Preparation of allylboronates by Pd-catalyzed borylative cyclization of dienynes

Ruth López-Durán, Alicia Martos-Redruejo, Elena Buñuel, Virtudes Pardo-Rodríguez and Diego J. Cárdenas*

Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Content

Page	
1. General methods.	2
2. Synthesis and characterization of dienynes precursors.	2
3. Synthesis of dienynes.	5
4. Experimental data of dienynes.	5
5. General procedure for borylative cyclizations of dienynes.	11
6. Experimental data of allylboronates from dienynes.	11
7. General procedure for oxidation of allylboronates and characterization of result	lting
alcohols.	17
8. Trifluoroborate salts of allylboronates: Formation and experimental data of potass	sium
(E)-(3-(4,4-bis(methoxycarbonyl)-2-methylenecyclopentyl)allyl)trifluoroborato (6).	19
9. General procedure for allylation reactions of allylboronates and characterization	n of
resulting α-alcohols.	20
10. Suzuki cross-coupling reaction of allylboronate 2a and experimental data of	the
resulting compounds.	22
11. ¹ H-NMR and ¹³ C-NMR spectra.	24
12. References.	58

1. General methods.

The solvents used, THF (SDS, anhydrous, analytical grade), DMF (SDS, anhydrous, analytical grade), toluene (SDS, anhydrous, analytical grade), MeOH (SDS, anhydrous, analytical grade), CH₂Cl₂ (SDS, anhydrous, analytical grade), Et₂O (SDS, anhydrous, analytical grade) and DMSO (SDS, anhydrous, analytical grade) were further dried by standing with activated 4 Å molecular sieves under Ar atmosphere for several days prior to use. Commercially n-pentane RPE (Carlo Erba, analytical grade) was used untreated. Commercially available reagents were used without additional purification. Palladium(II) trifluoroacetate (Fluorochem), bis(pinacolato)diboron (Fluorochem), dimethyl malonate (Aldrich) and N-(tert-butoxycarbonyl)-p-toluenesulfonamide (TCI) were used as received and stored at room temperature. Dimethyl propargylmalonate (Fluka), Nchlorosuccinimide (Aldrich), dimethyl sulfide (Aldrich), 2-iodothiophene (Aldrich), penta-1,4-dien-3-ol (Aldrich) and (2E, 4E)-hexa-2,4-dien-1-ol (Alfa Aesar) were used as received and stored at 4°C. Silicagel 60 (0.40-0.063 mm) was used for column chromatography purchased from SDS, and TLC-aluminium plates with 0.25 mm of silicagel 60 (F₂₅₄) were used for thin-layer chromatography, purchased from Macherey-Nagel. ¹H-NMR (300 MHz) and ¹³C-NMR (75 MHz) spectra were recorded using chloroform-d₁ (7.26 ppm ¹H, 77.2 ppm ¹³C) as internal standard. Bruker AMX-300 was the spectrometer used. Reagents were weighted on air, reactions were performed under Ar and subsequent work-up was performed on air.

2. Synthesis and characterization of dienynes precursors.

Dimethyl 2-(but-2-ynyl)malonate,¹ **dimethyl 2-(3-phenylprop-2-ynyl)malonate**,² **dimethyl 2-(3-(trimethylsilyl)prop-2-yn-1-yl)malonate**,³ **diethyl 2-(but-2-yn-1-yl)malonate**,⁴ **N-(prop-2-ynyl)-***p***-toluenesulfonamide**,⁵ **N-(but-2-ynyl)-***p***-toluenesulfonamide**,¹ and **dimethyl 2-(but-3-ynyl)malonate**,⁶ were prepared according to a previously described procedure.

(E)-5-chloropenta-1,3-diene

Cl To a solution of penta-1,4-dien-3-ol (11.85 mmol, 1 equiv) in pentane (10 mL), 2 mL of H₂O was added at room temperature. The mixture was cooled to 0°C and 3.3 mL of HCl (37%, 39.93 mmol, 3.37 equiv) were added dropwise. After addition, the reaction was stirred at room temperature for 2 h. Then, water and Et₂O were added into the resulting mixture. The aqueous layer was separated and extracted with Et₂O (3 x 10 mL). The combined organic phases were washed several times with water, aqueous solution of NaHCO₃ (5%) and twice with saturated aqueous solution of NaCl. Then, the organic phase was dried over anhydrous MgSO₄. The solvent was carefully removed under vacuum and the crude was used without further purification. Characterization and experimental data of this compound were already reported.⁷

(2E,4E)-1-chlorohexa-2,4-diene

Cl A solution of *N*-chlorosuccinimide (1.0 g, 7.60 mmol) in CH₂Cl₂ (15 mL) was charged with dimethyl sulfide (316.16 mg, 5.08 mmol) at 0°C and the resulting white suspension was stirred for 10 min. After cooling to -20°C, a solution of (2*E*, 4*E*)-hexa-2,4-dien-1-ol (500 mg, 5.09 mmol) in CH₂Cl₂ (5 mL) was added and the mixture was allowed to warm to room temperature. After stirring for 2 h, the reaction mixture was diluted with water and extracted with Et₂O. Then, the organic phase was dried over anhydrous MgSO₄. The solvent was carefully removed under vacuum and the crude was used without further purification. Characterization and experimental data of this compound were already reported.⁸

Dimethyl-(3-phenylprop-2-yn-1-yl)malonate

MeO₂C O₂Me OMe CuI (224 mg, 1.17 mmol), (PPh₃)₂PdCl₂ (412 mg, 0.587 mmol,) and 1-iodo-4-methoxybenzene (2.75g, 11.75 mmol) were added to a solution of dimethylpropargylmalonate (2 g, 11.75 mmol) in CH₂Cl₂ (15 mL) and Et₃N (6.27 mL). The reaction mixture was stirred at room temperature for 12 h. The solvent was evaporated and the crude was diluted with EtOAc and washed with saturated aqueous NaHCO₃. The organic phase was dried over anhydrous Na₂SO₄ and the solvent removed. The crude product was purified by flash chromatography on silica gel (hexane/EtOAc 6:1, molybdophosphoric acid us stain (2.6 mmol/100 mL ethanol)) to afford the title compound as yellowish oil (1.95 g, 60%).

¹H NMR (300 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 6.84 – 6.77 (m, 2H), 3.80 (s, 3H), 3.78 (s, 6H), 3.68 (t, *J* = 7.8 Hz, 1H), 2.99 (d, *J* = 7.7 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) ¹³C NMR (75 MHz, CDCl₃) δ 168.66 (C), 159.55 (C), 133.19 (CH), 115.43 (C), 113.98 (CH), 83.78 (C), 82.52 (C), 55.42 (CH₃), 52.94 (CH₃), 51.47 (CH), 19.71 (CH₂). Characterization and experimental data of this compound were already reported.⁹

Dimethyl 2-(3-(thiophen-2-yl)prop-2-yn-1-yl)malonate

THF (25 mL) and Et₃N (1.82 mL). The reaction mixture was stirred at room temperature for 12 h. The solvent was evaporated and the crude was then diluted with EtOAc and washed with saturated aqueous NaHCO₃. The organic phase was dried over anhydrous Na₂SO₄ and the solvent removed. The crude product was purified by flash chromatography on silica gel (hexane/EtOAc 6:1, molybdophosphoric acid us stain (2.6 mmol/100 mL ethanol)) to afford the title compound as yellowish oil (1.3 g, 54%).

¹H NMR (300 MHz, CDCl₃) δ 7.27 (d, J = 5.2 Hz, 1H), 7.20 (d, J = 3.6 Hz, 1H), 7.00 (dd, J = 5.1, 3.7 Hz, 1H), 3.86 (s, 6H), 3.77 (t, J = 7.7 Hz, 1H), 3.11 (d, J = 7.7 Hz, 2H). ¹³C NMR (76 MHz, CDCl₃) δ 168.35 (C), 131.75 (CH), 126.85 (CH), 126.68 (CH), 123.17 (C), 89.33 (C), 75.81 (C), 52.87 (CH₃), 50.99 (CH), 19.80 (CH₂). HRMS-ESI: [M]⁺ Calcd. for C₁₂H₁₁O₄S: 252.0456; found: 252.0459.

