Supporting Information for

Gold-Catalyzed Cascade Cycloisomerizations of 1,7-Diyn-3,6-bis(propargyl carbonate)s: Stereoselective Synthesis of Naphtho[b]cyclobutenes Ming Chen, Jun Liu, Lu Wang, Xiaobo Zhou and Yuanhong Liu* State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China Fax: (+86) 021-64166128, E-mail: yhliu@mail.sioc.ac.cn

Contents:

General Methods
Synthesis and characterization of substrates 1
Synthesis and characterization of products $\mathbf{2}$ and $\mathbf{3}$
X-ray crystal structure of compounds $\mathbf{2 f}$ and $\mathbf{3}$
NMR spectra of all new compounds

General Methods. All reactions were carried out under argon. THF and toluene were distilled from sodium and benzophenone. Unless noted, all commercial reagents were used without further purification. $\mathrm{Ph}_{3} \mathrm{PAuCl}^{1}$ and $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}{ }^{2}$ were prepared according to the published methods. (Acetonitrile)[(2-biphenyl)di-tert-butylphosphine]gold(I) hexafluoroantimonate was purchased from Aldrich Chemical Company. AgSbF_{6} was purchased from Stream or Aldrich Chemical Company. AgOTf and AgBF_{4} were purchased from Acros Company. 1,2-Phenylenebis(3-phenylprop-2-yne-1,1-diyl) dimethyl dicarbonate 1a-1 was prepared according to published method. ${ }^{3}$
${ }^{1} \mathrm{H}$ NMR spectra was recorded at 300 or $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR spectra was recorded at 75 or 100 MHz , in CDCl_{3} (containing 0.03% TMS) solutions. ${ }^{1} \mathrm{H}$ NMR spectra was recorded with tetramethylsilane ($\delta=0.00 \mathrm{ppm}$) as internal reference; ${ }^{13} \mathrm{C}$

NMR spectra was recorded with $\mathrm{CDCl}_{3}(\delta=77.00 \mathrm{ppm})$ as internal reference. High-resolution mass spectra was obtained by using Waters Micromass GCT, Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS, IonSpec 4.7 Tesla FTMS or Agilent Technologies 6224 TOF LC/MS mass spectrometer. Single crystal X-ray diffraction data was collected on a Bruker SMART diffractometer at 293(2) K with graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA)$.

Synthesis of 1,7-diyn-3,6-bis(propargyl carbonate)s 1a-2, 1a-3, 1h, 1 n and 10.

To a solution of ethynylbenzene ($13.2 \mathrm{~mL}, 120.0 \mathrm{mmol}$) in THF (120.0 mL) was added n - BuLi ($44.0 \mathrm{~mL}, 110.0 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes) at $-78{ }^{\circ} \mathrm{C}$. After stirring at the same temperature for 0.5 h , dry-ice/ acetone bath was withdrawed, then after ca. $10-15 \mathrm{~min}$, phthalaldehyde ($6.71 \mathrm{~g}, 50.0 \mathrm{mmol}$) was added. The resulting solution was stirred at room temperature for 1.5 h . Then the mixture was quenched with saturated ammonium chloride solution. The reaction mixture was extracted with ethyl acetate, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by chromatography on silica gel (eluent: petroleum ether: acetone $=3: 1$) to afford 1,1'-(1,2-phenylene)bis(3-phenylprop-2-yn-1-ol) as a sticky yellow oil.

To a solution of above alcohol ($1.69 \mathrm{~g}, 5.0 \mathrm{mmol}$) in DCM (20 mL) was added pyridine ($4.0 \mathrm{~mL}, 50.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring for several minutes, a DCM solution of benzyl chloroformate ($4.3 \mathrm{~mL}, 30.0 \mathrm{mmol}$) was added dropwise (in some cases, the benzyl chloroformate was added directly, however, we found that the use of a DCM solution of benzyl chloroformate afforded better yields). The resulting solution was warmed up to room temperature and stirred for 4 h . Then the mixture was quenched with saturated ammonium chloride solution. The reaction mixture was
extracted with dichloromethane and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (in some cases, ethyl acetate was used to extract the recation mixture). The solvent was evaporated and the residue was purified by chromatography on silica gel (eluent: petroleum ether / ethyl acetate $=10: 1$) to afford compound 1a-2 as a mixture of two diastereomers with a ratio of $1: 1.20\left(2.75 \mathrm{~g}, 91 \%\right.$ isolated yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 7.80(\mathrm{dd}, J=5.8,3.2 \mathrm{~Hz}), 7.76(\mathrm{dd}, J=5.8,3.2 \mathrm{~Hz})$, $7.46-7.38(\mathrm{~m}), 7.32-7.20(\mathrm{~m}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 5.18$ and $5.03(\mathrm{ABq}, J=12.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.16$ and $5.01(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 153.83,153.81,134.78,134.72,134.67,134.49,131.82,131.78,129.67$, 129.56, 129.38, 128.77, 128.70, 128.38, 128.36, 128.32, 128.15, 128.10, 128.07, $128.02,121.66,88.63,88.20,84.77,84.69,69.88,67.50,67.17$. IR (film): 3064, 3034, 1750, 1490, 1455, 1443, 1382, 1239, 1030, 925, 906, 756, $691 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 629.1935$, found 629.1946.

1,2-Phenylenebis(3-phenylprop-2-yne-1,1-diyl) diallyl dicarbonate (1a-3). To a solution of 1,1'-(1,2-phenylene)bis(3-phenylprop-2-yn-1-ol) (1.0 g, 3.0 mmol) in DCM (20 mL) were added pyridine ($2.4 \mathrm{~mL}, 30.0 \mathrm{mmol}$) and DMAP ($0.3 \mathrm{mmol}, 36.6$ mg) at $0^{\circ} \mathrm{C}$. After stirring for several minutes, allyl chloromate ($1.9 \mathrm{~mL}, 18.0 \mathrm{mmol}$) was added dropwise. The resulting solution was warmed up to room temperature and stirred for 2 h . Then the mixture was quenched with saturated ammonium chloride solution. The reaction mixture was extracted with dichloromethane and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by chromatography on silica gel (eluent: petroleum ether / ethyl acetate $=10: 1$) to afford compound (1a-3) as a mixture of two diastereomers with a ratio of $1: 1.18(1.52 \mathrm{~g}$, 100% isolated yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ two isomers: $\delta 7.80$ (dd, $J=5.8,3.6 \mathrm{~Hz}), 7.77(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}), 7.46-7.40(\mathrm{~m}), 7.32-7.22(\mathrm{~m}), 7.00(\mathrm{~s})$,
$6.98(\mathrm{~s}), 5.94-5.81(\mathrm{~m}), 5.35-5.28(\mathrm{~m}), 5.23-5.19(\mathrm{~m}), 4.69-4.48(\mathrm{~m}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 153.74,153.70,134.74,134.56,131.89,131.86,131.28$, 131.23, 129.72, 129.60, 129.44, 128.85, 128.81, 128.75, 128.13, 128.08, 121.77, $118.95,118.89,88.62,88.17,84.78,84.70,68.83,67.45,67.12$. IR (film): 3082, 3063, 2985, 2950, 2229, 1751, 1644, 1593, 1491, 1455, 1444, 1384, 1369, 1318, 1233, 1071, 1031, 906, 787, 757, $691 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 529.1627$, found 529.1612.

