Electronic Supplementary Information (ESI) For

A series of new star-shaped or branched platinum acetylide derivatives: synthesis, characterization, and their self-assembly behavior[†]

Bo Jiang^{ab‡}, Li-Jun Chen^{a‡}, Lin Xu^a, Shun-Ying Liu^{*b}, Hai-Bo Yang^{*a}

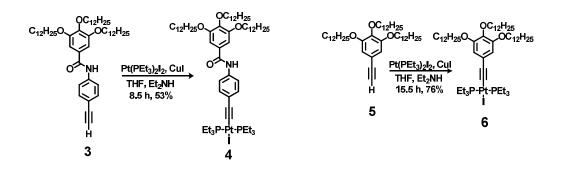
 ^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road Shanghai, 200062, P.R. China.
^b Shanghai Engineering Research Center for Molecular Therapeutics and New Drug

Discovery and Development, East China Normal University, 3663 N. Zhongshan Road Shanghai, 200062, P.R. China.

Table of Contents:

1. General Information
2. Synthetic Experimental Details of New Platinum-Acetylide Complexes 1a–b and 2a–b
3. Characterization of Complexes 1a–b and 2a–b
4. UV-vis and Fluorescence Spectra of 1a–b and 2a–b
5. Additional SEM Images of Complexes 1a and 2a at Different Scales
6. Concentration-Dependent and Temperature-Dependent ¹ H NMR Spectra of Complexes 1a and
2a
7. Gelation Tests
8. Multiple Nuclear NMR (¹ H, ³¹ P, and ¹³ C NMR) Spectra and MALDI-TOF MS of New
Compounds
9. References

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

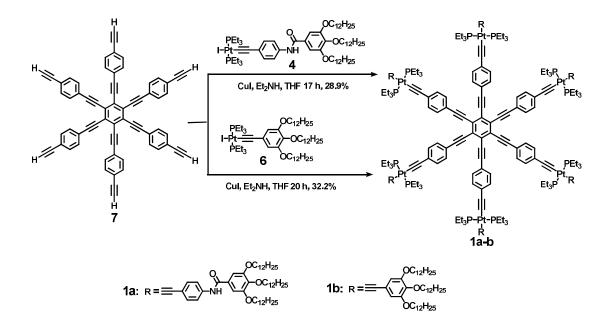

1. General Information.

¹H NMR, ¹³C NMR and ³¹P NMR spectra were recorded on 400 MHz Spectrometer (¹H: 400 MHz; ¹³C: 100 MHz; ³¹P: 161.9 MHz) at 298 K. The ¹H and ¹³C NMR chemical shifts are reported relative to residual solvent signals, and ³¹P NMR resonances are referenced to a internal standard sample of 85% H₃PO₄ (δ 0.0). Coupling constants (*J*) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, d = doublet, m = multiplet, br = broad. UV-Vis spectra were recorded on a Cary 50Bio UV-Visible spectrophotometer. Fluorescence spectra were measured on a Cary Eclipse fluorescence spectrophotometer. Samples for absorption and emission measurements were contained in 1 cm × 1 cm or 1 cm × 0.2 cm quartz cuvettes. SEM images were obtained using an S-4800 (Hitachi Ltd.) with an accelerating voltage of 10.0 kV. Samples were prepared by evaporating a solution of molecules **1a–b** and **2a–b** onto a SiO₂/Si substrate (1×1 cm²).

2. Synthetic Experimental Details of New Platinum-Acetylide Complexes 1a-b and 2a-b.

Materials and Reagents. All solvents were dried according to standard procedures and all of them were degassed under N_2 for 30 minutes before use. Reagents were used as purchased. All reactions were performed in standard glassware under an inert N_2 atmosphere. Compounds 3^1 , 5^2 , 7^3 , and 8^4 were prepared as previous report.

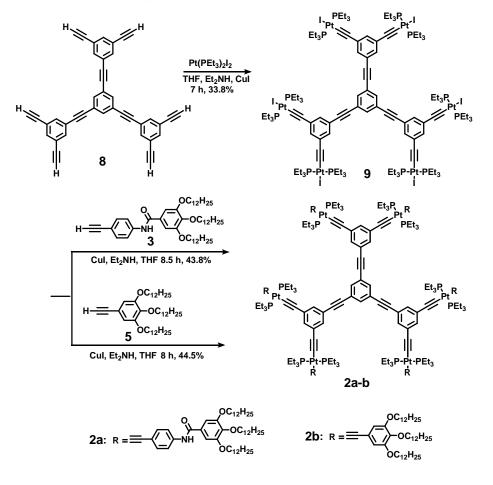
Scheme S1. Synthesis route of the precursors 4 and 6.



Synthesis of compound 4. A solution of *trans*-diiodobis (triethyl-phosphine) platinum (530 mg, 0.78 mmol) and cuprous iodide (26 mg, 13.7 mol %) in a THF/Et₂NH mixture (60 mL/50 mL) was stirred at room temperature, and **3** (300 mg, 0.39 mmol) dissolved in THF (30 mL) was added dropwise for 1.5 h. The solvent was removed in vacuo. The residue was separated by column chromatography on silica gel (petroleum ether/ethyl acetate 10:1) to give the desired product **4** (300 mg, 53%) as a wheat-colored solid. R*f* = 0.4 (petroleum ether/ethyl acetate 10:1). M.p. 46 °C. IR (neat): v/cm⁻¹ 3259, 3106, 3019, 2920, 2851, 2189, 2123, 2047, 1900, 1845, 1640, 1579, 1524, 1505, 1468, 1426, 1401, 1336, 1292, 1236, 1215, 1114, 1034, 1005, 951, 859, 836, 764, 729, 668, 642. ¹H NMR (400 MHz; CDCl₃): δ 7.63 (s, 1H), 7.50 (d, 2H, *J* = 8.4 Hz), 7.28 (d, 2H, *J* = 8.4 Hz), 7.03 (s, 2H), 3.99-4.049 (m, 6H), 2.21-2.25 (m, 12H), 1.73-1.82 (m, 6H), 1.26 (m, 72H), 0.86 (m, 9H); ³¹P NMR (161.9 MHz; CDCl₃): δ 8.63 (*J*_{PL-P} = 2323.3 Hz); ¹³C NMR (CDCl3; 100 MHz): δ 165.4, 153.2, 141.4, 135.4, 131.2, 129.9, 119.9, 105.7, 73.5, 69.4, 31.9, 30.3, 29.7, 29.6, 29.4,

29.3, 26.0, 22.7, 16.7, 16.6, 16.4, 14.1, 8.3.

