Electronic Supplementary Information

2',4'-BNA bearing a chiral guanidinopyrrolidine-containing nucleobase with potent ability to recognize the CG base pair in parallel-motif DNA triplex

Yoshiyuki Hari,* Masaaki Akabane and Satoshi Obika*

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.

Contents

1.	Synthesis	Page	S2 – S9
2.	HPLC charts and MALDI-TOF-Mass spectra for TFOs	Page	S10– S22
3.	¹ H, ¹³ C and ³¹ P spectra for the new compounds	Page	S23–S35

General: Melting points are uncorrected. All moisture-sensitive reactions were carried out in well-dried glassware under a N₂ atmosphere. ¹H NMR (400.00 MHz), ¹³C NMR (100.53 MHz), and ³¹P NMR (161.84 MHz) were recorded on JEOL JNM-ECS-400 spectrometers. Chemical shifts are reported in parts per million downfield from internal tetramethylsilane (0.00 ppm) for ¹H NMR, CD₃OD (49.00 ppm) or CDCl₃ (77.00 ppm) for ¹³C NMR, or external H₃PO₄ (0.00 ppm) for ³¹P NMR. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer. Optical rotations were recorded on a JASCO P-2200 instrument. Mass spectra were measured on a JEOL JMS-600, JEOL JMS-700, Bruker Daltonics Autoflex II TOF/TOF or JEOL JMS-S3000 mass spectrometer. For silica gel column chromatography, Fuji Silysia PSQ-100B, FL-60D and FL-100D were used. For amine silica gel column chromatography, Fuji Silysia DM-1020 was used.

Scheme S1. Synthesis of guanidinopyrrolidines. *Reagent and conditions*: (i) (3S)-(+)-1-benzyl-3-aminopyrrolidine, $(BocNH)_2CS^{1}$, DIPEA, EDCI, CH_2Cl_2 , rt, 8 h, 88%; (ii) (1) TFA, CH_2Cl_2 , rt, 3 h; (2) 20% Pd(OH)_2-C, MeOH, rt, 12 h, 86%; (iii) (3R)-(-)-1-benzyl-3-aminopyrrolidine, $(BocNH)_2CS$, DIPEA, EDCI, CH_2Cl_2 , rt, 3 h, 91%; (iv) (1) TFA, CH_2Cl_2 , rt, 1 h; (2) 20% Pd(OH)_2-C, MeOH, rt, 8 h, 80%; (v) (3S)-(+)-1-benzyl-3-(methylamino)pyrrolidine, $(BocNH)_2CS$, DIPEA, EDCI, CH_2Cl_2 , rt, 3 h, 91%; (v) (1) TFA, CH_2Cl_2 , rt, 1 h; (2) 20% Pd(OH)_2-C, MeOH, rt, 8 h, 80%; (v) (3S)-(+)-1-benzyl-3-(methylamino)pyrrolidine, $(BocNH)_2CS$, DIPEA, EDCI, CH_2Cl_2 , rt, 3 h, 61%; (viii) (1) TFA, CH_2Cl_2 , rt, 3 h; (2) 20% Pd(OH)_2-C, MeOH, rt, 10 h, 80%.

All guanidine derivatives used in this study were synthesized in Scheme S1.

(3S)-1-Benzyl-3-{N,N'-bis-[(2-tert-buthoxy)carbonyl]guanidino}pyrrolidine (S1): Under a N₂ atmosphere, EDCI (104)0.543 mmol) added mg, was to a solution of (3S)-(+)-1-benzyl-3-aminopyrrolidine (63.8 mg, 0.362 mmol), N,N'-bis-(2-tert-buthoxy)carbonylthiourea $[(BocNH)_2CS]^{1}$ (63.8 mg, 0.362 mmol) and DIPEA (0.189 mL, 1.09 mmol) in anhydrous CH₂Cl₂ (20 mL) and the resulting mixture was stirred at room temperature for 8 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was diluted with AcOEt, washed with water and brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was

purified by silica gel column chromatography (*n*-hexane/AcOEt = 5/1) to give compound **S1** (134 mg, 88%) as a white amorphous powder.

Mp 95–96°C. $[\alpha]_D^{22}$ +4.02 (c 1.0, CHCl₃). IR ν_{max} (KBr): 3326, 3114, 2978, 2792, 1721, 1638, 1612, 1564, 1415, 1327, 1158, 1056, 1027 cm⁻¹. ¹H NMR (CDCl₃) : δ 1.49 (9 H, s), 1.51 (9 H, s), 1.65-1.74 (1 H, m), 2.24-2.34 (2 H, m), 2.59 (2 H, d, *J* = 4.6 Hz), 2.81-2.88 (1 H, m), 3.60 (1 H, AB, *J* = 12.8 Hz), 3.64 (1 H, AB, *J* = 12.8 Hz), 4.68 (1 H, ddt, *J* = 4.6, 8.5 and 8.5 Hz), 7.21-7.35 (5 H, m), 8.67 (1 H, d, *J* = 8.3 Hz), 11.5 (1 H, s). ¹³C NMR (CDCl₃): δ 27.97, 28.20, 32.42, 49.63, 52.31, 59.58, 60.30, 78.98, 82.78, 126.80, 128.11, 128.44, 138.91, 152.98, 155.24, 163.53. HRMS (MALDI): Calcd for C₂₂H₄₄N₄O₄Na (M+Na⁺): 441.2472. Found: 441.2474. *Anal.* Calcd for C₂₂H₃₄N₄O₄: C, 63.13; H, 8.19; N, 13.39. Found: C, 62.74; H, 7.97; N, 13.24.