1h
1,2-Phenylenebis(3-(p-tolyl)prop-2-yne-1,1-diyl) dibenzyl dicarbonate (1h). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1$) afforded the title product as a mixture of two diastereomers with a ratio of $1: 1.27$ in ca. 57% yield over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 7.79$ (dd, $J=6.0,3.2 \mathrm{~Hz}$), $7.75(\mathrm{dd}, J=5.8,3.2 \mathrm{~Hz}), 7.43-7.40(\mathrm{~m})$, 7.32-7.26 (m), 7.05-7.00 (m), 5.16 and $5.01(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.15$ and 5.00 (ABq, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}), 2.29(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 153.90,153.89,138.96,138.88,134.90,134.86,134.83,134.65,131.83,131.78$, 129.64, 129.53, 129.40, 128.86, 128.82, 128.42, 128.41, 128.37, 128.34, 128.20, $128.17,118.75,118.73,88.86,88.45,84.15,84.07,69.89,67.64,67.31,21.42,21.41$. IR (film): 3064, 3032, 2956, 1751, 1509, 1498, 1455, 1382, 1319, 1241, 1022, 1007, 924, 906, 817, 785, 754, $697 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 657.22476, found 657.22694.

1n
Dibenzyl
((4-methyl-1,2-phenylene)bis(3-phenylprop-2-yne-1,1-diyl))
dicarbonate (1n). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1$) afforded the title product as a mixture of two diastereomers with a ratio of $1: 1$ in 34% yield over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) two isomers: $\delta 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 7.58(\mathrm{~s}), 7.55(\mathrm{~s})$, 7.42-7.37 (m), 7.29-7.19 (m), 7.01 (s), 7.00 (s), $6.96(\mathrm{~s}), 5.17$ and $5.02(\mathrm{ABq}, J=12.4$ $\mathrm{Hz}), 5.16$ and $5.01(\mathrm{ABq}, J=12.4 \mathrm{~Hz}), 5.14$ and $4.99(\mathrm{ABq}, J=12.4 \mathrm{~Hz}), 2.36(\mathrm{~s})$. ${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 153.91,153.89,153.88,153.85,139.85$, $139.73,134.89,134.86,134.82,134.80,134.58,134.37,131.87,131.83,131.82$, $131.79,131.58,130.37,130.28,129.99$, 129.50, 129.33, 128.96, 128.75, 128.74, 128.69, 128.42, 128.41, 128.40, 128.36, 128.33, 128.23, 128.20, 128.17, 128.15, $128.10,128.05,121.82,121.80,88.49,88.47,88.06,88.02,84.94,84.90,84.86,69.90$, 69.86, 69.85, 67.58, 67.52, 67.22, 21.16. IR (film): 3063, 3034, 2957, 1751, 1490, 1456, 1443, 1382, 1319, 1234, 1030, 923, 904, 787, 756, $692 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 643.20911$, found 643.20697.

10
Dibenzyl (naphthalene-2,3-diylbis(3-phenylprop-2-yne-1,1-diyl)) dicarbonate (10). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=20: 1$ to $10: 1$) afforded the title product as a mixture of two diastereomers with a ratio of 1: 1.4 in 53% yield over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 8.27$ (s), 8.24 (s), 7.82-7.79 (m), 7.47-7.38 (m), 7.29-7.15 (m), 5.17 and $5.00(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.15$ and $4.98(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 153.88,153.84,134.76,134.68,133.01,132.99$, $131.82,131.79,131.77,131.76,129.55,128.81,128.76,128.68,128.34,128.32$, 128.27, 128.11, 128.06, 128.05, 128.00, 127.99, 127.89, 127.85, 127.24, 127.15, $121.65,88.78,88.35,84.91,84.82,69.86,69.84,67.92,67.62$. IR (film): 3062, 3034, $2958,1755,1598,1491,1456,1443,1383,1226,1180,1098,1071,1030,1008,994$, 895, 788, 755, $691 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 679.2091$, found 679.2063.

Synthesis of 1,7-diyn-3,6-bis(propargyl carbonate)s $\mathbf{1 b - 1 g}$, $\mathbf{1 i}$ and $\mathbf{1 j}$.
Typical procedure for the synthesis of

1,2-phenylenebis(3-(4-chlorophenyl)prop-2-yne-1,1-diyl) dibenzyl dicarbonate

 (1b).

To a solutin of 1,1'-(1,2-phenylene)bis(prop-2-yn-1-ol) ($558.6 \mathrm{mg}, 3.0 \mathrm{mmol}$) in triethylamine (20 mL) were added 1 -chloro-4-iodobenzene ($1.72 \mathrm{~g}, 7.2 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(42.1 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{CuI}(28.6 \mathrm{mg}, 0.15 \mathrm{mmol})$ at room temperature, then the mixture was heated overnight at $50{ }^{\circ} \mathrm{C}$. After the starting material was consumed, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with ethyl acetate, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was used directly for the next step.

To a solution of above diol in DCM (20 mL) were added pyridine ($2.4 \mathrm{~mL}, 30$ mmol) at $0{ }^{\circ} \mathrm{C}$. After stirring for several minutes, a DCM solution of benzyl chloroformate ($2.6 \mathrm{~mL}, 18.0 \mathrm{mmol}$) was added dropwise. The resulting solution was warmed up to room temperature and stirred for 2.5 h . Then the mixture was quenched with saturated ammonium chloride solution. The reaction mixture was extracted with dichloromethane and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and
the residue was purified by chromatography on silica gel (eluent: petroleum ether / ethyl acetate $=5: 1$) to afford compound $(\mathbf{1 b})$ as a mixture of two diastereomers with a ratio of $1: 1.58$ in 80% isolated yield (1.62 g) over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 7.77(\mathrm{dd}, J=5.8,3.2 \mathrm{~Hz}$), $7.72(\mathrm{dd}, J=5.8,3.2 \mathrm{~Hz}$), 7.41-7.37 (m), 7.25-7.23 (m), 7.16-7.11 (m), 7.043 (s), 7.037 (s), 5.15 and $5.01(\mathrm{ABq}$, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.13$ and $5.00(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) two isomers: $\delta 153.81,153.80,134.93,134.84,134.71,134.63,134.48$, $134.34,133.04,129.80,129.68,129.32,128.81,128.47$, 128.45, 128.42, 128.41, 128.21, 128.18, 120.12, 87.47, 87.00, 85.68, 85.60, 70.01, 70.00, 67.33, 67.15. IR (film): 3036, 2950, 1751, 1489, 1382, 1242, 1091, 1016, 927, 907, 828, 755, 696 $\mathrm{cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 697.1155$, found 697.1162.