Synthesis of compound 6. Following the procedure for the preparation of **4**. Compound **5** (260 mg, 0.4 mmol), *trans*-diiodobis (triethyl-phosphine) platinum (545 mg, 0.8 mmol), cuprous iodide (27 mg, 14 mol %), Et₂NH (45 mL) and dried THF (80 mL) yielded **6** as a wheat-colored solid (366 mg, 76%) after purification by column chromatography (dichloromethane/petroleum ether 1:1). R*f* = 0.6 (dichloromethane/petroleum ether 1:1). M.p. 42 °C. IR (neat): v/cm⁻¹ 3013, 2920, 2851, 2104, 1772, 1654, 1586, 1568, 1499, 1466, 1413, 1379, 1333, 1225, 1170, 1114, 1035, 1011, 980, 825, 769, 728, 665, 631. ¹H NMR (400 MHz; CDCl₃): δ 6.47 (s, 2H), 3.89-3.95 (m, 6H), 2.21-2.23 (m, 12H), 1.75 (m, 6H), 1.26 (m, 72H), 0.86 (m, 9H); ³¹P NMR (161.9 MHz; CDCl₃): δ 8.66 (J_{Pt-P} = 2326.5 Hz); ¹³C NMR (CDCl3, 100 MHz): δ 152.7, 137.3, 123.2, 109.5, 73.4, 69.1, 31.9, 30.3, 29.7, 29.6, 29.4, 26.1, 22.7, 16.8, 16.6, 16.4, 14.1, 8.4, 8.3.


Scheme S2. Synthesis route of target moleculars 1a-b.

Synthesis of compound 1a. A 50 mL Schlenk flask was charged with 7 (25 mg, 0.03 mmol), 4 (485 mg, 0.36 mmol), and cuprous iodide (8.0 mg, 5 mol %), degassed, and back-filled three times with N₂. Et₂NH (3 mL) and dried THF (7 mL) were introduced into the reaction flask by syringe. The reaction mixture was stirred under an inert atmosphere at room temperature for about 17 h.

The solvent was removed by evaporation on a rotary evaporator. The residue was purified by column chromatography on silica gel (dichloromethane/acetone 50:1) to give **1a** (70 mg, 28.9%) as a orange red solid. Rf = 0.8 (dichloromethane/acetone 50:1). IR (neat): v/cm⁻¹ 3734, 2961, 2922, 2851, 2200, 2099, 1583, 1504, 1466, 1335, 1276, 1261, 1105, 1034, 821, 803, 764, 751, 647, 635, 621, 609. ¹H NMR (400 MHz; CD₂Cl₂): δ 7.73 (s, 6H), 7.48-7.54 (m, 24H), 7.25-7.31 (m, 24H), 7.03 (s, 12H), 3.97-4.05 (m, 36H), 2.20 (m, 72H), 1.71-1.84 (m, 36H), 1.27 (s, 396H), 0.88 (m, 54H); ³¹P NMR (161.9 MHz; CD₂Cl₂): δ 11.96 ($J_{PLP} = 2358.9$ Hz); ¹³C NMR (CD₂Cl₂, 100 MHz): δ 165.5, 153.6, 141.6, 131.9, 131.7, 131.4, 130.4, 120.2, 114.8, 105.8, 73.9, 69.7, 32.4, 30.7, 30.1, 29.8, 26.5, 23.1, 17.0, 16.8, 16.6, 14.3, 8.6. MALDI-TOF MS of **1a**: m/z calcd for C₄₄₄H₆₉₆N₆O₂₄P₁₂Pt₆ ([M+H]⁺) 8038.82, found 8038.76.

Synthesis of compound 1b. Following the procedure for the preparation of **1a**. **6** (440 mg, 0.36 mmol), **7** (30 mg, 0.036 mmol), cuprous iodide (10 mg, 5 mol %), Et₂NH (3 mL) and dried THF (7 mL) yielded **1b** as a orange red solid (85 mg, 32.2%) after purification by column chromatography (dichloromethane/acetone 50:1). R*f* = 0.5 (dichloromethane/acetone 50:1). M.p. 74 °C. IR (neat): v/cm⁻¹ 2959, 2922, 2852, 2200, 2098, 1742, 1591, 1568, 1499, 1466, 1414, 1378, 1332, 1262, 1228, 1170, 1113, 1035, 832, 768, 732, 631. ¹H NMR (400 MHz; CD₂Cl₂): δ 7.52 (d, *J* = 6.8 Hz, 12H), 7.30 (d, *J* = 7.6 Hz, 12H), 6.45 (s, 12H), 3.85-3.94 (m, 36H), 2.18 (m, 72H), 1.54 (m, 36H), 1.27 (s, 396H), 0.88 (m, 54H); ³¹P NMR (161.9 MHz; CD₂Cl₂): δ 11.64 (*J*_{Pt-P} = 2357.3 Hz); ¹³C NMR (CD₂Cl₂; 100 MHz): δ 153.1, 137.0, 131.9, 131.3, 130.4, 127.3, 124.0, 119.4, 109.4, 100.4, 88.4, 73.8, 69.3, 32.4, 30.2, 30.1, 30.1, 29.9, 29.8, 29.8, 26.6, 23.1, 16.9, 16.8, 16.6, 14.3, 8.6. MALDI-TOF MS of **1b**: m/z calcd for C₄₀₂H₆₆₆O₁₈P₁₂Pt₆ ([M+H]⁺) 7324.59, found 7323.24.

Scheme S3. Synthesis route of target moleculars 2a-b.

Synthesis of compound 9. Following the procedure for the preparation of **1a**. **8** (60 mg, 0.12 mmol), *trans*-diiodobis (triethyl-phosphine) platinum (945 mg, 1.4 mmol), cuprous iodide (10.5 mg, 5.5 mol%), Et₂NH (10 mL) and dried THF (20 mL) yielded **9** as a yellow solid (150 mg, 33.8%) after purification by column chromatography (dichloromethane:). R*f* = 0.8 (dichloromethane). M.p. 168 °C. IR (neat): v/cm⁻¹ 3738, 3670, 3658, 2988, 2968, 2927, 2903, 2882, 2731, 2356, 2114, 1772, 1748, 1568, 1453, 1408, 1378, 1254, 1199, 1155, 1049, 1034, 975, 868, 764, 742, 729, 682, 627. ¹H NMR (400 MHz; CDCl₃): δ 7.63 (s, 3H), 7.21 (d, *J* = 1.2 Hz, 6H), 7.18 (s, 3H), 2.21-2.25 (m, 72H), 1.13-1.21 (m, 108H); ³¹P NMR (161.9 MHz; CDCl₃): δ 8.74 (*J*_{Pt-P} = 2318.4 Hz); ¹³C NMR (CDCl₃; 100 MHz): δ 134.0, 133.3, 130.6, 128.7, 124.0, 122.4, 99.2, 91.2, 91.0, 90.9, 90.4, 87.3, 29.7, 16.7, 16.6, 16.4, 8.3.