3. Synthesis of dienynes.

The general procedure of alkylation for the synthesis of **1a-k**, is described below.

Scheme 1

To a suspension of NaH (60% in mineral oil, 1.2 equiv) in anhydrous THF or DMF (solvent and volume will be indicated in each case) under Ar atmosphere at 0°C, was slowly added the corresponding propargyl derivative (1 equiv) and the mixture was stirred at room temperature for 15 min (formation of H₂ bubbles were observed during the addition). Then, the electrophile (E)-5-chloropenta-1,3-diene or (2E,4E)-1-chlorohexa-2,4-diene (1.2 equiv), was added dropwise and the mixture was allowed to react at room temperature. Monitoring by TLC indicated the completion of the reaction. Then, in the case of THF, most of the solvent was removed under vacuum and later, water and Et₂O were added into the resulting mixture. The aqueous layer was separated and extracted successively with Et₂O. In the case of DMF, similar extractive work-up with CH₂Cl₂/water was employed. The combined organic phases were washed several times with water and two times with saturated aqueous solution of NaCl. In all the cases, the combined organic phases were dried over anhydrous MgSO₄. The solvent was removed under vacuum and the crude was purified by flash chromatography, molybdophosphoric acid us stain (2.6 mmol/100 mL ethanol).

4. Experimental data of dienynes

(E)-dimethyl 2-(penta-2,4-dien-1-yl)-2-(prop-2-yn-1-yl)malonate (1a)

Following *general procedure of alkylation* for synthesis of dienynes (12 h) and using THF (25 mL) as solvent for (1.63 g, 9.57 mmol) of **dimethyl 2-(prop-2-yn-1-yl)malonate** and (1.18 g, 11.48 mmol) of **(E)-5-chloropenta-1,3-diene**. The product **1a** was obtained as

colourless oil (1.60 g, 70%) using hexane/EtOAc 6:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 6.37 – 6.08 (m, 2H), 5.47 (dt, *J* = 15.2, 7.7 Hz, 1H), 5.16 (dd, *J* = 13.0, 4.4 Hz, 1H), 5.04 (dd, *J* = 10.1, 1.8 Hz, 1H), 3.74 (s, 6H), 2.82 (dd, *J* = 9.1, 4.6 Hz, 2H), 2.79 (d, *J* = 2.7 Hz, 2H), 2.03 (t, *J* = 2.7 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 170.27 (C), 136.64 (CH), 135.83 (CH), 127.17 (CH), 117.03 (CH₂), 78.92 (C), 71.68 (C), 57.27 (C), 52.95 (CH₃), 35.57 (CH₂), 23.00 (CH₂).

(E)-dimethyl 2-(but-2-yn-1-yl)-2-(penta-2,4-dien-1-yl)malonate (1b)

Following *general procedure of alkylation* for synthesis of dienynes (18 h) and using THF (30 mL) as solvent for (1.20 g, 7.09 mmol) of **dimethyl 2-(but-2-yn-1-yl)malonate** and (873 mg, 8.51 mmol) of

(E)-5-chloropenta-1,3-diene. The product **1b** was obtained as colourless oil (1.03 g, 58%) using hexane/EtOAc 15:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 6.36 – 6.07 (m, 2H), 5.50 (dt, J = 15.3, 7.6 Hz, 1H), 5.13 (dd, J = 17.1, 1.7 Hz, 1H), 5.02 (dt, J = 9.9, 1.3 Hz, 1H), 3.72 (d, J = 2.0 Hz, 6H), 2.81 (d, J = 7.9 Hz, 2H), 2.73 (q, J = 2.5 Hz, 2H), 1.76 (t, J = 2.6 Hz, 3H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 170.63 (C), 136.77 (CH), 135.49 (CH), 127.67 (CH), 116.74 (CH₂), 79.13 (C), 73.40 (C), 57.65 (CH₃), 52.82 (C), 35.65 (CH₂), 23.38 (CH₂), 3.63 (CH₃).

(E)-dimethyl 2-(penta-2,4-dien-1-yl)-2-(3-(trimethylsilyl)prop-2-yn-1-yl)malonate (1c)

Following *general procedure of alkylation* for synthesis of dienynes (20 h) and using DMF (60 mL) as solvent for (2.91 g, 12.01 mmol) of **dimethyl 2-(3-(trimethylsilyl)prop-2-yn-1-yl)malonate** and (1.48 g, 14.41 mmol) of **(E)-5-chloropenta-**

1,3-diene. The product **1c** was obtained as yellowish oil (1.78 g, 48%) using hexane/EtOAc 15:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 6.36 – 6.08 (m, 2H), 5.49 (dt, J = 15.2, 7.6 Hz, 1H), 5.14 (dd, J = 16.8, 1.7 Hz, 1H), 5.03 (dd, J = 10.2, 1.5 Hz, 1H), 3.73 (s, 6H), 2.83 (d, J = 5.27 Hz, 2H), 2.81 (s, 2H), 0.14 (s, 9H).¹³C-NMR (75 MHz, CDCl₃, DEPT-135)) δ 170.31 (C), 136.71 (CH), 135.70 (CH), 127.44 (CH), 116.87 (CH₂), 101.40 (C), 88.55 (C), 57.53 (C), 52.85 (CH₃), 35.69 (CH₂), 24.39 (CH₂), 0.12 (CH₃).

(E)-dimethyl 2-(penta-2,4-dien-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonate (1d)

MeO₂C Ph Following *general procedure of alkylation* for synthesis of dienynes (18 h) and using THF (6 mL) as solvent for (0.24 g, 0.97 mmol) of **dimethyl 2-(3-phenylprop-2-yn-1-yl)malonate** and

(120 mg, 1.16 mmol) of **(E)-5-chloropenta-1,3-diene**. The product **1d** was obtained as colourless oil (161 mg, 53%) using hexane/EtOAc 6:1 as eluent.

¹H-NMR (300 MHz, CDCl₃)) δ 7.41 - 7.34 (m, 2H), 7.31 – 7.27 (m, 3H), 6.38 – 6.12 (m, 2H), 5.54 (dt, *J* = 15.2, 7.7 Hz, 1H), 5.15 (dd, *J* = 16.3, 1.9 Hz, 1H), 5.04 (dd, *J* = 9.9, 1.6 Hz, 1H), 3.76 (s, 6H), 3.01 (s, 2H), 2.90 (d, *J* = 7.7 Hz, 2H).¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 170.44 (C), 136.70 (CH), 135.76 (CH), 131.82 (CH), 128.37 (CH), 128.17 (CH), 127.43 (CH), 123.34 (C), 116.95 (CH₂), 84.36 (C), 83.86 (C), 57.69 (C), 52.94 (CH₃), 35.86 (CH₂), 23.99 (CH₂).

(E)-dimethyl 2-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-2-(penta-2,4-dien-1-yl)malonate (1e)

Following *general procedure of alkylation* for synthesis of dienynes (18 h) and using THF (20 mL) as solvent for (0.7 g, 2.53 mmol) of **dimethyl 2-(3-(4-methoxyphenyl)prop-2-yn-1-yl)malonate** and (311

mg, 3.03 mmol) of **(2E,4E)-1-chlorohexa-2,4-diene**. The product **1e** was obtained as yellowish oil (373 mg, 43%) using hexane/EtOAc 10:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.31 (d, *J* = 8.8 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 6.25 (m, 2H), 5.54 (dt, *J* = 15.0, 7.7 Hz, 1H), 5.15 (dd, *J* =2.06, 17.19 Hz, 1H), 5.04 (dd, *J* =1.92, 11.12 Hz, 1H), 3.80 (s, 3H), 3.75 (s, 6H), 2.99 (s, 2H), 2.89 (d, *J* = 7.7 Hz, 2H).¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 170.51 (C), 159.56 (C), 136.74 (CH), 135.69 (CH),

133.19 (CH), 127.54 (CH), 116.88 (CH₂), 115.51 (C), 114.01 (CH), 83.65 (C), 82.74 (C), 57.75 (C), 55.44 (CH₃), 52.91 (CH₃), 35.85 (CH₂), 24.02 (CH₂).

