Supporting Information

Table of Contents

1.	General Notes	2
2.	General Procedures	3
3.	Synthesis and Characterization of compounds $1a - 1t$	4
4.	Synthesis and Characterization of compounds $2a - 2t$	10
5.	Synthesis and Characterization of compound 3g	16
6.	¹ H and ¹³ C NMR spectra	17
7.	X-ray Crystallography	70
8.	Kinetic studies	72

page

Melting points, measured in capillary tubes on a Büchi B-540 apparatus, are uncorrected. IR spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer.

Proton (¹H) and carbon (¹³C) NMR spectra were recorded on Bruker spectrometers: Avance 300 MHz (QNP - ¹³C, ³¹P, ¹⁹F - probe or Dual ¹³C probe) and Avance 500 MHz (BB0 - ATM probe or BBI - ATM probe). Chemical shifts (δ) are reported in parts per million (ppm) with reference to CDCl₃ (¹H: 7.26; ¹³C: 77.13) or CD₂Cl₂ (¹H: 5.32; ¹³C: 53.80). The following abbreviations are used for the proton spectra multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, quint.: quintuplet, sept.: septuplet, m: multiplet, br: broad. Coupling constants (*J*) are reported in Hertz (Hz). The multiplicity of carbons was given using 2D spectra (HMQC and HMBC). Some quaternary carbons were determined using HMBC couplings.

UPLC-MS analyses were run using a Acquity Waters UPLC equipped with a Waters LCT Premier XE (ESI ionization) and a Waters Acquity PDA detector, using a column BEH C₁₈ 1.7 μ m, 2.1 mm × 50 mm. Gradients were run using water and acetonitrile (1:1) with 0.1% of acetic acid. Temperature: 40 °C. UV detection from 210 to 410 nm. ESI+ detection in the 80–1500 *m/z* range.

Thin-layer chromatography was performed on silica gel 60 F_{254} on aluminum plates (Merck) and visualized under a UVP Mineralight UVLS-28 lamp (254 nm). Flash chromatography was performed on silica gel 60 (230-400 mesh).

All reagents were obtained from commercial suppliers (Sigma-Aldrich and Acros Organics) and were used as received.

General procedure A for Passerini-Smiles reaction

Aldehydes

To 1.0 equiv. of phenol were added successively 1.0 equiv. of DABCO, 2.0 equiv. of aldehyde and 1.0 equiv. of isocyanide. The resulting mixture was stirred neat at 55 °C during 12h. The crude product was purified by flash chromatography on silica gel.

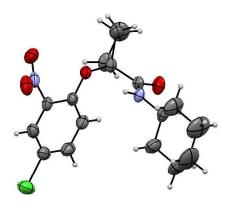
Ketones

To 1.0 equiv. of phenol were added successively 1.0 equiv. of ketone and 1.0 equiv. of isocyanide under inert atmosphere. The resulting mixture was stirred neat at 55 °C during 3 days. The crude product was purified by flash chromatography on silica gel.

General procedure B for Smiles cyclization

To a 0.2 M solution of Passerini-Smiles adduct in DMF were added 1.5 equiv. (aldehyde) or 2.0 equiv. (ketone) of potassium *tert*-butoxide. The resulting mixture was stirred for 1 hour at 100 °C. The resulting mixture was diluted with HCl 1M. The aqueous layer was extracted three times with CH_2Cl_2 . Organic layers were combined, washed with water, dried over MgSO₄ and concentrated. The crude product was purified by flash chromatography on silica gel.

General procedure C for Passerini-Smiles-Smiles reaction (one-pot)


To 1.0 equiv. of phenol were added successively 1.0 equiv. of DABCO (<u>only for aldehydes</u>), 2.0 equiv. of aldehyde (1.0 equiv. of ketone) and 1.0 equiv. of isocyanide under inert atmosphere. The resulting mixture was stirred neat at 55 °C during 12 h for aldehyde (3 days for ketone). Then, DMF (c = 0.2 M) and 1.5 equiv. (aldehyde) or 2.0 equiv. (ketone) of potassium *tert*-butoxide were added. The resulting mixture was stirred for 1 hour at 100 °C. The resulting mixture was diluted CH₂Cl₂ then washed with H₂O and HCl 1M. The aqueous layer was extracted three times with CH₂Cl₂. Organic layers were combined, washed with water, dried over MgSO₄ and concentrated. The crude product was purified by flash chromatography on silica gel.

N-cyclohexyl-3,3,3-trifluoro-2-methyl-2-(2-nitrophenoxy)propanamide (1a)

Compound **1a** was prepared according to the general procedure A (add 2 equiv. of ketone instead of one). Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 80/20) as eluant gave the desired product (565 mg, **78%**) as an off-white solid. **MP:** 91-92 °C. ¹**H NMR (CDCl₃, 300 MHz):** δ (ppm) 7.81 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.54 (ddd, *J* = 8.3, 7.6, 1.7 Hz, 1H), 7.28 (ddd, *J* = 7.6, 8.1, 1.1 Hz, 1H), 7.22 (dd, *J* = 8.3, 1.1 Hz, 1H), 6.76 (br d, *J* = 7.7 Hz, 1H), 3.91-3.75 (m, 1H), 1.97-1.83 (m, 2H), 1.77-1.55 (m, 3H), 1.66 (s, 3H), 1.45-1.28 (m, 2H), 1.28-1.09 (m, 3H). ¹³**C NMR (CDCl₃, 75 MHz):** δ (ppm) 164.0, 146.1, 144.0, 133.6, 125.5, 125.0, 123.3 (q, *J*_{C-F} = 287.6 Hz), 122.9, 84.2 (q, *J*_{C-F} = 28.8 Hz), 49.1, 32.6, 32.5, 25.5, 24.8, 15.4. ¹⁹**F NMR (CDCl₃, 282 MHz):** δ (ppm) -78.0. **IR (Neat):** (cm⁻¹) 3307, 2940, 2859, 1664, 1605, 1536, 1481, 1449, 1379, 1360, 1295, 1267, 1240, 1198, 1178, 1134, 1106. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₆H₁₉F₃N₂O₄ 361.1375, found 361.1365.

1-(4-chloro-2-nitrophenoxy)-N-cyclohexylcyclobutanecarboxamide (1b)

Compound **1b** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 100/0 to 90/10) as eluant gave the desired product (350 mg, **50%**) as a yellow solid. **MP:** 127-128 °C. ¹**H NMR (CDCl₃, 300 MHz):** δ (ppm) 7.78 (d, J = 2.7 Hz, 1H), 7.37 (dd, J = 9.0, 2.7 Hz, 1H), 6.67 (d, J = 9.0 Hz, 1H), 6.16 (br d, J = 8.4 Hz, 1H), 3.81-3.62 (m, 1H), 2.83-2.71 (m, 2H), 2.48-2.33 (m, 2H), 2.08-1.86 (m, 2H), 1.76-1.64 (m, 2H), 1.64-1.47 (m, 3H), 1.38-1.19 (m, 2H), 1.19-0.90 (m, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 170.2, 147.3, 140.8, 133.7, 126.6, 125.5, 117.8, 83.3, 48.2, 32.7, 32.0, 25.4, 24.6, 13.8. **IR** (Neat): (cm⁻¹) 3264, 2938, 2852, 1640, 1606, 1533, 1481, 1359, 1281, 1255, 1226, 1160, 1129, 1077. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₇H₂₁ClN₂O₄ 353.1246, found 353.1244.

N-(4-methoxybenzyl)-1-(2-nitrophenoxy)cyclobutanecarboxamide (1c)

Compound **1c** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluant gave the desired product (223 mg, **63%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.75 (dd, J = 7.9, 1.7 Hz, 1H), 7.39 (td, J = 7.9, 1.7 Hz, 1H), 7.05 (td, J = 7.9, 1.3 Hz, 1H), 6.92 (d, J = 8.6 Hz, 2H), 6.75-6.68 (m, 3H), 6.64 (br t, J = 5.9 Hz, 1H), 4.33 (d, J = 5.9 Hz, 1H), 3.76 (s, 3H), 2.86-2.77 (m, 2H), 2.51-2.40 (m, 2H), 2.10-1.91 (m, 2H). ¹³**C NMR (CDCl₃, 75 MHz):** δ (ppm) 171.5, 158.9, 148.5, 140.6, 133.9, 130.0, 128.7, 125.6, 121.5, 116.7, 114.0, 82.9, 55.3, 42.8, 32.1, 13.8. **IR (Neat):** (cm⁻¹)

3328, 2947, 2836, 1664, 1605, 1584, 1510, 1479, 1350, 1303, 1275, 1243, 1174, 1154, 1128, 1078, 1032. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₉H₂₀N₂O₅ 357.1450, found 357.1447.

1-(4-bromo-2-nitrophenoxy)-N-(3,4-dimethoxyphenethyl)cyclobutanecarboxamide (1d)

Compound **1d** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 70/30) as eluant gave the desired product (277 mg, **58%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.89 (d, *J* = 2.4 Hz, 1H), 7.44 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.66 (d, *J* = 8.9 Hz, 1H), 6.59 (d, *J* = 1.8 Hz, 1H), 6.50-6.42 (d, *J* = 8.9 Hz, 2H), 6.23 (br t, *J* = 5.6 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.50 (q, *J* = 6.5 Hz, 2H), 2.77-2.69 (m, 2H), 2.66 (t, *J* = 6.9 Hz, 2H), 2.41-2.32 (m, 2H), 2.05-1.88 (m, 2H). ¹³C NMR (CDCl₃, **75 MHz):** δ (ppm) 171.3, 149.0, 147.7, 147.5, 140.7, 136.5, 130.4, 128.4, 120.4, 117.9, 113.1, 111.4, 111.1, 83.1, 55.9, 55.8, 40.3, 34.8, 31.9, 13.8. IR (Neat): (cm⁻¹) 3358, 2940, 1664, 1602, 1513, 1473, 1417, 1346, 1259, 1235, 1155, 1127, 1103, 1077, 1026. HRMS (ESI+, m/z): [M+H]⁺ calcd. for C₂₁H₂₃BrN₂O₆ 479.0818, found 479.0822.

N-cyclohexyl-3-methoxy-2-methyl-2-(2-nitrophenoxy)propanamide (1e)

Compound **1e** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in heptane (from 90/10 to 70/30) as eluant gave the desired product (438 mg, **65%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.84 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.51 (ddd, *J* = 8.5, 7.4, 1.8 Hz, 1H), 7.31 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.32-7.24 (m, 1H), 7.18 (ddd, *J* = 8.1, 7.4, 1.3 Hz, 1H), 3.83-3.71 (m, 1H), 3.71 (d, *J* = 10.8 Hz, 1H), 3.50 (d, *J* = 10.8 Hz, 1H), 3.22 (s, 3H), 1.98-1.87 (m, 2H), 1.78-1.66 (m, 2H), 1.64-1.55 (m, 1H), 1.47 (s, 3H), 1.42-1.10 (m, 5H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 170.1, 148.0, 144.0, 133.6, 125.7, 123.6, 123.5, 86.8, 75.0, 59.2, 48.4, 32.7, 25.5, 24.8, 19.6. IR (Neat): (cm⁻¹) 3399, 2930, 2854, 1671, 1602, 1582, 1521, 1478, 1450, 1353, 1239, 1199, 1107. HRMS (ESI+, m/z): [M+H]⁺ calcd. for C₁₇H₂₄N₂O₅ 337.1763, found 337.1752.

$\label{eq:2-(4-chloro-2-nitrophenoxy)-3-methoxy-2-methyl-N-phenethylpropanamide (1f)$

Compound **1f** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluant gave the desired product (466 mg, **59%**) as an orange oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.83 (d, *J* = 2.7 Hz, 1H), 7.43 (dd, *J* = 8.9, 2.7 Hz, 1H), 7.33-7.20 (m, 7H), 3.69 (d, *J* = 10.8 Hz, 1H), 3.67-3.54 (m, 2H), 3.49 (d, *J* = 10.8 Hz), 3.24 (s, 3H), 2.91 (dt, *J* = 15.5, 7.2 Hz, 1H), 2.88 (dt, *J* = 15.5, 7.2 Hz, 1H), 1.45 (s, 3H). ¹³**C NMR (CDCl₃, 75 MHz):** δ (ppm) 171.0, 146.6, 144.2, 138.8, 133.6, 128.9, 128.6, 126.5, 125.6, 124.8, 87.2, 75.1, 59.3, 41.0, 35.6, 19.7. **IR (Neat):** (cm⁻¹) 3412, 2930, 1670, 1603, 1527, 1497, 1475, 1454, 1353, 1240, 1198, 1150, 1104. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₉H₂₁ClN₂O₅ 393.1217, found 393.1206.

N-cyclohexyl-2-(2-nitrophenoxy)butanamide (1g)

Compound **1g** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 60/40) as eluant gave the desired product (269 mg, **88%**) as an off-white solid. **MP:** 107-108 °C. ¹H **NMR (CDCl₃, 500 MHz):** δ (ppm) 7.91 (dd, J = 8.3, 1.7 Hz, 1H), 7.54 (ddd, J = 7.5, 8.4, 1.7 Hz, 1H), 7.15-7.02 (m, 3H), 4.84 (t,

J = 5.0 Hz, 1H), 3.77 (m, 1H), 2.11-1.99 (m, 2H), 1.98-1.87 (m, 1H), 1.79-1.50 (m, 4H), 1.44-1.04 (m, 5H), 0.98 (t, J = 7.5 Hz, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 168.8, 150.8, 139.9, 134.9, 126.5, 121.5, 115.1, 80.3, 48.1, 33.1, 32.8, 25.6, 25.4, 24.8, 8.7. IR (Neat): (cm⁻¹) 3259, 2934, 2854, 1652, 1608, 1583, 1557, 1520, 1484, 1445, 1349, 1276, 1245, 1233, 1165, 1153, 1089, 1047, 1026. HRMS (ESI+, m/z): [M+H]⁺ calcd. for C₁₆H₂₂N₂O₄ 307.1658, found 307.1652.