Synthesis of compound 2a. Following the procedure for the preparation of 1a. 9 (150 mg, 0.039 mmol), 3 (360.5 mg, 0.466 mmol), cuprous iodide (10 mg, 5 mol %), Et₂NH (3.5 mL) and dried

THF (7 mL) yielded **2a** as a gray solid (131 mg, 43.8%) after purification by column chromatography (dichloromethane). Rf = 0.5 (dichloromethane). M.p. 108 °C. IR (neat): v/cm⁻¹ 2963, 2921, 2851, 2099, 1644, 1581, 1505, 1465, 1402, 1335, 1261, 1092, 1081, 868, 798, 766, 684. ¹H NMR (400 MHz; CD₂Cl₂): δ 7.80 (s, 6H), 7.67 (s, 3H), 7.50 (d, J = 8 Hz, 12H), 7.26 (d, J = 8 Hz, 12H), 7.21 (s, 6H), 7.17 (s, 3H), 7.03 (s, 12H), 3.96-4.02 (m, 36H), 2.19 (m, 72H), 1.70-1.84 (m, 36H), 1.22-1.48 (m, 396H), 0.88 (m, 54H). ³¹P NMR (161.9MHz, CD₂Cl₂): δ 11.95 ($J_{Pt-P} = 2362.1$ Hz); ¹³C NMR (CD₂Cl₂; 100 MHz): δ 164.6, 152.7, 140.7, 130.7, 129.4, 124.3, 119.3, 104.9, 72.9, 68.8, 31.4, 29.8, 29.1, 28.9, 25.6, 22.1, 16.1, 15.9, 15.7, 13.3, 7.6.

Synthesis of compound 2b. Following the procedure for the preparation of **1a**. **9** (92 mg, 0.024 mmol), **5** (188 mg, 0.29 mmol), cuprous iodide (6 mg, 3 mol %), Et₂NH (2.5 mL) and dried THF (4.5 mL) yielded **2b** as a gray solid (75 mg, 44.5%) after purification by column chromatography (dichloromethane). R*f* = 0.4 (dichloromethane). M.p. 70 °C. IR (neat): v/cm⁻¹ 2922, 2852, 2096, 1567, 1497, 1467, 1413, 1379, 1332, 1227, 1115, 1035, 868, 828, 767, 733, 683, 631. ¹H NMR (400 MHz; CD₂Cl₂): δ 7.65 (s, 3H), 7.19 (s, 6H), 7.16 (s, 3H), 6.44 (s, 12H), 3.85-3.95 (m, 36H), 2.15-2.19 (m, 72H), 1.77 (m, 36H), 1.21-1.27 (s, 396H), 0.88 (m, 54H). ³¹P NMR (161.9 MHz, CD₂Cl₂): δ 11.94 (*J*_{Pt-P} = 2362.1 Hz); ¹³C NMR (CD₂Cl₂; 100 MHz): δ 153.2, 137.2, 134.3, 134.2, 130.8, 129.5, 124.6, 124.2, 122.6, 110.0, 109.6, 108.6, 91.1, 87.4, 73.8, 69.4, 32.4, 30.8, 30.2, 30.1, 29.9, 29.8, 26.6, 23.1, 17.0, 16.9, 16.7, 14.3, 8.6. MALDI-TOF MS of **2b**: m/z calcd for C₃₇₈H₆₅₄O₁₈P₁₂Pt₆ ([M+H]⁺) 7024.5, found 7024.1.

3. Characterization of Complexes 1a-b and 2a-b.

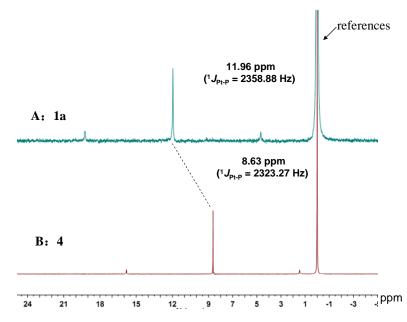


Fig. S1 ³¹P NMR spectra (CD₂Cl₂, 298 K) of (A) star-shaped complex **1a**, (B) platinum-acetylide precursor **4**.

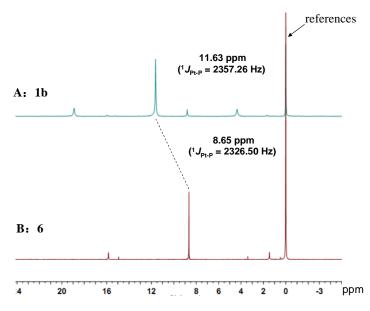


Fig. S2 31 P NMR spectra (CD₂Cl₂, 298 K) of (A) star-shaped complex **1b**, (B) platinum-acetylide precursor **6**.

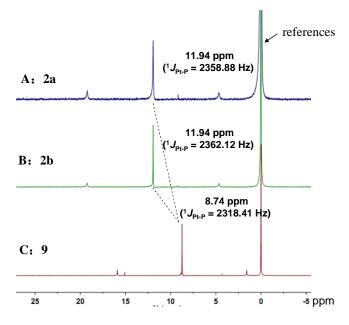


Fig. S3 ³¹P NMR spectra (CD₂Cl₂, 298 K) of (A) branched complex **2a**, (B) branched complex **2b**, (C) branched hexakisplatinum precursor **9**.

4. UV-vis and Fluorescence Spectra of 1a-b and 2a-b.

Compound (concentration/M ⁻¹)	solvent(298K)	$\lambda_{abs}~(nm)$	$\epsilon \ (M^{\text{-1}}\text{cm}^{\text{-1}})$	$\lambda_{F} \ (nm)$
1a (4.0×10 ⁻⁶)	Methylene chloride	260.9	133250	491.94
		301.9	184500	
		341.0	243250	
		410.0	264500	
1b (4.0×10 ⁻⁶)	Methylene chloride	267.1	150250	492.98
		334.9	180500	
		409.0	224750	
2a (3.0×10^{-6})	Methylene chloride	297.1	177229	398.93
		350.0	208228	
2b (3.0×10 ⁻⁶)	Methylene chloride	270.1	200596	396.96
		292.9	232906	479.85
		339.0	236263	
1.2 1.0 0.8 0.6 0.4 0.2 0.0 300 350 400 Wavelength/nm	450 500	700- 600- 100- 100- 100- 100- 0-	B 450 500 550 Wavelength/	600 650

Table S1. Photophysical data for compounds 1a, 1b, 2a and 2b.

Fig. S4 (A) UV-vis absorption spectrum and (B) emission spectrum of complex **1a** in CH_2Cl_2 (concentration = 4.0×10^{-6} M).

