Supporting Information

Isolation of C₁₀₂ fractions

The fullerene soot was synthesized by a Krätschmer-Huffman DC-arc discharging method with undoped graphite rod under the condition of 400 mbar He. The as-produced soot was Soxhlet-extracted by CS₂ for 24 h. The fullerene mixture was subjected to HPLC separation in toluene using a preparative 5PYE column (20×250 mm, Nacalai Tesque, Japan; flow rate 15.0 ml/min; injection volume 15 ml; toluene as eluent). The fraction eluted between 44 and 47 min (fraction **A**) was further separated with a semi-preparative Buckyprep column (10×250 mm, Nacalai Tesque, Japan; flow rate 5.0 ml/min; injection volume 5 ml; toluene as eluent) and the main fraction (**A-3**) was subjected to recycling HPLC separation with a semi-preparative Buckyprep-M column (10×250 mm, Nacalai Tesque, Japan; flow rate 5.0 ml/min; injection scollected after eight separation cycles contains C₁₀₂ as the main component according to MALDI-TOF mass spectrometry. The first of four C₁₀₂ fractions (**A-3-1**), which did not show any noticeable contamination with other fullerenes (see Fig. S2), was used as the starting material for chlorination.

Fig. S1. Three-step HPLC isolation of a compositionally pure C_{102} fraction (fraction A-3-1) used for chlorination (see text).

Fig. S2. MALDI TOF mass spectrum of subfraction A-3-1.

The estimation of the extremely low amount C_{102} used in our chlorination experiments could not be done by direct sample weighing. Instead, we estimated the C_{102} content by the following rough procedure. First, HPLC trace of the mixture solution of the known amount of the fullerene soot extract was analyzed by integrating all chromatographic peaks, providing information about the relative content of fraction **A** (see Fig. S1). Then, it was recalculated to the absolute amount with the assumption that the extinction coefficients of fullerenes at the wavelength of 320 nm (the wavelength used in HPLC detection) are approximately the same. This assumption was supported at least for the case of C_{60} and C_{70} fullerenes, which possess very close extinction coefficients determined at the same conditions in the separate quantitative experiments. The amount of the subfraction A-3-1 was calculated by integrating the corresponding HPLC subfractions and multiplying by the number of runs.

Numbering of C₁₀₂ isomers

Theoretical calculations of relative stability of IPR C_{102} isomers were reported in the literature using two different numbering systems.^{S1-S3} The numbering in ref. S1 and S2 is based on the sequence in the output of the generation program in ref. S4 (PentHex Puzzles). A more usual way of fullerene numbering uses the spiral algorithm of ref. S5. The correspondence of isomer numbers for fifteen IPR C_{102} isomers, which were considered in refs. S1 and S2, according to the numbering systems in refs. S4 and S5 is given below. Numbering according to ref. S4: 32, 34, 369, 371, 409, 451, 452, 453, 562, 570, 598, 606, 611, and 616.

Numbering according to ref. S5: 530, 583, 73, 20, 554, 141, 581, 1, 251, 303, 93, 372, 567, and 552.

The use of different numbering systems in the literature resulted in some contradictions concerning the lists of most stable C_{102} fullerenes. In the present work, we use the numbering system proposed in ref. S5.

Most stable IPR C₁₀₂ isomers

In the first step, formation energy of all 616 IPR isomers of C_{102} fullerene were calculated at the semiempirical level of theory (AM1). Most stable isomers within 120 kJ mol⁻¹ were then recalculated at the DFT level of theory using the PRIRODA code ^{S6} and a PBE exchange-correlation functional ^{S7} with a built-in TZ2P basis set. Fifty most stable C_{102} IPR fullerenes are presented in Table S1.