(E)-dimethyl 2-(penta-2,4-dien-1-yl)-2-(3-(thiophen-2-yl)prop-2-yn-1-yl)malonate (1f)

Following *general procedure of alkylation* for synthesis of dienynes (12 h, 50°C) and using THF (20 mL) as solvent for (1.374 g, 5.4 mmol) of **dimethyl 2-(3-(thiophen-2-yl)prop-2-yn-1-yl)malonate** and (670 mg, 6.5 mmol) of **(E)-5-**

chloropenta-1,3-diene. The product **1f** was obtained as yellow oil (659 mg, 39%) using hexane/EtOAc 20:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.19 (dd, J = 5.2, 1.1 Hz, 1H), 7.12 (dd, J = 3.6, 0.7 Hz, 1H), 6.93 (dd, J = 5.2, 3.6 Hz, 1H), 6.38 – 6.11 (m, 2H), 5.53 (dt, J = 15.1, 7.7 Hz, 1H), 5.15 (dd, J = 16.7, 1.60 Hz, 1H), 5.04 (dd, J = 9.9, 1.6 Hz, 1H), 3.75 (s, 6H), 3.11 – 2.96 (m, 2H), 2.85 (dd, J = 15.3, 6.9 Hz, 2H). ¹³C NMR (76 MHz, CDCl₃) δ 170.15 (C), 136.52 (CH), 135.70 (CH), 131.69 (CH), 127.19 (CH), 126.84 (CH), 126.62 (CH), 123.18 (C), 116.90 (CH₂), 88.37 (C), 76.83 (C), 57.45 (C), 52.82 (CH₃), 35.84 (CH₂), 24.18 (CH₂). HRMS-ESI: [M]⁺ Calcd. for C₁₇H₁₈O₄S: 318.0926; found: 318.0927.

(E)-diethyl 2-(but-2-yn-1-yl)-2-(penta-2,4-dien-1-yl)malonate (1g)

EtO₂C Following general procedure of alkylation for synthesis of dienynes (48 h, 40°C) and using THF (26 mL) as solvent for(0.9 g, 4.54 mmol) of **diethyl 2-(but-2-yn-1-yl)malonate** and (559 mg, 5.45 mmol) of **(E)-5-chloropenta-1,3-diene**. The product **1g** was obtained as colourless oil (1.05 g, 83%) hexane/EtOAc 25:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 6.36 – 6.06 (m, 2H), 5.52 (dt, *J* = 15.2, 7.7 Hz, 1H), 5.13 (dd, *J* = 12.8, 5.0 Hz, 1H), 5.06 – 4.96 (m, 1H), 4.19 (dt, *J* = 7.1, 5.0 Hz, 4H), 2.81 (d, *J* = 7.7 Hz, 2H), 2.73 (q, *J* = 2.5 Hz, 2H), 1.76 (t, *J* = 2.5 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 6H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 170.19 (C), 136.81 (CH), 135.40 (CH), 127.89 (CH), 116.58 (CH₂), 78.98 (C), 73.58 (C), 61.63 (CH₂), 57.45 (C), 35.52 (CH₂), 23.28 (CH₂), 14.24 (CH₃), 3.62 (CH₃).

(E)-4-methyl-N-(penta-2,4-dien-1-yl)-N-(prop-2-yn-1-yl)benzenesulfonamide (1h)

Following general procedure of alkylation for synthesis of dienynes (18 h) and using DMF (60 mL) as solvent for (1.76 g, 8.45 mmol) of 4methyl-N-(prop-2-yn-1-yl)benzenesulfonamide and (1.04 g, 10.14 mmol) of (E)-5-chloropenta-1,3-diene. The product 1h was obtained as yellowish oil (1.21 g, 52%) using hexane/EtOAc 6:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 6.40 – 6.12 (m, 2H), 5.59 (dd, J = 14.3, 7.1 Hz, 1H), 5.21 (dd, J = 16.6, 1.9 Hz, 1H), 5.12 (dd, J = 9.4, 1.5 Hz, 1H), 4.09 (d, J = 2.3 Hz, 2H), 3.86 (d, J = 6.9 Hz, 2H), 2.43 (bs, 4H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 143.71 (C), 135.92 (C), 135.77 (CH), 129.85 (CH), 129.64 (CH), 127.93 (CH), 127.71 (CH), 127.03 (CH₂), 118.56 (C), 73.87 (C), 48.19 (CH₂), 35.99 (CH2), 21.69 (CH₃).

(E)-N-(but-2-yn-1-yl)-4-methyl-N-(penta-2,4-dien-1-yl)benzenesulfonamide (1i)

Ts_N Following general procedure of alkylation for synthesis of dienynes (20 h) and using DMF (30 mL) as solvent for (1.13 g, 5.08 mmol) of N-(but-2-yn-1-yl)-4-methylbenzenesulfonamide and (625 mg, 6.09 mmol) of (E)-5-chloropenta-1,3-diene. The product 1i was obtained as yellowish oil (691 mg, 47%) using hexane/EtOAc 5:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 6.38 – 6.13 (m, 2H), 5.58 (dt, J = 13.6, 6.7 Hz, 1H), 5.20 (dd, J = 16.6, 1.9 Hz, 1H), 5.10 (dd, J = 9.4, 1.5 Hz, 1H), 4.03 - 3.96 (m, 2H), 3.83 (d, J = 6.9 Hz, 2H), 2.42 (s, 3H), 1.55 (t, J = 2.3 Hz, 3H).¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 143.38 (C), 136.42 (C), 136.04 (CH), 135.34 (CH), 129.40 (CH), 128.04 (CH), 127.52 (CH), 118.27 (CH₂), 81.72 (C), 71.86 (C), 48.18 (CH₂), 36.58 (CH₂), 21.64 (CH₃), 3.39 (CH₃).

Dimethyl 2-((2E,4E)-hexa-2,4-dien-1-yl)-2-(prop-2-yn-1-yl)malonate (1j)

MeO₂C MeO₂C Following general procedure of alkylation for synthesis of dienynes (8 h, 40 °C) and using THF (20 mL) as solvent for (0.87 g, 5.0 mmol) of **dimethyl 2-(prop-2-yn-1-yl)malonate** and (0.591

g, 5.0 mmol) of (2E,4E)-1-chlorohexa-2,4-diene. The product 1j was obtained as colourless oil (534 mg, 42%) using hexane/EtOAc 20:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 6.13 – 5.86 (m, 2H), 5.68 – 5.49 (m, 1H), 5.33 – 5.18 (m, 1H), 3.70 – 3.68 (m, 6H), 2.79 – 2.71 (m, 4H), 2.02 – 1.97 (m, 1H), 1.68 (d, *J* = 6.7 Hz, 3H).¹³C NMR (76 MHz, CDCl₃) δ 170.15 (C), 135.23 (CH₂), 131.10 (CH₂), 129.08 (CH₂), 123.46 (CH₂), 78.88 (C), 71.51 (C), 57.20 (C), 52.73 (CH₃), 35.43 (CH₂), 22.75 (CH₂), 18.00 (CH₃). HRMS-ESI: [M]⁺ Calcd. for C₁₄H₁₉O₄: 251.1272; found: 251.1281.

Dimethyl 2-(but-2-yn-1-yl)-2-((2E,4E)-hexa-2,4-dien-1-yl)malonate (1k)

Following *general procedure of alkylation* for synthesis of dienynes (8 h, 40 °C) and using THF 20 mL as solvent for (0.87 g, 4.70 mmol) of **dimethyl 2-(but-2-yn-1-yl)malonate** and (0.591

mg, 5.09 mmol) of **(2E,4E)-1-chlorohexa-2,4-diene**. The product **1k** was obtained as colourless oil (0.562 mg, 42%) using hexane/EtOAc 20:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 6.13 – 5.87 (m, 2H), 5.58 (dq, *J* = 13.3, 6.5 Hz, 1H), 5.36 – 5.20 (m, 1H), 3.70 – 3.65 (m, 6H), 2.72 (t, *J* = 7.0 Hz, 2H), 2.68 (dd, *J* = 4.9, 2.3 Hz, 2H), 1.72 (dd, *J* = 4.2, 1.5 Hz, 3H), 1.68 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.56 (C), 134.94 (CH₂), 131.23 (CH₂), 128.85 (CH₂), 123.95 (CH₂), 78.90 (C), 73.41 (C), 57.61 (C), 52.65 (CH₃), 35.52 (CH₂), 23.14 (CH₂), 18.04 (CH₃), 3.51 (CH₃). HRMS-ESI: [M]⁺ Calcd. for C₁₅H₂₀O₄: 264.1362; found: 264.1363.