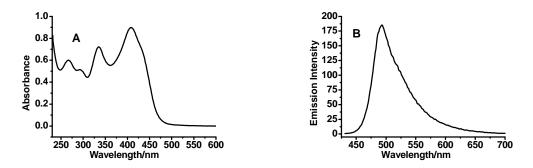


Fig. S5 (A) UV-vis absorption spectrum and (B) emission spectrum of complex **1b** in CH₂Cl₂ (concentration = 4.0×10^{-6} M).

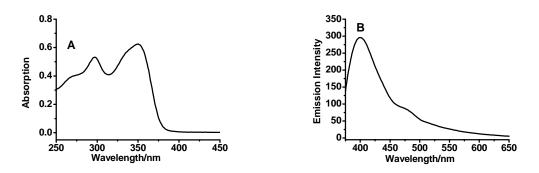


Fig. S6 (A) UV-vis absorption spectrum and (B) emission spectrum of complex 2a in CH₂Cl₂ (concentration = 3.0×10^{-6} M).

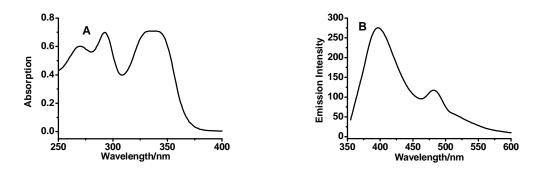


Fig. S7 (A) UV-vis absorption spectrum and (B) emission spectrum of complex **2b** in CH_2Cl_2 (concentration = 3.0×10^{-6} M).

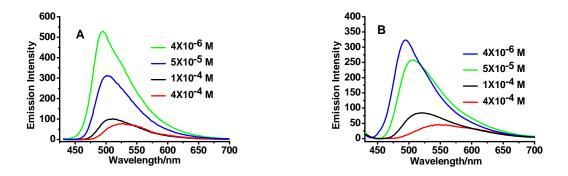


Fig. S8 Concentration dependent emission spectra of 1a (A) and 1b (B) in CH₂Cl₂/Acetone = 1:1.

5. Additional SEM Images of Complexes 1a and 2a at Different

Scales.

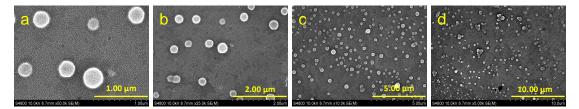


Fig. S9 SEM images of star-shaped complex **1a** prepared in $CH_2Cl_2/Acetone = 3:1$ at different scales.

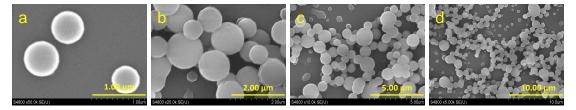


Fig. S10 SEM images of star-shaped complex **1a** prepared in $CH_2Cl_2/Acetone = 1:1$ at different scales.

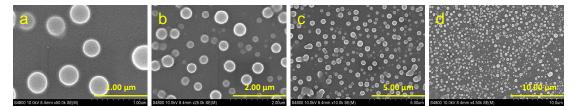


Fig. S11 SEM images of branched complex 2a prepared in CH₂Cl₂/Acetone = 3:1 at different scales.

6. Concentration-Dependent and Temperature-Dependent ¹H NMR

Spectra of Complexes 1a and 2a.

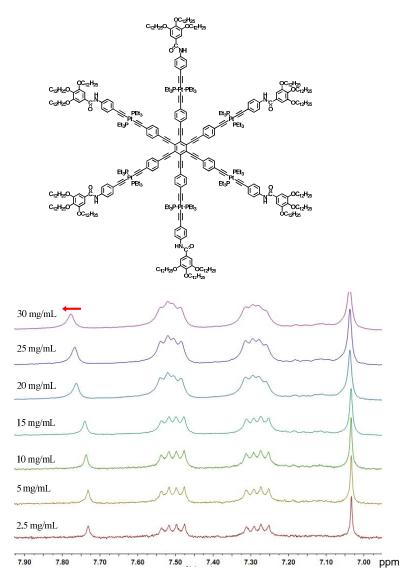


Fig. S12 Partial ¹H NMR spectra (400 MHz, CD_2Cl_2) of star-shaped complex **1a** at different concentrations at 25 °C showing the aromatic region (using TMS as internal standard).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

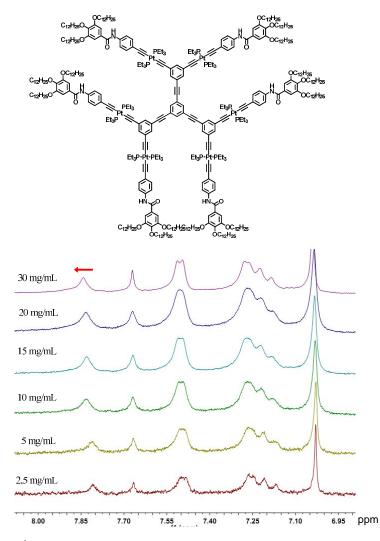


Fig. S13 Partial ¹H NMR spectra (400 MHz, CD_2Cl_2) of branched complex **2a** at different concentrations at 25 °C showing the aromatic region (using TMS as internal standard).

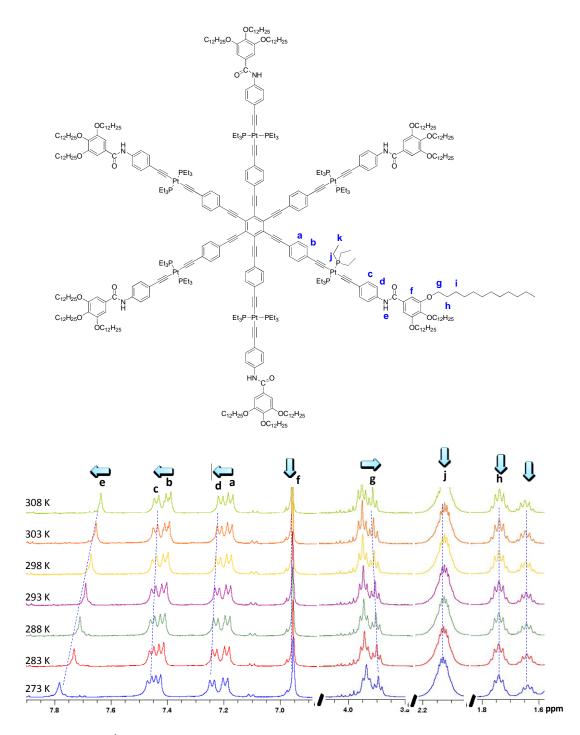


Fig. S14 Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 25 mg/ mL) of **1a** at variable temperature (using TMS as internal standard).