N-cyclohexyl-3,3-dimethyl-2-(2-nitrophenoxy)butanamide (1h)

Compound **1h** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluant gave the desired product (283 mg, **85%**) as a white solid. **MP:** 126-127 °C. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.83 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.50 (ddd, *J* = 8.5, 7.5, 1.6 Hz, 1H), 7.10 (d, *J* = 8.5 Hz, 1H), 7.07 (ddd, *J* = 8.1, 7.5, 1.0 Hz, 1H), 6.64 (br d, *J* = 8.5 Hz, 1H), 4.46 (s, 1H), 3.73-3.67 (m, 1H), 1.93-1.86 (m, 1H), 1.72-1.63 (m, 1H), 1.54-1.45 (m, 3H), 1.39-1.07 (m, 4H), 1.11 (s, 9H), 0.94-0.84 (m, 1H). ¹³**C NMR (CDCl₃, 125 MHz):** δ (ppm) 167.4, 150.8 (C₃), 140.1, 134.5, 125.8, 121.4, 114.9, 87.0, 47.8, 34.7, 33.1, 32.5, 26.3, 25.4, 24.7, 24.6. **IR (Neat):** (cm⁻¹) 3259, 2926, 2853, 1646, 1607, 1584, 1568, 1522, 1479, 1449, 1365, 1344, 1309, 1279, 1248, 1197, 1167, 1151, 1099, 1060, 1019. **HRMS** (**ESI+, m/z):** [M+H]⁺ calcd. for C₁₈H₂₆N₂O₄ 335.1971, found 335.197.

N-cyclohexyl-2-(2-nitrophenoxy)-4-phenylbutanamide (1i)

Compound **1i** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluant gave the desired product (647 mg, **85%**) as a yellow solid. **MP:** 97-98 °C. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.91 (dd, J = 8.1, 1.7 Hz, 1H, 7.50 (ddd, J = 8.6, 7.5, 1.7 Hz, 1H, 7.28-7.22 (m, 2H), 7.20-7.14 (m, 3H), 7.13-7.05 (m, 2H), 6.94 (d, J = 8.6 Hz, 1H), 4.84 (t, J = 5.4 Hz, 1H), 3.83-3.72 (m, 1H), 2.86-2.71 (m, 2H), 2.32 (dt, J = 5.4, 7.9 Hz, 2H), 1.97-1.90 (m, 1H), 1.78-1.68 (m, 2H), 1.67-1.58 (m, 2H), 1.43-1.05 (m, 5H). ¹³**C NMR (CDCl₃, 125 MHz):** δ (ppm) 168.7, 150.4, 140.5, 139.8, 134.7, 128.6, 128.5, 126.2, 121.5, 114.9, 78.6, 48.0, 33.9, 32.9, 32.7, 30.6, 25.4, 24.7, 24.6. **IR (Neat):** (cm⁻¹) 3263, 3028, 2930, 2853, 1651, 1607, 1582, 1518, 1496, 1482, 1449, 1345, 1307, 1271, 1246, 1165, 1152, 1084, 1047, 1028. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₂₂H₂₆N₂O₄ 383.1971, found 383.1972.

N-cyclohexyl-3-methyl-2-(2-nitrophenoxy)butanamide (1j)

Compound **1j** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluant gave the desired product (291 mg, **91%**) as a yellow solid. **MP:** 121-122 °C. ¹**H NMR (CDCl₃, 300 MHz):** δ (ppm) 7.86 (dd, J = 8.2, 1.8 Hz, 1H), 7.52 (ddd, J = 8.6, 7.5, 1.8 Hz, 1H), 7.11-7.04 (m, 2H), 6.93 (br d, J = 8.2 Hz, 1H), 4.68 (d, J = 3.8 Hz, 1H), 3.83-3.68 (m, 1H), 2.36 (sept. d, J = 6.9, 3.8 Hz, 1H), 1.98-1.87 (m, 1H), 1.76-1.50 (m, 5H), 1.43-0.90 (m, 4H), 1.06 (d, J = 6.9 Hz, 6H). ¹³**C NMR (CDCl₃, 75 MHz):** δ (ppm) 168.4, 151.0, 140.0, 134.6, 126.0, 121.4, 115.0, 84.0, 47.9, 33.0, 32.6, 31.5, 25.4, 24.7, 24.6, 18.8, 17.0. **IR (Neat):** (cm⁻¹) 3261, 3080, 2937, 2856, 1649, 1607, 1584, 1557, 1521, 1484, 1449, 1388, 1351, 1309, 1276, 1259, 1248, 1233, 1165, 1154, 1091, 1048, 1036. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₇H₂₄N₂O₄ 321.1814, found 321.1812.

N-(tert-butyl)-2-(4-chloro-2-nitrophenoxy)butanamide (1k)

Compound **1k** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluant gave the desired product (500 mg, **79%**) as an off-white solid. **MP:** 107-108 °C. ¹**H NMR** (**CDCl**₃, **500 MHz**): δ (ppm) 7.92 (d, J = 2.5 Hz, 1H), 7.51 (dd, J = 9.1, 2.5 Hz, 1H), 7.02 (d, J = 9.1 Hz, 1H), 6.88 (br s, 1H), 4.70 (t, J = 4.8 Hz, 1H), 2.12-1.93 (m, 2H), 1.36 (s, 9H), 0.97 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (**CDCl**₃, **125 MHz**): δ (ppm) 168.4, 149.3, 139.8, 134.6, 126.4, 126.2, 116.3, 80.8, 51.5, 28.7, 25.1, 8.4. **IR** (**Neat**): (cm⁻¹) 3308, 2973, 1655, 1606, 1555, 1527, 1481, 1461, 1393, 1349, 1270, 1249, 1221, 1163, 1120, 1107, 1057. **HRMS** (**ESI+**, **m/z**): [M+H]⁺ calcd. for C₁₄H₁₉ClN₂O₄ 315.1112, found 315.1106.

2-(4-cyano-2-nitrophenoxy)-N-(4-methoxybenzyl)butanamide (11)

Compound **11** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 60/40) as eluant gave the desired product (226 mg, **61%**) as a yellow oil. ¹**H NMR (CDCl₃, 300 MHz):** δ (ppm) 8.17 (d, *J* = 2.1 Hz, 1H), 7.80 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.17 (d, *J* = 8.7 Hz, 1H), 7.19-7.00 (m, 3H), 6.81 (m, 2H), 4.92 (t, *J* = 5.2 Hz, 1H), 4.40 (d, *J* = 5.9 Hz, 2H), 3.78 (s, 3H), 2.18-2.00 (m, 2H), 1.00 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR (CDCl₃, 75 MHz):** δ (ppm) 168.6, 159.2, 153.6, 139.8, 138.1, 130.3, 129.6, 129.1, 116.4, 116.1, 114.2, 105.7, 81.4, 55.4, 42.9, 25.4, 8.8. **IR (Neat):** (cm⁻¹) 3262, 3073, 2973, 2938, 2234, 1647, 1615, 1533, 1514, 1496, 1460, 1441, 1357, 1283, 1250, 1175, 1136, 1103, 1087, 1061, 1028. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₉H₁₉N₃O₅ 370.1403, found 370.1404.

N-(4-chlorobenzyl)-4-methyl-2-(4-methyl-2-nitrophenoxy)pentanamide (1m)

Compound **1m** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 99/1 to 95/5) as eluant gave the desired product (291 mg, **72%**) as a yellow solid. **MP:** 102-103 °C. ¹**H NMR** (**CDCl₃, 500 MHz**): δ (ppm) 7.60 (d, J = 2.2 Hz, 1H), 7.45 (br t, J = 6.7 Hz, 1H), 7.31 (dd, J = 8.6, 2.2 Hz, 1H), 7.19 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.6 Hz, 1H), 4.87 (dd, J = 8.1, 4.0 Hz, 1H), 4.43 (dd, J = 14.9, 6.4 Hz, 1H), 4.34 (dd, J = 14.9, 6.4 Hz, 1H), 2.35 (s, 3H), 1.94-1.77 (m, 3H), 0.96 (d, J = 6.2 Hz, 3H), 0.93 (d, J = 6.2 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 171.0, 148.3, 139.7, 136.5, 135.2, 133.3, 131.9, 129.0, 128.8, 126.2, 114.7, 78.7, 42.5, 41.7, 24.7, 23.2, 22.1, 20.3. **IR** (Neat): (cm⁻¹) 3262, 3062, 2956, 2870, 1651, 1566, 1528, 1490, 1467, 1350, 1282, 1257, 1163, 1088, 1014. **HRMS (ESI+, m/z)**: [M+H]⁺ calcd. for C₂₀H₂₃ClN₂O₄ 391.1425, found 391.1410.

$\label{eq:N-(3,4-dimethoxyphenethyl)-4,8-dimethyl-2-(2-nitro-4-(trifluoromethyl)phenoxy)non-7-enamide (1n)$

Compound **1n** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluant gave the desired product (908 mg, **82%**) as a 1:1 mixture of unseparable diastereomers (yellow oil). ¹H NMR (CDCl₃, **500 MHz**): δ (ppm) 8.12 (d, J = 2.0 Hz, 0.5H), 8.11 (d, J = 2.0 Hz, 0.5H), 7.75 (dd, J = 8.4, 2.0 Hz, 0.5H), 7.74 (dd, J = 8.4, 2.0 Hz, 0.5H), 7.11 (d, J = 8.4 Hz, 0.5H), 7.10 (d, J = 8.4 Hz, 0.5H), 6.78 (br t, J = 5.7 Hz, 0.5H), 6.67 (d, J = 8.0 Hz, 0.5H), 6.66 (d, J = 8.0 Hz,

0.5H), 6.64 (d, J = 1.9 Hz, 0.5H), 6.63 (d, J = 1.9 Hz, 0.5H), 6.56 (dd, J = 8.0, 2.0 Hz, 0.5H), 6.54 (dd, J = 8.0, 2.0 Hz, 0.5H), 5.05 (t, J = 7.1 Hz, 0.5H), 4.99 (t, J = 7.1 Hz, 0.5H), 4.88-4.82 (m, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.62-3.45 (m, 2H), 2.73 (br t, J = 6.6 Hz, 2H), 2.05-1.57 (m, 5H), 1.66 (s, 1.5H), 1.61 (s, 1.5H), 1.58 (s, 1.5H), 1.54 (s, 1.5H), 1.39-1.11 (m, 2H), 0.94 (d, J = 6.5 Hz, 1.5H), 0.89 (d, J = 6.5 Hz, 1.5H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 170.0, 169.9, 152.9, 152.8, 149.1, 147.8, 139.5, 139.4, 131.8, 131.7, 131.4 (q, $J_{C-F} = 3.3$ Hz), 130.6, 130.5, 124.5, 124.4, 124.2, 124.1, 123.7 (q, $J_{C-F} = 3.9$ Hz), 122.9 (q, $J_{C-F} = 272.2$ Hz), 120.6, 115.2, 115.1, 111.8, 111.7, 111.3, 111.2, 79.3, 79.2, 55.9, 55.8, 40.3, 40.2, 40.0, 39.9, 37.4, 36.4, 35.0, 34.9, 29.0, 28.8, 25.7, 25.6, 25.3, 25.1, 19.9, 19.1, 17.7, 17.6. ¹⁹F NMR (CDCl₃, 282 MHz): δ (ppm) -62.2. IR (Neat): (cm⁻¹) 3393, 2932, 1671, 1627, 1590, 1539, 1515, 1453, 1419, 1357, 1324, 1261, 1236, 1157, 1128, 1093, 1027. HRMS (ESI+, m/z): [M+H]⁺ calcd. for C₂₈H₃₅F₃N₂O₆ 553.2525, found 553.2526.

N-(tert-butyl)-2-(4-chloro-2-nitrophenoxy)-3-methylbutanamide (10)

Compound **10** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluant gave the desired product (224 mg, **68%**) as an off-white solid. **MP:** 111-112 °C. ¹**H NMR (CDCl₃, 300 MHz):** δ (ppm) 7.87 (d, J = 2.7 Hz, 1H), 7.50 (dd, J = 9.0, 2.7 Hz, 1H), 7.03 (d, J = 9.0 Hz, 1H), 6.68 (br s, 1H), 4.51 (d, J = 4.1 Hz, 1H), 2.32 (sept. d, J = 6.9, 4.1 Hz, 1H), 1.31 (s, 9H), 1.06 (d, J = 6.9 Hz, 3H), 1.04 (d, J = 6.9 Hz, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 168.2, 149.7, 140.0, 134.4, 126.5, 125.9, 116.2, 84.7, 51.5, 31.5, 28.6, 18.7, 17.2. IR (Neat): (cm⁻¹) 3275, 3082, 2972, 1649, 1605, 1531, 1483, 1470, 1391, 1361, 1277, 1250, 1223, 1162, 1119, 1031, 1010. HRMS (ESI+, m/z): [M+H]⁺ calcd. for C₁₅H₂₁ClN₂O₄ 329.1268, found 329.1271.

2-(4-chloro-2-nitrophenoxy)-N-(4-chlorobenzyl)-3,3-dimethylbutanamide (1p)

Compound **1p** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluant gave the desired product (352 mg, **86%**) as a yellow solid. **MP:** 130-131 °C. ¹**H NMR** (**CDCl₃**, **300 MHz**): δ (ppm) 7.77 (d, J = 2.6 Hz, 1H), 7.44 (dd, J = 9.0, 2.6 Hz, 1H), 7.18 (m, 2H), 7.03-6.97 (m, 4H), 4.48 (s, 1H), 4.40 (dd, J = 14.6, 6.6 Hz, 1H), 4.30 (dd, J = 14.6, 5.6 Hz, 1H), 1.09 (s, 9H). ¹³**C NMR** (**CDCl₃**, **125 MHz**): δ (ppm) 168.3, 149.4, 140.0, 136.4, 134.4, 133.5, 129.1, 128.8, 126.9, 125.8, 116.2, 87.7, 42.6, 35.0, 26.3. **IR** (**Neat**): (cm⁻¹) 2959, 2873, 1669, 1610, 1517, 1494, 1480, 1434, 1399, 1348, 1313, 1271, 1248, 1163, 1118, 1090, 1077, 1052, 1001. **HRMS** (**ESI+**, **m/z**): [M+H]⁺ calcd. for C₁₉H₂₀Cl₂N₂O₄ 411.0878, found 411.0865.

