 38.4, 24.8, 24.2, 11.6. Elemental analysis: calcd (%) for C₂₁H₂₁Cl (308.84): C 81.67, H 6.85; found: C 81.68, H 6.97.

2-(4-Fluorophenyl)-7-isopropyl-1,4-dimethylazulene (7b)

From 4-bromofluorobenzene (0.175 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), KOAc (0.784 g, 8 mmol) in ethylbenzene in the presence of $PdCl(C_3H_5)(dppb)$ (12.2 mg, 0.02 mmol) **7b** was obtained in 51% (0.149 g) yield as a blue oil. Eluent pentane:diethylether 100:1

¹H NMR (400 MHz, CDCl₃): δ 8.18 (s, 1H), 7.55 (dd, J = 7.9, 5.6 Hz, 2H), 7.33 (d, J = 10.6 Hz, 1H), 7.24 (s, 1H), 7.10 (t, J = 8.4 Hz, 2H), 6.99 (d, J = 10.6 Hz, 1H), 3.02 (sept., J = 6.8 Hz, 1H), 2.78 (s, 3H), 2.62 (s, 3H), 1.31 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 162.2 (d, J = 246.5 Hz), 147.2, 143.9, 141.0, 137.8, 136.7, 134.5, 134.4, 133.4, 131.1 (d, J = 7.9 Hz), 125.9, 121.2, 115.3 (d, J = 21.3 Hz), 113.3, 38.4, 24.8, 24.2, 11.6. Elemental analysis: calcd (%) for C₂₁H₂₁F (292.39): C 86.26, H 7.24; found: C 86.48, H 7.34.

7-Isopropyl-1,4-dimethyl-2-*p*-tolylazulene (8b)

From 4-bromotoluene (0.171 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), KOAc (0.784 g, 8 mmol) in ethylbenzene in the presence of $PdCl(C_3H_5)(dppb)$ (12.2 mg, 0.02 mmol) **8b** was obtained in 56% (0.161 g) yield as a blue oil. Eluent pentane

¹H NMR (400 MHz, CDCl₃): δ 8.17 (s, 1H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 10.6 Hz, 1H), 7.23 (d, *J* = 8.5 Hz, 2H), 7.20 (s, 1H), 6.97 (d, *J* = 10.6 Hz, 1H), 3.03 (sept., *J* = 6.8 Hz, 1H), 2.78 (s, 3H), 2.65 (s, 3H), 2.36 (s, 3H), 1.31 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 148.3, 143.5, 140.8, 137.8, 136.8, 136.6, 135.5, 134.2, 133.1, 129.6, 129.1, 125.7, 121.3, 113.5, 38.4, 24.8, 24.2, 21.3, 11.6. Elemental analysis: calcd (%) for C₂₂H₂₄ (288.43): C 91.61, H 8.39; found: C 91.78, H 8.24.

7-Isopropyl-1,4-dimethyl-2-*m*-tolylazulene (14b)

From 3-bromotoluene (0.171 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), KOAc (0.784 g, 8 mmol) in ethylbenzene in the presence of $PdCl(C_3H_5)(dppb)$ (12.2 mg, 0.02 mmol) **14b** was obtained in 54% (0.156 g) yield as a blue oil. Eluent pentane

¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, J = 1.7 Hz, 1H), 7.45-7.25 (m, 5H), 7.31 (d, J = 10.6 Hz, 1H), 7.10 (d, J = 7.1 Hz, 1H), 6.97 (d, J = 10.6 Hz, 1H), 3.03 (sept., J = 6.8 Hz, 1H), 2.78 (s, 3H), 2.64 (s, 3H), 2.38 (s, 3H), 2.64 (s, 3H), 2.38 (s, 3H), 2.64 (s, 3H),

3H), 1.30 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 148.5, 143.7, 140.8, 138.4, 137.9, 137.8, 136.6, 134.3, 133.3, 130.4, 128.2, 127.8, 126.8, 125.7, 121.4, 113.7, 38.4, 24.8, 24.2, 21.6, 11.6. Elemental analysis: calcd (%) for C₂₂H₂₄ (288.43): C 91.61, H 8.39; found: C 91.79, H 8.49.