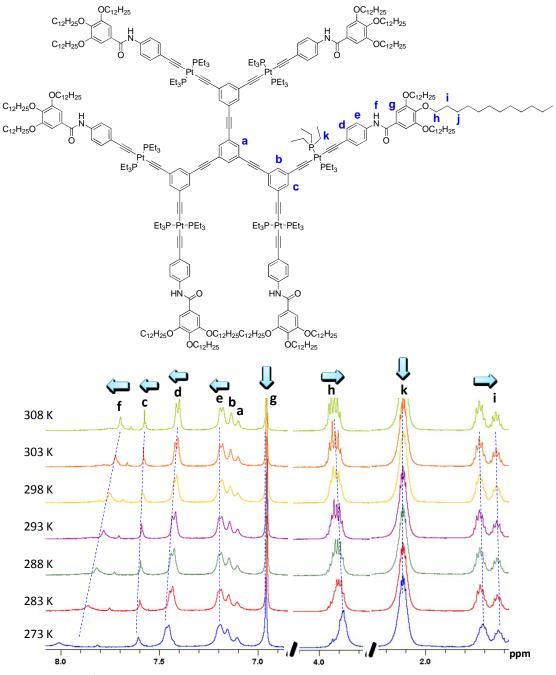


Fig. S15 Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 25 mg/ mL) of **2a** at variable temperature (using TMS as internal standard).

7. Gelation Tests.

A weighed sample of gelator was mixed with a solvent (0.05 mL) in a septum-capped vial and heated. If the compound was unable to dissolve, it was noted as insoluble (I). If a clear solution was obtained, the hot resulting solution was left for 24 h at room temperature. The aggregation state was then assessed. If no flow was observed when inverting the vial, a stable gel was formed and noted as gelation (G). If precipitation occurred, P was noted. If the clear solution (>100 mg/mL) was retained, it was marked as soluble (S). Repeated heating and cooling confirmed the thermo-reversibility of the gelation process. The critical gelator concentration (CGCs) of the organogelator was determined by measuring the minimum amount of gelator required for the formation of a stable gel at 25 °C. The SEM Samples were prepared by spinning the gels on a silicon substrate, dried under air.

Table S2. Gelation properties and critical gelator concentrations (CGCs) of complexes in various organic solvents at 25° C.^a

solvent	2a	2b	1a	1b
cyclohexane	G(11.5)	S	Р	S
n-hexane	n-hexane G(19.5)		Р	S
n-heptane	n-heptane G(19.5)		Р	S
acetone	Р	Ι	I	Р
tetrahydrofuran	S	S	S	S
ethyl acetate	S	S	S	S
n-propanol	I I		I	Ι
toluene	e S S S		S	
n-dodecane	Ι	S	Р	S
n-octane	G(15.6)	S	PG	S
n-decane	G(19.5)	S PG		S
dioxane	dioxane S		S	S

^a The value given in parentheses is the CGC in mg/mL.

solvent	cyclohexane	<i>n</i> -hexane	<i>n</i> -heptane	<i>n</i> -octane	<i>n</i> -decane
2a	46-48℃	52-54℃	45-47℃	51-53℃	43-45℃

Table S3. The gel-sol phase-transition temperature (T_{gel}) of branched complex 2a.

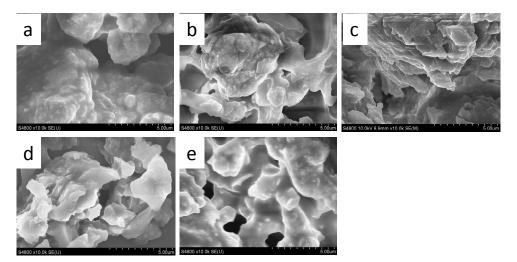
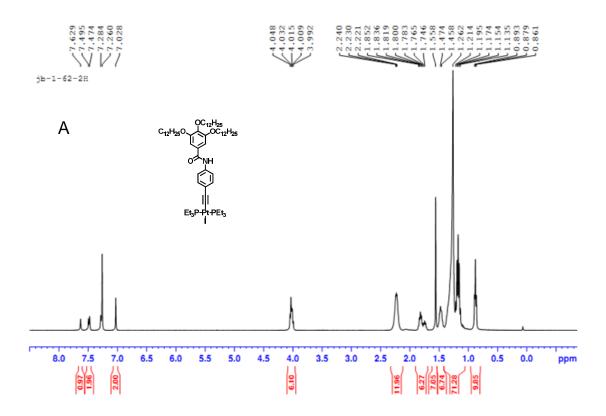



Fig. S16 SEM images of the xerogels of branched complex **2a** prepared in different solvents: (a) cyclohexane; (b) *n*-hexane; (c) *n*-heptane; (d) *n*-octane; (e) *n*-decane. Scale bar is 5.0μ m. Samples were prepared by spinning the gels on a silicon substrate, dried under air.

8. Multiple Nuclear NMR (¹H, ³¹P, and ¹³C NMR) Spectra and

MALDI-TOF MS of New Compounds.

Fig. S17 (A) ¹H NMR, (B) ³¹P NMR and (C) ¹³C NMR spectra of platinum-acetylide precursor 4 in $CDCl_3$.

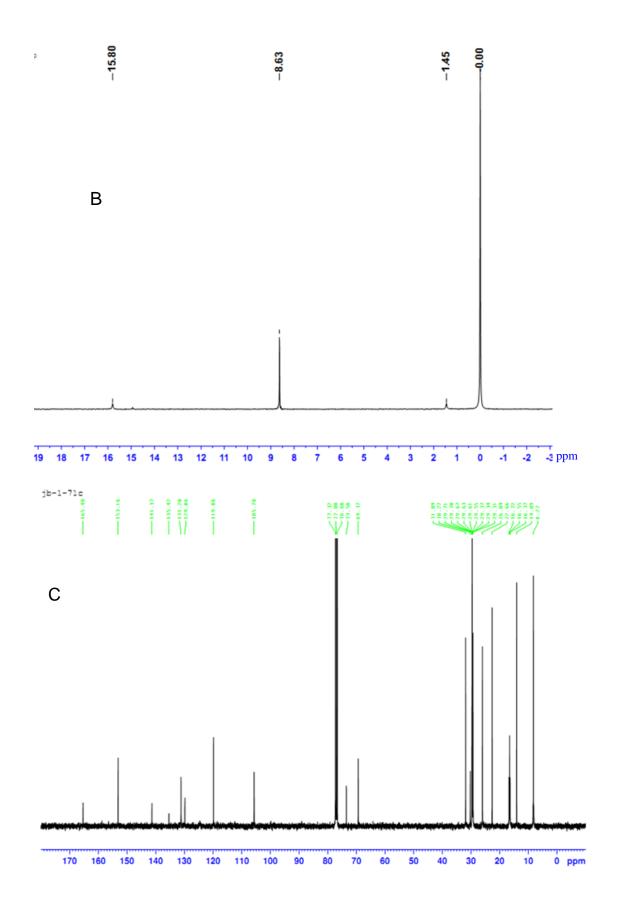
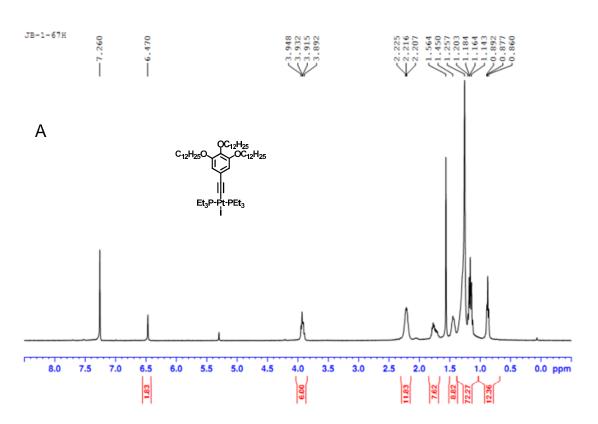