2-(4-bromo-2-nitrophenoxy)-N-(3,4-dimethoxyphenethyl)-3-methylbutanamide (1q)

Compound **1q** was prepared according to the general procedure A. Purification on a column of silica gel with ethyl acetate in petroleum ether (70/30) as eluant gave the desired product (462 mg, **96%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.95 (d, J = 2.4 Hz, 1H), 7.57 (dd, J = 9.0, 2.4 Hz, 1H), 6.86 (d, J = 9.0 Hz, 1H), 6.79 (br t, J = 5.4 Hz, 1H), 6.68 (d, J = 8.1 Hz, 1H), 6.63 (d, J = 1.6 Hz, 1H), 6.56 (dd, J = 8.1, 1.6 Hz, 1H), 4.56 (d, J = 4.0 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.60-3.48 (m, 2H), 2.74 (dt, J = 14.0, 7.0 Hz, 1H), 2.71 (dt, J = 14.0, 7.0 Hz, 1H), 1.01 (d, J = 7.5 Hz, 3H), 0.99 (d, J = 7.5 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 169.1, 150.1, 149.1, 147.8, 140.2, 137.3, 130.7, 128.8, 120.6, 116.4, 113.2, 111.7, 111.3, 84.6, 56.0, 55.9, 40.1, 35.0, 31.6, 10.56 (dd, J = 1.6 Hz, 11, J = 1.6 Hz, 11, J = 1.6 Hz, 140, 2, 137.3, 130.7, 128.8, 120.6, 116.4, 113.2, 111.7, 111.3, 84.6, 56.0, 55.9, 40.1, 35.0, 31.6, 10.56 (dd, J = 1.6 Hz, 11, J = 1.6 Hz, J = 1.6

18.8, 17.0. **IR** (Neat): (cm⁻¹) 3387, 2966, 1666, 1602, 1514, 1465, 1418, 1345, 1261, 1235, 1156, 1140, 1100, 1026, 1000. **HRMS** (**ESI+**, **m/z**): $[M+H]^+$ calcd. for $C_{21}H_{25}BrN_2O_6$ 481.0974, found 481.0969.

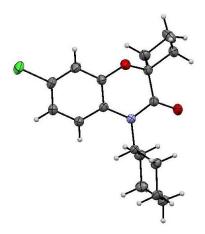
2-(4-bromo-2-nitrophenoxy)-3,3-dimethyl-N-phenethylbutanamide (1r)

Compound **1r** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluant gave the desired product (338 mg, **78%**) as a yellow solid. **MP:** 62-63 °C. ¹H **NMR** (**CDCl₃**, **500 MHz**): δ (ppm) 7.89 (d, *J* = 2.5 Hz, 1H), 7.54 (dd, *J* = 9.1, 2.5 Hz, 1H), 7.20-7.12 (m, 3H), 7.01-6.97 (m, 2H), 6.86 (d, *J* = 9.1 Hz, 1H), 6.58-6.50 (m, 1H), 4.35 (s, 1H), 3.62 (dq, *J* = 13.6, 6.7 Hz, 1H), 3.47 (dtd, *J* = 13.6, 6.9, 5.2 Hz, 1H), 2.73 (t, *J* = 6.9 Hz, 2H), 1.03 (s, 9H). ¹³C **NMR** (**CDCl₃**, **75 MHz**): δ (ppm) 168.2, 149.9, 140.0, 138.0, 137.3, 128.8, 128.6, 128.4, 126.5, 116.1, 113.0, 87.3, 39.8, 35.2, 34.8, 26.2. **IR** (**Neat**): (cm⁻¹) 2959, 1663, 1603, 1522, 1477, 1396, 1338, 1262, 1246, 1163, 1095, 1048. **HRMS** (**ESI+**, **m/z**): [M+H]⁺ calcd. for C₂₀H₂₃BrN₂O₄ 435.0919, found 435.0904.

N-(4-methoxybenzyl)-3,3-dimethyl-2-(4-methyl-2-nitrophenoxy)hex-5-enamide (1s)

Compound **1s** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluant gave the desired product (344 mg, **83%**) as a yellow solid. **MP:** 64-65 °C. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.56 (d, *J* = 2.3 Hz, 1H), 7.26 (dd, *J* = 8.4, 2.3 Hz, 1H), 7.07 (br t, *J* = 5.8 Hz, 1H), 6.95 (d, *J* = 8.5 Hz, 2H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.70 (d, *J* = 8.5 Hz, 2H), 5.87-5.76 (m, 1H), 5.04 (dd, *J* = 10.1, 1.4 Hz, 1H), 4.96 (dd, *J* = 17.0, 1.4 Hz, 1H), 4.55 (s, 1H), 4.35 (dd, *J* = 14.5, 6.0 Hz, 1H), 4.28 (dd, *J* = 14.5, 6.0 Hz, 1H), 3.75 (s, 3H), 2.33 (s, 3H), 2.26 (dd, *J* = 13.7, 7.8 Hz, 1H), 2.11 (dd, *J* = 13.7, 6.8 Hz, 1H), 1.08 (s, 3H), 1.06 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 168.7, 158.9, 148.5, 139.5, 135.1, 134.1, 131.6, 130.1, 128.9, 126.0, 118.7, 114.7, 114.0, 85.1, 55.3, 43.7, 42.6, 37.8, 23.5, 23.4, 20.3. IR (Neat): (cm⁻¹) 3381, 2967, 2932, 2837, 1666, 1613, 1575, 1527, 1512, 1465, 1440, 1390, 1349, 1320, 1301, 1277, 1245, 1174, 1158, 1111, 1086, 1034, 1001. HRMS (ESI+, m/z): [M+H]⁺ calcd. for C₂₃H₂₈N₂O₅ 413.2076, found 413.2081.

2-(4-methoxy-2-nitrophenoxy)-3,3-dimethyl-*N*-phenethylbutanamide (1t)


Compound **1t** was prepared according to the general procedure A. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluant gave the desired product (301 mg, **78%**) as a yellow solid. **MP:** 88-89 °C. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.32 (d, J = 3.1 Hz, 1H), 7.20-7.10 (m, 3H), 7.05-6.99 (m, 3H), 6.93 (d, J = 9.3 Hz, 1H), 6.75 (br t, J = 5.7 Hz, 1H), 4.34 (s, 1H), 3.82 (s, 3H), 3.57 (dq, J = 13.5, 6.6 Hz, 1H), 3.47 (ddt, J = 13.6, 5.4, 7.2 Hz, 1H), 2.73 (dt, J = 16.6, 7.1 Hz, 1H), 2.70 (dt, J = 16.6, 7.1 Hz, 1H), 1.04 (s, 9H). ¹³**C NMR (CDCl₃, 75 MHz):** δ (ppm) 168.9, 153.4, 145.0, 139.5, 138.3, 128.5, 126.5, 121.0, 115.6, 110.5, 87.2, 56.2, 40.0, 35.4, 34.9, 26.3. **IR (Neat):** (cm⁻¹) 3026, 2959, 1660, 1520, 1492, 1442, 1346, 1289, 1277, 1256, 1219, 1164, 1092, 1082, 1051, 1035, 1004. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₂₁H₂₆N₂O₅ 387.1920, found 387.1929.

4-cyclohexyl-2-methyl-2-(trifluoromethyl)-2H-benzo[b][1,4]oxazin-3(4H)-one (2a)

Compound **2a** was prepared according to the general procedure B. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 99/1 to 98/2) as eluant gave the desired product (76 mg, **81%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.17-7.12 (m, 1H), 7.08-6.99 (m, 3H), 4.18 (tt, *J* = 12.3, 3.7 Hz, 1H), 2.49-2.32 (m, 2H), 1.94-1.87 (m, 2H), 1.84-1.76 (m, 2H), 1.75-1.68 (m, 1H), 1.70 (s, 3H), 1.44-1.32 (m, 2H), 1.32-1.03 (m, 1H). ¹³**C NMR (CDCl₃, 125 MHz):** δ (ppm) 162.8, 143.1, 128.6, 124.4, 123.7 (q, *J*_{C-F} = 288.4 Hz), 123.2, 117.7, 115.6, 79.5 (q, *J*_{C-F} = 28.1 Hz), 57.9, 29.2, 28.9, 26.5, 26.4, 25.4, 18.3. ¹⁹**F NMR (CDCl₃, 282 MHz):** δ (ppm) -77.2. **IR (Neat):** (cm⁻¹) 2934, 2857, 1685, 1611, 1592, 1498, 1453, 1413, 1379, 1361, 1324, 1299, 1274, 1248, 1191, 1148, 1102, 1044. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₆H₁₈F₃NO₂ 314.1368, found 314.1360.

7-chloro-4-cyclohexylspiro[benzo[b][1,4]oxazine-2,1'-cyclobutan]-3(4H)-one (2b)

Compound **2b** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (98/2) as eluant gave the desired product (45 mg, **91%**) as a yellow solid. **MP:** 77-78 °C. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.04 (d, *J* = 8.6 Hz, 1H), 7.02 (d, *J* = 2.4 Hz, 1H), 6.96 (dd, *J* = 8.6, 2.4 Hz, 1H), 4.17 (tt, *J* = 12.5, 3.7 Hz, 1H), 2.60-2.46 (m, 2H), 2.38-2.15 (m, 4H), 2.02-1.82 (m, 4H), 1.80-1.65 (m, 3H), 1.42-1.12 (m, 3H). ¹³**C NMR (CDCl₃, 75 MHz):** δ (ppm) 168.6, 145.4, 128.9, 128.3, 122.5, 118.7, 116.7, 80.4, 56.8, 30.9, 29.5, 26.5, 25.5, 13.2. **IR (Neat):** (cm⁻¹) 2932, 2855, 1678, 1581, 1491, 1452, 1424, 1405, 1360, 1336, 1270, 1245, 1147, 1118, 1081, 1045. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₇H₂₀ClNO₂ 306.1261, found 306.1259.

4-(4-methoxybenzyl)spiro[benzo[b][1,4]oxazine-2,1'-cyclobutan]-3(4H)-one (2c)

Compound **2c** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluant gave the desired product (79 mg, **86%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.18 (d, J = 8.6 Hz, 2H), 7.01 (dd, J = 7.7, 1.1 Hz, 1H), 6.95 (td, J = 7.9, 1.5 Hz, 1H), 6.92-6.86 (m, 2H), 6.85 (d, J = 8.7 Hz, 2H), 5.08 (s, 2H), 3.77 (s, 3H), 2.72-2.64 (m, 2H), 2.39-2.31 (m, 2H), 2.07-1.94 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 167.8, 159.0, 143.7, 129.5, 128.6, 128.0, 123.7, 122.7, 117.9, 115.3, 114.4, 79.7, 55.3, 44.8, 31.5, 13.3. **IR (Neat):** (cm⁻¹) 2954, 2835, 1675, 1609, 1587, 1512, 1498, 1464, 1387, 1331, 1303, 1243,

1175, 1148, 1105, 1032, 1011. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₉H₁₉NO₃ 310.1443, found 310.1436.

7-bromo-4-(3,4-dimethoxyphenethyl)spiro[benzo[b][1,4]oxazine-2,1'-cyclobutan]-3(4H)-one (2d)

Compound **2d** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (80/20) as eluant gave the desired product (111 mg, **86%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.18 (d, *J* = 2.0 Hz, 1H), 7.12 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.80 (d, *J* = 8.1 Hz, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 6.75 (dd, *J* = 8.1, 1.9 Hz, 1H), 6.73 (d, *J* = 1.9 Hz, 1H), 4.08 (dd, *J* = 8.8, 6.8 Hz, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 2.87 (dd, *J* = 8.8, 6.8 Hz, 2H), 2.60-2.51 (m, 2H), 2.32-2.22 (m, 2H), 2.04-1.85 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 166.9, 149.1, 148.0, 144.6, 130.6, 128.4, 125.7, 121.3, 120.8, 115.6, 115.5, 112.2, 111.5, 79.9, 56.05, 55.98, 43.4, 33.1, 31.4, 13.2. IR (Neat): (cm⁻¹) 2953, 2834, 1677, 1590, 1515, 1491, 1453, 1418, 1386, 1332, 1275, 1259, 1235, 1179, 1140, 1121, 1075, 1027. HRMS (ESI+, m/z): [M+H]⁺ calcd. for C₂₁H₂₂BrNO₄ 432.0810, found 432.0815.

4-cyclohexyl-2-(methoxymethyl)-2-methyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2e)

Compound **2e** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (98/2) as eluant gave the desired product (73 mg, **83%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.17-7.10 (m, 1H), 7.05-6.95 (m, 3H), 4.18 (tt, J = 12.4, 3.8 Hz, 1H), 3.83 (d, J = 10.4 Hz, 1H), 3.60 (d, J = 10.4 Hz, 1H), 3.43 (s, 3H), 2.50-2.27 (m, 2H), 1.96-1.66 (m, 5H), 1.49-1.18 (m, 3H), 1,34 (s, 3H). ¹³**C NMR (CDCl₃, 75 MHz):** δ (ppm) 168.6, 144.3, 129.6, 123.9, 122.3, 118.5, 115.6, 80.9, 75.7, 60.2, 57.2, 29.7, 29.2, 26.7, 26.6, 25.7, 18.9. **IR** (**Neat):** (cm⁻¹) 2930, 2854, 1674, 1607, 1497, 1452, 1411, 1357, 1327, 1299, 1277, 1248, 1204, 1109, 1045. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₇H₂₃NO₃ 290.1756, found 290.1754.

7-chloro-2-(methoxymethyl)-2-methyl-4-phenethyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2f)

Compound **2f** was prepared according to the general procedure B. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 95/5 to 90/10) as eluant gave the desired product (77 mg, **74%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.33-7.28 (m, 2H), 7.25-7.21 (m, 3H), 7.00 (d, J = 2.3 Hz, 1H), 6.95 (dd, J = 8.6, 2.3 Hz, 1H), 6.79 (d, J = 8.6 Hz, 1H), 4.15 (dt, J = 13.9, 7.8 Hz, 1H), 4.06 (dt, J = 13.9, 7.8 Hz, 1H), 3.82 (d, J = 10.4 Hz, 1H), 3.58 (d, J = 10.4 Hz, 1H), 3.38 (s, 3H), 2.94 (t, J = 7.9 Hz, 2H), 1.40 (s, 3H). ¹³**C NMR (CDCl₃, 125 MHz):** δ (ppm) 166.3, 144.2, 138.0, 129.0, 128.7, 128.6, 127.1, 126.8, 122.2, 118.1, 114.8, 80.9, 76.0, 60.0, 43.3, 33.3, 19.5. **IR (Neat):** (cm⁻¹) 2932, 1674, 1603, 1587, 1496, 1454, 1425, 1393, 1368, 1326, 1286, 1189, 1154, 1109, 1087, 1030. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₉H₂₀ClNO₃ 346.1210, found 346.1206.