(E)-dimethyl 2-(but-3-yn-1-yl)-2-(penta-2,4-dien-1-yl)malonate (3a)

Following *general procedure of alkylation* for synthesis of dienynes (20 h) and using THF (9 mL) as solvent for (0.91 g, 4.93 mmol).of **dimethyl 2-(but-3-yn-1-yl)malonate** and (607 mg, 5.92 mmol) of **(E)-5-chloropenta-1,3-diene.** The product **1i** was obtained as colourless oil (827 mg, 67%) using hexane/EtOAc 10:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 6.28 (dt, *J* = 16.8, 10.2 Hz, 1H), 6.10 (dd, *J* = 15.0, 10.5 Hz, 1H), 5.50 (dt, *J* = 15.1, 7.7 Hz, 1H), 5.14 (dd, *J* = 16.6, 1.5 Hz, 1H), 5.03 (d, *J* = 11.0, 1.4 Hz, 1H), 3,75 (s, 1H), 3.72 (d, *J* = 2.8 Hz, 6H), 2.70 (d, *J* = 7.6 Hz, 2H), 2.17 (m, 4H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 171.22 (C), 136.62 (CH), 135.38 (CH), 127.52 (CH), 116.95 (CH₂), 83.26 (C), 68.95 (CH), 57.40 (CH₃), 52.66 (C), 36.47 (CH₂), 31.86 (CH₂), 14.10 (CH₂).

5. General procedure for borylative cyclization of dienynes.

Scheme 2

The corresponding dienyne (0.4 mmol, 1 equiv), bis(pinacolato)diboron (1.1 equiv), and $Pd(TFA)_2$ (5 mol%) were sequentially added to a 10 mL flask under Ar atmosphere. Anhydrous toluene (1.5 mL) and anhydrous MeOH (1 equiv) were added. Then, the mixture was stirred during the corresponding time at the temperature indicated below for each compound. After cooling the mixture to room temperature, the solvent was evaporated and the flash chromatography (hexane:Et₂O or pentane:Et₂O, it will be specified in each case, molybdophosphoric acid us stain (2.6 mmol/100 mL ethanol)) afforded the product. Partial decomposition of the products was detected when using long retention times using hexane:EtOAc as eluent.

6. Experimental data of allylboronates from dienynes

(E)-dimethyl 3-methylene-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1en-1-yl)cyclopentane-1,1-dicarboxylate (2a)

Following general borylative cyclization procedure, the product **2a** was obtained after 3 h at 50 °C as colourless oil (49 mg, 64%) using pentane/Et₂O 5:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 5.53 (dt, J = 14.9, 7.4 Hz, 1H), 5.21 (ddt, J = 15.1, 8.2 Hz, 1.3 Hz, 1H), 4.96-4.90 (m, 1H), 4.83-4.79 (m, 1H), 3.73 (s, 3H), 3.72 (s, 3H), 3.17-3.03 (m, 2H), 2.54 (dc, J = 17.4, 2.3 Hz, 1H), 2.54 (ddd, J = 12.9, 7.7 Hz, 1.4Hz, 1H), 1.95 (dd, J = 13.0, 11.3 Hz, 1H), 1.68 (d, J = 7.3 Hz, 2H), 1.24 (s, 12H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 172.47 (C), 172.32 (C), 151.45 (C), 131.10 (CH), 127.57 (CH), 107.78 (CH₂), 83.37 (C), 58.54 (C), 52.93 (CH₃), 52.87 (CH₃), 47.01 (CH), 40.91 (CH₂), 40.32 (CH₂), 24.95 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₁₈H₂₉BO₆Na: 387.1949; found: 387.1948.

(E)-dimethyl 3-ethylidene-4-((E)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)cyclopentane-1,1-dicarboxylate (2b)

Following general borylative cyclization procedure, the product **2b** was obtained after 4.5 h at 50 °C as colourless oil (42 mg, 55%) using pentane/Et₂O 5:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 5.49 (dt, J = 14.9, 7.3 Hz, 1H), 5.26 – 5.07 (m, 2H), 3.74 (s, 3H), 3.73 (s, 3H), 3.01 (d, J = 16.2 Hz, 2H), 2.80 (dd, J = 17.3, 1.9 Hz, 1H), 2.50 (ddd, J = 12.8, 7.1, 1.6 Hz, 1H), 1.95 – 1.83 (dd, J = 12.7, 11.8 Hz, 1H), 1.67 (d, J = 7.2 Hz, 2H), 1.59 (m, 3H), 1.25 (s, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 172.6 (C), 172.5 (C), 142.19 (C), 131.66 (CH), 127.29 (CH), 117.62 (CH), 83.35 (C), 58.66 (C), 52.90 (CH₃), 52.83 (CH₃), 47.07 (CH), 41.06 (CH₂), 36.92 (CH₂), 24.93 (CH₃), 14.68 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₂₀H₃₁BO₆Na: 401.2105; found: 401.2130.

(E)-dimethyl 3-((E)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)-4-((trimethylsilyl)methylene)cyclopentane-1,1-dicarboxylate (2c)

Following general borylative cyclization procedure, the product 2c was obtained after 5 h at 70 °C (after 23 h at 50°C, extra 2.5 mol% of Pd(TFA)₂ was added) as colourless oil (39

mg, 53%) using pentane/Et₂O 8:1 as eluent.

¹H RMN (300 MHz, CDCl₃) δ 5.49 (dt, J = 14.9, 7.4 Hz, 1H), 5.35 - 5.28 (m, 1H), 5.14 (dd, J = 15.2, 8.3 Hz, 1H), 3.73 (s, 6H), 3.17 - 2.97 (m, 2H), 2.93 - 2.77 (m, 1H), 2.52 (ddd, J = 12.9, 7.7, 1.6 Hz, 1H), 1.92 (dd, J = 12.9, 11.5 Hz, 1H), 1.68 (d, J = 7.4 Hz, 2H), 1.23 (s, 12H), 0.08 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 172.37 (C), 159.84 (C), 131.40 (CH), 127.96 (CH), 121.31 (CH), 83.34 (C), 58.85 (C), 52.89 (CH₃), 52.86 (CH₃), 49.77 (CH), 40.18 (CH₂), 40.11 (CH₂), 24.95 (CH₃), 24.88 (CH₃), -0.29 (CH₃). Fragmentation observed of the product **2c**, HRMS-ESI: [M]⁺ Calcd. for C₁₆H₂₅O₄Si: 309.1516; found: 309.1521.

(E)-dimethyl 3-benzylidene-4-((E)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)prop-1-en-1-yl)cyclopentane-1,1-dicarboxylate (2d)

Following general borylative cyclization procedure, the product **2d** was obtained after 8.5 h at 50 °C as colourless oil (35 mg, 49%) using pentane/Et₂O 7:1 as eluent. ¹H RMN (300 MHz, CDCl₃) δ 7.36 - 7.26 (m, 4H), 7.21 - 7.13 (m, 1H), 6.25 - 6.14 (m, 1H), 5.62 (dt, *J* = 14.9, 7.4 Hz, 1H), 5.33 - 5.16 (m, 1H), 3.72 (s, 6H), 3.45 - 3.12 (m, 2H), 3.16 (dt, *J* = 17.7, 2.7 Hz, 1H), 2.58 (dd, *J* = 12.8, 7.3 Hz, 1H), 1.95 (t, *J* = 12.3 Hz, 1H), 1.74 (d, *J* = 7.3 Hz, 2H), 1.25 (s, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 172.32 (C), 172.27 (C), 144.40 (C), 138.13 (C), 131.25 (CH), 128.39 (CH), 126.34 (CH), 123.72 (CH), 83.41 (C), 59.40 (C), 53.00 (CH₃), 52.95 (CH₃), 49.01 (CH), 40.31 (CH₂), 38.92 (CH₂), 24.98 (CH₃), 24.92 (CH₃). HRMS-ESI: [MNH₄]⁺ Calcd. for C25H37BNO6: 458.2732; found:

458.2732.