(3*S*)-3-Guanidinopyrrolidine-TFA (S2): TFA (20 mL) was added to a solution of S1 (500 mg, 1.19 mmol) in CH₂Cl₂ (20 mL) and the resulting mixture was stirred at room temperature for 3 h. After the reaction mixture was concentrated *in vacuo*, the crude product was dissolved in MeOH (10 mL). Under a H₂ atmosphere, the solution was added to a solution of 20% Pd(OH)₂-C (300 mg) in MeOH (10 mL) and the resulting mixture was stirred at room temperature for 12 h. After the reaction mixture was filtered, the solution was concentrated *in vacuo*. The residue was purified by amine silica gel column chromatography (CH₂Cl₂/MeOH = 1/1) to give compound S2 (247 mg, 86%) as a white amorphous powder.

Mp 138–140°C. $[\alpha]_D^{23}$ –9.40 (c 1.0, MeOH). IR v_{max} (KBr): 3339, 1675, 1523, 1428, 1344, 1201, 1133, 1034 cm⁻¹. ¹H NMR (CD₃OD) & 2.05–2.13 (1 H, m), 2.39 (1 H, dddd, J = 6.4, 7.3, 7.3 and 14.4 Hz), 3.28–3.33 (1 H, m), 3.38–3.52 (2 H, m), 3.58 (1 H, dd, J = 6.4 and 12.4 Hz), 4.34–4.39 (1 H, m). ¹³C NMR (CDCl₃) & 31.69, 45.24, 50.90, 51.91, 118.08 (q, J = 292 Hz, TFA), 158.44, 163.39 (q, J = 34.5 Hz, TFA). MS (FAB) m/z 129 (M+H⁺). HRMS (FAB): Calcd for C₅H₁₃N₄ (M+H⁺): 129.1135. Found: 129.1142.

(3R)-1-Benzyl-3-{N,N²-bis-[(2-tert-buthoxy)carbonyl]guanidino}pyrrolidine (S3): Under a N₂ atmosphere, EDCI (104)mg, 0.543 mmol) was added solution of to a (3*R*)-(-)-1-benzyl-3-aminopyrrolidine (63.8 mg, 0.362 mmol), (BocNH)₂CS (63.8 mg, 0.362 mmol) and DIPEA (0.189 mL, 1.09 mmol) in anhydrous CH₂Cl₂ (20 mL) and the resulting mixture was stirred at room temperature for 8 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was diluted with AcOEt, washed with water and brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel column chromatography (*n*-hexane/AcOEt = 5/1) to give compound S3 (134 mg, 88%) as a white amorphous powder. Mp 96–97°C. [α]_D²³ –4.49 (c 1.0, CHCl₃). IR ν_{max} (KBr): 3326, 3114, 2978, 2792, 1721, 1638, 1612, 1563, 1415, 1327, 1158, 1056, 1027 cm⁻¹. ¹H NMR (CDCl₃) δ 1.49 (9 H, s), 1.51 (9 H, s), 1.65–1.74 (1 H, m), 2.24–2.36 (2 H, m), 2.60 (2 H, d, J = 4.6 Hz), 2.82–2.88 (1 H, m), 3.60 (1 H, AB, J = 12.9 Hz), 3.64 (1 H, AB, J = 12.9 Hz), 4.68 (1 H, ddt, J = 4.6, 6.5 and 6.5 Hz), 7.22–7.36 (5 H, m), 8.67 (1 H, d, J = 8.2 Hz), 11.5 (1 H, s). ¹³C NMR (CDCl₃) δ 28.07, 28.30, 32.52, 49.71,

52.41, 59.69, 60.41, 79.11, 82.89, 126.88, 128.20, 128.54, 139.04, 153.09, 155.54, 163.63. HRMS (MALDI): Calcd for $C_{22}H_{44}N_4O_4Na$ (M+Na⁺): 441.2472. Found: 441.2460. *Anal.* Calcd for $C_{22}H_{34}N_4O_4$: C, 63.13; H, 8.19; N, 13.39. Found: C, 62.93; H, 8.09; N, 13.14.

(3*R*)-3-Guanidinylpyrrolidine-TFA (S4): TFA (10 mL) was added to a solution of S3 (200 mg, 0.478 mmol) in CH₂Cl₂ (10 mL) and the resulting mixture was stirred at room temperature for 1 h. After the reaction mixture was concentrated *in vacuo*, the crude product was dissolved in MeOH (10 mL). Under a H₂ atmosphere, the solution was added to a solution of 20% Pd(OH)₂-C (400 mg) in MeOH (10 mL) and the resulting mixture was stirred at room temperature for 8 h. After the reaction mixture was filtered, the solution was concentrated *in vacuo*. The residue was purified by amine silica gel column chromatography (CH₂Cl₂/MeOH = 1/1) to give compound S4 (88.2 mg, 80%) as a white amorphous powder.