4-cyclohexyl-2-ethyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2g)

Compound **2g** was prepared according to the general procedure B. Purification on a column of silica gel with petroleum ether/ethyl acetate (98/2) as eluant gave the desired product (62 mg, **80%**) as an orange oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.10-7.04 (m, 1H), 6.97-6.88 (m, 3H), 4.25 (dd, J = 8.6, 4.5 Hz, 1H), 4.11 (tt, J = 12.3, 3.7 Hz, 1H), 2.38-2.20 (m, 2H), 1.90-1.58 (m, 7H), 1.39-1.10 (m, 3H), 0.98 (t, J = 7.4 Hz, 3H). ¹³**C NMR (CDCl₃, 125 MHz):** δ (ppm) 167.9, 145.3, 129.9, 123.7,

122.3, 117.7, 115.9, 79.0, 56.8, 29.5, 29.4, 26.4, 25.4, 23.3, 9.5. **IR** (Neat): (cm⁻¹) 2931, 2854, 1676, 1604, 1589, 1496, 1454, 1411, 1363, 1322, 1298, 1269, 1245, 1211, 1191, 1150, 1118, 1049. **HRMS** (**ESI+**, **m/z**): [M+H]⁺ calcd. for C₁₆H₂₁NO₂ 260.1651, found 260.1654.

2-(tert-butyl)-4-cyclohexyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2h)

Compound **2h** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (98/2) as eluant gave the desired product (61 mg, **71%**) as an orange oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.13-7.07 (m, 1H), 6.98-6.92 (m, 3H), 4.24 (tt, J = 12.6, 3.9 Hz, 1H), 4.20 (s, 1H), 2.45 (qd, J = 12.4, 3.7 Hz, 1H), 2.36 (qd, J = 12.4, 3.7 Hz, 1H), 1.94-1.85 (m, 2H), 1.85-1.74 (m, 2H), 1.74-1.67 (m, 1H), 1.46-1.32 (m, 2H), 1.32-1.22 (m, 1H), 0.99 (s, 9H). ¹³**C NMR (CDCl₃, 125 MHz):** δ (ppm) 166.0, 146.3, 129.6, 123.8, 121.9, 117.1, 115.7, 84.8, 56.8, 36.6, 29.8, 29.1, 26.8, 26.7, 26.5, 25.6. **IR (Neat):** (cm⁻¹) 2931, 2870, 1672, 1605, 1589, 1498, 1476, 1463, 1453, 1410, 1361, 1325, 1296, 1271, 1245, 1216, 1184, 1149, 1123, 1062, 1016. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₈H₂₅NO₂ 288.1964, found 288.1959.

4-cyclohexyl-2-phenethyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2i)

Compound **2i** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluant gave the desired product (85 mg, **84%**) as a yellow oil. ¹**H NMR (CDCl₃, 300 MHz):** δ (ppm) 7.31-7.10 (m, 6H), 7.07-6.95 (m, 3H), 4.35 (dd, J = 9.2, 4.3 Hz, 1H), 4.18 (tt, J = 12.3, 3.7 Hz, 1H), 2.97-2.73 (m, 2H), 2.44-2.26 (m, 2H), 2.26-1.99 (m, 2H), 1.94-1.82 (m, 2H), 1.82-1.63 (m, 3H), 1.46-1.21 (m, 3H). ¹³**C NMR (CDCl₃, 75 MHz):** δ (ppm) 167.9, 145.4, 141.1, 130.0, 128.7, 128.5, 126.1, 123.9, 122.6, 117.8, 116.1, 76.9, 57.0, 31.6, 31.2, 29.6, 29.5, 26.5, 25.5. **IR (Neat):** (cm⁻¹) 3027, 2930, 2854, 1675, 1604, 1589, 1495, 1453, 1412, 1359, 1297, 1269, 1245, 1178, 1150, 1122, 1059. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₂₂H₂₅NO₂ 336.1964, found 336.1961.

4-cyclohexyl-2-isopropyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2j)

Compound **2j** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (98/2) as eluant gave the desired product (73 mg, **89%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.17-7.10 (m, 1H), 7.02-6.94 (m, 3H), 4.20 (tt, J = 12.2, 3.8 Hz, 1H), 4.15 (d, J = 6.7 Hz, 1H), 2.45-2.32 (m, 2H), 2.21-2.10 (m, 1H), 1.93-1.66 (m, 5H), 1.44-1.22 (m, 3H), 1.04 (d, J = 6.8 Hz, 3H) , 0.99 (d, J = 6.8 Hz, 3H). ¹³**C NMR (CDCl₃, 75 MHz):** δ (ppm) 167.1, 145.6, 129.7, 123.8, 122.2, 117.7, 115.9, 82.8, 56.8, 29.8, 29.3, 28.9, 26.6, 26.5, 25.5, 18.7, 17.8. **IR (Neat):** (cm⁻¹) 2931, 2854, 1675, 1605, 1496, 1464, 1411, 1361, 1320, 1298, 1262, 1245, 1125, 1042, 1015. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₇H₂₃NO₂ 274.1807, found 274.1797.

4-(tert-butyl)-7-chloro-2-ethyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2k)

Compound **2k** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (98/2) as eluant gave the desired product (76 mg, **95%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.07 (d, J = 8.7 Hz, 1H), 7.03 (d, J = 2.3 Hz, 1H), 6.96 (dd, J = 8.7, 2.3 Hz, 1H), 4.22 (dd, J = 8.2, 4.0 Hz, 1H), 1.91 (dqd, J = 14.4, 7.5, 4.2 Hz, 1H), 1.77 (dquint., J = 14.4, 7.5 Hz, 1H), 1.62 (s, 9H), 1.04 (t, J = 7.4 Hz, 3H). ¹³C NMR (CDCl₃,

125 MHz): δ (ppm) 172.9, 149.2, 129.4, 128.9, 121.8, 121.7, 118.3, 82.3, 59.1, 29.9, 23.7, 9.5. **IR** (**Neat):** (cm⁻¹) 2972, 2936, 1683, 1579, 1489, 1418, 1398, 1355, 1337, 1276, 1245, 1202, 1190, 1122, 1096, 1079, 1055, 1017. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₄H₁₈ClNO₂ 268.1104, found 268.1098.

2-ethyl-4-(4-methoxybenzyl)-3-oxo-3,4-dihydro-2*H*-benzo[*b*][1,4]oxazine-7-carbonitrile (2l)

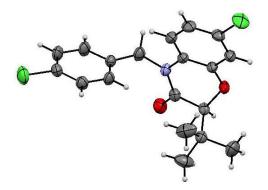
Compound **21** was prepared according to the general procedure B. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 90/10 to 80/20) as eluant gave the desired product (72 mg, **74%**) as a white solid. **MP:** 138-139 °C. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.26-7.24 (m, 1H), 7.20 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.14 (d, *J* = 8.6 Hz, 2H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.86 (d, *J* = 8.6 Hz, 2H), 5.17 (d, *J* = 15.9 Hz, 1H), 5.02 (d, *J* = 15.9 Hz, 1H), 4.64 (dd, *J* = 8.5, 4.5 Hz, 1H), 3.78 (s, 3H), 2.08-1.97 (m, 1H), 1.92 (dquint., *J* = 14.9, 7.3 Hz, 1H), 1.12 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR (CDCl₃, 125 MHz):** δ (ppm) 166.2, 159.3, 144.3, 133.1, 128.0, 127.2, 127.0, 120.7, 118.3, 115.9, 114.6, 107.1, 78.5, 55.4, 44.8, 24.2, 9.5. **IR (Neat):** (cm⁻¹) 3063, 2964, 2934, 2836, 2226, 1687, 1610, 1587, 1509, 1463, 1446, 1395, 1333, 1292, 1280, 1246, 1190, 1177, 1142, 1118, 1097, 1073, 1047, 1028. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₉H₁₈N₂O₃ 323.1396, found 323.1380.

4-(4-chlorobenzyl)-2-isobutyl-7-methyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2m)

Compound **2m** was prepared according to the general procedure B. Purification on a column of silica gel with a gradient of ethyl acetate in petroleum ether (from 98/2 to 95/5) as eluant gave the desired product (69 mg, **67%**) as a yellow solid. **MP:** 77-78 °C. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.28 (d, *J* = 8.3 Hz, 2H), 7.16 (d, *J* = 8.3 Hz, 2H), 6.81 (br s, 1H), 6.70 (br d, *J* = 8.4 Hz, 1H), 6.67 (d, *J* = 8.4 Hz, 1H), 5.16 (d, *J* = 16.2 Hz, 1H), 4.99 (d, *J* = 16.2 Hz, 1H), 4.70 (dd, *J* = 10.2, 3.9 Hz, 1H), 2.26 (s, 3H), 2.03-1.90 (m, 1H), 1.81 (ddd, *J* = 14.4, 10.2, 5.1 Hz, 1H), 1.70 (ddd, *J* = 14.2, 8.9, 3.9 Hz, 1H), 1.01 (d, *J* = 6.9 Hz, 3H), 0.99 (d, *J* = 6.9 Hz, 3H). ¹³C **NMR (CDCl₃, 125 MHz):** δ (ppm) 167.0, 143.8, 135.0, 134.3, 133.3, 129.1, 128.1, 126.3, 123.1, 118.3, 115.0, 75.9, 44.6, 38.8, 24.6, 23.3, 21.7, 20.8. **IR (Neat):** (cm⁻¹) 2957, 2870, 1675, 1511, 1490, 1469, 1430, 1397, 1368, 1317, 1294, 1260, 1207, 1156, 1089, 1059, 1030, 1013. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₂₀H₂₂CINO₂ 344.1417, found 344.1417.

4-(3,4-dimethoxyphenethyl)-2-(2,6-dimethylhept-5-en-1-yl)-7-(trifluoromethyl)-2*H*-benzo[*b*][1,4]oxazin-3(*4H*)-one (2n)

Compound **2n** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (90/10) as eluant gave the desired product (108 mg, **71%**) as a 1:1 mixture of unseparable diastereomers (yellow oil). ¹H NMR (CDCl₃, **500** MHz): δ (ppm) 7.31-7.27 (m, 1H), 7.23 (d, *J* = 2.1 Hz, 0.5H), 7.22 (d, *J* = 2.1 Hz, 0.5H), 7.02 (d, *J* = 8.5 Hz, 0.5H), 7.01 (d, *J* = 8.5 Hz, 0.5H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.75 (br d, *J* = 8.0 Hz, 1H), 6.73-6.70 (s, 1H), 5.09 (t, *J* = 7.0 Hz, 0.5H), 5.05 (t, *J* = 7.0 Hz, 0.5H), 4.67-4.61 (m, 1H), 4.21-4.05 (m, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 2.88 (br t, *J* = 7.3 Hz, 2H), 2.09-1.87 (m, 2H), 1.84-1.73 (m, 2H), 1.71-1.51 (m, 1H), 1.68 (s, 1.5H), 1.66 (s, 1.5H), 1.60 (s, 1.5H), 1.55 (s, 1.5H), 1.51-1.13 (m, 2H), 0.99 (d, *J* = 6.5 Hz, 1.5H), 0.98 (d, *J* = 6.5 Hz, 1.5H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) 166.4, 166.2, 149.1, 148.0, 144.2, 144.0, 131.7, 131.6, 130.3, 126.5 (q, *J*_{C-F} = 33.0 Hz), 124.5, 124.3, 123.8 (q, *J*_{C-F} = 268.9 Hz), 120.9, 119.8 (q, *J*_{C-F} = 3.8 Hz), 115.0 (q, *J*_{C-F} = 3.4 Hz), 114.6, 112.1, 111.4, 76.0, 75.4, 56.0, 43.2, 43.1, 37.5, 37.3,

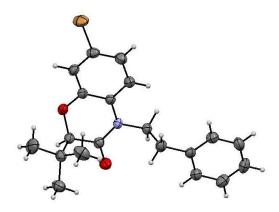

36.9, 36.1, 33.0, 29.2, 28.4, 25.8, 25.7, 25.4, 25.3, 20.0, 18.8, 17.8, 17.7. ¹⁹**F** NMR (CDCl₃, 282 MHz): δ (ppm) -62.1. IR (Neat): (cm⁻¹) 2926, 1689, 1622, 1591, 1516, 1443, 1395, 1325, 1305, 1261, 1237, 1142, 1119, 1074, 1028. HRMS (ESI+, m/z): [M+H]⁺ calcd. for C₂₈H₃₄F₃NO₄ 506.2518, found 506.2533.

4-(tert-butyl)-7-chloro-2-isopropyl-2H-benzo[b][1,4]oxazin-3(4H)-one (2o)

Compound **20** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluant gave the desired product (79 mg, **94%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.05 (d, J = 8.7 Hz, 1H), 7.03 (d, J = 2.5 Hz, 1H), 6.95 (dd, J = 8.7, 2.5 Hz, 1H), 4.03 (d, J = 4.5 Hz, 1H), 2.36-2.25 (m, 1H), 1.62 (s, 9H), 1.09 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H). ¹³**C NMR (CDCl₃, 125 MHz):** δ (ppm) 172.6, 149.7, 129.4, 128.9, 121.7, 118.1, 85.5, 59.2, 29.9, 29.7, 19.2, 16.9. **IR (Neat):** (cm⁻¹) 2969, 2936, 1683, 1579, 1489, 1466, 1419, 1398, 1367, 1347, 1324, 1292, 1269, 1247, 1191, 1136, 1079, 1020. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₅H₂₀ClNO₂ 282.1261, found 282.1263.

2-(tert-butyl)-7-chloro-4-(4-chlorobenzyl)-2H-benzo[b][1,4]oxazin-3(4H)-one (2p)

Compound **2p** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluant gave the desired product (104 mg, **95%**) as an off-white solid. **MP:** 142-143 °C. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.30 (d, *J* = 8.5 Hz, 2H), 7.21 (d, *J* = 8.5 Hz, 2H), 6.99 (d, *J* = 2.2 Hz, 1H), 6.83 (dd, *J* = 8.6, 2.2 Hz, 1H), 6.70 (d, *J* = 8.6 Hz, 1H), 5.18 (d, *J* = 16.1 Hz, 1H), 5.00 (d, *J* = 16.1 Hz, 1H), 4.43 (s, 1H), 1.07 (s, 9H). ¹³**C NMR (CDCl₃, 125 MHz):** δ (ppm) 164.3, 146.1, 134.8, 133.6, 129.2, 129.1, 128.4, 127.3, 122.0, 117.0, 115.7, 84.6, 44.9, 37.2, 26.7. **IR (Neat):** (cm⁻¹) 2966, 1671, 1582, 1494, 1463, 1421, 1391, 1369, 1329, 1277, 1186, 1142, 1085, 1054, 1015. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₁₉H₁₉Cl₂NO₂ 364.0871, found 364.0879.