(E)-dimethyl 3-(4-methoxybenzylidene)-4-((E)-3-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)prop-1-en-1-yl)cyclopentane-1,1-dicarboxylate (2e)

Following general borylative cyclization procedure, the product **2e** was obtained after 6.5 h at 50 °C as yellowish oil (34 mg, 50%) using hexane/Et₂O 7:1 as eluent. ¹H NMR (300 MHz, CDCl₃) δ 7.22 (d, *J* = 8.7 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.17 - 6.12 (m, 1H), 5.60 (dt, J = 14.9, 7.4 Hz, 1H), 5.32 – 5.19 (m, 1H), 3.80 (s, 3H), 3.74 (s, 6H), 3.43 – 3.07 (m, 3H), 2.57 (dd, J = 13.4, 7.7 Hz, 1H), 1.93 (t, J = 12.8 Hz, 1H), 1.73 (d, J = 7.3 Hz, 2H), 1.25 (s, 12H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 172.38 (C), 158.14 (C), 142.11 (C), 131.46 (CH), 130.98 (CH), 129.56 (C), 128.19 (CH), 123.07 (CH), 113.85 (CH), 83.40 (C), 59.44 (C), 55.40 (CH₃), 52.98 (CH₃), 52.93 (CH₃), 48.93 (CH), 40.37 (CH₂), 38.85 (CH₂), 24.96 (CH₃). HRMS-ESI: [MNH₄]⁺ Calcd. for C₂₆H₃₉BNO₇: 488.2841; found: 488.2814.

(E)-dimethyl 3-((E)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)-4-(thiophen-2-ylmethylene)cyclopentane-1,1-dicarboxylate (2f)

EtO₂

Following general borylative cyclization procedure, the product 2f was obtained after 8 h at 50 °C as a pale yellow oil (77 mg, 55%) using hexane/Et₂O 10:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.22 (d, *J* = 5.1 Hz, 1H), 7.00 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.91 (d, *J* = 3.5 Hz, 1H), 6.41 (d, *J* = 2.5 Hz, 1H), 5.61 (dt, *J* = 14.9, 7.4 Hz, 1H), 5.22 (ddt, *J* = 9.54,2.47, 1.28 Hz, 1H), 3.75 (t, *J* = 3.0 Hz, 6H), 3.32 (dd, *J* = 22.2, 14.3 Hz, 2H), 3.11 (dt, *J* = 18.2, 2.9 Hz, 1H), 2.59 (ddd, *J* = 12.8, 7.1, 1.6 Hz, 1H), 2.06 – 1.88 (m, 1H), 1.73 (d, *J* = 7.4 Hz, 2H), 1.26 (s, 12H). ¹³C NMR (76 MHz, CDCl₃) δ 172.19 (C), 172.11 (C), 142.94 (C), 142.00 (C), 130.80 (CH), 128.78 (CH), 127.15 (CH), 125.66 (CH), 124.60 (CH), 116.86 (CH), 83.40 (C), 59.32 (C), 53.00 (CH₃), 52.96 (CH₃), 48.73 (C), 40.78 (CH₂), 39.26 (CH₂), 24.97 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₂₃H₃₂BO₆S: 447.2007; found: 447.2016.

(E)-diethyl 3-ethylidene-4-((E)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1en-1-yl)cyclopentane-1,1-dicarboxylate (2g)

Following general borylative cyclization procedure, the product 2g was obtained after 4.5 h at 50 °C as colourless oil (42 mg, 57%) using hexane/Et₂O 15:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 5.49 (dt, J = 14.9, 7.4 Hz, 1H), 5.27 – 5.07 (m, 2H), 4.18 (qd, J = 7.1, 3.0 Hz, 4H), 3.11 – 2.89 (m, 2H), 2.85 – 2.67 (m, 1H), 2.49 (dd, J = 12.2, 7.9

Hz, 1H), 1.87 (t, J = 12.3 Hz, 1H), 1.67 (d, J = 7.3 Hz, 2H), 1.59 (d, J = 4.8 Hz, 3H), 1.26 – 1.22 (m, 18H). ¹³C NMR (75 MHz, CDCl₃) δ 172.15 (C), 172.14 (C), 142.40 (C), 131.81 (CH), 127.11 (CH), 117.45 (CH), 83.32 (C), 61.56 (CH₂), 61.54 (CH₂), 58.71 (C), 47.05 (CH), 40.90 (CH₂), 36.76 (CH₂), 24.83 (CH₃), 14.66 (CH₃), 14.18 (CH₃), 14.17 (CH₃). HRMS-ESI: [MNH₄]⁺ Calcd. for C₂₂H₃₉BNO₆: 424.2864; found: 424.2869.

(E)-3-methylene-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)-1tosylpyrrolidine (2h)

Following general borylative cyclization procedure, the product **2h** was obtained after 12 h at 70°C (after 12 h at 50 °C, extra 2.5 mol% of Pd(TFA)₂ was added) as colourless oil (35 mg, 47%)

using pentane/Et₂O 10:1 as eluent.

¹H RMN (300 MHz, CDCl₃) δ 7.78 (dt, *J* = 8.3 Hz, 1.8 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.56 (dt, *J* = 15.1, 7.5 Hz, 1H), 5.05 (dd, *J* = 15.2, 8.3 Hz, 1H), 4.87 (m, 2H), 4.05 – 3.90 (m, 1H), 3.73 - 3.53 (m, 2H), 3.25 - 3.09 (m, 1H), 2.76 (t, *J* = 9.4 Hz, 1H), 2.43 (s, 3H), 1.65 (d, *J* = 7.4 Hz, 2H), 1.23 (s, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 147.74 (C), 143.74 (C), 133.13 (C), 129.88 (CH), 129.82 (CH), 127.96 (CH), 127.45 (CH), 107.89 (CH₂), 83.47 (C), 53.73 (CH₂), 52.05 (CH₂), 47.04 (CH), 24.90 (CH₃), 21.69 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₂₁H₃₁BNO₄S: 404.2080; found: 404.2061.

(Z)-3-ethylidene-4-((E)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1yl)-1-tosylpyrrolidine (2i)

Following general borylative cyclization procedure, the product **2i** was obtained after 4.5 h at 50 °C as colourless oil (28 mg, 38%) using pentane/Et₂O 6:1 as eluent.

¹H RMN (300 MHz, CDCl₃) δ 7.66 (dt, J = 8.3 Hz, 1.8 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 5.52 (dt, J = 15.1, 7.5 Hz, 1H), 5.25 - 5.14 (m, 1H), 5.07 - 4.94 (m, 1H), 3.99 - 3.87 (m, 1H), 3.70 - 3.53 (m, 2H), 3.23 - 3.09 (m, 1H), 2.69 (t, J = 9.4 Hz, 1H), 2.43 (s, 3H), 1.63 (d, J = 7.4 Hz, 2H), 1.52 (ddd, J = 6.8, 3.7, 1.5 Hz, 3H), 1.23 (s, 12H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) ¹³C RMN (75 MHz, CDCl₃) δ 143.65 (C), 138.92 (C), 133.09 (C), 129.78 (CH), 129.31 (CH), 128.21 (CH), 127.99 (CH), 118.11 (CH), 83.44 (C), 53.72 (CH₂), 49.68 (CH₂), 46.87 (CH), 24.92 (CH₃), 21.68 (CH₃), 14.57 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₂₂H₃₃BNO₄S: 418.2229; found: 418.2217.

(E)-dimethyl 3-methylene-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-1-en-1-yl)cyclopentane-1,1-dicarboxylate (2j)

Following general borylative cyclization procedure, the product **2j** was obtained after 3 h at 50 °C as colourless oil (151 mg, 68%) using hexane/Et₂O 10:1 as eluent. (Minimal amount of

pinacol was detected by NMR).

