Electronic Supplementary Information (ESI):

3D Mesoporous Polysulfone-Carbon Nanotube Anode for Enhanced Bioelectricity Output in Microbial Fuel Cells

Tien-Hoa Nguyen^a, Yang-Yang Yu^a, Xin Wang^a, Jing-Yuan Wang^b, Hao Song*^{ac}

^{*a*} School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457

^b School of Civil & Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

^c Key Laboratory of Systems Bioengineering, Ministry of Education, and School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China

* Corresponding author: Tel: +65-6790-4485, Fax: +65-6514-1084, E-mail: songhao@ntu.edu.sg; hsong@tju.edu.cn.

Fabrication of mesoporous polysulfone support matrix (MPPS)

The porous substrate was prepared as follows: 20 g of polysulfone (MW=35,000) was dissolved completely in 75 g of N-methylpyrrolidone (NMP). While stirring continuously, 5 g of polyvinylpyrrolidone (PVP, MW=10,000) was added to the mixture to form a dope solution.^{S1} The solution was then cast on a round glass substrate by a spin coating machine (SCS G3, Cookson Electronics) with spin speed at 100 rpm for 15 s. The coated substrate was immediately soaked in a mixture of dimethylformamide (DMF) and ethylene glycol (EG) (80/20 v/v.%) for 24 h to complete the porous formation process. Finally, the porous matrix was rinsed with plenty of DDI water followed by freeze treatment in liquid nitrogen for 5 min for curing and dense top surface removal.

Preparation of SWCNT-coated MPPS

A coating solution was first prepared by mixing, using an ultrasonic probe for 2 h, 0.125 g of SWCNT and 0.5 g of sodium dodecylbenzene sulfonate (SDBS) with 50 mL of DDI water.^{S2} The obtained solution was transferred to a 100 mL-autoclave and a porous support sheet was dipped into it. The autoclave was placed in an oven at 80 °C for 48 h for infiltration. The coated

porous sheet was dried in a vacuum oven at 120 °C for 24 h. The process of coating and drying is repeated for 3 times to increase SWCNT loading onto the anode.

Field Emission Scanning Electron Microscope

The FE-SEM images were taken by a Field Emission Scanning Electron Microscope (JSM-6390LA, JEOL). Thin layers of platinum were coated on the surface of samples using an Auto Fine Coater (JSM) before observations. For biofilm characterization, the anode was first pretreated in 1% glutaric dialdehyde and then in ethanol solution with different concentrations (30, 50, 60, 70, 80, 90 and 100% of ethanol) before platinum coatings.

Thermal analysis

A thermo-gravimetric analyzer (Diamond TG/DTA, Perkin Elmer) was used to observe thermal stability and heat flow of the materials. The measurements were carried out under air at a heating rate of 10 °C min⁻¹ and a temperature range of RT-800 °C.

Porosity calculation

The support matrix's porosity, the fraction of total matrix volume that is porous, was estimated by the following equation

$$\emptyset_p = \left\{ 1 - \frac{w}{\rho \cdot v} \right\} \times 100 \tag{1}$$

where w, ρ , V stand for weight, density and volume of matrix, respectively.

Conductivity measurement

The conductivity of anodes was measured by sandwiching the sheets between platinum electrodes (1.2 cm x 1.2 cm). The measurements were carried out with a potential range from 0 to 30 mV. The conductance was estimated by the equation

$$\sigma = \frac{t}{RA} \tag{2}$$

where t (cm), R (Ω) and A (cm²) are thickness, resistance, and area of substrate, respectively.

Electrochemical measurements

The cyclic voltammetry analysis (CV) and electrochemical impedance spectroscopy (EIS) is performed in a three-electrode electrochemical cell with a counter electrode of platinum plate, a reference electrode of Ag/AgCl and a working electrode of either carbon cloth or SWCNT-coated MPPS.

MFCs construction and operation

A two-chamber cube shape (5.5cm x 5.5cm x 6cm) separated by a Nafion 117 membrane with a projected area of 4.9 cm² and equipped with a cathode of carbon cloth (2 cm x 2 cm) and the anode of SWCNT-coated MPPS (2 cm x 2 cm) was used to conduct the tests. A carbon cloth anode with the same dimensions was also used for comparison. While the anode medium consisted of M9 salt (8.8 g L⁻¹ Na₂HPO₄.2H₂O, 3 g L⁻¹ KH₂PO₄, 0.5 g L⁻¹ NaCl, 1 g L⁻¹ NH₄Cl, 1 mM MgSO₄, 0.1 mM CaCl₂), LB (10 g L⁻¹ peptone, 5 g L⁻¹ yeast extract and 5 g L⁻¹ NaCl) and 18 mM sodium lactate, the cathode medium contained 50 mM Fe(CN)₆³⁻, 50 mM K₂HPO₄ and KH₂PO₄. Wild type *Shewanella MR-1* were first activated overnight and then amplified in LB medium to a steady state before inoculation. The inoculation was adjusted to a final OD600 of 0.4 for all of MFCs. All MFCs were operated under batch mode with a consistent resistance of 2 kΩ. 100 ml fresh medium was changed when the nutrient was depleted. The polarization tests were conducted in triplicates, and results had minor deviations. The results presented here are a typical one.

Figure S1. An illustration of the formation of porous polymers in phase inversion process.

Figure S2. FESEM images of MPPS' surface, bottom and cross-section as synthesized (A), (B), and (C) and after treated in liquid nitrogen for 5 min (D), (E), and (F), respectively.

Figure S3. The loading of SWCNT onto MPPS with or without liquid nitrogen treated before with different numbers of coating during coating procedure.

Figure S4. I-V curves of conductivity measurement of SWCNT-coated MPPS with PPSF treated and untreated by liquid nitrogen.

Figure S5. Physical properties of the SWCNT-coated MPPS anode. (A) XRD patterns. (B) Raman spectrum. (C) TGA/DTA curves.

Figure S6. FESEM images showing micro-pores on top (A) and on bottom (B) of SWCNTcoated MPPS along with macro-pores. The inset images are for a high magnification.

Figure S7. Biofilm formation on the anode of SWCNT-coated MPPS. (A) The mechanism of extracellular electron transfer via membrane-bound cytochromes. (B) Biofilms in mesoporous structure of the anode.

References:

- S1 A. Rahimpour and S. S. Madaeni, J. Membr. Sci., 2010, 360, 371-379.
- S2 X. Xie, M. Ye, L. Hu, N. Liu, J. R. McDonough, W. Chen, H. N. Alshareef, C. S. Criddle and Y. Cui, *Energy Environ. Sci.*, 2012, **5**, 5265-5270.