7-bromo-4-(3,4-dimethoxyphenethyl)-2-isopropyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2q)

Compound **2q** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (80/20) as eluant gave the desired product (91 mg, **70%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.15 (d, J = 2.1 Hz, 1H), 7.11 (dd, J = 8.7, 2.1 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.78 (d, J = 8.7 Hz, 1H), 6.75 (dd, J = 8.0, 2.0 Hz, 1H), 6.71 (d, J = 2.0 Hz, 1H), 4.26 (d, J = 6.4 Hz, 1H), 4.18 (dt, J = 14.1, 7.8 Hz, 1H), 4.03 (dt, J = 14.1, 7.8 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 2.87 (t, J = 7.0 Hz, 2H), 2.20 (oct., J = 6.8 Hz, 1H), 1.04 (d,

J = 6.8 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 164.9, 149.2, 148.0, 145.5, 130.5, 127.9, 125.3, 120.9, 120.6, 115.8, 115.7, 112.2, 111.6, 82.0, 56.1, 56.0, 43.0, 33.0, 29.6, 18.7, 17.5. **IR** (Neat): (cm⁻¹) 2963, 2934, 2835, 1678, 1590, 1515, 1493, 1463, 1420, 1388, 1323, 1260, 1235, 1182, 1156, 1140, 1075, 1027. **HRMS** (ESI+, m/z): [M+H]⁺ calcd. for C₂₁H₂₄BrNO₄ 434.0967, found 434.0975.

7-bromo-2-(tert-butyl)-4-phenethyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2r)

Compound **2r** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluant gave the desired product (110 mg, **95%**) as an off-white solid. **MP:** 117-118 °C. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.35-7.29 (m, 2H), 7.28-7.21 (m, 3H), 7.14 (d, *J* = 2.1 Hz, 1H), 7.09 (dd, *J* = 8.6, 2.1 Hz, 1H), 6.77 (d, *J* = 8.6 Hz, 1H), 4.29 (s, 1H), 4.20 (ddd, *J* = 14.0, 9.9, 6.0 Hz, 1H), 4.04 (ddd, *J* = 14.0, 9.9, 6.0 Hz, 1H), 2.97 (ddd, *J* = 13.3, 9.9, 6.0 Hz, 1H), 1.02 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 163.7, 146.3, 138.0, 128.9, 128.8, 127.7, 126.9, 124.9, 119.9, 115.9, 115.4, 84.4, 43.1, 37.1, 33.5, 26.6. **IR (Neat):** (cm⁻¹) 2965, 1667, 1581, 1494, 1463, 1420, 1395, 1370, 1330, 1276, 1229, 1186, 1141, 1056, 1018. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₂₀H₂₂BrNO₂ 388.0912, found 388.0898.

4-(4-methoxybenzyl)-7-methyl-2-(2-methylpent-4-en-2-yl)-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2s)

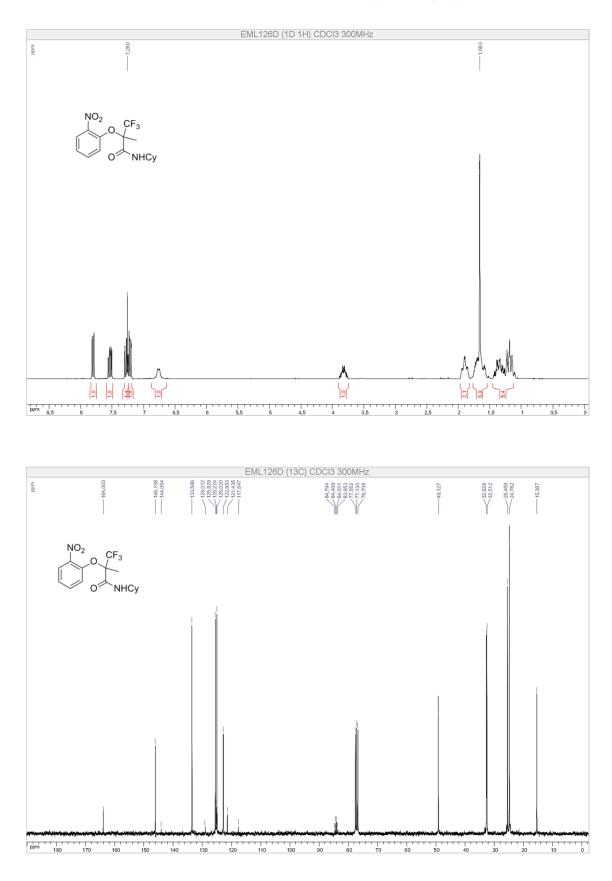
Compound **2s** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluant gave the desired product (102 mg, **93%**) as a yellow oil. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.22 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 6.78 (d, *J* = 1.8 Hz, 1H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.66 (dd, *J* = 8.4, 1.8 Hz, 1H), 5.93-5.81 (m, 1H), 5.14-5.07 (m, 3H), 5.00 (d, *J* = 15.7 Hz, 1H), 4.45 (s, 1H), 3.77 (s, 3H), 2.32 (dd, *J* = 14.0, 7.7 Hz, 1H), 2.25 (s, 3H), 2.20 (dd, *J* = 14.0, 7.7 Hz, 1H), 1.06 (s, 3H), 1.00 (s, 3H). ¹³**C NMR (CDCl₃, 75 MHz):** δ (ppm) 164.7, 158.9, 145.3, 134.4, 134.0, 128.8, 128.4, 126.2, 122.5, 118.4, 117.0, 115.0, 114.2, 82.5, 55.4, 44.8, 43.9, 39.8, 24.1, 23.4, 20.8. **IR (Neat):** (cm⁻¹) 2963, 2932, 2836, 1670, 1639, 1613, 1586, 1511, 1440, 1396, 1325, 1289, 1245, 1175, 1143, 1112, 1035. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₂₃H₂₇NO₃ 366.2069, found 366.2069.

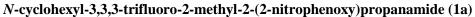
2-(tert-butyl)-7-methoxy-4-phenethyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2t)

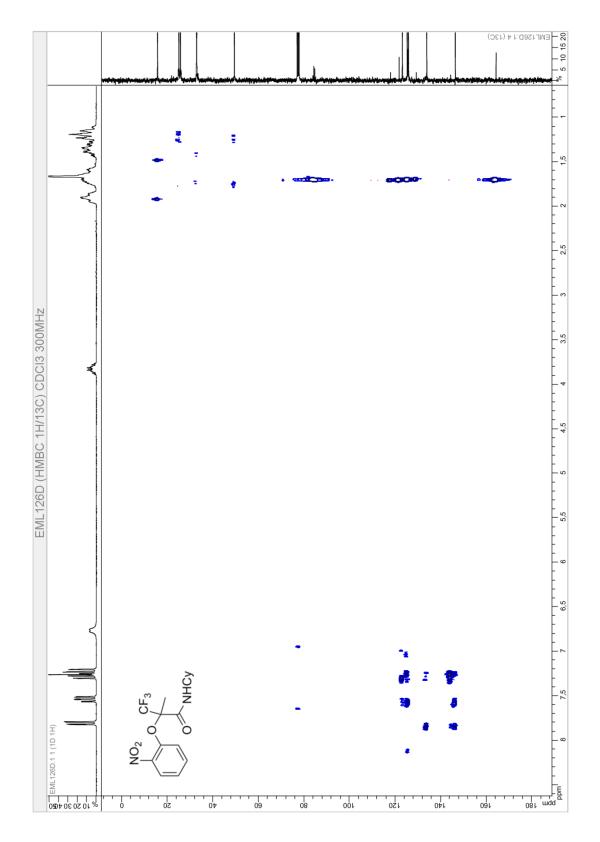
Compound **2t** was prepared according to the general procedure B. Purification on a column of silica gel with ethyl acetate in petroleum ether (95/5) as eluant gave the desired product (98 mg, 96%) as a

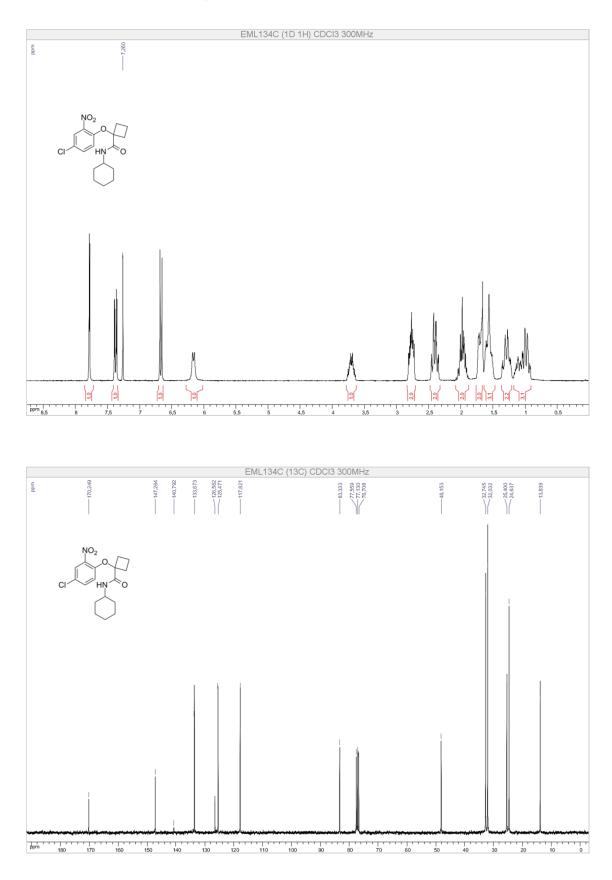
yellow solid. **MP:** 82-83 °C. ¹**H NMR (CDCl₃, 500 MHz):** δ (ppm) 7.32 (t, *J* = 7.4 Hz, 2H), 7.29-7.26 (m, 2H), 7.25-7.21 (t, *J* = 7.4 Hz, 1H), 6.83 (d, *J* = 9.0 Hz, 1H), 6.58 (d, *J* = 2.8 Hz, 1H), 6.53 (dd, *J* = 9.0, 2.8 Hz, 1H), 4.28 (s, 1H), 4.19 (ddd, *J* = 13.9, 10.0, 6.0 Hz, 1H), 4.04 (ddd, *J* = 13.9, 10.0, 6.0 Hz, 1H), 3.79 (s, 3H), 2.98 (ddd, *J* = 13.4, 10.0, 6.0 Hz, 1H), 2.92 (ddd, *J* = 13.4, 10.0, 6.0 Hz, 1H), 1.02 (s, 9H). ¹³**C NMR (CDCl₃, 125 MHz):** δ (ppm) 163.6, 156.4, 146.4, 138.4, 128.9, 128.7, 126.7, 122.0, 114.7, 107.1, 103.0, 84.4, 55.7, 43.1, 37.0, 33.6, 26.6. **IR (Neat):** (cm⁻¹) 3029, 2969, 1671, 1624, 1592, 1511, 1476, 1454, 1431, 1397, 1367, 1329, 1306, 1274, 1238, 1194, 1159, 1126, 1072, 1057, 1039, 1022. **HRMS (ESI+, m/z):** [M+H]⁺ calcd. for C₂₁H₂₅NO₃ 340.1913, found 340.1915.

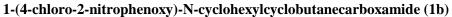
N-cyclohexyl-2-(1-(2-nitrophenoxy)propoxy)butanamide (3g)

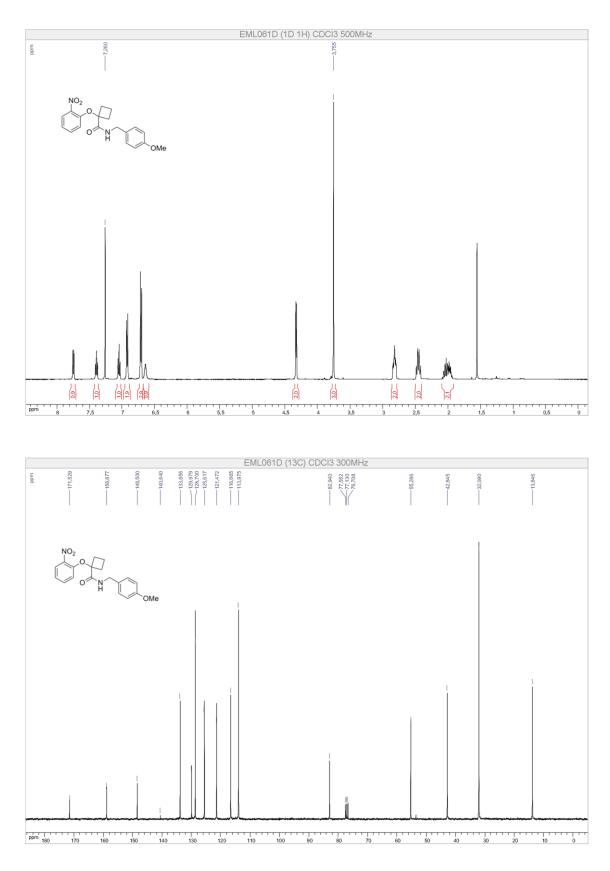

This product 3g was isolated during the first step of the reaction as a mixture of two diastereomers, and one of them cannot be separated from the Passerini-Smiles adduct.