¹H NMR (300 MHz, CDCl₃) δ 5.54 (dd, J = 15.3, 7.7 Hz, 1H), 5.17 (dd, J = 15.2, 8.1 Hz, 1H), 4.96 – 4.74 (m, 2H), 3.74 – 3.72 (m, 2H), 3.72 – 3.69 (m, 4H), 3.07 (d, J = 16.5 Hz, 2H), 2.97 – 2.85 (m, 1H), 2.53 (dd, J = 12.8, 7.4 Hz, 1H), 2.01 – 1.79 (m, 2H), 1.24 – 1.17 (s, 12H), 1.07 (d, J = 7.3 Hz, 3H). ¹³C NMR (76 MHz, CDCl₃) δ 172.46 (C), 172.29 (C), 151.53 (C), 134.97 (CH), 128.60 (CH), 107.74 (CH₂), 83.24 (C), 58.54 (C), 52.91 (CH₃), 52.84 (CH₃), 47.04 (CH), 41.04 (CH₂), 40.33 (CH₂), 24.81 (CH₃), 15.18 (CH₃).HRMS-ESI: [MH]⁺ Calcd. for C₂₀H₃₂BO₆: 379.2286; found: 379.2294.

(E)-dimethyl 3-ethylidene-4-((E)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-1-en-1-yl)cyclopentane-1,1-dicarboxylate (2k)

Following general borylative cyclization procedure, the product **2k** was obtained after 4 h at 50°C as colourless oil (58 mg, 74%) using hexane/Et₂O 10:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 5.49 (dt, J = 21.0, 10.6 Hz, 1H), 5.25 – 5.05 (m, 2H), 3.73 (d, J = 3.1 Hz, 6H), 3.02 (d, J = 17.4 Hz, 2H), 2.80 (d, J = 17.3 Hz, 1H), 2.51 (dd, J = 12.7, 7.0 Hz, 1H), 1.98 – 1.78 (m, 2H), 1.61 (dd, J = 17.6, 7.4 Hz, 3H), 1.25 (d, J = 11.4 Hz, 12H), 1.05 (t, J = 9.3 Hz, 3H).¹³C NMR (76 MHz, CDCl₃) δ 172.55 (C), 172.51 (C), 142.24 (C), 134.71 (CH), 129.10 (CH), 117.54 (CH), 83.59 (C), 58.61 (C), 52.84 (CH₃), 52.78 (CH₃), 47.07 (CH), 41.15 (CH₂), 36.89 (CH₂), 25.14 (CH₃), 15.16 (CH₃), 14.62 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₂₁H₃₃BO₆Na: 415.2262; found: 415.2280.

(E)-dimethyl 4-methylene-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1en-1-yl)cyclohexane-1,1-dicarboxylate (4a)

MeO₂C Following general borylative cyclization procedure, the product **4a** was obtained after 6 h at 50°C as colourless oil (29 mg, 36%) using pentane/Et₂O 8:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 5.59 – 5.44 (m, 1H), 5.37 (m, 1H), 4.69 (dd, J = 11.2, 0.78 Hz, 2H), 3.76 (s, 3H), 3.69 (s, 3H), 2.83 – 2.68 (m, 1H), 2.47 – 2.28 (m, 3H), 2.15 (dt, J = 14.7, 5.3 Hz, 1H), 1.82 – 1.61 (m, 4H), 1.24 (s, 12H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 172.31 (C), 172.52 (C), 149.51 (C), 131.32 (CH), 126.59 (CH), 107.92 (CH₂), 83.49 (C), 55.10 (C), 52.63 (CH₃), 52.53 (CH₃), 42.47 (CH), 38.30 (CH₂), 32.48 (CH₂), 32.03 (CH₂), 25.02 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₂₀H₃₁BO₆Na: 401.2120; found: 401.2108.

7. General procedure for oxidation of allylboronates and characterization of resulting alcohols.

$$\mathbb{R}-\mathbb{B} \xrightarrow{O} \left(\begin{array}{c} \mathsf{NaOH} (3 \notin \mathsf{EqUiV}, 3\mathsf{M}) \\ H_2O_2 (30 \notin \mathsf{EqUiV}, 33\%) \\ 0 & \mathsf{C} \text{ to } \mathsf{ft} \end{array} \right) \mathbb{R}-\mathsf{OH}$$

Scheme 3

Alcohols were prepared by standard conditions for oxidation of allylboronates. To a solution of corresponding allylboronate (0.14 mmol, 1 equiv) in THF (5 mL), 0.14 mL of an aqueous solution of NaOH (3M, 0.42 mmol, 3 equiv) was added slowly at room temperature. Then, the mixture was cooled to 0 °C and 0.45 mL of a solution of H₂O₂ (33% w/v, 4.37 mmol, 30 equiv) was added dropwise. After addition, the reaction was stirred at room temperature for 1-5 h. Then, water and Et₂O were added into the resulting mixture. The aqueous layer was separated and extracted with Et₂O (3 x 10 mL). The combined organic phases were dried over anhydrous Mg₂SO₄ and filtered through anhydrous Na₂SO₄. The solvent was removed under vacuum and the crude was purified

by flash chromatography (hexane/EtOAc) molybdophosphoric acid us stain (2.6 mmol/100 mL ethanol).

(E)-dimethyl

3-(3-hydroxyprop-1-en-1-yl)-4-methylenecyclopentane-1,1-

dicarboxylate (5a)

Following general oxidation procedure using 2a as substrate, the product 5a was obtained after 1.5 h at room temperature as colourless oil (46 mg, 90%) using hexane/EtOAc 2:1 as eluent.

¹H NMR (300 MHz, CD₃Cl) δ 5.71 (dt, J = 15.8, 5.6 Hz, 1H), 5.54 (dd, J = 15.3, 7.9 Hz, 1H), 4.99 (q, J = 2.4 Hz, 1H), 4.81 (q, J = 2.2 Hz, 1H), 4.14 (d, J = 5.4 Hz, 2H), 3.75 (m, 4H), 3.73 (s, 3H), 3.26 - 3.13 (m, 1H), 3.13 - 3.02 (m, 1H), 2.95 (ddd, J = 17.1, 4.6, 2.3Hz, 1H), 2.58 (dd, J = 12.3, 8.4 Hz, 1H), 2.07 – 1.95 (m, 1H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) & 172.28 (C), 172.10 (C), 150.56 (C), 133.14 (CH), 131.05 (CH), 108.39 (CH₂), 63.56 (C), 58.66 (CH₂), 53.00 (CH₃), 52.95 (CH₃), 46.24 (CH), 40.61 (CH₂), 40.48 (CH₂). HRMS-ESI: $[MNa]^+$ Calcd. for C₁₃H₁₈O₅Na: 277.1057; found: 277.1053.

(E)-dimethyl 3-ethylidene-4-((E)-3-hydroxyprop-1-en-1-yl)cyclopentane-1,1dicarboxylate (5b)

Following general oxidation procedure using **2b** as substrate, the product **5b** was obtained after 1.15 h at room temperature as colourless oil (35mg, 92%) using hexane/EtOAc 2:1 as

eluent.

¹H NMR (300 MHz, CDCl₃) δ 5.67 (m, 1H), 5.47 (ddt, J = 15.3, 8.1, 1.2 Hz, 1H), 5.19 (m, 1H), 4.12 (t, J = 4.9 Hz, 2H), 3.82 (m, 1H), 3.74 (s, 3H), 3.73 (s, 3H), 3.13 (d, J = 8.6Hz, 1H), 3.01 (m, 1H), 2.85 (m, 1H), 2.54 (ddd, J = 12.8, 7.3, 1.5 Hz, 1H), 1.94 (dd, J =12.8, 11.3 Hz, 1H), 1.60 (ddd, J = 6.7, 3.9, 1.7 Hz, 3H).¹³C-NMR (75 MHz, CDCl₃, DEPT-135) & 172.44 (C), 172.35 (C), 141.38 (C), 133.72 (CH), 130.88 (CH), 118.28 (CH), 63.59 (CH₂), 58.74 (C), 52.97 (CH₃), 52.91 (CH₃), 46.36 (CH), 40.74 (CH₂), 36.98 (CH₂), 14.73 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₁₄H₂₀O₅Na: 291.1213; found: 291.1009.

(E)-dimethyl

TMS

3-((E)-3-hydroxyprop-1-en-1-yl)-4-

((trimethylsilyl)methylene)cyclopentane-1,1-dicarboxylate (5c)

Following general oxidation procedure using 2c as substrate, MeO₂C OH the product 5c was obtained after 1.5 h at room temperature. as colourless oil (38mg, 83%) using hexane/EtOAc 2:1 as eluent. When the general procedure for borylative cyclization (6 h at 70 °C) was applied to the substrate 1c and then, the solvent was totally evaporated and the general oxidation procedure for boronates (13.5 h at room temperature) was applied to the crude, the product 5c was obtained in a similar yield (78%).