Mp 138–140°C. $[\alpha]_D^{24}$ –9.37 (c 1.0, MeOH). IR v_{max} (KBr): 3345, 1675, 1523, 1428, 1344, 1201, 1133, 1034 cm⁻¹. ¹H NMR (CD₃OD) δ 1.69–1.77 (1 H, m), 2.16 (1 H, dddd, J = 7.8, 7.8, 7.8 and 15.6 Hz), 2.77 (1 H, dd, J = 4.1 and 11.9 Hz), 2.87–2.93 (1 H, m), 2.99–3.05 (1 H, m), 3.11 (1 H, dd, J = 6.4 and 11.9 Hz), 3.98–4.03 (1 H, m). ¹³C NMR (CDCl₃) δ 33.73, 46.05, 53.41, 53.61, 118.13 (q, J = 292 Hz, TFA), 158.33, 163.29 (q, J = 34.5 Hz, TFA). MS (FAB) *m/z* 129 (M+H⁺). HRMS (FAB): Calcd for C₅H₁₃N₄ (M+H⁺): 129.1135. Found: 129.1140.

(3*S*)-1-Benzyl-3-{*N*,*N*'-bis-[(2-*tert*-buthoxy)carbonyl]-1-methylguanidino}pyrrolidine (S5): Under a N₂ atmosphere, EDCI (4.03 g, 21.0 mmol) was added to a solution of (3S)-(+)-1-benzyl-3-(methylamino)pyrrolidine (2.0 g, 10.5 mmol), (BocNH)₂CS (5.81 g, 21.0 mmol) and DIPEA (5.49 mL, 31.5 mmol) in anhydrous CH₂Cl₂ (50 mL) and the resulting mixture was stirred at room temperature for 24 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was diluted with AcOEt, washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (*n*-hexane/AcOEt = 2/1) to give compound **S5** (2.30 g, 51%) as colorless syrup.

[α]_D²⁵ –25.5 (c 1.0, CHCl₃). IR ν_{max} (KBr): 3156, 2977, 2931, 2792, 1747, 1632, 1604, 1496, 1451, 1393, 1295, 1234, 1144, 1082 cm⁻¹. ¹H NMR (CDCl₃) δ 1.38–1.48 (19 H, m), 1.82–1.91 (1 H, m), 2.17–2.29 (2 H, m), 2.46 (1 H, dd, J = 8.3 and 11.0 Hz), 2.79–2.82 (1 H, m), 2.91–2.95 (1 H, m), 3.07 (3 H, s), 3.48 (1 H, AB, J = 12.8 Hz), 3.66 (1 H, AB, J = 12.8 Hz), 7.22–7.33 (5H, m), 10.1 (1 H, brs). ¹³C NMR (CDCl₃) δ 28.09, 29.01, 32.52, 53.62, 57.44, 59.94, 79.10, 81.59, 126.96, 128.23, 128.43, 138.77, 150.67, 155.36, 162.58. HRMS (MALDI): Calcd for C₂₃H₃₆N₄O₄Na (M+Na⁺): 455.2629. Found: 455.2633.

(3*S*)-3-(1-Methylguanidino)pyrrolidine-TFA (S6): TFA (10 mL) was added to a solution of S5 (1.0 g, 2.31 mmol) in CH_2Cl_2 (10 mL) and the resulting mixture was stirred at room temperature for 3 h. After the reaction mixture was concentrated *in vacuo*, the crude product was dissolved in MeOH (10 mL). Under a H₂ atmosphere, the solution was added to a solution of 20% Pd(OH)₂-C

(1.0 g) in MeOH (30 mL) and the resulting mixture was stirred at room temperature for 5 h. After the reaction mixture was filtered, the solution was concentrated *in vacuo*. The residue was purified by amine silica gel column chromatography ($CH_2Cl_2/MeOH = 1/1$) to give compound **S6** (610 mg, quant.) as a white amorphous powder.

Mp 180–181°C. $[\alpha]_D^{25}$ –2.07 (c 0.5, MeOH). IR v_{max} (KBr): 3346, 3156, 1670, 1625, 1469, 1435, 1205, 1133 cm⁻¹. ¹H NMR (CD₃OD) δ 1.94 (1 H, dddd, J = 5.5, 6.4, 6.4 and 12.2 Hz), 2.21 (1 H, dddd, J = 5.5, 6.4, 6.4 and 12.2 Hz), 2.21 (1 H, dddd, J = 5.5, 6.4, 6.4 and 12.2 Hz), 2.39 (3 H, s), 3.26 (1 H, dd, J = 4.6 and 10.6 Hz), 3.34–3.48 (2 H, m), 3.51–3.60 (2 H, m). ¹³C NMR (CDCl₃) δ 31.19, 34.21, 46.42, 52.64, 59.81, 118.02 (q, J = 292 Hz, TFA), 156.26, 162.83 (q, J = 34.5 Hz, TFA). MS (FAB) *m/z* 143 (M+H⁺). HRMS (FAB): Calcd for C₅H₁₃N₄ (M+H⁺): 143.1291. Found: 143.1293.