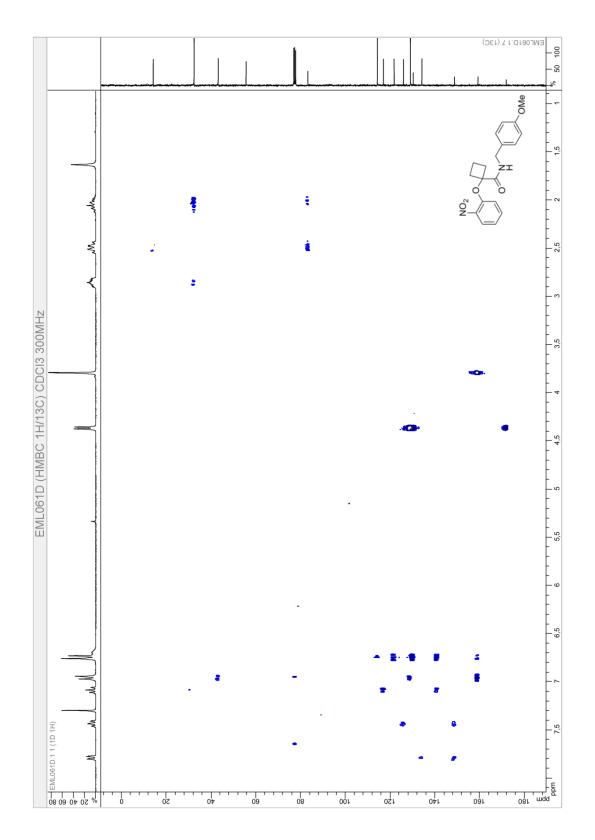

Diastereomer 1 (contaminated by Passerini-Smiles adduct)

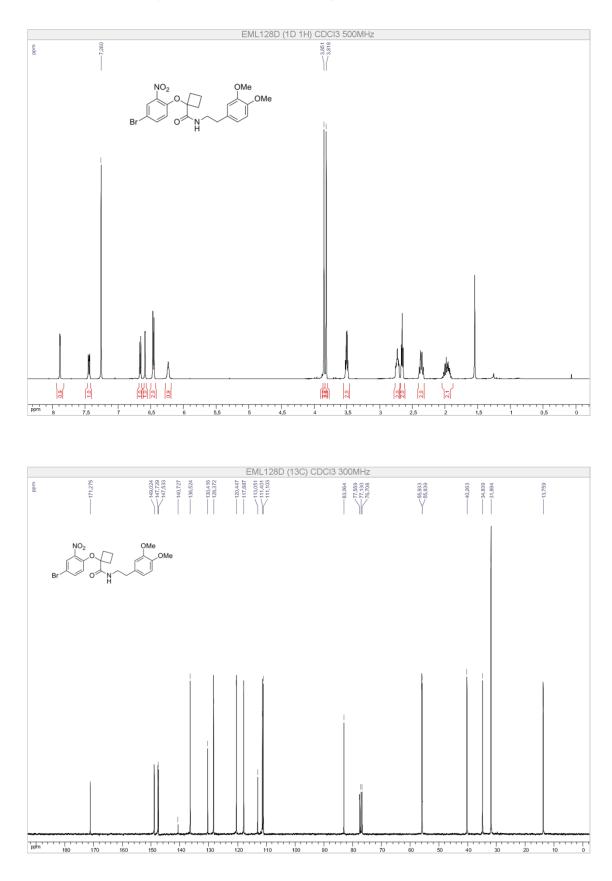

¹**H NMR** (**CD**₂**Cl**₂, **500 MHz**): δ (ppm) 7.75 (dd, J = 8.0, 2.0 Hz, 1H), 7.51 (td, J = 8.0, 2.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.09 (t, J = 8.0 Hz, 1H), 6.12 (br d, J = 7.7 Hz, 1H), 5.30 (t, J = 5.3 Hz, 1H), 4.06 (t, J = 5.5 Hz, 1H), 3.72-3.61 (m, 1H), 1.97-1.62 (m, 8H), 1.61-1.54 (m, 1H), 1.38-1.24 (m, 2H), 1.21-1.01 (m, 3H), 1.03 (t, J = 7.5 Hz, 3H), 0.86 (t, J = 7.5 Hz, 3H). ¹³C NMR (CD₂Cl₂, **125 MHz**): δ (ppm) 170.5, 149.9, 141.9, 134.0, 125.7, 122.1, 117.9, 105.1, 79.1, 48.1, 33.4, 33.3, 27.6, 26.8, 25.9, 25.22, 25.17, 8.9, 8.8.

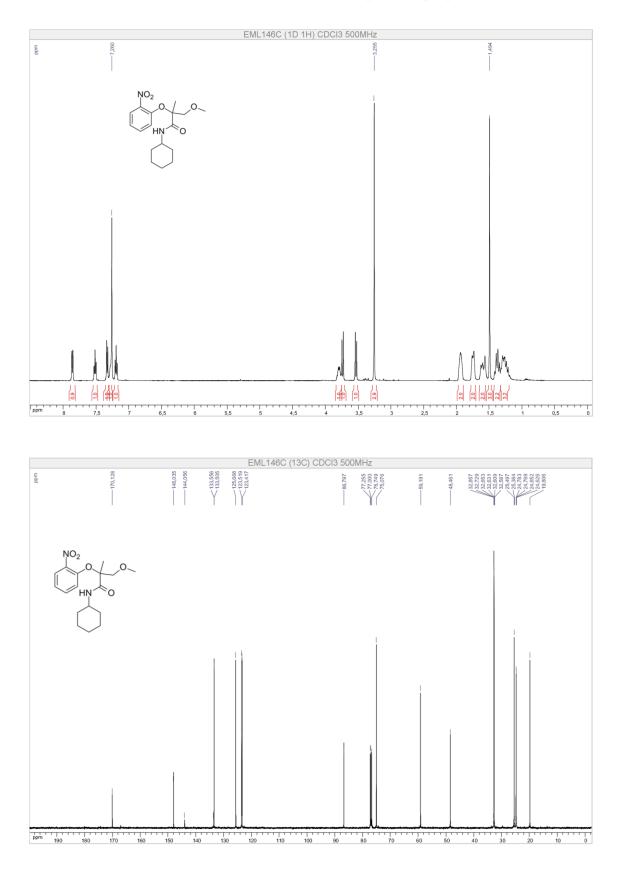

Diastereomer 2


¹**H NMR** (**CD**₂**Cl**₂, **500 MHz**): δ (ppm) 7.76 (dd, J = 8.0, 1.7 Hz, 1H), 7.52 (td, J = 8.0, 1.7 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.10 (t, J = 8.0 Hz, 1H), 6.42 (br d, J = 7.1 Hz, 1H), 5.39 (t, J = 5.3 Hz, 1H), 4.07 (t, J = 5.1 Hz, 1H), 3.72-3.62 (m, 1H), 1.98-1.64 (m, 8H), 1.64-1.58 (m, 1H), 1.39-1.29 (m, 2H), 1.23-1.08 (m, 3H), 1.03 (t, J = 7.5 Hz, 3H), 0.86 (t, J = 7.5 Hz, 3H). ¹³C NMR (CD₂Cl₂, 125 MHz): δ (ppm) 170.4, 149.9, 141.7, 134.1, 125.7, 122.2, 118.0, 105.5, 79.4, 48.2, 33.4, 33.0, 27.6, 26.1, 26.0, 25.3, 8.7, 8.5. IR (Neat): (cm⁻¹) 3301, 2931, 2855, 1654, 1605, 1583, 1524, 1484, 1451, 1350, 1313, 1276, 1249, 1150, 1110, 1087, 1024. HRMS (ESI-, m/z): [M+H]⁻ calcd. for C₁₉H₂₈N₂O₅ 409.1975, found 409.1990.

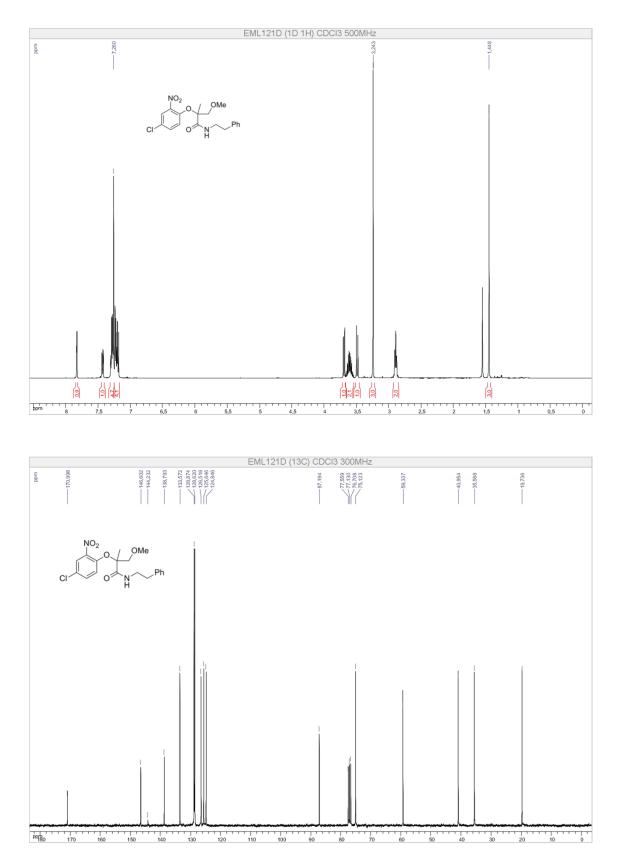


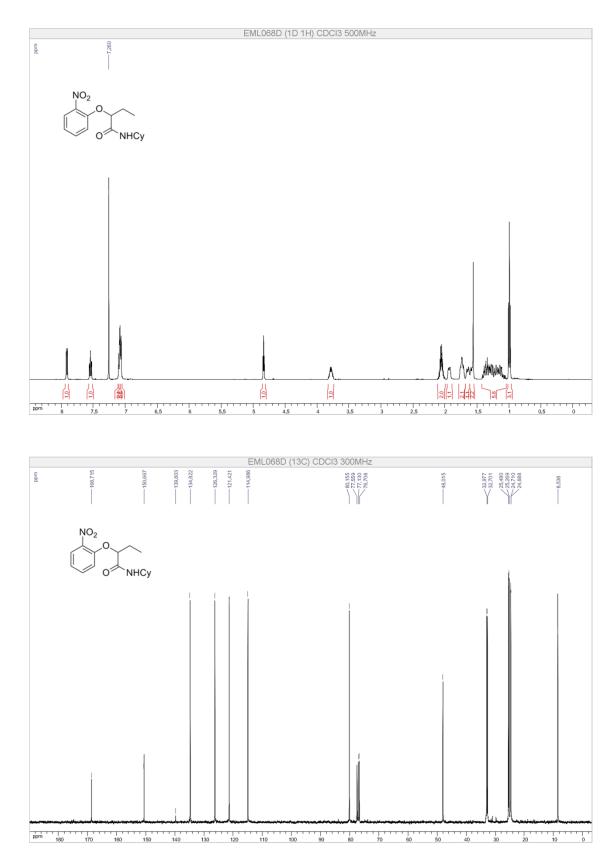


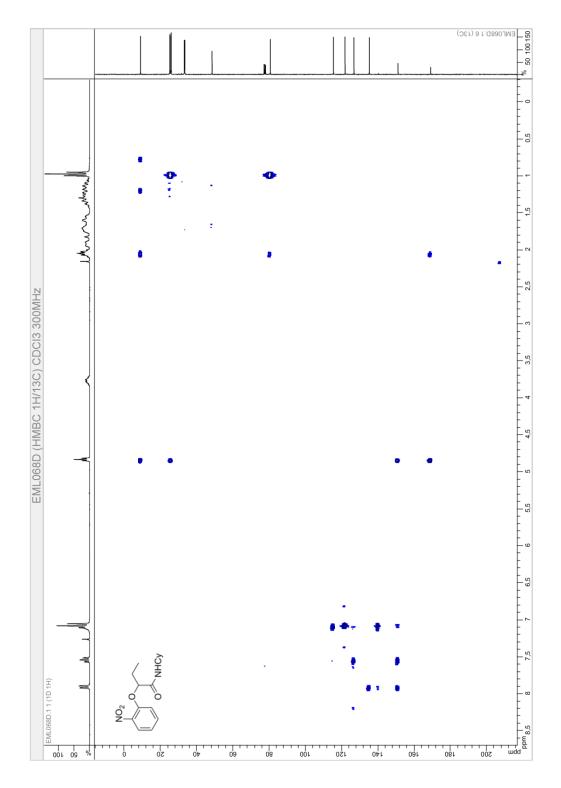


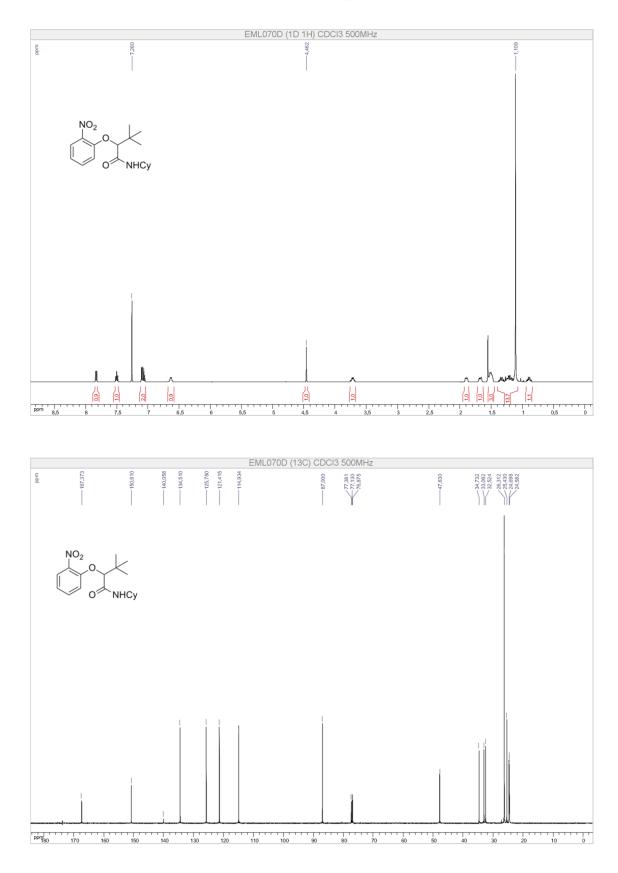


N-(4-methoxybenzyl)-1-(2-nitrophenoxy)cyclobutanecarboxamide (1c)