Fig. S18 (A) 1 H NMR, (B) 31 P NMR and (C) 13 C NMR spectra of platinum-acetylide precursor **6** in CDCl₃.

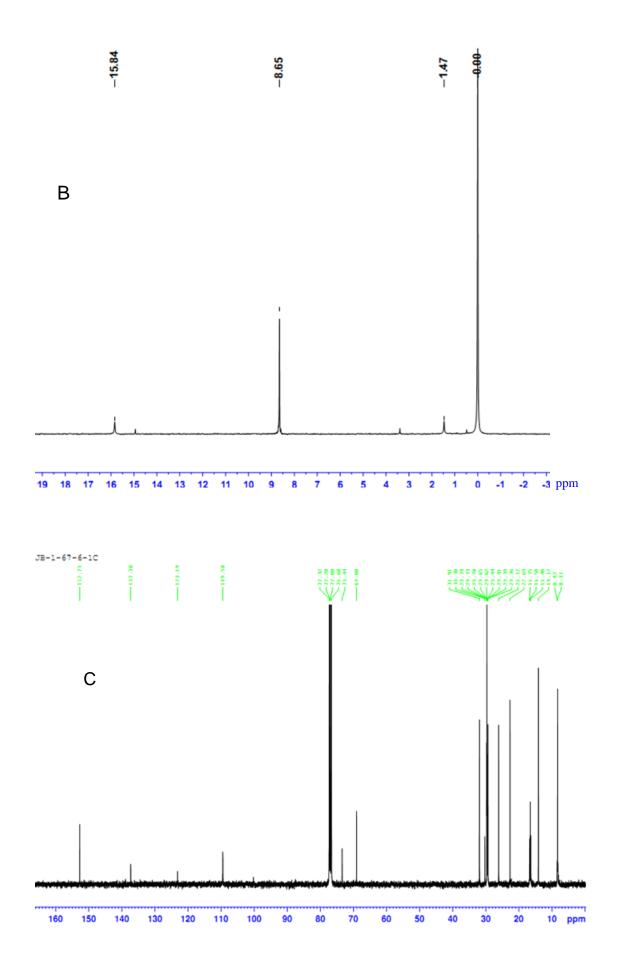
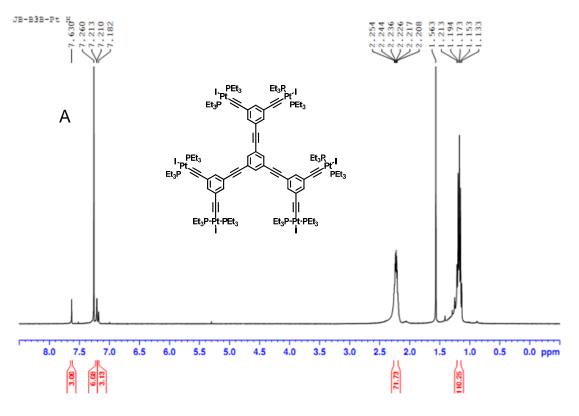



Fig. S19 (A) ¹H NMR, (B) ³¹P NMR and (C) ¹³C NMR spectra of branched hexakisplatinum precursor 9 in CDCl₃.