1,2-Phenylenebis(3-(4-bromophenyl)prop-2-yne-1,1-diyl) dibenzyl dicarbonate
(1c). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1)$ afforded the title product as a mixture of two diastereomers with a ratio of $1: 1$ in 72% yield over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ two isomers: $\delta 7.77$ (dd, $J=5.6,3.2 \mathrm{~Hz}$), $7.72(\mathrm{dd}, J=5.6,3.2 \mathrm{~Hz}), 7.40-7.36(\mathrm{~m}), 7.30-7.21(\mathrm{~m})$, $7.18-7.14(\mathrm{~m}), 7.05(\mathrm{~s}), 7.04(\mathrm{~s}), 5.14$ and $5.00(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.12$ and 4.98 $(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 153.65,153.62$, 134.54, 134.45, 134.30, 134.17, 133.03, 133.01, 131.21, 131.15, 129.67, 129.56, $129.18,128.73,128.26,128.24,128.00,127.97,123.08,123.00,120.34,120.31$, 87.40, 86.92, 85.81, 85.73, 69.81, 69.79, 67.17, 67.03. IR (film): 3065, 3033, 2957, 1751, 1487, 1383, 1318, 1242, 1096, 1071, 1012, 927, 907, 825, 786, 754, $697 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Br}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 785.0145$, found 785.0133.

1,2-Phenylenebis(3-(2-bromophenyl)prop-2-yne-1,1-diyl) dibenzyl dicarbonate
(1d). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1)$ afforded the title product as a mixture of two diastereomers with a ratio of 1 : 1.63 in 63% yield over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 7.90-7.85(\mathrm{~m}), 7.52-7.38(\mathrm{~m}), 7.33-7.26(\mathrm{~m}), 7.18-7.08(\mathrm{~m}), 7.07(\mathrm{~s}), 7.03$ (s), 5.18 and $5.03(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.17$ and $5.00(\mathrm{ABq}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 153.83,134.85,134.77,134.36,134.02$, $133.77,133.65,132.25,132.23,130.01,129.95,129.85,129.71,129.07,128.44$, 128.41, 128.37, 128.23, 128.18, 126.80, 126.77, 125.80, 125.77, 123.98, 123.93, 89.08, 89.05, 87.06, 86.79, 69.99, 69.94, 67.70, 66.95. IR (film): 3060, 3030, 2964, 1751, 1470, 1382, 1315, 1248, 1007, 907, 785, 754, $697 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Br}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 785.0145$, found 785.0143.

1,2-Phenylenebis(3-(4-fluorophenyl)prop-2-yne-1,1-diyl) dibenzyl dicarbonate
(1e). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1)$ afforded the title product as a mixture of two diastereomers with a ratio of 1 : 1.54 in 85% yield over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 7.78$ (dd, $J=5.8,3.6 \mathrm{~Hz}$), 7.73 (dd, $J=5.4,4.0 \mathrm{~Hz}$), 7.44-7.41 (m), 7.38-7.26 (m), $7.01(\mathrm{~s}), 7.00(\mathrm{~s}), 6.94-6.86(\mathrm{~m}), 5.17$ and $5.03(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, 5.16 and $5.02(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ two isomers: δ $162.72\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=250.5 \mathrm{~Hz}\right), 162.66\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=250.5 \mathrm{~Hz}\right), 153.86,153.84,134.77$,
134.71, 134.60, 134.44, $133.84\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}\right), 133.83\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.6 \mathrm{~Hz}\right), 129.75$, $129.63,129.32,128.77,128.44,128.41,128.40,128.19,128.16,117.77\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.2\right.$ $\mathrm{Hz}), 115.44\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 115.37\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.1 \mathrm{~Hz}\right), 87.58,87.12,84.51(\mathrm{~d}$, ${ }^{5} J_{\mathrm{C}-\mathrm{F}}=1.5 \mathrm{~Hz}$), $84.45\left(\mathrm{~d},{ }^{5} J_{\mathrm{C}-\mathrm{F}}=1.1 \mathrm{~Hz}\right), 69.97,69.96,67.41,67.19$. IR (film): 3066, 3034, 2958, 1751, 1600, 1507, 1455, 1382, 1319, 1236, 1156, 1093, 1014, 926, 907, 837, 755, $697 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~F}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 665.1746$, found 665.1740 .

$1 f$
1,2-phenylenebis(3-(4-(trifluoromethyl)phenyl)prop-2-yne-1,1-diyl) dibenzyl
dicarbonate (1f). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1$) afforded the title product as a mixture of two diastereomers with a ratio of $1: 1.69$ in 50% yield over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) two isomers: $\delta 7.78(\mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}), 7.74(\mathrm{dd}, J=5.8,3.2 \mathrm{~Hz}), 7.48-7.42$ (m), 7.32-7.27 (m), $7.03(\mathrm{~s}), 7.02(\mathrm{~s}), 5.19$ and $5.06(\mathrm{ABq}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.16$ and $5.03(\mathrm{ABq}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 153.87$, $153.86,134.72,134.62,134.39,134.26,132.11,132.07,130.57\left(q,{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.8 \mathrm{~Hz}\right)$, $130.49\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=33.0 \mathrm{~Hz}\right), 129.98,129.86,129.37,128.94,128.60,128.55,128.53$, $128.51,128.27,128.26,125.48,125.47,125.14\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 125.03\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=\right.$ $3.9 \mathrm{~Hz}), 123.70\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.2 \mathrm{~Hz}\right), 123.68\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.4 \mathrm{~Hz}\right), 87.21,87.06$, 86.98, 86.72, 70.18, 67.24, 67.13. IR (film): 3067, 3035, 2959, 1752, 1615, 1498, $1456,1406,1383,1325,1242,1170,1126,1106,1068,1018,929,908,843,784,754$, $697 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~F}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 765.1682$, found 765.1673.