2-(4-Phenyl)-7-isopropyl-1,4-dimethylazulene (18b)

From bromobenzene (0.157 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), KOAc (0.784 g, 8 mmol) in ethylbenzene in the presence of $PdCl(C_3H_5)(dppb)$ (12.2 mg, 0.02 mmol) **18b** was obtained in 56% (0.153 g) yield as a blue oil. Eluent pentane

¹H NMR (400 MHz, CDCl₃): δ 8.18 (s, 1H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.41 (t, *J* = 8.5 Hz, 2H), 7.33-7.25 (m, 3H), 6.98 (d, *J* = 10.6 Hz, 1H), 3.03 (sept., *J* = 6.8 Hz, 1H), 2.78 (s, 3H), 2.65 (s, 3H), 1.31 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 148.3, 143.8, 140.9, 138.5, 137.8, 136.7, 134.4, 133.4, 129.7, 128.4, 127.0, 125.8, 121.4, 113.6, 38.4, 24.8, 24.2, 11.6. Elemental analysis: calcd (%) for C₂₁H₂₂ (274.40): C 91.92, H 8.08; found: C 92.02, H 7.99.

General procedure for the synthesis of 1c and 14c

As a typical experiment, reaction of the aryl bromide (1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), and KOAc (0.784 g, 8 mmol) at 150 °C during 16 h in DMAc (5 mL) in the presence of $PdCl(C_3H_5)(dppb)$ (12.2 mg, 0.02 mmol) under argon afforded the corresponding arylation product after extraction with dichloromethane, evaporation and filtration on silica gel.

4-(5-Isopropyl-3,8-dimethylazulen-1-yl)-benzonitrile (1c)

From 4-bromobenzonitrile (0.182 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), KOAc (0.784 g, 8 mmol) in DMAc in the presence of $PdCl(C_3H_5)(dppb)$ (12.2 mg, 0.02 mmol) **1c** was obtained in 51% (0.153 g) yield as a green oil. Eluent pentane:diethylether 100:1

¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, *J* = 2.1 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.46 (s, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.36 (dd, *J* = 10.7, 2.1 Hz, 1H), 6.92 (d, *J* = 10.7 Hz, 1H), 3.02 (sept., *J* = 6.8 Hz, 1H), 2.59 (s, 3H), 2.33 (s, 3H), 1.30 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 146.4, 145.7, 141.0, 139.7, 138.5, 135.3, 134.2, 132.2, 131.1, 131.0, 127.7, 127.0, 124.7, 119.4, 109.2, 37.9, 27.9, 24.6, 12.8. Elemental analysis: calcd (%) for C₂₂H₂₁N (299.41): C 88.25, H 7.07; found: C 88.24, H 7.25.

7-Isopropyl-1,4-dimethyl-3-*m*-tolylazulene (14c)

From 3-bromotoluene (0.171 g, 1 mmol), 7-isopropyl-1,4-dimethylazulene (0.296 g, 1.5 mmol), KOAc (0.784 g, 8 mmol) in DMAc in the presence of $PdCl(C_3H_5)(dppb)$ (12.2 mg, 0.02 mmol) **14c** was obtained in 38% (0.110 g) yield as a green oil. Eluent pentane:diethylether 100:1

¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, *J* = 2.1 Hz, 1H), 7.47 (s, 1H), 7.28 (dd, *J* = 10.7, 2.1 Hz, 1H), 7.22-7.03 (m, 4H), 6.82 (d, *J* = 10.7 Hz, 1H), 3.00 (sept., *J* = 6.8 Hz, 1H), 2.60 (s, 3H), 2.34 (s, 3H), 2.32 (s, 3H), 1.30 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 146.1, 141.4, 140.1, 139.6, 137.7, 136.6, 134.8, 133.7, 131.6, 131.5, 129.5, 127.8, 127.1, 126.7, 126.6, 124.0, 37.9, 27.6, 24.7, 21.5, 12.8. Elemental analysis: calcd (%) for C₂₂H₂₄ (288.43): C 91.61, H 8.39; found: C 91.87, H 8.17.