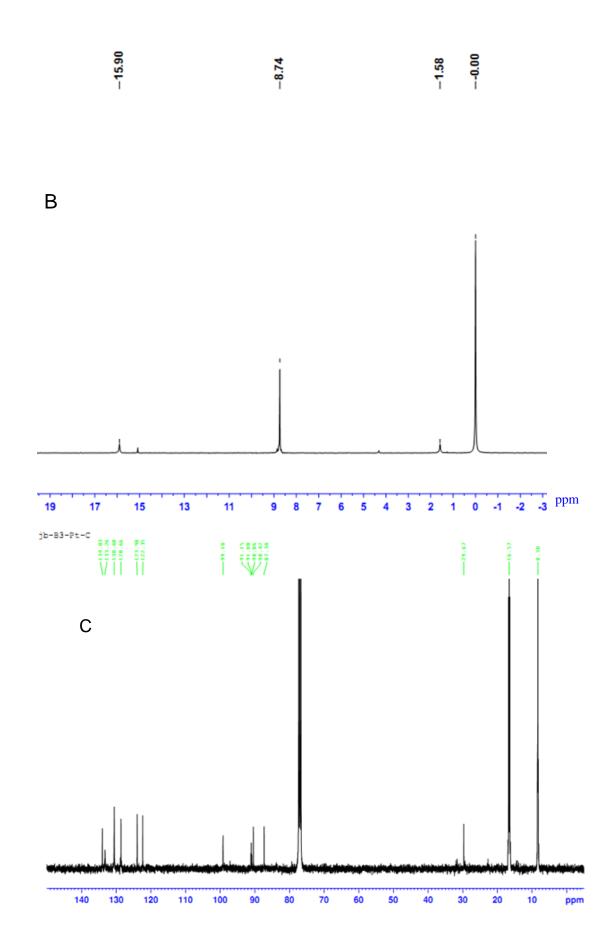
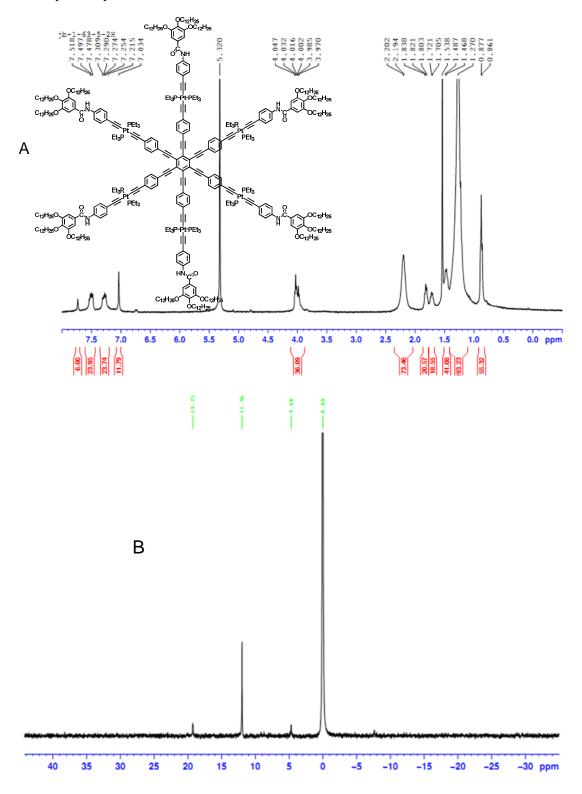
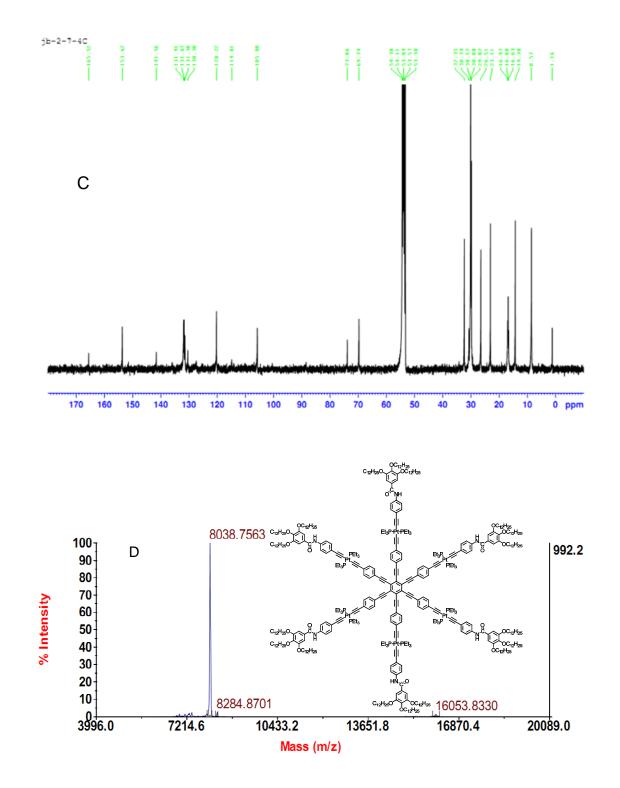
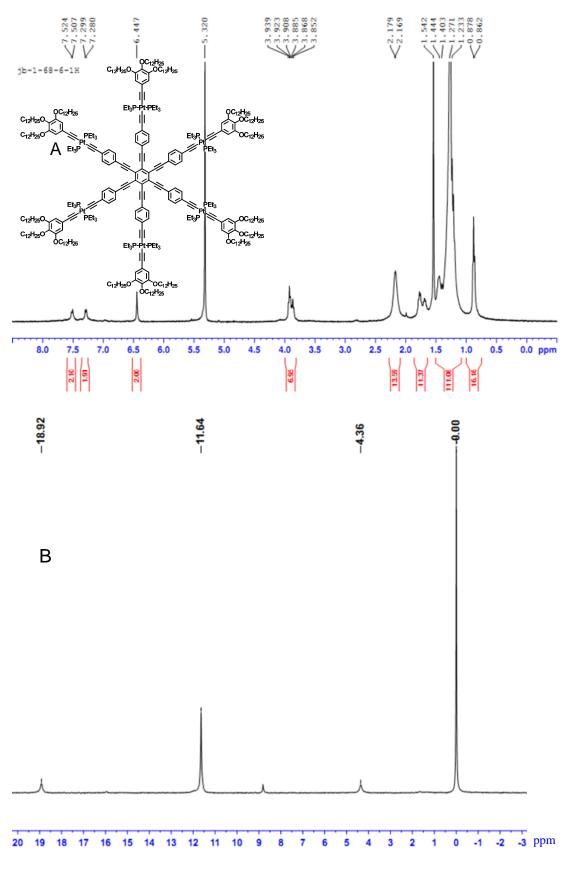
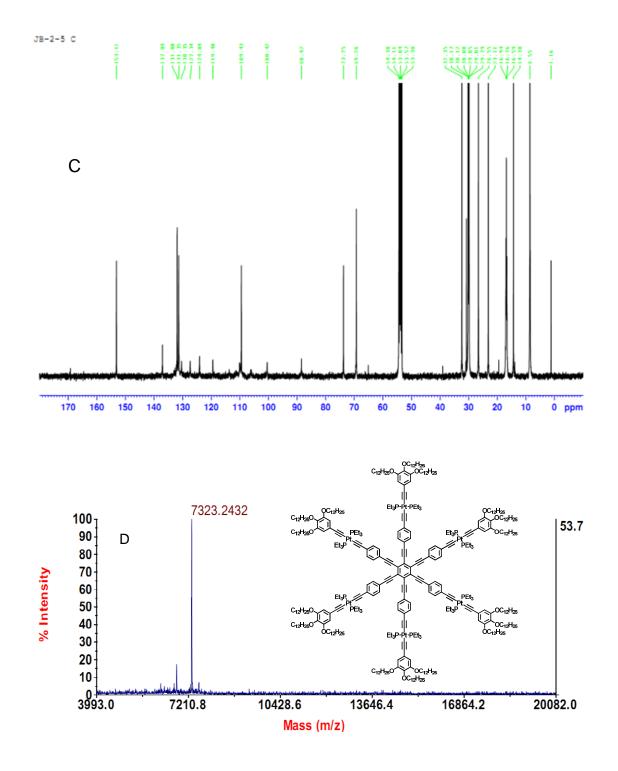
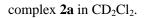



Fig. S20 (A) ¹H NMR, (B) ³¹P NMR, (C) ¹³C NMR spectra and (D) MALDI-TOF MS of star-shaped complex **1a** in CD_2Cl_2 .

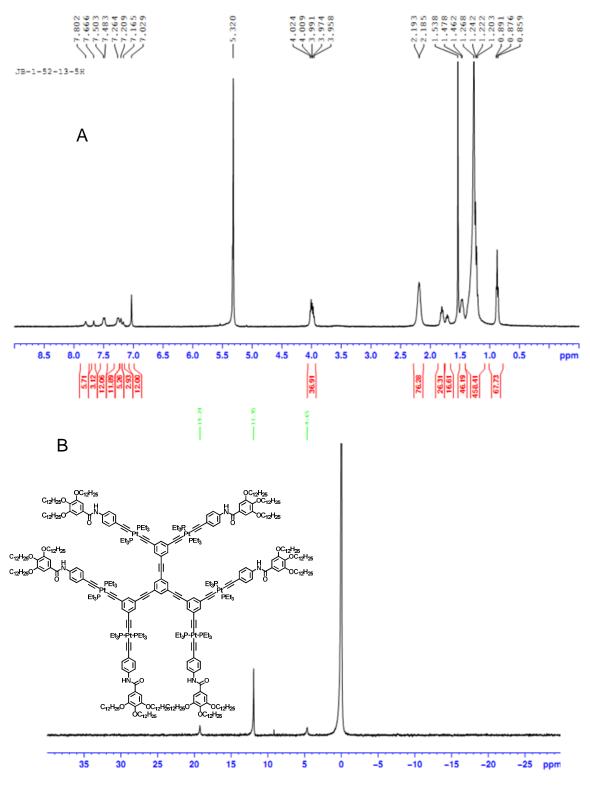

Fig. S21 (A) ¹H NMR, (B) ³¹P NMR, (C) ¹³C NMR spectra and (D) MALDI-TOF MS of star-shaped complex **1b** in CD_2Cl_2 .