(3*R*,4*R*)-1-Benzyl-3,4-di{*N*,*N*'-bis-[(2-tert-buthoxy)carbonyl]guanidino}pyrrolidine (S7): Under a N₂ atmosphere, EDCI (3.75 g, 19.6 mmol) was added to a solution of (3*R*,4*R*)-1-benzyl-3,4-diaminopyrrolidine²⁾ (1.10 g, 5.75 mmol), (BocNH)₂CS (3.60 g, 13.0 mmol) and DIPEA (6.81 mL, 39.1 mmol) in anhydrous CH₂Cl₂ (100 mL) and the resulting mixture was stirred at room temperature for 8 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was diluted with AcOEt, washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (*n*-hexane/AcOEt = 10/1) to give compound S7 (2.37 g, 61%) as a white amorphous powder. Mp 93–95°C. [α]_D²⁵ –15.7 (c 1.0, CHCl₃). IR v_{max} (KBr): 3321, 3126, 2979, 2796, 1722, 1613, 1413, 1335, 1154, 1056 cm⁻¹. ¹H NMR (CDCl₃) δ 1.47 (18 H, s), 1.50 (18 H, s), 2.44 (2 H, dd, *J* = 4.6 and 9.6 Hz), 3.07 (2 H, dd, *J* = 6.4 and 9.6 Hz), 3.59 (1 H, AB, *J* = 13.3 Hz), 3.64 (1 H, AB, *J* = 13.3 Hz), 4.51–4.57 (2 H, m), 7.22–7.34 (5 H, m), 8.67 (2 H, d, *J* = 7.3 Hz), 11.4 (2 H, s). ¹³C NMR

 $(CDCl_3)$ δ 28.00, 28.22, 56.21, 59.17, 59.21, 78.93, 82.90, 126.96, 128.18, 128.41, 138.38, 152.88, 155.69, 163.42. MS (FAB) *m/z* 676 (M+H⁺). HRMS (FAB): Calcd for C₃₃H₅₄N₇O₈ (M+H⁺): 676.4028. Found: 676.4022.

(3*R*,4*R*)-3,4-Diguanidinylpyrrolidine-TFA (S8): TFA (30 mL) was added to a solution of S7 (1.00 g, 1.48 mmol) in CH₂Cl₂ (60 mL) and the resulting mixture was stirred at room temperature for 3 h. After the reaction mixture was concentrated *in vacuo*, the crude product was dissolved in MeOH (50 mL). Under a H₂ atmosphere, the solution was added to a solution of 20% Pd(OH)₂-C (500 mg) in MeOH (50 mL) and the resulting mixture was stirred at room temperature for 10 h. After the reaction mixture was filtrated, the solution was concentrated *in vacuo*. The residue was purified by amine silica gel column chromatography (MeOH) to give compound S8 (489 mg, 80%) as a white amorphous powder.

Mp 89–91°C. $[\alpha]_D{}^{30}$ –9.74 (c 1.0, MeOH). IR v_{max} (KBr): 3366, 3175, 1675, 1433, 1202, 1136 cm⁻¹. ¹H NMR (CD₃OD) δ 2.79 (2 H, dd, J = 6.0 and 6.0 Hz), 3.35 (2 H, dd, J = 6.0 and 11.0 Hz), 3.98 (2 H, dd, J = 6.0 and 11.0 Hz). ¹³C NMR (CDCl₃) δ 51.49, 58.77, 117.92 (q, J = 293 Hz, TFA), 158.39, 163.17 (q, J = 34.5 Hz, TFA). HRMS (MALDI): Calcd for C₆H₁₅N₇Na (M+Na⁺): 208.1281. Found: 208.1280.

Synthesis of TFOs by using the PEM method: TFOs were synthesized on a 0.2-µmol scale on an automated DNA synthesizer (GeneDesign nS-8) using the common phosphoramidite protocol (Synthesis mode: DMTr-ON). The CPG resin-supported oligonucleotides were treated with 10% aqueous guanidinopyrrolidines solution at room temperature for 2 h for conversion of the triazolylated nucleobase into the desired guanidinopyrrolidine-containing nucleobases. Then, additional treatment with 28% aqueous NH₃ solution at room temperature for 5–6 h resulted in complete removal of the acetyl groups of the 5-methylcytosine bases and the complete cleavage of oligonucleotides from the CPG resin. After the two solutions were combined, the solvent was removed *in vacuo*. The crude TFOs obtained were purified with NapTM-10 columns (GE Healthcare) for removal of the excess amount of pyrrolidines and then treated with Sep-Pak[®] Plus C18 cartridges (Waters) followed by reversed-phase HPLC (Waters XBridge[®] MS C₁₈ 2.5 µm, 10 × 50 mm). The composition of the TFOs was confirmed by MALDI-TOF-MS analysis (Table S1).