Supporting Information $\mathbf{S15}$

Supporting Information $\mathbf{S16}$

⁹ ¹H NMR (400 MHz, CDCl3) [|] HD-LQ-41899 6 8 9 7.584 7.558 7.358 7.358 7.358 7.358 7.358 7.358 7.358 7.187 7.187 7.167 7.167 7.076 6.887 6.887 6.887 2.595 291 6000 5500 -5000 H₃C ¹³ s () s ſ 4500 4000 13a 3500 3000 2500 2000 1500 1000 500 0 6.08- 0.99-1 2.92 1.99-22.697 2.997 2.097 1.00-1 -500 6.5 2.5 1.5 1.0 8.5 7.5 6.0 5.5 4.0 3.5 3.0 2.0 8.0 7.0 5.0 4.5 f1 (ppm) 145.30 1425.30 137.479 137.479 137.473 135.746 135.746 135.757 135.746 135.757 135.746 135.746 135.746 125.688 125.748 125.75 -113.034-24.743- 12.970 - 42.872 38.301 - 10000 ¹³C NMR (101 MHz, CDCI3) 9000 CH -8000 Ӊ₀С 7000 6000 , CI 13a 5000 4000 -3000 2000 1000 0 -1000 150 140 100 70 60 50 40 30 20 10 130 120 110 90 80 f1 (ppm)

NMR experiments for the determination of the C2:C3 regioselectivity

NAME lq-398-p EXPNO PROCNO 20121030 10.38 Date Time[–] INSTRUM spect 5 mm PABBO BB-zg30 65536 PROBHD PULPROG TD SOLVENT CDC13 64 NS DS 2 SWH 6009.615 Hz FIDRES 0.091699 Hz AQ 5.4526453 sec RĜ 10 DW 83.200 use DE 6.50 use TE298.1 K D1 0.50000000 sec TDO 1 ====== CHANNEL fl ====== 1H NUC1 P1 10.00 use PL1-4.80 dB 24.27448273 W PL1W 400.1326809 MHz 32768 SF01 SI 400.1300000 MHz SF WDW no SSB 0 LB0.00 Hz GΒ 0 PC 0.50

NAME lq-398-p EXPNO PROCNO Date 20121030 Time[—] 10.38 spect 5 mm PABBO BB-INSTRUM PROBHD zg30 65536 CDC13 PULPROG ΤD SOLVENT 64 2 NSDS SWH 6009.615 Hz FIDRES 0.091699 Hz 5.4526453 sec AQ 10 83.200 use RG DW 6.50 use 298.1 K DE TED1 0.50000000 sec TDO 1 ====== CHANNEL fl ====== NUC1 1H10.00 use -4.80 dB Р1 PL1 24.27448273 W 400.1326809 MHz PL1W SF01 32768 400.1300000 MHz SI SF WDW no SSB 0 LB 0.00 Hz GB 0 PC 0.50

2

NAME	lq-398-p	
EXPNO	1	
Date	20121030	
Time	10.38	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	64	
DS	2	
SWH	6009.615	Ηz
FIDRES	0.091699	ΗZ
AQ PC	5.4526453 10	sec
	83 200	1100
DE	6 50	use
TE	298.1	K
D1	0.5000000	sec
TDO	1	
	CHANNEL 11 ====	-===
DI	10 00	1100
PL1	-4.80	dB dB
PL1W	24.27448273	TAT .
SF01	400.1326809	MHz
SI	32768	
SF	400.1300000	MHz
WDW	no	
SSB	0	
LB	0.00	Ηz
GB	0	
PC	0.50	