Fig. S22 (A) ¹H NMR, (B) ³¹P NMR, (C) ¹³C NMR spectra and (D) MALDI-TOF MS of branched

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

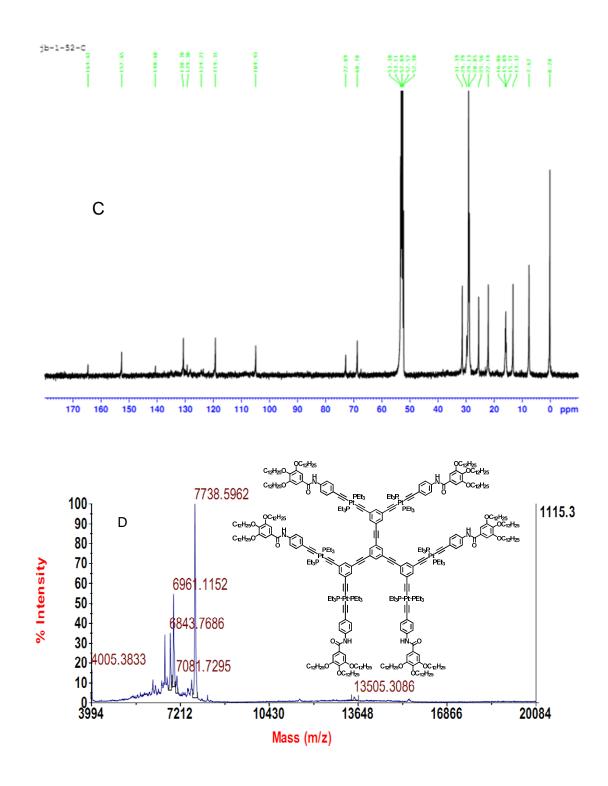
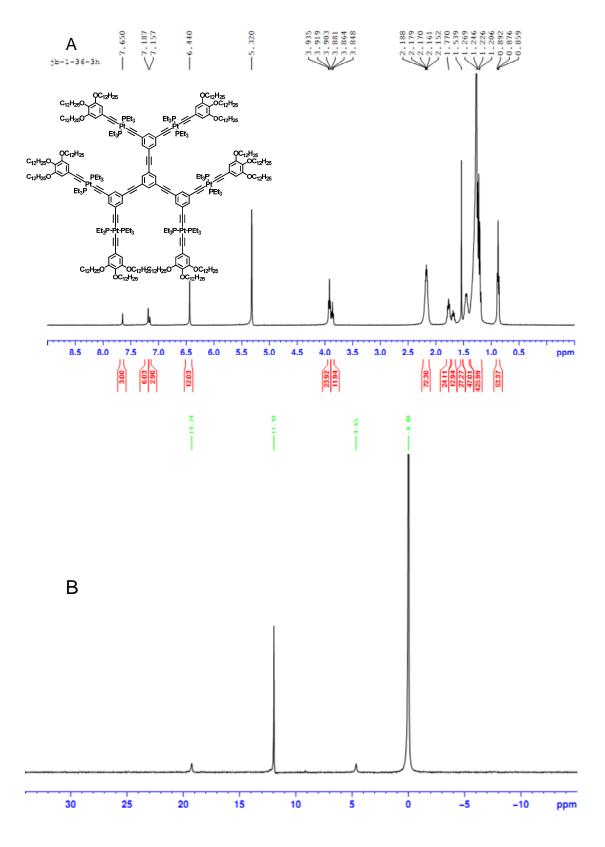
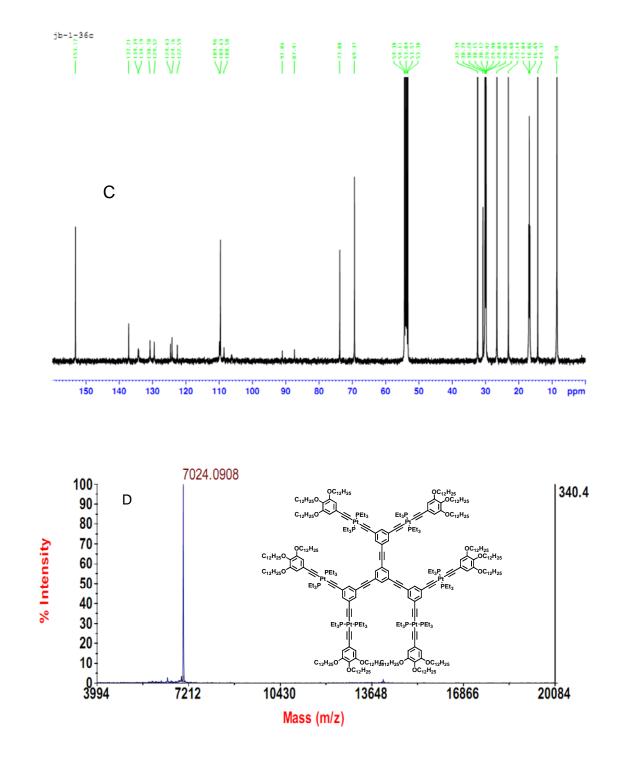




Fig. S23 (A) ¹H NMR, (B) ³¹P NMR, (C) ¹³C NMR spectra and (D) MALDI-TOF MS of branched complex **2b** in CD_2Cl_2 .

•

9. References

- S. Diring, F. Camerel, B. Donnio, T. Dintzer, S. Toffanin, R. Capelli, M. Muccini and R. Ziessel, J. Am. Chem. Soc., 2009, 131, 18177.
- 2. T. Cardolaccia, Y. Li and K. S. Schanze, J. Am. Chem. Soc., 2008, 130, 2535.
- 3. C.-C. Huang, Y.-C. Lin, P.-Y. Lin and Y.-J. Chen, Eur. J. Org. Chem., 2006, 4510.
- 4. J. Li and P. Huang, *Res Chem Intermed*, 2012, **38**, 403.