Diethyl 4,4'-(1,2-phenylenebis(3-(((benzyloxy)carbonyl)oxy)prop-1-yne-3,1-diyl))
-dibenzoate (1g). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1$) afforded the title product as a mixture of two diastereomers with a ratio of $1: 1.6$ in 79% yield over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) two isomers: $\delta 7.93-7.88(\mathrm{~m}), 7.80(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}), 7.76(\mathrm{dd}, J=5.4,3.6$ $\mathrm{Hz}), 7.46-7.42(\mathrm{~m}), 7.28-7.25(\mathrm{~m}), 7.08(\mathrm{~s}), 5.18$ and $5.05(\mathrm{ABq}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.15 and $5.02(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=6.8,4 \mathrm{H}), 1.34(\mathrm{t}, J=6.8,6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 165.39,165.38,153.63,153.61,134.56$, 134.47, 134.25, 134.11, 131.48, 130.23, 130.15, 129.72, 129.59, 129.22, 129.02, 128.97, 128.77, 128.26, 128.24, 128.22, 128.00, 127.96, 125.92, 125.89, 87.61, 87.35, 87.26, 87.13, 69.84, 67.11, 66.97, 60.84, 13.97. IR (film): 2981, 1752, 1717, 1606, 1456, 1405, 1272, 1243, 1176, 1106, 1021, 928, 908, 754, 769, $696 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{46} \mathrm{H}_{38} \mathrm{O}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 773.2357$, found 773.2342.

$1 i$

1,2-Phenylenebis(3-(4-(tert-butyl)phenyl)prop-2-yne-1,1-diyl)
dibenzyl
dicarbonate (1i). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1$) afforded the title product as a mixture of two diastereomers with a ratio of $1: 1.52$ in 29% yield over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) two isomers: $\delta 7.79$ (dd, $J=5.8,3.2 \mathrm{~Hz}$), 7.76 (dd, $J=5.6,3.2 \mathrm{~Hz}$), 7.40-7.33 (m), 7.28-7.21 (m), $7.06(\mathrm{~s}), 7.04(\mathrm{~s}), 5.15$ and $5.01(\mathrm{ABq}, J=12.0 \mathrm{~Hz}), 5.13$ and 4.98 ($\mathrm{ABq}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.25(\mathrm{~s}), 1.24(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 153.83,153.80,151.94,151.87,134.79,134.77,134.74,134.58,131.61,131.56$,
129.57, 129.46, 129.33, 128.78, 128.34, 128.33, 128.29, 128.26, 128.12, 128.09, 125.03, 124.99, 118.71, 88.77, 88.33, 84.20, 84.14, 69.78, 67.58, 67.26, 34.57, 34.56, 30.95. IR (film): 3033, 2962, 2863, 1751, 1505, 1456, 1383, 1243, 1021, 926, 907, 836, $696 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{48} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 741.3187$, found 741.3178.

1,2-Phenylenebis(3-(3-methoxyphenyl)prop-2-yne-1,1-diyl) dibenzyl dicarbonate (1j). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=5: 1)$ afforded the title product as a mixture of two diastereomers with a ratio of 1 : 1.30 in 33% yield over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 7.79$ (dd, $J=5.8,3.6 \mathrm{~Hz}$), $7.75(\mathrm{dd}, J=5.8,3.6 \mathrm{~Hz}), 7.42-7.39(\mathrm{~m})$, 7.28-7.23 (m), 7.14-6.93 (m), 6.83-6.79 (m), 5.15 and $5.00(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, 5.13 and $4.98(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 158.97,158.94,153.77,153.75,134.68,134.61,134.58,134.39,129.66$, 129.56, 129.30, 129.13, 129.09, 128.80, 128.32, 128.31, 128.28, 128.08, 128.04, $124.26,124.22,122.52,116.35,116.31,115.50,115.44,88.49,88.05,84.48,84.39$, 69.83, 67.38, 67.09, 54.92. IR (film): 3066, 3033, 2959, 2835, 1751, 1596, 1574, $1489,1456,1382,1320,1249,1206,1175,1165,1045,928,908,785,755,698,687$ cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 689.2146$, found 689.2174 .

Synthesis of 1,7-diyn-3,6-bis(propargyl carbonate)s 1 k , 11 and 1 m . Typical procedure for the synthesis of ethyl 4-(3-(((benzyloxy)carbonyl)oxy)-3-(2-(1-(((benzyloxy)carbonyl)oxy)-3-phenylpro p-2-yn-1-yl)phenyl)prop-1-yn-1-yl)benzoate (11).

A THF solution of ethynyltrimethylsilane ($1.84 \mathrm{~mL}, 13.0 \mathrm{mmol}$ in 20 mL THF) and phenylacetylene ($1.1 \mathrm{~mL}, 10 \mathrm{mmol}$ in 20 mL THF) were placed in two 100 mL round bottom flasks respectively. n - BuLi (2.5 M in hexane, $5.2 \mathrm{~mL}, 13.0 \mathrm{mmol}$) was added to the ethynyltrimethylsilane solution, and $\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 4.0 mL , 10.0 mmol) was added to the phenylacetylene solution at $-78^{\circ} \mathrm{C}$. This deprotonation reaction was stirred for 10 min . (deprotonation of phenylacetylene was also accomplished accordingly). To the solution of lithium trimethylsilylacetylide was then added a THF solution of phthaldehyde ($1.34 \mathrm{~g}, 10.0 \mathrm{mmol}$ in 20 mL). The mixture was stirred for 10 minuets at $-78{ }^{\circ} \mathrm{C}$ before a solution of lithium phenylacetylide was added. The reaction mixture was warmed up to room temperature and stirred for 2.5 h . Then the mixture was quenched with saturated ammonium chloride solution. The reaction mixture was extracted with ethyl acetate and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by chromatography on silica gel (eluent: petroleum ether / ethyl acetate $=3: 1$) to afford the diol $\mathbf{s - 1}$ as a colorless oil.