¹H NMR (300 MHz, CDCl₃) δ 5.68 (dt, *J* = 15.5, 5.9 Hz, 1H), 5.49 (dd, *J* = 15.3, 9.0 Hz, 1H), 5.35 - 5.32 (m, 1H), 4.13 (dd, *J* = 5.6, 1.1 Hz, 2H), 3.74 (s, 3H), 3.71 (s, 3H), 3.29 (dd, *J* = 16.3, 8.1 Hz, 1H), 2.74 (dd, *J* = 13.6, 8.0 Hz, 1H), 2.12 (dd, *J* = 13.6, 6.5 Hz, 1H), 1.73 - 1.35 (m, 2H), 0.02 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃, DEPT-135) δ 172.43 (C), 172.1 (C), 149.66 (C), 134.38 (CH), 131.21 (CH), 120.62 (CH), 65.21 (C), 63.51 (CH₂), 52.75 (CH), 52.67 (CH₃), 51.48 (CH₃), 39.12 (CH₂), 19.70 (CH₂), 1.07 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₁₆H₂₆O₅NaSi: 349.1441; found: 349.1455.

8. Trifluoroborate salts of allylboronates: Formation and experimental data of potassium (E)-(3-(4,4-bis(methoxycarbonyl)-2-

methylenecyclopentyl)allyl)trifluoroborato (6)

To a solution of allylboronate 2a (195 mg, 1 equiv) in acetonitrile (2 mL) at room temperature was added slowly aqueous solution of KHF₂ (2 mL, 4.0 equiv, 4.5 M). After 12 h at room temperature, the solvent was evaporated, and the remained white crude was

washed successively with hot acetone to separate from inorganic impurities after filtration. The solvent was totally removed under vacuum and the white solid obtained washed with warm Et₂O and dried under vacuum line without further purification. The trifluoroborate salt **6** was obtained as a white solid (129 mg, 70%). ¹H-NMR (300 MHz, CD₃OD): $\delta = 5.65-5.50$ (m, 2H), 5.0 (d, 2H), 3.75 (d, 6H), 3.1-2.75 (m, 3H), 2.50-2.48 (m, 1H), 1.90-1.85 (t, 1H). ¹F NMR (284 MHz, CD₃OD) δ -155.98. ¹³C- NMR (300 MHz, CD₃OD): $\delta = 174.36$ (s), 153.62 (s), 127.69 (s), 123.53 (s), 107.56(s), 59.69 (s), 52.87 (s), 42.34 (s), 40.82 (s) *C*-B signal not observed due to quadrupolar relaxation. HRMS-ESI: [M]⁻ Calcd. for C₁₃H₁₇BF₃O₄: 305.1177; found: 305.1182.

9. General procedure for allylation reactions of allylboronates and characterization of resulting α-alcohols.

 α -Alcohols were prepared by standard conditions for allylation reactions of boronates. To a stirred solution of corresponding allylboronate in anhydrous toluene (1.0-2.0 mL), Sc(OTf)₃ (10-20 mol%) was added slowly at room temperature. Then, the mixture was cooled to -40°C and benzaldehyde (1.5 – 2.0 equiv) was added dropwise. After addition, the reaction was stirred for 12 h at the temperature indicated below for each compound. After indicated time, solvent was removed under vacuum and the reaction crude was purified by flash chromatography (hexane/EtOAc) molybdophosphoric acid us stain (2.6 mmol/100 mL ethanol).

Dimethyl 3-(1-hydroxy-1-phenylbut-3-en-2-yl)-4-methylenecyclopentane-1,1dicarboxylate (7a). Following the general allylation procedure using 2a (30 mg, 0.08 mmol) as substrate,

 $Sc(OTf)_3$ (8.20 mg, 20 mol%) and benzaldehyde (17 µL, 0.17 mmol). The product **7a** was obtained as an inseparable mixture of compounds, presumably diastereomers due to the presence

of two stereogenic C, after 12 h at -78°C as colourless oil (26 mg, 91%) using hexane/EtOAc 5:1 as eluent.

For both 7a and 7b, C-NMR spectra show signal splitting for some carbons, which has been assigned to the presence of two diastereoisomers, as a consequence of the two stereogenic centers contained in these molecules. The corresponding peaks are listed below. *E* configuration of the allyl C-C double bond has been assigned after the coupling constant that could be resolved for 7b. Even in the mixture of compounds, coupling constant could be measured (15 Hz).

¹H NMR (300 MHz, CDCl₃) δ 7.29 – 7.25 (m, 4H), 7.23 – 7.18 (m, 1H), 5.47 – 5.19 (m, 2H), 4.86 (dq, J = 12.3, 2.3 Hz, 1H), 4.73 – 4.56 (m, 2H), 3.65 (s, 6H), 3.17 – 2.78 (m, 3H), 2.55 – 2.34 (m, 3H), 1.89 (ddd, J = 13.1, 10.8, 2.5 Hz, 2H). ¹³C NMR (76 MHz, CDCl₃, δ 172.30 (C), 172.18 (C), 150.84 (C), 150.81 (C), 144.03 (C), 143.98 (C), 135.03 (CH), 135.01 (CH), 128.55 (CH), 128.54 (CH), 127.78 (CH), 127.67 (CH), 127.64 (CH), 126.04 (CH₂), 125.97 (CH₂), 108.21 (CH₂), 108.17 (CH₂), 73.82 (CH), 73.80 (CH), 58.62 (CH₂), 58.60 (CH₂), 52.97 (C), 52.93 (C), 52.92 (CH₃), 46.77 (CH₃), 46.76 (CH₃), 42.65 (CH), 42.62 (CH), 40.74 (CH), 40.70 (CH), 40.39 (CH₂), 40.35 (CH₂). HRMS-ESI: [MNa]⁺ Calcd. for C₂₀H₂₄O₅Na: 367.1515; found: 367.1509.

(E)-dimethyl 3-ethylidene-4-(1-hydroxy-1-phenylbut-3-en-2-yl)cyclopentane-1,1dicarboxylate (7b).

Following general allylation procedure using **2b** (73 mg, 0.20 mmol) as substrate, $Sc(OTf)_3$ (27 mg, 20 mol%) and benzaldehyde (42 μ L, 0.31 mmol). The product **7b** was

obtained as an inseparable mixture of compounds, presumably diastereomers, after 12 h at -40°C as colourless oil (59 mg, 62%) using hexane/EtOAc 8:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.32 (m, 5H), 5.37 (m, 2H), 5.05 (m, 1H), 4.70 (dd, J = 12.1, 6.3 Hz, 1H), 3.73 (m, 7H), 2.86 (m, 3H), 2.48 (m, 3H), 1.89 (psudo t, J = 14 Hz, 1H), 1.56 (m, 3H).¹³C NMR (75 MHz, CDCl₃) δ 172.46 (C), 172.44 (C), 172,4 (C),

144.01 (C), 143.96 (C), 141.60 (C), 141.42 (C), 135.63 (CH), 135.33 (CH), 128.51 (CH), 127.91(CH), 127.56(CH), 127.41 (CH), 127.11 (CH), 126.11 (CH), 126.03 (CH), 125.98 (CH), 118.07 (CH), 117.77 (CH), 73.78 (CH), 73.45 (CH), 58.68 (C), 58.35 (C), 52.92 (CH₃), 52.62 (CH₃), 48.79 (CH), 48.49 (CH), 46.87 (CH₃), 46.36 (CH₃), 42.69 (CH₂), 42.37 (CH₂), 40.83 (CH₂), 40.36 (CH₂), 36.92 (CH₂), 36.48 (CH₂), 14.72 (CH₃) 14.34 (CH₃). HRMS-ESI: $[MNH_4]^+$ Calcd. for C₂₁H₃₀NO₅: 376.2118; found: 376.2135.

10. Suzuki cross-coupling reactions of allylboronates and experimental data of resulting compounds.

Dimethyl 3-(1-(4-cyanophenyl)allyl)-4-methylenecyclopentane-1,1-dicarboxylate (8) and dimethyl (E)-3-(3-(4-cyanophenyl)prop-1-en-1-yl)-4-methylenecyclopentane-1,1dicarboxylate (9).