	MALDI-TOF-MS			
Sequence of TFOs	Calcd. [M-H] ⁻	Found [M-H] ⁻		
5'-TTTTT <u>C</u> T GP T <u>C</u> T <u>C</u> T <u>C</u> T-3'	4606.15	4606.82		
5'-TTTTT <u>C</u> T GP' T <u>C</u> T <u>C</u> T <u>C</u> T-3'	4606.15	4606.46		
5'-TTTTT <u>C</u> T mGP T <u>C</u> T <u>C</u> T <u>C</u> T-3'	4620.17	4620.73		
5'-TTTTT <u>C</u> T diGP T <u>C</u> T <u>C</u> T <u>C</u> T-3'	4663.20	4662.85		
5'-TTTTT <u>C</u> T GE T <u>C</u> T <u>C</u> T <u>C</u> T-3'	4580.11	4579.15		
5'-TTTTT <u>C</u> T GP^{OMe}T<u>C</u>T<u>C</u>T<u>C</u>T-3'	4636.17	4635.59		
5'-TTTTT <u>C</u> T GP ^B T <u>C</u> T <u>C</u> T <u>C</u> T-3'	4634.16	4633.57		
5'-TTTTTT <u>C</u> GP ^B T <u>C</u> T <u>C</u> T <u>C</u> T-3'	4634.16	4634.13		
5'-TTTTT <u>C</u> T GP^BC TT <u>C</u> T <u>C</u> T-3'	4634.16	4634.91		
5'-TTTTTT <u>C</u> GP ^B CTT <u>C</u> T <u>C</u> T-3'	4634.16	4633.80		
5'-TTTTT GP^BTGP^BTGP^BT<u>C</u>T<u>C</u>T-3'	4912.47	4911.62		
5'-TTTT GP^BTTGP^BTTGP^BTT<u>C</u>T-3'	4913.45	4913.66		
5'-TTT GP^BT<u>C</u>TGP^BT<u>C</u>TGP^BT<u>C</u>T-3'	4911.48	4911.15		

 Table S1. MALDI-TOF-MS data of TFOs

Scheme S2. Synthesis of TFO containing GP^{B} . $\underline{C} = 2$ '-deoxy-5-methylcytidine. *Reagent and conditions*: (i) 2,4,6-triisopropylphenylsulfonyl chloride (TPS-Cl), Et₃N, DMAP, CH₂Cl₂, rt, 12 h, 70%; (ii) (3*S*)-(-)-3-(trifluoroacetamido)pyrrolidine hydrochloride, Et₃N, CH₂Cl₂, rt, 3 h, 90%; (iii) 1N NaOHaq., THF, rt, 2 h, 91%; (iv) *N*,*N'*-*bis*-[(2-cyanoethoxy)carbonyl]-*S*-methylisothiourea³, DMF, rt, 15 h, 85%; (v) *i*-Pr₂NP(Cl)OCH₂CH₂CN, *i*-Pr₂NEt, CH₂Cl₂, 0°C, 3 h, 83%; (vi) oligonucleotide synthesis.

TFO containing $\mathbf{GP}^{\mathbf{B}}$ was synthesized as shown in Scheme S2. The oligonucleotide was synthesized using the common phosphoramidite protocol. The synthesis of S14 from S9⁴ was carried out as described below.

1-(3-O-Acetyl-5-O-dimethoxytrityl-2-O,4-C-methylene-β-D-ribofuranosyl)-4-O-(2,4,6-triisopro pylphenyl)sulfonylthymine (S10): Under a N₂ atmosphere, 2,4,6-triisopropylbenzenesulfonyl chloride (197 mg, 0.651 mmol) was added to a solution of compound S9⁴) (200 mg, 0.325 mmol), DMAP (3.97 mg, 0.0325 mmol) and Et₃N (0.136 mL, 0.976 mmol) in anhydrous CH₂Cl₂ (10 mL) and the resulting mixture was stirred at room temperature for 12 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was diluted with CH₂Cl₂, washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (*n*-hexane/AcOEt = 10/1) to give compound S10 (200 mg, 70%) as a white amorphous powder.

Mp 99–101°C. $[\alpha]_D^{23}$ +64.8 (c 1.0, CHCl₃). IR v_{max} (KBr): 2959, 1751, 1683, 1605, 1510, 1379, 1252, 1175, 1071 cm⁻¹. ¹H NMR (CDCl₃) δ 1.26 (6 H, d, *J* = 6.8 Hz), 1.29 (6 H, d, *J* = 6.8 Hz), 1.33 (6 H, d, *J* = 6.8 Hz), 1.80 (3 H, s), 2.00 (3 H, s), 2.91 (1 H, sept, *J* = 6.8 Hz), 3.31 (1 H, AB, *J* = 11.0 Hz), 3.55 (1 H, AB, *J* = 11.0 Hz), 3.80–3.84 (8 H, m), 4.32 (2 H, sept, *J* = 6.8 Hz), 4.68 (1 H, s), 5.08 (1 H, s), 5.65 (1 H, s), 6.82–6.85 (4 H, m), 7.21–7.42 (9 H, m), 8.01 (1 H, s). ¹³C NMR (CDCl₃) δ 12.40, 20.64, 23.40, 23.46, 24.38, 24.53, 29.59, 55.21, 57.53, 70.30, 72.11, 77.22, 86.79, 87.14, 88.23, 104.34, 113.26, 113.30, 124.04, 127.16, 127.99, 128.08, 129.98, 130.02, 130.63, 134.98, 135.02, 142.04, 143.98, 151.21, 153.25, 154.41, 158.71, 166.83, 169.26. MS (FAB) *m/z* 881 (M+H⁺). HRMS (FAB): Calcd for C₄₉H₅₇N₂O₁₁S (M+H⁺): 881.3678. Found: 881.3691.