To a solution of above diol $\mathbf{s - 1}(2.96 \mathrm{~g}, 8.8 \mathrm{mmol})$ were added $\mathrm{MeOH}(30 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($364 \mathrm{mg}, 2.64 \mathrm{mmol}$), after stirring for 1 h at room temperature. The mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with ethyl acetate and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by chromatography on silica gel (eluent: petroleum ether: acetone $=3: 1$) to afford diol $\mathbf{s - 2}$ as a mixture of two diastereomers with a ratio of $1: 4.8$ in 92% isolated yield $(2.12 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 7.91-7.82(\mathrm{~m})$, 7.69-7.60 (m), 7.50-7.45 (m), 7.40-7.27 (m), 6.16 (s), 6.04 (s), 5.98 (s), 5.85 (d), 4.38 (s), 4.27 (s), 3.93 (s , 3.86 (s$), 2.70-2.67(\mathrm{~m}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ two
isomers: $\delta 137.98,137.72,137.56,137.22,131.72,129.13,129.10,128.64,128.60$, 128.26, 128.25, 127.98, 127.89, 122.18, 122.15, 87.75, 87.65, 87.47, 82.69, 82.34, $75.90,75.56,63.75,62.92,62.16,61.43$. IR (film): 3360, 3289, 1597, 1489, 1453, 1442, 1323, 1300, 1199, 1176, 1098, 1046, 1027, 1014, 997, 965, 939, 811, 773, 758, $736,694,664 \mathrm{~cm}^{-1}$. HRMS (MALDI/DHB) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}:$285.0886, found 285.0883.

To a solutin of diol s-2 ($524.6 \mathrm{mg}, 2.0 \mathrm{mmol}$) in triethylamine (20 mL) were added ethyl 4-iodobenzoate ($662.57 \mathrm{mg}, 2.4 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(28.0 \mathrm{mg}, 0.04$ $\mathrm{mmol})$ and $\mathrm{CuI}(19.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ at room temperature, then the mixture was heated overnight at $50^{\circ} \mathrm{C}$. After the starting material was consumed, the mixture was quenched with saturated ammonium chloride solution, extracted with ethyl acetate, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was purified by chromatography on silica gel (petroleum: acetone $=3: 1$) to afford diol s-3 as a yellow oil.

To a solution of above diol s-3 ($646.8 \mathrm{mg}, 1.57 \mathrm{mmol}$) in DCM (20 mL) was added pyridine $(1.3 \mathrm{~mL}, 15.7 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for several minutes, benzyl chloroformate ($1.3 \mathrm{~mL}, 9.4 \mathrm{mmol}$) was added. The resulting solution was warmed up to room temperature and stirred for 1 h . Then the mixture was quenched with saturated ammonium chloride solution. The reaction mixture was extracted with dichloromethane and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by chromatography on silica gel (eluent: petroleum ether / ethyl acetate $=10: 1$) to afford the title product $(\mathbf{1 1})$ as a mixture of two diastereomers $(\mathrm{dr}=\mathrm{ca} .4 .5: 1)$ in 64% yield $(0.87 \mathrm{~g})$ over two steps as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: δ 7.92-7.88 (m), 7.76-7.74 (m), 7.46-7.38 (m), 7.31-7.20 (m), 7.05 (s), $7.03(\mathrm{~s}), 6.98(\mathrm{~s}), 5.18-5.15(\mathrm{~m}), 5.05-4.99(\mathrm{~m}), 4.35(\mathrm{q}, ~ J=7.2 \mathrm{~Hz})$, $1.38(\mathrm{t}, J=7.2,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer: $\delta 165.84,153.89$, 153.83, 134.74, 134.58, 134.26, 131.87, 131.73, 130.30, 129.72, 129.67, 129.22, $129.18,128.88,128.83,128.48,128.28,128.25,128.11,126.28,121.72,88.34,87.59$, 87.28, 84.67, 84.59, 70.06, 70.03, 67.33, 67.01, 61.11, 14.23. Minor isomer: 134.82,
$134.80,134.78,131.76,130.38,129.81,128.20,128.16,88.41,87.50,84.59,67.64$, 67.10, 61.22. Other peaks are overlapped with the signal of the major isomer. IR (film): 3024, 2964, 1747, 1715, 1490, 1455, 1382, 1231, 1176, 1105, 1020, 924, 905, 785, 769, 754, 736, $692 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{43} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 701.2146$, found 701.2120.

1k
(1k). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1)$ afforded the title product as a mixture of two diastereomers $(\mathrm{dr}=\mathrm{ca} .1: 7.1) \mathrm{in}$ 78% yield over two steps from s-2 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 7.77-7.71$ (m), 7.44-7.36 (m), 7.29-7.14 (m), 7.01(s), 7.00 (s), 5.16 and $5.02(\mathrm{ABq}, J=12.4 \mathrm{~Hz}), 5.15$ and $5.02(\mathrm{ABq}, J=11.6 \mathrm{~Hz}), 5.14$ and $4.99(\mathrm{ABq}, J=$ 12.0 Hz). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer: δ 153.86, 153.81, 134.79, 134.72, 134.53, 134.36, 133.06, 131.82, 129.64, 129.61, 128.84, 128.77, 128.70, 128.43, 128.40, 128.23, 128.18, 128.07, 121.68, 120.20, 88.25, 86.99, 85.79, 84.72, 69.97, 67.24, 67.06. Minor isomer: 134.86, 134.69, 134.56, 133.08, 129.76, 129.74, 129.44, 129.31, 128.15, 128.13, 88.72, 87.44, 85.72, 84.66, $67.53,67.38$. Other peaks are overlapped with the signal of the major isomer. IR (film): 3057, 3028, 1746, 1489, $1455,1381,1317,1232,1180,1090,1015,996,924,905,828,785,754,736,692$ cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}: 663.1545$, found 663.1530.

1m
(1m). Column chromatography on silica gel (eluent: petroleum ether: ethyl acetate $=10: 1)$ afforded the title product as a mixture of two diastereomers $(\mathrm{dr}=\mathrm{ca} .1: 4.14)$ in
70% yield over two steps from s-2 as a brown oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 7.75-7.72(\mathrm{~m}), 7.44-7.37(\mathrm{~m}), 7.32-7.16(\mathrm{~m}), 7.08(\mathrm{~s}), 7.02(\mathrm{~s}), 6.97(\mathrm{~s})$, $6.95(\mathrm{~s}), 6.89-6.86(\mathrm{~m}), 5.17$ and $5.05(\mathrm{ABq}, J=12.0 \mathrm{~Hz}), 5.14$ and $4.98(\mathrm{ABq}, J=$ 12.0 Hz . Some peaks of minor isomer are overlapped with the signal of the major isomer. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomers: δ 153.85, 153.81, 134.81, 134.74, 134.53, 134.24, 133.24, 131.83, 129.66, 129.63, 128.93, 128.74, 128.44, $128.43,128.42,128.25,128.22,128.07,127.98,126.86,126.82,121.72,121.55$, 88.56, 88.32, 84.67, 81.64, 69.99, 69.97, 67.25, 67.18. Minor isomer: 134.84, 134.67, $134.46,133.31,131.91,129.78,129.76,129.49,129.41,128.83,128.38,128.18$, 128.17, 128.13, 128.02, $126.86,88.79,84.59,67.64,67.45$. Other peaks are overlapped with the signal of the major isomer. IR (film): 3073, 3028, 1745, 1490, 1455, 1381, 1314, 1231, 1192, 1178, 923, 904, 784, 754, $692 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 635.1499$, found 635.1489.