To a solution of *p*-cianoiodobenzene (14 mg, 0.06 mmol) in dry THF (1.5 mL), under Ar atmosphere, were added the allylboronate **2a** (33 mg, 0.091 mmol), CsF (55.7 mg, 0.36 mmol) and Pd(PPh₃)₄ (15.8 mg, 0.014 mmol) and the mixture was heated at 80°C for 8 h in a sealed tube. After cooling to room temperature EtOAc (2 mL) was added, followed by

brine (2 mL). The layers were then separated and the aqueous layer further extracted with EtOAc (2×5 mL). The combined organic extracts were dried over anhydrous MgSO₄, filtered and the solvent was removed under vacuum. The title products **8**, **9** (28.5 mg, 91.3%) was obtained as an inseparable mixture (12:1) and the yield was calculated by NMR using as internal pattern trichloroethylene due to inability of a good purification from homocoupling product [1,1'-biphenyl]-4,4'-dicarbonitrile. The mixture of two isomers was confirmed by GC-MS. The spectra data ¹H and ¹³C NMR of the mixture were obtained from a pure fraction by flash chromatography using hexane/EtOAc 4:1 as eluent.

¹H NMR (CDCl₃, 300 MHz): δ 7.55-7.48 (m, 4H), 7.27-7.17 (d, J = 8.55 Hz, 4H,), 6-5.89 (m, 1H⁸), 5.63-5.47 (m, 1H⁹), 5.40-5.25 (m, 1H⁹), 5.12-5.01 (m, 2H⁸), 4.99-4.80 (m, 2H⁹), 4.86-4.67 (m, 2H⁸), 3.72-3.58 (m, 12H), 3.40 (m, 2H⁹), 3.38-3.25 (dd, J = 15.36, 6.47 Hz,1H), 3.16-2.78 (m, 5H), 2.57-2.44 (m, 1H), 2.33-2.11 (dd, J = 7.45, 8.10 Hz, 1H), 2.00-1.86 (m, 2H), 1.68-1.57 (m, 1H). ¹³C NMR (CDCl₃, 300 MHz): δ 172.23, 171.92, 171.84, 150.75, 150.43, 148.56, 148.34, 146.37, 146.14, 137.86, 133.72, 132.74, 132.39, 129.21, 129.12, 129.19, 128.14, 117.45, 117.21, 110.4, 110.10, 109.94, 108.16, 107.98, 58.46, 58.13, 54.31, 52.97, 52.88, 46.43, 46.25, 41.72, 41.64, 41.58, 40.56, 40.17, 38.96, 37.95, 33.83.

HPLC-CHROMATOGRAPHY ANALYSIS

Dimethyl 3-(1-(4-cyanophenyl)allyl)-4-methylenecyclopentane-1,1-dicarboxylate (8)

To a solution of *p*-cianoiodobenzene (35.8 mg, 0.26 mmol) in toluene (0.5 mL), EtOH (0.15 mL) and H₂O (0.15 mL) under Ar atmosphere, were added the allylboronate **2a** (94 mg, 0.268 mmol), K₂CO₃ (180.42 mg, 1.30 mmol) and Pd(PPh₃)₄ (30.16 mg, 0.026 mmol) and the mixture was heated at 80°C for 8 h in a sealed tube. After cooling to room temperature the solvent was removed under vacuum and the crude was purified by flash chromatography (hexane/Et₂O 10:1) molybdophosphoric acid us stain (2.6 mmol/100 mL ethanol). For a complete purification this compound was purified once more by recristalization of the homocoupling product [1,1'-biphenyl]-4,4'-dicarbonitrile. The product **8** was obtained as an inseparable mixture of diastereomers compounds, as

yellowish oil (36 mg, 43%). (Minimal amount of homocoupling product was detected by NMR).

¹H NMR (300 MHz, CDCl₃) δ 7.59 (dd, J = 8.1, 1.4 Hz, 4H), 7.31 (d, J = 8.1 Hz, 4H), 6.09 – 5.80 (m, 2H), 5.13 (dd, J = 10.1, 5.5 Hz, 2H), 5.04 (dd, J = 12.1, 9.7 Hz, 2H), 4.93 – 4.79 (m, 2H), 3.70 (dd, J = 10.5, 7.1 Hz, 12H), 3.38 (t, J = 8.4 Hz, 2H), 3.09 – 2.80 (m, 6H), 2.58 (dd, J = 13.4, 7.4 Hz, 1H), 2.41 – 2.25 (m, 2H), 2.08 – 1.92 (m, 1H), 1.75 – 1.60 (m, 2H).¹³C NMR (75 MHz, CDCl₃) δ 172.08 (C), 172.02 (C), 171.98 (C), 148.80 (C), 148.64 (C), 148.57 (C), 148.42 (C), 139.11 (CH), 137.94 (CH), 132.44 (CH), 132.41 (CH), 129.22 (CH), 129.12 (CH), 118.98 (C), 118.95 (C), 117.57 (CH₂), 117.31 (CH₂), 110.49 (C), 110.48 (C), 110.22 (CH₂), 109.68 (CH₂), 58.29 (C), 58.20 (C), 54.44 (CH), 53.84 (CH), 52.96 (CH₃), 52.91 (CH₃), 46.38 (CH), 46.19 (CH), 41.82 (CH₂), 41.75 (CH₂), 38.37 (CH₂), 38.05 (CH₂). HRMS-ESI: [MNa]⁺ Calcd. for C₂₀H₂₁NO₄Na: 362.1362; found: 362.1372.

11. ¹H-NMR and ¹³C-NMR spectra

¹<u>H-NMR and ¹³C-NMR spectra of dienynes</u>

110 100 90 f1 (ppm) 210 200 130 120 -10

¹<u>H-NMR and</u> ¹³<u>C-NMR spectra of allylboronates from dienynes</u>

¹<u>H-NMR and ¹³C-NMR spectra of alcohols from allylboronates</u>

Trifluoroborate 6

¹<u>H-NMR and ¹³C-NMR spectra of alcohols from allylation reactions.</u>

OH MeO₂C MeO₂C

7a

10/0 9.5 9.6 8.5 8.6 7.5 7.6 6.5 6.0 5.5 5.6 4.5 4.6 3.5 3.6 2.5 2.6 1.5 1.6 0.5 0.6 -0.5 -1.0 -1.5 f1 (ppm)

ОН MeO₂C. MeO₂C Ph

7b

¹<u>H-NMR and</u> ¹³<u>C-NMR spectra of Suzuki coupling resulting compounds</u>

4.5 4.0 f1 (ppm)

3.5 3.0

2.5 2.0 1.5 1.0 0.5 0.0 -0.5

-1.0 -1.5

7.5

7.0 6.5

10.0 9.5 9.0 8.5 8.0

6.0 5.5 5.0

13. References

- (1) Q. Zhang, W. Xu, and X. Lu, J. Org. Chem., 2005, 70, 1505.
- (2) R. Schiller, M. Pour, H. Fáková, J. Kuneš, and I. Císařová, J. Org. Chem., 2004, 69, 6761.
- (3) O. Buisine, C. Aubert and M. Malacria, Chem. Eur. J., 2001, 7, 3517.
- (4) B. Bennacer, M. Fujiwara, S. Lee and I. Ojima, J. Am. Chem. Soc., 2005, 127, 17756.
- (5) Y. Kavanagh, C. M. Chaney, J. Muldoon, and P. Evans, J. Org. Chem., 2008, 73, 8601.
- (6) C. P. Casey, T. L. Dzwiniel, S. Kraft, and I. A. Guzei, Organometallics, 2003, 22,
- 3915. NaH was used instead of t-BuOK.
- (7) K. Maruyama, N. Nagai, Y. Naruta, J. Org. Chem., 1986, 51, 5083.
- (8) H. Mayr, W. Heilmann, Tetrahedron, 1986, 42, 6657.
- (9) E. Jiménez-Núñez, C. K. Claverie, C. Bour, D. J. Cárdenas, A. M. Echavarren, *Angew. Chem. Int. Ed.*, 2008, **47**, 7892.