1-(3-O-Acetyl-5-O-dimethoxytrityl-2-O,4-C-methylene-β-D-ribofuranosyl)-4-[(3S)-3-(trifluoro acetamido)pyrrolidino]-5-methylpyrimidin-2-one **(S11):** Under a N_2 atmosphere, (3S)-(-)-3-(trifluoroacetamido)pyrrolidine hydrochloride (54.6 mg, 0.250 mmol) was added to a solution of compound S10 (200 mg, 0.227 mmol) and Et₃N (94.9 µL, 0.681 mmol) in CH₂Cl₂ (10 mL) and the resulting mixture was stirred at room temperature for 3 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was diluted with CH₂Cl₂, washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (AcOEt) to give compound S11 (158 mg, 90%) as a white amorphous powder. Mp 141–143°C. [a]_D³⁰ +4.01 (c 1.0, CHCl₃). IR v_{max} (KBr): 3201, 2956, 1748, 1714, 1653, 1611, 1505, 1471, 1302, 1249, 1078, 1050 cm⁻¹. ¹H NMR (CDCl₃) δ 1.97 (3 H, s), 1.97 (3 H, s), 2.17–2.22 (2 H, m), 3.35 (1 H, AB, J = 11.0 Hz), 3.52 (1 H, AB, J = 11.0 Hz), 3.76–4.01 (11 H, m), 4.28-4.32 (1 H, m), 4.60-4.64 (2 H, m), 5.05 (1 H, s), 5.68 (1 H, s), 6.80-6.82 (4 H, m), 7.18-7.32 (7 H, m), 7.42–7.44 (2 H, m), 7.53 (1 H, s), 9.73 (1 H, brs). ¹³C NMR (CDCl₃) δ 17.90, 20.51, 31.39, 47.04, 48.55, 53.29, 55.01, 57.84, 70.65, 72.13, 77.70, 86.48, 86.56, 87.53, 102.57, 113.05, 113.08, 115.88 (q, J = 288 Hz), 126.89, 127.81, 129.88, 134.92, 135.03, 137.85, 144.11, 154.63, 157.71 (q, J = 137 Hz, 158.48, 162.42, 169.33. MS (FAB) m/z 779 (M+H⁺). Anal. Calcd for C₄₀H₄₁F₃N₄O₉: C, 61.69; H, 5.31; N, 7.19. Found: C, 61.67; H, 5.36; N, 6.91.

1-(5-*O*-Dimethoxytrityl-2-*O*,4-*C*-methylene-β-D-ribofuranosyl)-4-[(3*S*)-3-aminopyrrolidino]-5methylpyrimidin-2-one (S12): 1N aqueous NaOH (5 mL) was added to a solution of compound S11 (200 mg, 0.257 mmol) in THF (5 mL) and the resulting mixture was stirred at room temperature for 2 h. After the reaction mixture was concentrated *in vacuo*, was dissolved in CH₂Cl₂. The solution was washed with saturated aqueous Na₂CO₃, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (AcOEt /MeOH = 1/3) to give compound S12 (150 mg, 91%) as a white amorphous powder.

Mp 153–156°C. $[\alpha]_D^{24}$ +20.8 (c 1.0, CHCl₃). IR ν_{max} (KBr): 3280, 2949, 1650, 1607, 1505, 1467, 1302, 1251, 1177, 1050 cm⁻¹. ¹H NMR (CDCl₃) δ 1.66–1.74 (1 H, m), 1.96–2.07 (4 H, m), 3.44–3.53 (3 H, m), 3.60 (1 H, dddd, J = 4.6, 4.6, 5.0 and 5.0 Hz), 3.70–3.96 (11 H, m), 4.23 (1 H, s), 4.49 (1 H, s), 5.66 (1 H, s), 6.84 (4 H, dd, J = 2.8 and 8.9 Hz), 7.20–7.37 (7 H, m), 7.48 (2 H, d, J = 7.8 Hz), 7.55 (1 H, s). ¹³C NMR (CDCl₃) δ 18.35, 33.95, 47.70, 50.44, 55.43, 57.70, 59.12, 70.14, 71.96, 79.65, 86.57, 87.65, 87.93, 102.25, 113.41, 127.12, 128.13, 128.33, 130.32, 130.36, 139.09, 144.91, 155.08, 158.74, 163.18. MS (FAB) *m/z* 641 (M+H⁺). HRMS (FAB): Calcd for C₃₆H₄₁N₄O₇ (M+H⁺): 641.2970. Found: 641.2969.

4-[(3S)-3-{N,N'-Bis-[(2-cyanoethoxy)carbonyl]guanidinyl}pyrrolidino]-1-(5-*O*-dimethoxytrityl -2-*O*,4-*C*-methylene- β -D-ribofuranosyl)-5-methylpyrimidin-2-one (S13): Under a N₂ atmosphere, N,N'-bis-[(2-cyanoethoxy)carbonyl]-S-methylisothiourea³) was added to a solution of compound S12 (100 mg, 0.156 mmol) in DMF (2 mL) and the resulting mixture was stirred at room temperature for 12 h. The reaction mixture was concentrated *in vacuo*. The residue was purified by silica gel column chromatography (AcOEt to AcOEt/MeOH = 10/1) to give compound **S13** (116 mg, 91%) as a white amorphous powder.