1	q-398-p	13C	S.SINBANDHI	T		
		146.39 145.70 7141.02	139.74 138.48 138.48 135.35 134.17 131.12 131.05 124.70 119.39		77.31 77.31 77.00 76.68	
				1		
***	han han same and a series of the			¥ ⁶ 4149 ⁶ 1499 ⁶ 1499 ⁶ 149 ⁶ 49 ⁶	miner som the water of the second states of the sec	
	190 180 170	160 150	140 130 120	110 100	90 80 70 60	50 40 30 20

NAME lq-398-p EXPNO 4 PROCNO 1 20121031 Date_ Time^{_} 9.12 INSTRUM spect PROBHD 5 mm PABBO BB-PULPROG zgpg 65536 CDC13 TD SOLVENT NS 4570 NS DS SWH FIDRES 2 24038.461 Hz 0.366798 Hz AQ RG DW DE TE D1 D11 1.3631988 sec 2050 20.800 us: 10.00 us: 299.5 K 5.00000000 sec 0.03000000 sec TDO 1 ====== CHANNEL f1 ====== NUC1 13C Ъ. 6.80 us: -3.10 dB 66.67198181 W P1 PL1 PL1W SF01 100.6233333 MH: ====== CHANNEL f2 ====== CPDPRG2 waltz16 NUC2 PCPD2 1H1H 100.00 us: -4.80 dB 15.20 dB 15.20 dB 24.27448273 W PL2 PL12 PL13 PL2W PL12W 0.24274483 W PL13W 0.24274483 W 400.1316005 MH: 32768 100.6127690 MH: SFO2 SI SF WDW ΕM 0 SSB

ppm

4

10

12.79

lq-398-p	13C	S.SINBANDHIT				
			132.17 131.12 131.05			
milination with a second	mm for any for the second second	www.www.lh.l.www.www.	WWWW hadhunnum	munump	Muntummannahanna	we wanter the work

	ppm	NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW	1q-398-p 3 1 20121030 17.34 spect 5 mm PABBO BB- hmbcgplpndgf 2048 CDC13 40 16 3440.367 1.679867 0.2976927 0.2950 145.333	Hz Hz sec usec
	- 12 4	DE TE CNST2 CNST13	6.50 299.7 164.0000000 6.3000002	usec K
	- 126	D0 D1 D2	0.00000300 1.79999995 0.00304878	sec sec sec
	- 127	D6 D16 IN0	0.07936507 0.00010000 0.00003500	sec sec sec
	128	======= NUC1 P1	CHANNEL fl ===== 1H 10.00	usec
	- 129	P2 PL1 PL1W SFO1	20.00 -4.80 24.27448273 400.1320007 1	usec dB W MHz
	- 130	==== === NUC2 D3	CHANNEL f2 =====	
	- 131	PS PL2 PL2W SFO2	9.00 -3.10 66.67198181 100.6208180 1	usec dB W MHz
	- 132	==== == G. GPNAM1	RADIENT CHANNEL = SINE.100	
	133	GPNAM2 GPNAM3 GPZ1 GPZ2	SINE.100 SINE.100 50.00 9	
	134	GPZ3 P16 ND0	40.10 4 1000.00 1 2	, lsec
	135	TD SFO1 FIDRES	320 100.6208 M 44.650490 F	4Hz Hz
	136	SW FnMODE SI SF	142.000 ¥ QF 1024 400 1299982 M	opm 4H 7
	137	WDW SSB LB	QSINE 4 0.00 F	łz
	- 138	GB PC SI	0 1,40 512	
	139	SF WDW SSB	00.6127590 M QSINE 4	1Hz
	140	LB GB	0.00 H 0	łz
	1 41			
	142			
	- 143			
	- 144			
	- 145			
	- 146			
.4	r ppm			