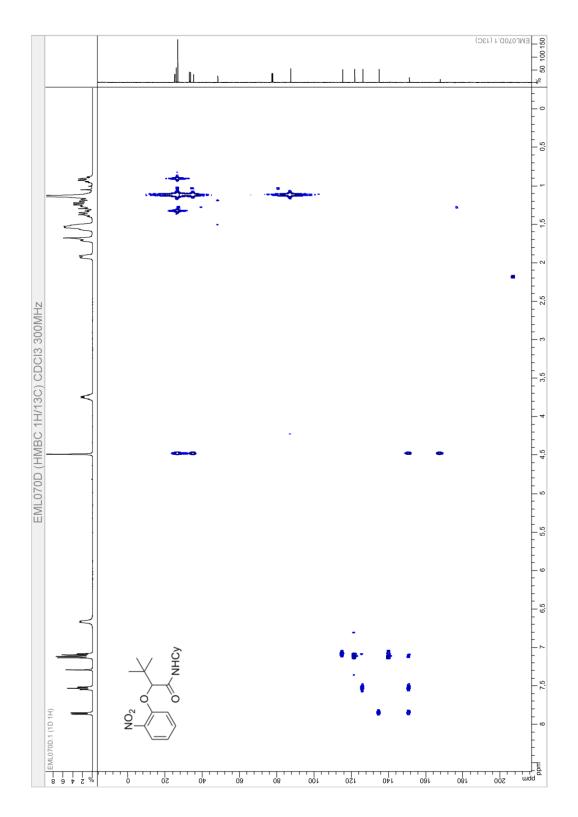


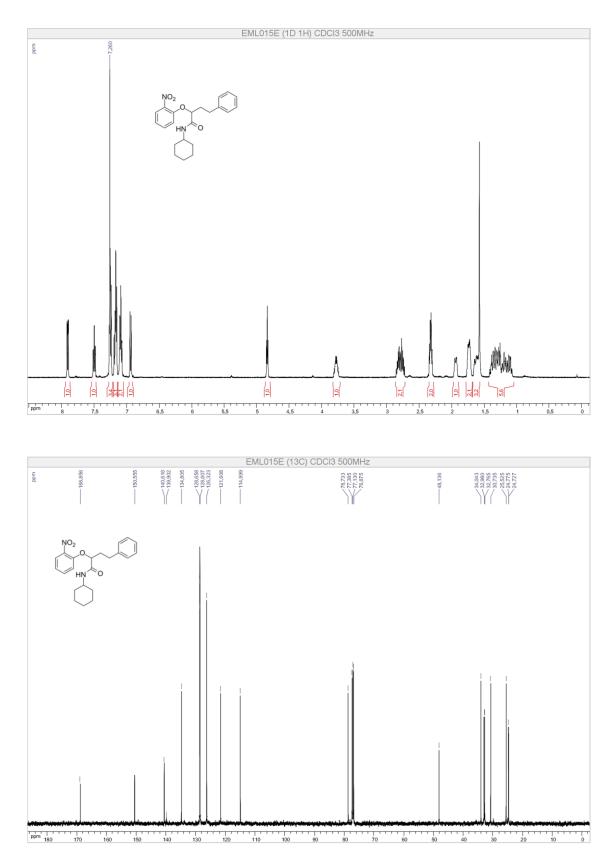

1-(4-bromo-2-nitrophenoxy)-N-(3,4-dimethoxyphenethyl)cyclobutanecarboxamide (1d)

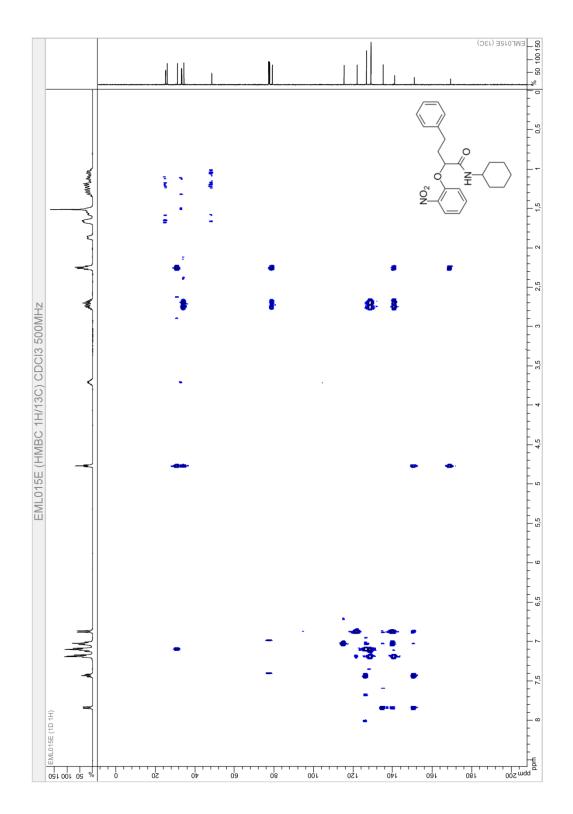

N-cyclohexyl-3-methoxy-2-methyl-2-(2-nitrophenoxy)propanamide (1e)

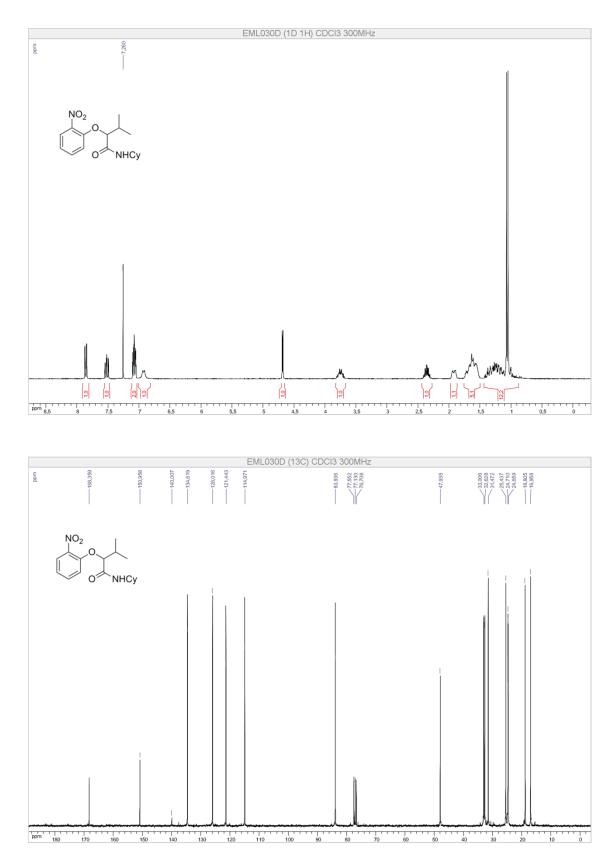


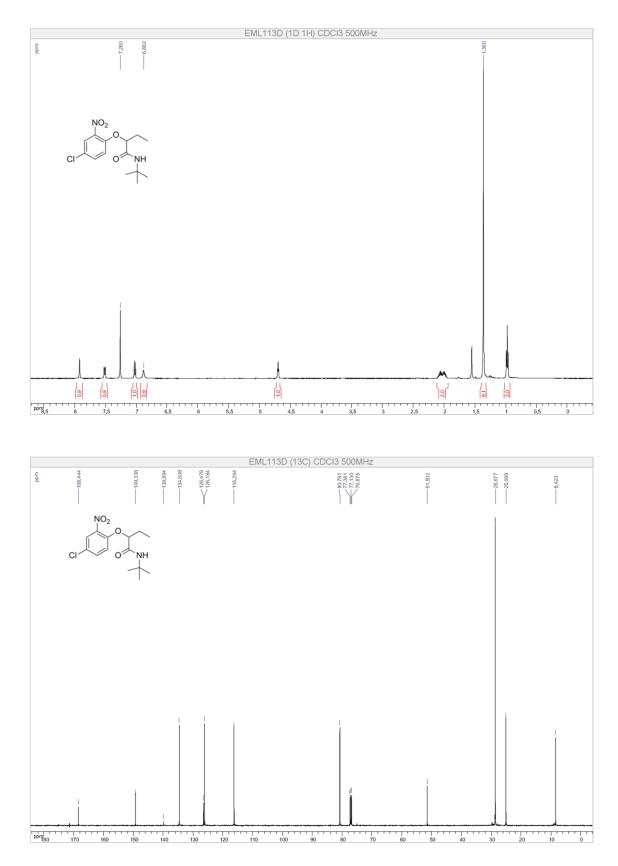
2-(4-chloro-2-nitrophenoxy)-3-methoxy-2-methyl-N-phenethylpropanamide (1f)



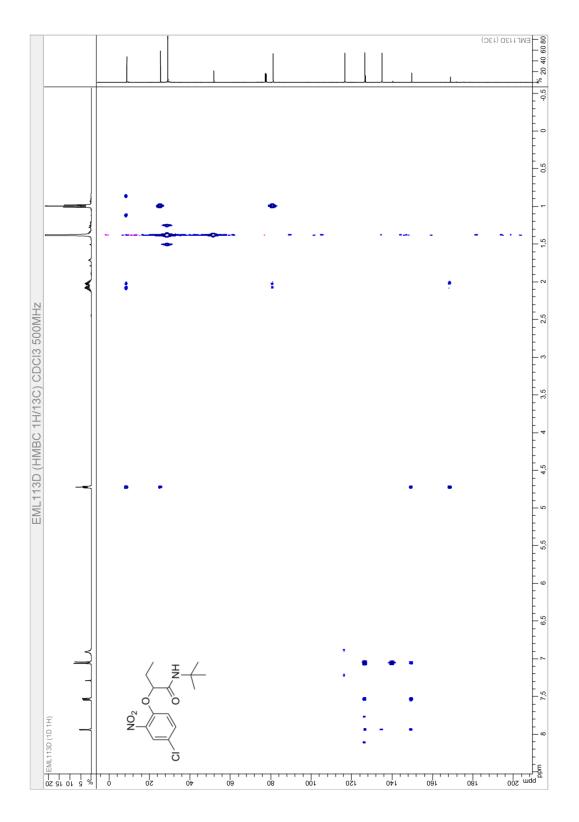

N-cyclohexyl-2-(2-nitrophenoxy)butanamide (1g)

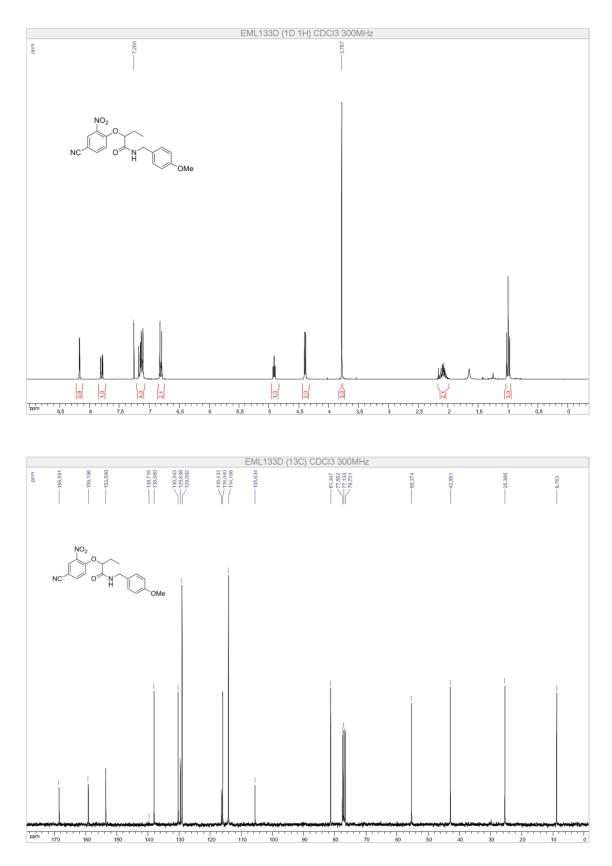


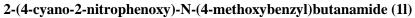

N-cyclohexyl-3,3-dimethyl-2-(2-nitrophenoxy)butanamide (1h)

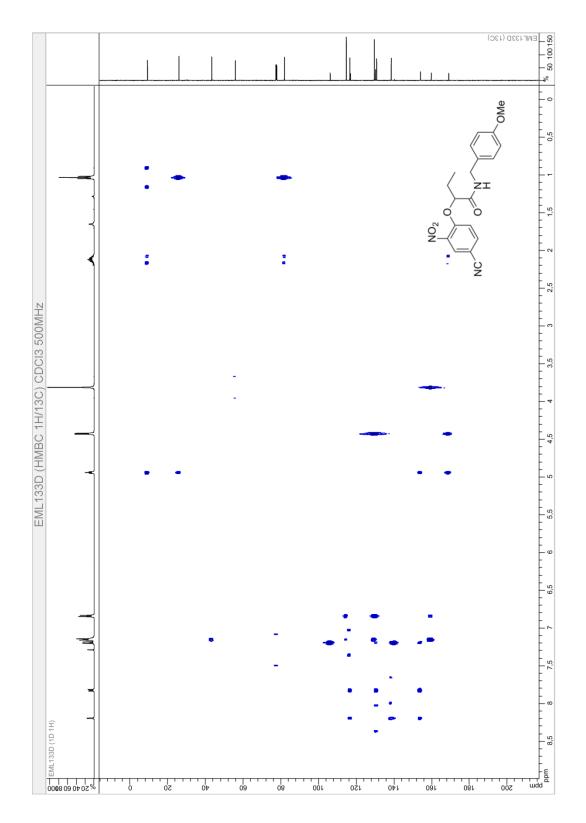


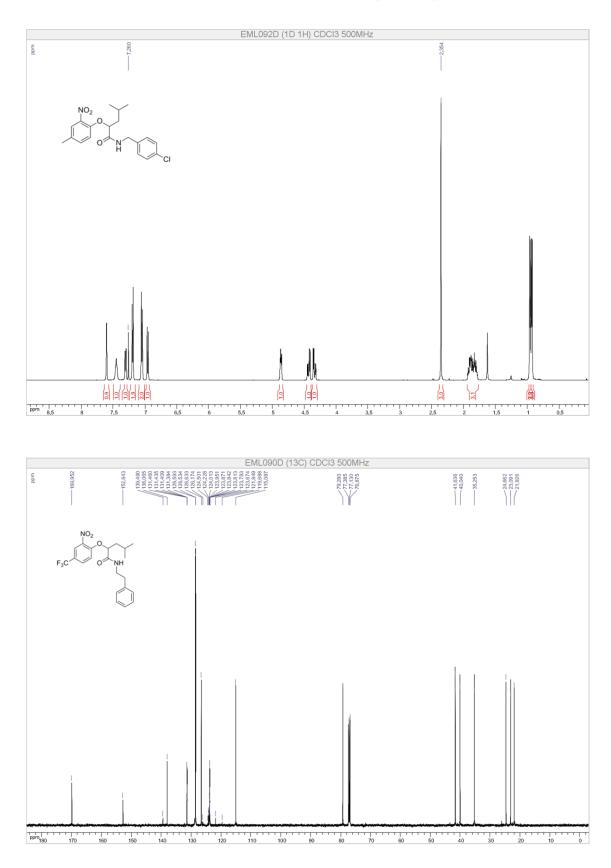
N-cyclohexyl-2-(2-nitrophenoxy)-4-phenylbutanamide (1i)

