Supplementary Information

"Turn-on" fluorescent sensor array for basic amino acids in water

Tsuyoshi Minami,^a Nina A. Esipenko,^a Ben Zhang,^b Lyle Isaacs,^{*b} and Pavel Anzenbacher, Jr.^{*a}

^a Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA E-mail: pavel@bgsu.edu

 ^b Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA 20742. E-mail: lisaacs@umd.edu

Contents

General	S 2
Fluorescence property	S 3
Examples of fluorescence titrations	S4
Qualitative analysis	S 8
References	S9

General

Starting materials were purchased from commercial suppliers and used without further purification. Compounds **1** and **2** were prepared according to the literature procedures.^{1,2} Mass spectrometry was performed using Shimadzu LCMS-8030 liquid chromatograph mass spectrometer (ESI).

Fluorescence measurements were performed on a single photon counting spectrofluorimeter from Edinburgh Analytical Instruments (FL/FS 920). Diluted solutions used for all photophysical experiments were prepared using nanopure water in quartz cuvettes. Solutions of **1** were excited at 266 nm or 280 nm. Solutions of **2** were excited at 301 nm. Fluorescence emission spectra were recorded between 300 nm and 400 nm for **1**, between 320 nm and 550 nm for **2**, respectively. The slits of both excitation and emission monochrometers were set to 2.2 nm for **1**, 2.5 nm for **2**, respectively. The emission was scanned in 1 nm steps with a dwell time of 0.20 sec under ambient room conditions. Guest titrations were performed in water in the presence or the absence of Eu³⁺ ion (0.3 mM). Titration isotherms were constructed from changes in the fluorescence maximum at 319 nm for **1**, 369 nm for **2**, respectively. Data analysis was performed according to previously published methods.³

The array experiments were performed in 1536-well plates using a Beckman BioRAPTR microfluidic robotic dispenser. The fluids (water, probe, Eu^{3+} ion and analyte solutions) were contact-free dispensed at 200 nL/s as follows. Each experiment was performed in 24 repetitions. Each well received 1 µL of water at pH 3, 5, and 7 followed by 1 µL of **1** or **2** (12 µM), and 1 µL of Eu³⁺ ion solution (0, 0.1, 0.3, and 1 mM), after which the mixture was equilibrated for 2 min to establish a probe-metal ion

complex. Subsequently, 1 μ L of analyte solutions ([lisinopril], [histidine], [ornithine], [histidinol], [arginine], [lysine], [histamine] = 50 μ M, [putrescine], [agmatine], [cadaverine] = 12 μ M) were added. For control experiments, 1 μ L of water was added instead of analyte solution. After the analyte was dispensed, the plate was centrifuged (2 min, 3000 rpm, 21 °C) and immediately measured by a BMG PheraStar microplate reader using 280 nm excitation, 320 nm emission for **1** and 300 nm excitation, 370 nm emission for **2**. The resulting emission data were subjected to the Student's t-test to exclude 4 outlier data-points (of 24 repetitions). The coefficient of variability among the data within the class of 20 repetitions was lower than 5%. Thus obtained data were then analyzed using LDA or HCA without any further pretreatment.

Fluorescence property

Fig. S1. Fluorescence spectra of **1** (black line) and **2** (red line) in water. $\lambda_{ex} = 266$ nm for **1**, $\lambda_{ex} = 301$ nm for **2**. Fluorescence quantum yields were determined by using tryptophan in water as a standard.

Fig. S2. Fluorescence spectra of **1** (3 μ M) upon addition of incremental amounts of cadaverine in water with Eu(NO₃)₃ (300 μ M) at pH 7. $\lambda_{ex} = 266$ nm. [Cadaverine] = 0 - 5 μ M.

Fig. S3. Fluorescence spectra of **1** (3 μ M) upon addition of incremental amounts of agmatine in water with Eu(NO₃)₃ (300 μ M) at pH 7. $\lambda_{ex} = 266$ nm. [Agmatine] = 0 - 5 μ M.

Fig. S4. Fluorescence spectra of **2** (3 μ M) upon addition of incremental amounts of ornithine in water with Eu(NO₃)₃ (300 μ M) at pH 7. $\lambda_{ex} = 266$ nm. [Ornithine] = 0 - 1 mM.

Fig. S5. Fluorescence spectra of **1** (3 μ M) upon addition of incremental amounts of arginine in water with Eu(NO₃)₃ (300 μ M) at pH 7. $\lambda_{ex} = 266$ nm. [Arginine] = 0 - 500 μ M.