Typical procedure for the synthesis of cis-dihydrocyclobuta[b]naphthalene 2a.

(All reactions were carried out on 0.2 mmol scale).
Condition A:

Condition A: In a glovebox, to a Schlenk tube was added $\mathrm{AgSbF}_{6}(3.4 \mathrm{mg}, 0.01$ mmol). Then the Schlenk tube was removed from the glovebox, $\mathrm{PPh}_{3} \mathrm{AuCl}(5 \mathrm{mg}$, $0.01 \mathrm{mmol})$ and THF (0.5 mL) were successively added and the mixture was stirred at room temperature for $15-20 \mathrm{~min}$. Then a THF solution of $\mathbf{1 a - 2}(121.3 \mathrm{mg}, 0.2 \mathrm{mmol}$ in 1.5 mL THF) was added. After the reaction mixture was stirred at room temperature for 2 h , the solvent was evaporated under the reduced pressure and the residue was purified by chromatography on silica gel (petroleum: ethyl acetate $=20: 1$) to afford 2a ($63.4 \mathrm{mg}, 87 \%$) as a white solid. In a separate experiment, we also isolated a byproduct of benzyl alcohol in 23% yield. It is noted that under condition A,
the reaction mixture became viscous as the reaction progressed. It was found that partial polymerization of THF solvent occurred under the conditions as evidenced by the NMR spectra of the crude reaction mixture.

Condition B:

Condition B: To a solution of 1,2-phenylenebis(3-phenylprop-2-yne-1,1-diyl) dibenzyl dicarbonate $\mathbf{1 a - 2}$ ($121.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) in toulene (2 mL) was added [Johnphos $(\mathrm{MeCN}) \mathrm{Au}] \mathrm{SbF}_{6}(7.7 \mathrm{mg}, 0.01 \mathrm{mmol})$. After the reaction mixture was stirred at room temperature for 3 h , the solvent was evaporated under the reduced pressure and the residue was purified by chromatography on silica gel (petroleum: ethyl acetate $=20: 1$) to afford $\mathbf{2 a}(62.7 \mathrm{mg}, 86 \%)$ as a white solid.

2a
(3aR*,9bS*)-3a,9b-Diphenyl-3a,9b-dihydronaphtho $\left[2 ', 3^{\prime}: 3,4\right]$ cyclobuta $[1,2-d][1,3$
]dioxol-2-one (2a). M.p. 206-207 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04$ (s, 2H), 7.98 (dd, $J=6.0,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59 (dd, $J=6.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23-7.21 (m, 4H), 7.16-7.15 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.51, 141.54, 135.74, 132.39, $129.15,129.04,128.12,127.19,126.78,123.95,95.24$. IR (film): 3064, 1803, 1594, $1499,1450,1268,1221,1207,1139,1039,1029,1006,881,753,729,696 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{O}_{3}$: 364.1099, found 364.1101.

(3aR*,9bS*)-3a,9b-Bis(4-chlorophenyl)-3a,9b-dihydronaphtho[2',3':3,4]cyclobut $\mathbf{a}[1,2-d][1,3]$ dioxol-2-one (2b). Condition A was used. Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 76% (65.6 mg) yield as a white solid. M.p. 239-240 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07$ (s, $2 \mathrm{H}), 8.01$ (dd, $J=6.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=6.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 8 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.02,140.94,135.88,135.48,130.88,129.25$, 128.69, 128.14, 127.52, 124.09, 94.67. IR (film): 3060, 2920, 2849, 1799, 1597, 1505, $1494,1410,1399,1310,1228,1206,1149,1138,1094,1036,1018,1004,885,839$, 797, 767, $754 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 455.0214$, found 455.0212 .

(3aR*,9bS*)-3a,9b-Bis(4-bromophenyl)-3a,9b-dihydronaphtho[2',3':3,4]cyclobut $\mathbf{a}[1,2-d][1,3]$ dioxol-2-one (2c). Condition A: Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) and recrystallization afforded the title product in 75% yield (77.5 mg) as a white solid. Condition B: Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 62% yield (65.2 mg) as a white solid. M.p. $238-240{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07$ (s,
$2 \mathrm{H}), 8.01$ (dd, $J=6.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=6.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 4 \mathrm{H})$, 7.11-7.08 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.96, 140.85, 135.84, 131.63, 131.36, 129.23, 128.39, 127.51, 124.06, 123.81, 94.63. IR (film): 3060, 2920, 2846, $1809,1755,1597,1505,1489,1410,1396,1265,1220,1206,1150,1140,1074,1039$, 1012, $920,882,841,820,765,753,737,699 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 542.9202$, found 542.9208.

(3aR*,9bS*)-3a,9b-Bis(2-bromophenyl)-3a,9b-dihydronaphtho[2',3':3,4]cyclobut $\mathbf{a}[1,2-\mathrm{d}][1,3]$ dioxol-2-one (2d). Condition A was used. Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 72% yield (74.9 mg) as a white solid. M.p. $229-230{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12$ (dd, $J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~s}, 2 \mathrm{H}), 7.98(\mathrm{dd}, J=6.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{dd}, J=6.4,3.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.38-7.35 (m, 4H), 7.21-7.17 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $153.53,141.65,135.42,134.52,132.25,131.60,131.00,129.26,127.19,126.83$, 123.37, 121.73, 95.39. IR (film): 3054, 1809, 1590, 1563, 1506, 1471, 1436, 1296, 1282, 1222, 1061, 1032, 1021, 882, 756, 743, $695 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Br}_{2}: 519.9310$, found 519.9314 .

(3aR*,9bS*)-3a,9b-Bis(4-fluorophenyl)-3a,9b-dihydronaphtho[2',3':3,4]cyclobut $\mathbf{a}[1,2-d][1,3]$ dioxol-2-one (2e). Condition A was used. Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 85% yield $(68.5 \mathrm{mg})$ as a white solid. M.p. 203-204 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08$ (s, $2 \mathrm{H}), 8.00$ (dd, $J=6.2,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (dd, $J=6.4,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22-7.18 (m, 4H), 6.91-6.86 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.97\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=249.9 \mathrm{~Hz}\right.$), $154.12,141.11,135.83,129.20,128.75\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.6 \mathrm{~Hz}\right), 128.31\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}\right)$, 127.41, 124.06, $115.43\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}\right), 94.72\left(\mathrm{~d},{ }^{5} J_{\mathrm{C}-\mathrm{F}}=1.0 \mathrm{~Hz}\right)$. IR (film): 3057, 2923, 1805, 1603, 1511, 1415, 1304, 1270, 1226, 1161, 1139, 1038, 1015, 883, 846, $766,756 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~F}_{2}: 400.0911$, found 400.0918 .