Table S1. Fifty most stable IPR C₁₀₂ fullerenes

No.	Canonical spiral code according to ref. S5	Formation energy, HA	E _{rel} , kJ mol ⁻¹
603	5666665665666566656666566666666666656665666566656656656	-3883.66929	0.0
371	566666565666666666666666666666666666666	-3883.66373	14.6
418	566666565666666666666666666666666666666	-3883.66126	21.1
214	566666565666666666666666666666666666666	-3883.66055	23.0
377	566666565666666666666666666666666666666	-3883.66029	23.6
614	566666566566666666666665656566666666666	-3883.65946	25.8
578	5666665665665666666666666666666666666565	-3883.65903	26.9
607	566666566566656665666566656666666666666	-3883.65815	29.3
606	566666566566656665666666666666666666666	-3883.65793	29.8
400	566666565666666666666666666666666666666	-3883.65775	30.3
600	5666665665665666666666666666665665656565	-3883.65724	31.6
376	566666565666666666666666666666666666666	-3883.65712	32.0
347	566666565666666666666666666666666666666	-3883.65710	32.0
594	5666665665665666666666666666665656565656	-3883.65677	32.9
375	566666565666666666666666666666666666666	-3883.65633	34.0
598	566666566566566666666666666666666666666	-3883.65624	34.3
45	566666565656666666666666666666666666666	-3883.65593	35.1
615	566666566566666666666565656566666666666	-3883.65580	35.4
361	566666565666666666666666666666666666666	-3883.65559	36.0
611	566666566566666666666666666666666666666	-3883.65535	36.6
579	566666566566566666666666666666666666666	-3883.65510	37.3
427	566666566565656566666666666666666666666	-3883.65441	39.1

(00		2002 (5420	20.1
602	200000200200200000000000000000000000000	-3883.65439	39.1
374	566666565666666666666666666666666666666	-3883.65432	39.3
326	566666565666666666666666666666666666666	-3883.65398	40.2
601	566666566566566666666666666656656656656	-3883.65350	41.5
582	566666566566566666666666666565656666666	-3883.65328	42.0
612	566666566566666666666666666666666666666	-3883.65314	42.4
525	56666656656566666666666666665656665666566656665665665	-3883.65275	43.4
405	56666656566666666666666666666665656566565	-3883.65271	43.5
19	566666565656566666666666666666666666666	-3883.65258	43.9
328	566666565666666666666666666666666666666	-3883.65257	43.9
592	566666566566566666666666666656656656656	-3883.65250	44.1
523	566666566565666666666666666665656666666	-3883.65233	44.5
435	566666566565656666666666666666666666666	-3883.65217	44.95
610	566666566566666666666666666666666666666	-3883.65216	45.0
360	566666565666666666666666666666666666666	-3883.65206	45.2
096	566666565656666666666666666666666666666	-3883.65203	45.3
34	566666565656666666666666666666666666666	-3883.65200	45.4
550	56666656656565666666666666666565656666565	-3883.65199	45.4
605	566666566566656665666656666666666665666566566566566566566	-3883.65157	46.5
35	566666565656666666666666666666666666666	-3883.65147	46.8
331	566666565666666666666666666666666666666	-3883.65146	46.8
488	566666566565666666666666666666666666666	-3883.65133	47.2
17	566666565656566666666666666666666666666	-3883.65110	47.8
332	566666565666666666666666666666666666666	-3883.65101	48.0
165	566666565666666666666666666666666666666	-3883.65074	48.7
245	566666565666666666666666666666666666666	-3883.64973	51.4
316	56666656566666666666666666666666666665666566656666	-3883.64879	53.8
43	566666565656666666666666666666666666666	-3883.64876	53.9

Isomer 552 (616 according to the numbering system in ref. S4) has a relative formation energy of 55.7 kJ mol⁻¹.

References

- S1 J. Cioslowski, N. Rao and D. Moncrieff, J. Am. Chem. Soc., 2000, **122**, 8265.
- S2 Z. Chen and W. Thiel, *Chem. Phys. Lett.*, 2003, **367**, 15.
- S3 N. Shao, Y. Gao, S. Yoo, W. An and X.-C. Zeng, J. Phys. Chem., A 2006, 110, 7672.
- S4 A. W. M. Dress and G. Brinkmann, *Adv. Appl. Math.*, 1998, **21**, 473.
- S5 P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Clarendon, Oxford, 1995
- S6 D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.
- S7 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.