1.5

1.4

lq-398-p

		NAME EXPNO PROCNO Date_ Time INSTRUM	lq-398-p 3 20121030 17.34 spect	
		PROBHD PULPROG TD SOLVENT NS	5 mm PABBO BB- hmbcgplpndqf 2048 CDC13 40	
	ppm	DS SWH FIDRES AQ RG	16 3440.367 1.679867 0.2976927 2050	Hz Hz sec
	- 109	DW DE TE CNST2 CNST13	145.333 6.50 299.7 164.0000000 6.3000002	usec usec K
	- 110	D0 D1 D2 D6	0.00000300 1.79999995 0.00304878 0.07936507	sec sec sec sec
	- 111	D16 INO 	0.00010000 0.00003500 CHANNEL f1 ====	sec sec
	- 112	NUC1 P1 P2 PL1	1H 10.00 20.00 -4.80	usec usec dB
	-113	PL1W SFO1 ========	24.27448273 400.1320007 CHANNEL f2 ====	W MHz =====
· · · · · · · · · · · · ·	-114 -115	NUC2 P3 PL2 PL2W SFO2	13C 9.00 -3.10 66.67198181 100.6208180	usec dB W MHz
	-116	===== GF GPNAM1 GPNAM2 GPNAM3 GPZ1	ADIENT CHANNEL SINE.100 SINE.100 SINE.100 50.00	 &
	-117	GPZ2 GPZ3 P16 ND0	30.00 40.10 1000.00 2	१ १ usec
	118	TD SFO1 FIDRES SW	320 100.6208 44.650490 142.000	MHz Hz ppm
•	-119	FnMODE SI SF WDW	QF 1024 400.1299982 QSINE	MHz
	- 120	SSB LB GB PC	4 0.00 0 1.40	Hz
	- 121	MC2 SF WDW SSB	QF 100.6127590 QSINE	MHz
	122	LB GB	0.00	Hz
	123			
	- 124			
:	- 126			
	- 127			
	-128			
7.50 7.45	ppm			

		ppm - 12 14	NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE CNST2 D0 D1 D2 D1 D1 D2 D13 D16 IN0	lq-398-p 2 1 20121030 11.26 spect 5 mm PABBO BB- hmqcgpqf 2048 CDCl3 32 16 3440.367 1.679867 0.2976927 2050 145.333 6.50 298.7 144.0000000 0.00000300 1.7999995 0.00347222 0.00010000 0.00001000 0.00003500	Hz Hz sec usec K sec sec sec sec sec
		- 16	NUC1 P1 P2 PL1	CHANNEL f1 ==== 1H 10.00 20.00 -4.80	usec usec dB
		- 18	PL1W SFO1	24.27448273 400.1320007	W MHz
- 	· · ·	- 20 -	CPDPRG2 NUC2 P3 PCPD2 PL2 PL12 PL12 PL2W	CHANNEL f2 ==== garp 13C 9.00 80.00 -3.10 15.50 66.67198181	usec usec dB dB w
•		- 22	PL12W SFO2	0.92032951 100.6208180	W MHz
	7	-24 -26	===== GI GPNAM1 GPNAM2 GPNAM3 GPZ1 GPZ2 GPZ3 P16 ND0	RADIEN'T CHANNEL SINE.100 SINE.100 SINE.100 50.00 30.00 40.10 1000.00	ु १ १ usec
- V 1		- 28	TD SFO1 FIDRES SW FnMODE SI SF	320 100.6208 44.650490 142.000 QF 1024 400 129980	MHz Hz ppm MHz
	Ø	- 30 -	WDW SSB LB GB PC SI	QSINE 4 0.00 0 1.40 512	Hz
		- 32	SF WDW SSB LB	ي 100.6127590 QSINE 4 0.00	MH2 Hz
		- 34	GB	0	
	·	- 36			
		- 38			
		-40			
1.4 1	.3	ppm			