Fig. S6. Fluorescence spectra of **1** (3 μ M) upon addition of incremental amounts of histidine in water with Eu(NO₃)₃ (300 μ M) at pH 7. $\lambda_{ex} = 266$ nm. [Histidine] = 0 - 1 mM.

Fig. S7. Fluorescence spectra of **1** (3 μ M) upon addition of incremental amounts of histidinol in water with Eu(NO₃)₃ (300 μ M) at pH 7. $\lambda_{ex} = 266$ nm. [Histidinol] = 0 – 500 μ M.

Fig. S8. Fluorescence spectra of **1** (3 μ M) upon addition of incremental amounts of lisinopril in water with Eu(NO₃)₃ (300 μ M) at pH 3. $\lambda_{ex} = 280$ nm. [Lisinopril] = 0 – 500 μ M.

Fig. S9. Fluorescence spectra of **2** (3 μ M) upon addition of incremental amounts of cadaverine in water with Eu(NO₃)₃ (300 μ M) at pH 7. $\lambda_{ex} = 301$ nm. [Cadaverine] = 0 - 5 μ M.

Fig. S10. Fluorescence spectra of 2 (3 μ M) upon the addition of incremental amounts of agmatine in water with Eu(NO₃)₃ (300 μ M) at pH 7. $\lambda_{ex} = 301$ nm. [Agmatine] = 0 - 5 μ M.

Fig. S11. Fluorescence spectra of **2** (3 μ M) upon addition of incremental amounts of lysine in water with Eu(NO₃)₃ (300 μ M) at pH 7. $\lambda_{ex} = 301$ nm. [Lysine] = 0 – 1 mM.

Fig. S12. Fluorescence spectra of 2 (3 μ M) upon addition of incremental amounts of histidinol in water with Eu(NO₃)₃ (300 μ M) at pH 7. λ_{ex} = 301 nm. [Histidinol] = 0 – 500 μ M.

Fig. S13. Fluorescence spectra of 2 (3 μ M) upon addition of incremental amounts of lisinopril in water with Eu(NO₃)₃ at pH 3. $\lambda_{ex} = 301$ nm. [Lisinopril] = 0 – 500 μ M.

Qualitative analysis

Table 1. The Jackknifed classification matrix.

Jackknifed	Classification	Matrix

	A1 Putrescine	A10 Lisinopril	A2 Agmatine	A3 Cadaverine	A4 Lysine	A5 Arginine	A6 Histidinol	A7 L-Ornitine
A1 Putrescine	20	0	0	0	0	0	0	0
A10 Lisinopril	0	20	0	0	0	0	0	0
A2 Agmatine	0	0	20	0	0	0	0	0
A3 Cadaverine	0	0	0	20	0	0	0	0
A4 Lysine	0	0	0	0	20	0	0	0
A5 Arginine	0	0	0	0	0	20	0	0
A6 Histidinol	0	0	0	0	0	0	20	0
A7 Ornitine	0	0	0	0	0	0	0	20
A8 Histidine	0	0	0	0	0	0	0	0
A9 Histamine	0	0	0	0	0	0	0	0
Ctrl	0	0	0	0	0	0	0	0
Total	20	20	20	20	20	20	20	20

Jackknifed Classification Matrix (contd...)

	A8 Histidine	A9 Histamine	Ctrl	%correct
A1 Putrescine	0	0	0	100
A10 Lisinopril	0	0	0	100
A2 Agmatine	0	0	0	100
A3 Cadaverine	0	0	0	100
A4 Lysine	0	0	0	100
A5 Arginine	0	0	0	100
A6 Histidinol	0	0	0	100
A7 Ornitine	0	0	0	100
A8 Histidine	20	0	0	100
A9 Histamine	0	20	0	100
Ctrl	0	0	20	100
Total	20	20	20	100

Canonical Scores Plot

Fig. S14. The canonical scores plot.

References

- 1. D. Lucas, T. Minami, G. Iannuzzi, L. Cao, J. B. Wittenberg, P. Anzenbacher Jr., L. Isaacs, J. Am. Chem. Soc., 2011, **133**, 17966.
- 2. T. Minami, N. A. Esipenko, B. Zhang, M. E. Kozelkova, L. Isaacs, R. Nishiyabu, Y. Kubo, P. Anzenbacher Jr., J. Am. Chem. Soc., 2012, **134**, 20021.
- J. R. Lakowicz, *Principles of Fluorescence Spectroscopy 3rd Ed.*, Springer, New York, 2006.