2f

3
(3aR*,9bS*)-3a,9b-Bis(4-(trifluoromethyl)phenyl)-3a,9b-dihydronaphtho[2',3':3, 4]cyclobuta[1,2-d][1,3]dioxol-2-one (2f). Condition A was used. In this case, column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the product $\mathbf{2 f}$ in 74% yield (73.8 mg) as a white solid (M.p. $185-186^{\circ} \mathrm{C}$), and the product 3 in 12% yield (17.3 mg) as a mixture of two diastereomers in a ratio of 1:1.25 (determined by HPLC).

Characterization data for $2 f$:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11(\mathrm{~s}, 2 \mathrm{H}), 8.04(\mathrm{dd}, J=6.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J$ $=6.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 153.80, 140.57, $136.13\left(\mathrm{q},{ }^{5} J_{\mathrm{C}-\mathrm{F}}=1.6 \mathrm{~Hz}\right), 135.99,131.52\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.8 \mathrm{~Hz}\right), 129.32$, $127.74,127.20,125.46\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 124.24,123.47\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.8 \mathrm{~Hz}\right), 94.55$.

IR (film): 3069, 2926, 2849, 1816, 1620, 1504, 1416, 1328, 1220, 1205, 1169, 1127, 1070, 1041, 1018, 853, $754 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~F}_{6}$: 500.0847, found 500.0848.

Characterization data for 3: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ two isomers: $\delta 8.26(\mathrm{~s}, 2 \mathrm{H})$, $8.01(\mathrm{dd}, J=5.8,2.8,2 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 6 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 6 \mathrm{H})$, 7.12-7.11 (m, 4H), 4.96 and $4.87(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) two isomers: $\delta 152.78,141.22,139.37,135.88,134.64,130.50\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.8 \mathrm{~Hz}\right)$, $129.24,128.54,128.49,128.08,127.96,127.59,127.02,126.82,125.30\left(q,{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.7\right.$ Hz), $124.01\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=271.7 \mathrm{~Hz}\right.$), 91.92, 69.68. IR (film): 3063, 3030, 2950, 2923, 1751, 1620, 1505, 1456, 1413, 1377, 1326, 1242, 1166, 1114, 1066, 1030, 1018, 946, $889,850,802,787,752,706,696 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 765.1713$, found 765.1682.

Diethyl 4,4'-((3aR*,9bS*)-2-oxo-3a,9b-dihydronaphtho[2',3':3,4]cyclobuta-
[1,2-d][1,3]dioxole-3a,9b-diyl)dibenzoate (2g). Condition A was used. Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 74% yield (75.2 mg) as a white solid. M.p. $157-159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~s}, 2 \mathrm{H}), 8.04(\mathrm{dd}, J=6.0,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.66$ (dd, $J=6.2,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 4 \mathrm{H}), 4.32(\mathrm{q}, J=7.2,4 \mathrm{H}), 1.35(\mathrm{t}, J=7.2$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.68,154.01,140.80,136.80,135.90,131.22$, 129.51, 129.27, 127.56, 126.71, 124.17, 94.81, 61.21, 14.15. IR (film): 3057, 2982, 2959, 2926, 1813, 1718, 1413, 1367, 1276, 1219, 1205, 1108, 1041, 1020, 854, 763, $737 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 531.1414$, found 531.1438.

(3aR*,9bS*)-3a,9b-Di-p-tolyl-3a,9b-dihydronaphtho[$\left.2^{\prime}, 3 ': 3,4\right]$ cyclobuta $[1,2-d][1$, 3]dioxol-2-one (2h). Condition A was used. Column chromatography on silica gel (petroleum ether: ethyl acetate $=10: 1$) afforded the title product in 82% yield (64.3 mg) as a white solid. M.p. $199-201{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~s}, 2 \mathrm{H}), 7.98$ (dd, $J=6.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.60 (dd, $J=6.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13-7.11 (m, 4H), 7.00-6.98 $(\mathrm{m}, 4 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 154.65, 142.01, 138.95, 135.76, 129.57, 129.18, 128.91, 127.12, 126.83, 123.85, 95.38, 21.09. IR (film): 3051, 3024, 2917, 2858, 1801, 1506, 1453, 1415, 1270, 1223, 1186, 1148, 1139, 1038, 1022, 882, 836, 795, 767, 753, $737 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}_{3}$: 392.1412, found 392.1406.

(3aR*,9bS*)-3a,9b-Bis(4-tert-butylphenyl)-3a,9b-dihydronaphtho[2',3':3,4]cyclob uta $[1,2-d][1,3]$ dioxol-2-one (2i). Condition A was used. Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 70% yield $(66.7 \mathrm{mg})$ as a white solid. M.p. $179-180{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08$ (s, $2 \mathrm{H}), 8.01$ (dd, $J=6.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=6.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 4 \mathrm{H})$,
7.11-7.09 (m, 4H), 1.18 (s, 18H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.85, 152.09, 141.87, 135.76, 129.54, 129.20, 127.10, 126.57, 124.89, 123.97, 95.33, 34.43, 31.02. IR (film): 3057, 2962, 2868, 1812, 1617, 1590, 1510, 1459, 1413, 1272, 1221, 1040, 1020, 1005, 881, 845, 767, $748 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{O}_{3}: 476.2351$, found 476.2348.

(3aR*,9bS*)-3a,9b-Bis(3-methoxyphenyl)-3a,9b-dihydronaphtho[2',3':3,4]cyclob uta $[\mathbf{1 , 2 - d}][1,3]$ dioxol-2-one ($\mathbf{2 j}$). Condition B was used. Column chromatography on silica gel (petroleum ether: ethyl acetate $=10: 1$) afforded the title product in 45% yield $(38.2 \mathrm{mg})$ as a white solid. M.p. $208-210{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08$ (s, 2 H), 8.01 (dd, $J=6.2,3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (dd, $J=6.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13-7.09 (m, 2H), 6.83-6.81 (m, 2H), 6.76-6.75 (m, 4H), 3.65 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $159.32,154.51,141.65,135.82,133.99,129.29,129.25,127.25,123.94,119.42$, 114.81, 112.42, 95.18, 55.24. IR (film): 3072, 3000, 2959, 2911, 2840, 1794, 1748, 1600, 1491, 1465, 1432, 1291, 1226, 1161, 1147, 1136, 1032, 1013, 951, 889, 873, 832, 809, 756, $696 \mathrm{~cm}^{-1}$. HRMS (MALDI/DHB) calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 425.1384, found 425.1383.