NAME	lq499-p1	
BAPNO	1	
Date	20121217	
Time	16 59	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	za30	
TD	65536	
SOLVENT	CDC13	
NS	74	
DS	2	
SWH	6009.615	Ηz
FIDRES	0.091699	Ηz
AQ	5.4526453	sec
RG	101	
DW	83.200	use
DE	6.50	use
TE	297.1	K
DI	0.50000000	sec
TDO	Ţ	
	CHANNEL fl ====	-===
NUC1	1H	
P1	10.00	use
PLL	-4.80	dB
PLIW	24 2/448273	W
SFOL	400 1326809	MHZ
SI	- 32/68	N / T T
DE MOM	400.1300000	MHZ
acb MDAA	10	
ucc at	0 00	Цe
GB	0.00	1157
PC	0 60	
	0.00	

0.5 0.0 ppm

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013
a da

lq499-p1		13C	S.SINBANDHI	Г							1]]
			146.84 144.16 144.16 137.81 136.95 136.73 133.61 133.65 123.05 128.56 128.56 121.29	113.24	77.34 77.23 77.02 76.71		38.43	29.72 24.80	24.18		
					I						
									1		=
				1							Υ
	180 170	160 15() 140 130 120	 110	 	60 50	4 0		20	 10	

lq499-p1 4 NAME EXPNO PROCNO Date_ 1 20121217 Time 17.09 INSTRUM spect PROBHD 5 mm PABBO BBzgpg 65536 PULPROG TD SOLVENT CDC13 853 2 NS DS SWH FIDRES 24038.461 Hz 0.366798 Hz AQ RG DW DE TE D1 D11 1.3631988 sec 2050 2050 20.800 us: 10.00 us: 298.0 K 5.00000000 sec 0.03000000 sec TDO 1 ====== CHANNEL f1 ====== 13C 6.70 us: -3.10 dB 66.67198181 W 100.6233333 MH: NUC1 P1 PL1 PL1W SF01 ====== CHANNEL f2 ====== CPDPRG2 NUC2 PCPD2 waltz16 1H 100.00 use 100.00 us: -4.80 dB 15.20 dB 15.20 dB 24.27448273 W 0.24274483 W 400.1316005 MH: 32768 100.6127690 MH: EM 0 PCPDZ PL2 PL12 PL13 " • PL2W PL12W PL12W PL13W SFO2 SI SF WDW SSB

Electro This jou	nic Supplementary M urnal is © The Royal S	laterial (ESI) for 0 Society of Chemi	Chemical Communication stry 2013	IS						
·	lq499-p1		13C	S.SI	NBANDHIT					
	146.84	144.16	141.11			130.86		125.97	121.29	
	- Norman Conner			I II A A A A A A A A A A A A A A A A A A			montered	www.whereaster	programming and another provided and the	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

145

140

135

130

120

lq499-p**1** 4 NAME EXPNO PROCNO Date_ 1 20121217 Time 17.09 5 mm PABBO BB-zgpg 65536 CDC13 INSTRUM PROBHD PULPROG TD TD SOLVENT NS DS SWH FIDRES 853 2 2 24038.461 Hz 0.366798 Hz 1.3631988 sec 2050 20.800 usc 10.00 usc 298.0 K 5.0000000 sec AQ RG DW DE TE D1 D11 0.03000000 sec TDO 1 ANNEL FI ====== 13C 6.70 us(-3.10 dB 66.67198181 W 100.6233333 MH; SF01 NNEL f2 -------waltz16 1H 100.00 us: -4.80 dB 15.20 dB 15.20 dB 24.27448273 W 0.24274483 W 0.24274483 W 0.24274483 W ====== CHANNEL f2 ====== CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 PL13 PL2W PL12W PL13W 400.1316005 MH: 32768 100.6127690 MH; SFO2 SI SF WDW EM 0 SSB

have were alacher of