Mp 193–195°C. $[\alpha]_D^{30}$ +9.18 (c 1.0, CHCl₃). IR v_{max} (KBr): 3330, 3185, 2959, 2252, 1743, 1648, 1505, 1469, 1294, 1254, 1209, 1085, 1052 cm⁻¹. ¹H NMR (CDCl₃) δ 1.97–2.07 (4 H, m), 2.22-2.28 (1 H, m), 2.75 (2 H, t, *J* = 6.0 Hz), 2.77 (2 H, t, *J* = 6.0 Hz), 3.43 (1 H, AB, *J* = 11.0 Hz), 3.51 (1 H, AB, *J* = 11.0 Hz), 3.59 (1 H, d, *J* = 5.0 Hz), 3.72–3.88 (11 H, m), 3.96–4.03 (1 H, m), 4.24 (1 H, d, *J* = 5.0 Hz), 4.30 (2 H, t, *J* = 6.4 Hz), 4.37 (2 H, t, *J* = 6.4 Hz), 4.47 (1 H, s), 4.63–4.70 (1 H, m), 6.83 (4 H, dd, *J* = 2.3 and 8.7 Hz), 7.20–7.31 (3 H, m), 7.36 (4 H, dd, *J* = 2.3 and 8.7 Hz), 7.48 (2 H, d, *J* = 7.3 Hz), 7.60 (1 H, s), 8.45 (1 H, d, *J* = 6.8 Hz), 11.65 (1 H, s). ¹³C NMR (CDCl₃) δ 17.86, 17.96, 30.67, 47.05, 50.18, 54.26, 55.13, 58.63, 59.72, 60.80, 70.03, 71.56, 79.21, 86.32, 87.25, 87.66, 101.98, 113.10, 116.24, 116.97, 126.88, 127.84, 127.98, 130.01, 135.36, 135.42, 139.25, 144.55, 152.84, 154.64, 155.41, 158.43, 162.61, 163.14. MS (FAB) *m/z* 877 (M+H⁺). HRMS (FAB): Calcd for C₄₅H₄₉N₈O₁₁ (M+H⁺): 877.3515. Found: 877.3521.

4-[(3*S*)-3-{*N*,*N*'-Bis-[(2-cyanoethoxy)carbonyl]guanidinyl}pyrrolidino]-1-{3-*O*-[2-cyanoethoxy (diisopropylamino)phosphino]-5-*O*-dimethoxytrityl-2-*O*,4*C*-methylene- β -D-ribofuranosyl}-5methylpyrimidin-2-one (S14): Under a N₂ atmosphere, *i*-Pr₂NP(Cl)OCH₂CH₂CN (0.458 mL, 2.05 mmol) was added to a solution of S13 (1.50 g, 1.71 mmol) and *i*-Pr₂NEt (0.894 mL, 5.13 mmol) in anhydrous CH₂Cl₂ (20 mL) at 0°C and the resulting mixture was stirred at 0°C for 3 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was diluted with CH₂Cl₂,

washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 20/1) to give compound **S14** (1.53 g, 83%) as a white amorphous powder.

Mp 107–109°C. ¹H NMR (CDCl₃) δ 0.96–1.28 (12 H, m), 1.87 (1.8 H, s), 2.05 (1.2 H, s), 2.00–2.08 (1 H, m), 2.23–2.32 (1 H, m), 2.38 (1.2 H, t, *J* = 6.4 Hz), 2.55 (0.8 H, t, *J* = 6.4 Hz), 2.77 (2 H, t, *J* = 6.4 Hz), 2.79 (2 H, t, *J* = 6.4 Hz), 3.35–4.12 (23 H, m), 4.65–4.72 (2 H, m), 5.76 (1 H, s), 6.82-6.88 (4 H, m), 7.22–7.38 (7 H, m), 7.46–7.49 (2 H, m), 7.65 (0.4 H, s), 7.67 (0.6 H, s), 8.45 (1 H, d, *J* = 6.9 Hz), 11.7 (1 H, s). ³¹P NMR (CDCl₃) δ 148.6, 149.1. MS (FAB) *m/z* 1077 (M+H⁺). HRMS (FAB): Calcd for $C_{54}H_{66}N_{10}O_{12}$ (M+H⁺): 1077.4594. Found: 1077.4592.

References

- S. Robinson, E. J. Roskamp, *Tetrahedron*, **1997**, *53*, 6697; B. R. Linton, A. J. Carr, B. P. Orner,
 A. D. Hamilton, *J. Org. Chem.*, **2000**, *65*, 1566.
- (2) D. Reddeppa Reddy, E. R. Thornton, J. Chem. Soc., Chem. Commun. 1992, 2, 172.
- (3) T. P. Prakash, A. Püschl, E. Lesnik, V. Mohan, V. Tereshko, M. Egli and M. Manoharan, Org. Lett., 2004, 6, 1971; T. P. Prakash, A. Püschl and M. Manoharan, Nucleosides, Nucleotides, Nucleic Acids, 2007, 26, 149; S. R. Gerrard, M. M. Edrees, I. Bouamaied, K. R. Fox, T. Brown, Org. Biomol. Chem. 2010, 8, 5087.
- (4) A. A. Koshkin, Tetrahedron, 2006, 62, 5962.

TFO: 5'-TTTTT<u>C</u>T**GP**T<u>C</u>T<u>C</u>T<u>C</u>T-3' HPLC Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer. Flow rate : 1.0 mL/min. Column temp. : 50°C.