(3aR*,9bS*)-3a-(4-Chlorophenyl)-9b-phenyl-3a,9b-dihydronaphtho[2',3':3,4]cycl obuta[1,2-d][1,3]dioxol-2-one (2k). Condition A was used. Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 76% yield (61.2 mg) as a white solid. M.p. 181-183 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09$ (s, 1H), 8.06 (s, 1H), 8.02-8.00 (m, 2H), 7.64 (dd, $J=6.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 5 \mathrm{H})$, $7.15(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.29,141.39,141.24,135.88,135.84$, 135.21, 132.19, 131.20, 129.36, 129.25, 129.24, 128.47, 128.39, 128.21, 127.40, 127.38, 126.80, 124.18, 123.94, 95.30, 94.68. IR (film): 1797, 1595, 1507, 1495, 1452, 1404, 1268, 1230, 1198, 1089, 1043, 1033, 1005, 886, 836, 811, 757, 734, 693, $678 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}: 421.0602$, found 421.0598 .

Ethyl 4-((3aR*,9bS*)-2-Oxo-9b-phenyl-3a,9b-dihydronaphtho[2',3':3,4]-
cyclobuta[1,2-d][1,3]dioxol-3a-yl)benzoate (21). Condition A was used. Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 82% yield (71.9 mg) as a white solid. M.p. 199-200 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.03-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.85(\mathrm{~m}, 2 \mathrm{H})$, 7.65-7.62 (m, 2H), 7.31-7.28 (m, 2H), 7.25-7.18 (m, 5H), $4.30(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.78,154.26,141.30$, 141.12, 137.28, 135.84, 132.00, 130.97, 129.35, 129.33, 129.23, 128.35, 127.40, $127.37,126.80,126.73,124.18,123.96,95.39,94.70,61.12,14.15$. IR (film): 3063, 2956, 2925, 2852, 1811, 1716, 1614, 1593, 1450, 1411, 1277, 1221, 1206, 1140, 1108, 1040, 883, 761, 732, $696 \mathrm{~cm}^{-1}$. HRMS (MALDI/DHB) calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 437.1384, found 437.1383.

2m
(3aR*,9bS*)-3a-Phenyl-9b-(thien-2-yl)-3a,9b-dihydronaphtho[2',3':3,4]cyclobuta [1,2-d][1,3]dioxol-2-one (2m). Condition B was used. Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 55% yield $(40.5 \mathrm{mg})$ as a little yellow solid. M.p. 191-192 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.15(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=6.2,3.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.30-7.20 (m, 6H), 6.91-6.90 (m, 1H), 6.84-6.82 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.88,141.91,141.17,136.05,135.79,135.43,132.30,129.32,129.26$, 128.36, 128.21, 128.03, 127.40, 127.32, 126.98, 126.73, 124.02, 123.74, 95.45, 92.84. IR (film): 3101, 3069, 2917, 1805, 1593, 1510, 1451, 1358, 1262, 1240, 1206, 1136, 1028, 875, 848, 764, 738, 711, $698 \mathrm{~cm}^{-1}$. HRMS (MALDI/DHB) calcd for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 371.0736$, found 371.0731 .

(3aR*,9bS*)-6-Methyl-3a,9b-diphenyl-3a,9b-dihydronaphtho[2',3':3,4]cyclobuta[1,2- $\boldsymbol{d}][1,3]$ dioxol-2-one (2n). Condition B was used. Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 79% yield $(60.0 \mathrm{mg})$ as a white solid. M.p. $213-214{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02$ (s, $1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.24-7.15 (m, 10H), $2.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.68, 141.63, $140.70,137.24,136.08,134.09,132.57,132.56,129.59,129.03,128.93,128.14$, 128.12, 126.86, 126.84, 123.71, 123.17, 95.33, 95.27, 21.73. IR (film): 3064, 2922, $1805,1620,1593,1499,1450,1319,1304,1269,1226,1197,1139,1041,1030,1007$,

891, 809, 784, 767, 730, 696, $676 \mathrm{~cm}^{-1}$. HRMS (MALDI/DHB) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 379.1329$, found 379.1328 .

(3aR*, 11bS*)-3a,11b-Diphenyl-3a,11b-dihydroanthra[2',3':3,4]cyclobuta[1,2-d][
1,3]dioxol-2-one (20). Condition A: Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 44% yield $(36.5 \mathrm{mg})$ as a little yellow solid. Condition B: Column chromatography on silica gel (petroleum ether: ethyl acetate $=20: 1$) afforded the title product in 77% yield $(63.9 \mathrm{mg})$ as a little yellow solid. M.p. $236-237{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54$ (s, 2H), 8.18 (s, 2H), 8.02 (dd, $J=6.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=6.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.25$ (m, 4H), 7.19-7.16 $(\mathrm{m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 154.67, 140.76, 133.05, 132.46, 132.04, 129.10, 128.18, 128.08, 128.06, 126.85, 126.44, 124.31, 95.48. IR (film): 3059, 1813, $1580,1498,1450,1421,1301,1220,1149,1041,1005,901,781,740,718,696 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 437.1148$, found 437.1131.

Reference:

(1) P. Braunstein, H. Lehner and D. Matt, Inorg. Synth. 1990, 27, 218.
(2) N. Mezailles, L. Ricard and F. Gagosz, Org. Lett. 2005, 7, 4133.
(3) M. Chen, Y. Chen and Y. Liu, Chem. Commun., 2012, 48, 12189.

X-ray crystal structure of compound $\mathbf{2 f}$ (fluoro atoms on CF_{3} groups are disordered)

X-ray crystal structure of the trans-isomer of $\mathbf{3}$ (fluoro atoms on one of the CF_{3} groups are disordered)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

1a-2

1a-2

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

1c

1c

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

1d

1d

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

1e

1e

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

1g

Electronic Supplementary Material (ESI) for Chemical Communications

1h

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

$1 i$

Electronic Supplementary Material (ESI) for Chemical Communications

1j

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

1 m

1m

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

$1 n$

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

 W Y

2a

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

2c

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

 nil

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

$2 f$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

200
150
100

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

$$
\mid
$$

2 j

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