TFO: 5'-TTTTT<u>C</u>T**GP'**T<u>C</u>T<u>C</u>T<u>C</u>T-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

TFO: 5'-TTTTT<u>C</u>T**mGP**T<u>C</u>T<u>C</u>T-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

TFO: 5'-TTTTT<u>C</u>T**diGP**T<u>C</u>T<u>C</u>T-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

TFO: 5'-TTTTT<u>C</u>T**G**ET<u>C</u>T<u>C</u>T<u>C</u>T-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

TFO: 5'-TTTTTCTGP^{OMe}TCTCTCT-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

TFO: 5'-TTTTT<u>C</u>TGP^BT<u>C</u>T<u>C</u>T<u>C</u>T-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

100-			indiment repo- Send Editions. The Editor in the Acquisited open a second second Senare Editor of the Senare University of Second Second Second Internet Acresses Internet Second	es a la 100-200 2021 Faculty - 1 Monte Lana - 201 I Martin (Stephografie) - 1 Martin (Stephografie) - 1 Martin (Stephografie) - 1 Martin - 1 Martin - 1 - 1 Martin - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Instrument type Serial instrument number PIE delay in [ns] Acquisition operation mode Sample name (file name prefix) Laser repetition rate in Hz Linear detector voltage Ion source voltage 1 Ion source voltage 2 Ion source voltage 2 Number of shots	autolics TOF/TOF 222024 200012 270 nose Linear 120721 Joe (5)-guandinoT0_0711 25 psec 1526 20 154 6,5999999 60
50 - 25 -	-						
• - المنظمة المنطقة الم Bruker Daltonics fl 222024.00012	ean <u>hi da Whata an ai di an a</u> i 300 4000 - IexAnalysis	sobo eobo		<u>e e esti e e e e e e e e e e e e e e e e e e e</u>	<u>եղծ լտեղ</u> m/z	printed: 05/14/2	2013 02:20:26 PM

TFO: 5'-TTTTTTCCGP^BTCTCTCT-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

TFO: 5'-TTTTTCTGP^BCTTCTCT-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

TFO: 5'-TTTTTTCCGP^BCTTCTCT-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

TFO: 5'-TTTTT**GP^B**T**GP^B**T**GP**^BT<u>C</u>T<u>C</u>T-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

		A PAR STA				
e Fitions. (a.u.)	10 -	4911.820	Account market in the later Dark of taxing National States States and States States	Der sonder Bertrauferten Bertraufen er und Schleicher Bertraufen er und Schleicher Bertraufen er und Schleicher Bertraufen Schleicher Bertraufen Lieben der Schleicher Bertraufen Schleicher Bertraufen		Acquisition method name D:Method:MetControlMethod/LN
	10 -					
3	20-					
ebe	0 - 100	sobo -	01.114 0.11.014.601.1.010.13 6000 7000	<u>, , , , , , , , , , , , , , , , , , , </u>	1 85, 1 (1, 1 - 8), 8 1 - 1 - 8 9000 * * * * * * m/1	
E 2	Bruker Daltonics flexAnalysis 22024.00012	-guanidinoT (+3) kougo\0_N	printed in a			printed: 05/14/2013 02:28:52 PM BRUKER DALTONIOS
		5				

TFO: 5'-TTTT**GP^B**TT**GP^B**TT**GP^B**TT<u>C</u>T-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

et al						Section 1	a state of the	and the second s		and a star in the second
250 -			4913.661	 Date of concern balance of concern featurement for Sector Dates on a Official sector of official sector of the sector of Sector S	dadi seoret en: 1 - tert 1 - tert 2 - milio 2 - Ma	D Wellson der General 14032 kannt 14134 Martin (k. 1 kansteken (k. 1 kansteken (k. 1 12024 appl.) 12034 appl.) 12035 Vel. (K. 1 paradametek (k. 1 paradametek (k. 1) paradametek (k. 1) 2015 Vel. (K. 1) paradametek (k. 1) 2015 Vel. (K.			Acquisition method name Date of acquisition Instrument type Serial instrument number PIE delay in [ns] Acquisition operation mode Sample name (file name prefix) I seer previous rate in Us	D. Methods/flexControlMethods/EN 3-10kDa.par 2012-07-06 18:31:00 autoflexTOF/TOF 222024.00012 270 nsce Linear 120706 XTTXTTX loc guandinet0_P2U 25 sere
150-				interdiscon Internet Anternet Anternet Anternet					Linear detector voltage lon source voltage 1 lon source voltage 2 lon source lens voltage 2 Number of shots	20 psec 1,526 20 18.4 6,5999999 60
100-										
50										
,	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		. When							
00	3000	4000	5000	6000	7000	8000	9000	(m/		
Bruker Dalto 222024.0001 D:\Data\Yakl	onics flexAnalysis 2 ka\akabane\120706	XTTXTTX loc	guanidine\0_P2\1	philo	S.A.	olis oz ac siste BUKE A UTADIS	13.1		printed: 05/14/2	013 02:30:33 PM RUKER

TFO: 5'-TTT**GP**^BT<u>C</u>T**GP**^BT<u>C</u>T**GP**^BT<u>C</u>T-3'

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