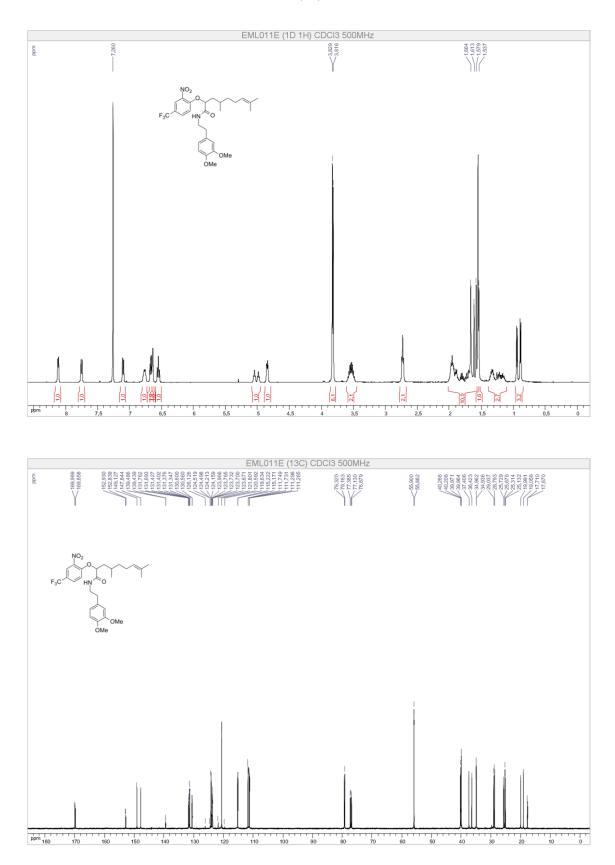


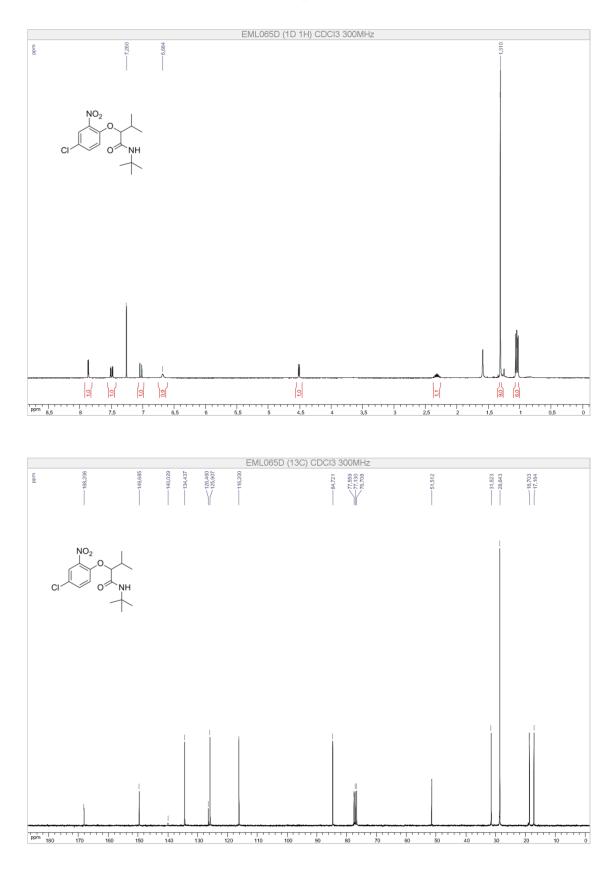



N-cyclohexyl-3-methyl-2-(2-nitrophenoxy)butanamide (1j)

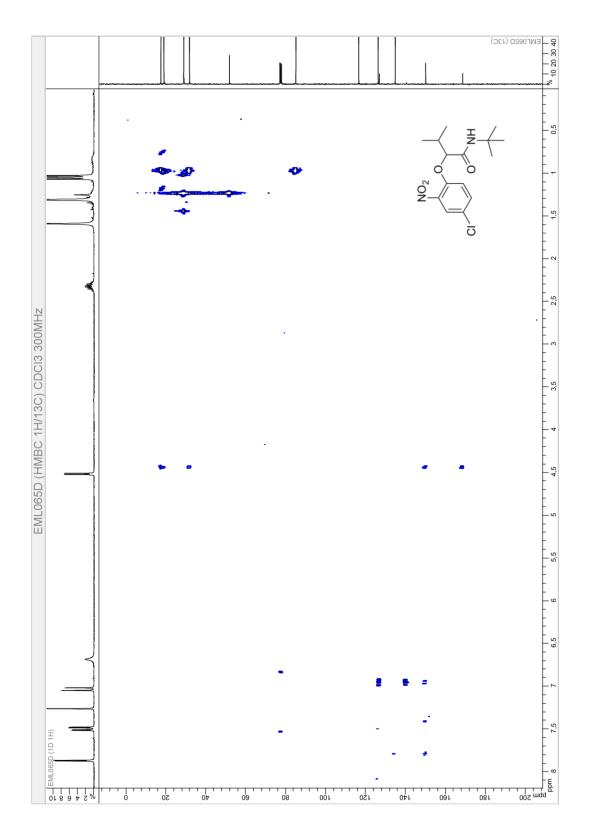



N-(tert-butyl)-2-(4-chloro-2-nitrophenoxy)butanamide (1k)

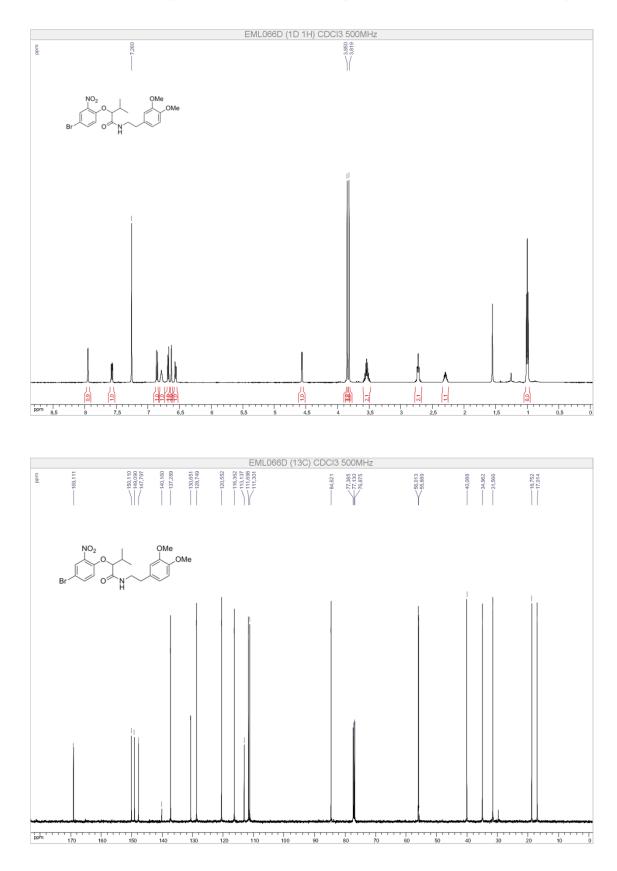




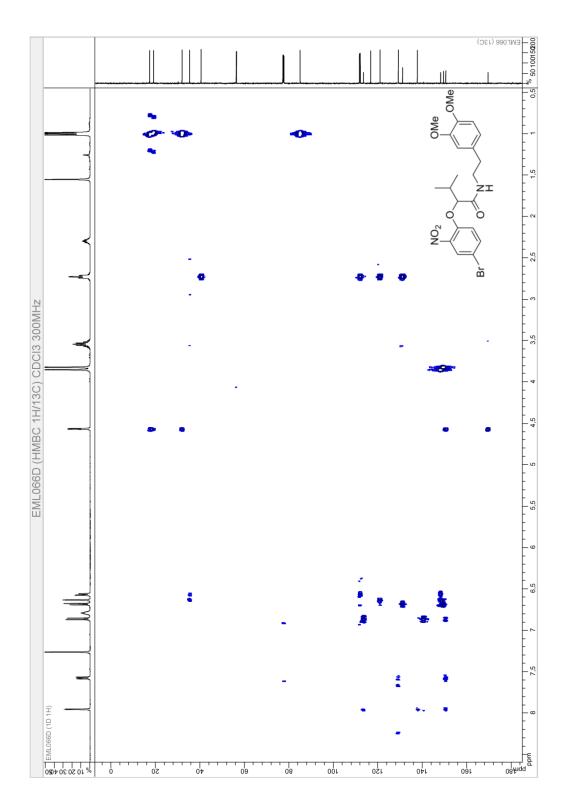
N-(4-chlorobenzyl)-4-methyl-2-(4-methyl-2-nitrophenoxy)pentanamide (1m)

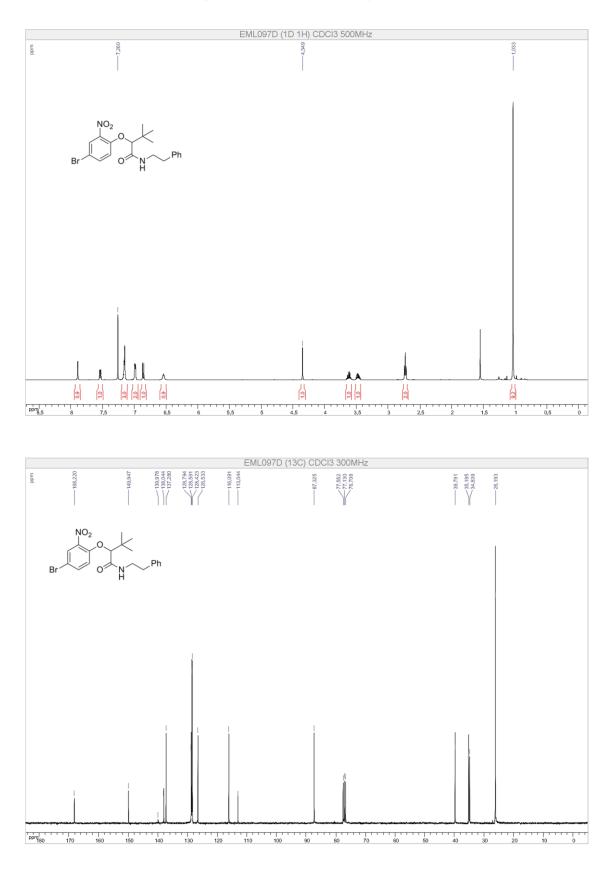

$\it N-(3,4-dimethoxy phenethyl)-4,8-dimethyl-2-(2-nitro-4-(trifluoromethyl) phenoxy) non-7-enamide$

(**1**n)

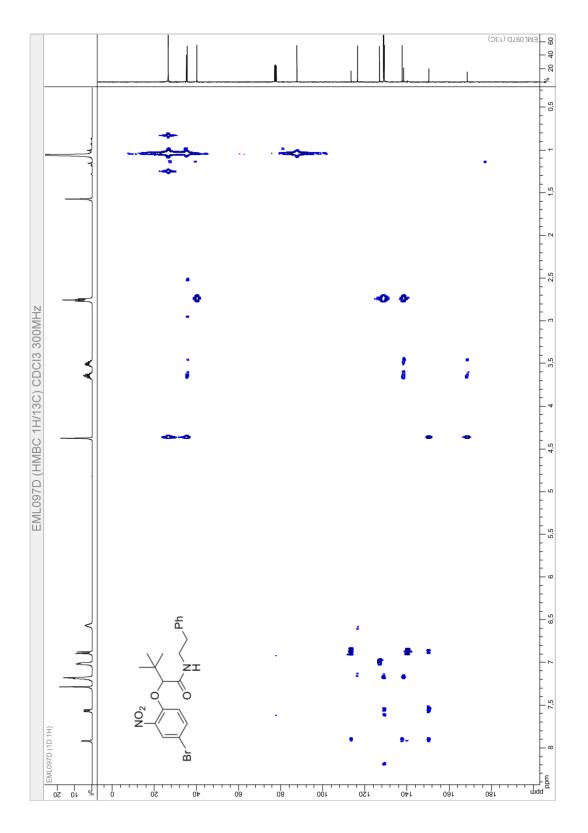


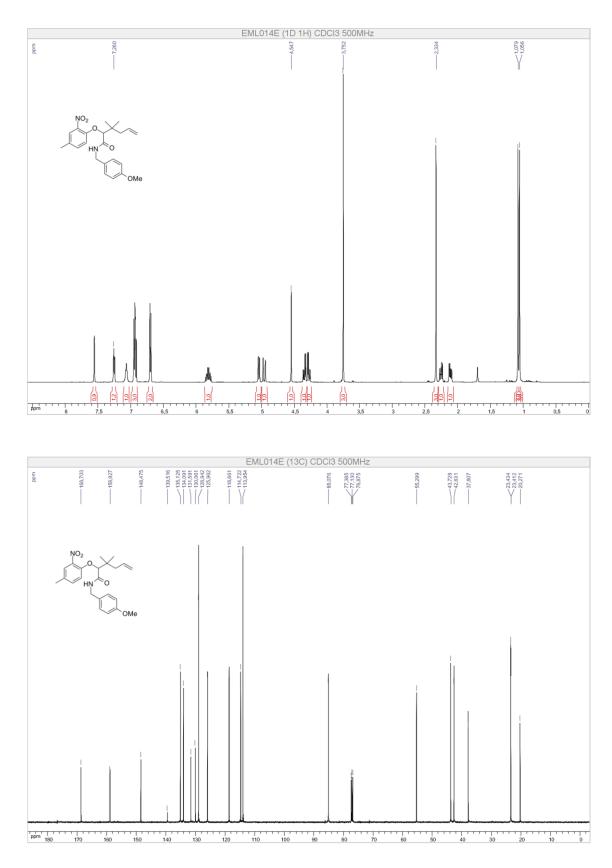
N-(tert-butyl)-2-(4-chloro-2-nitrophenoxy)-3-methylbutanamide (10)

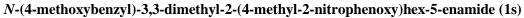


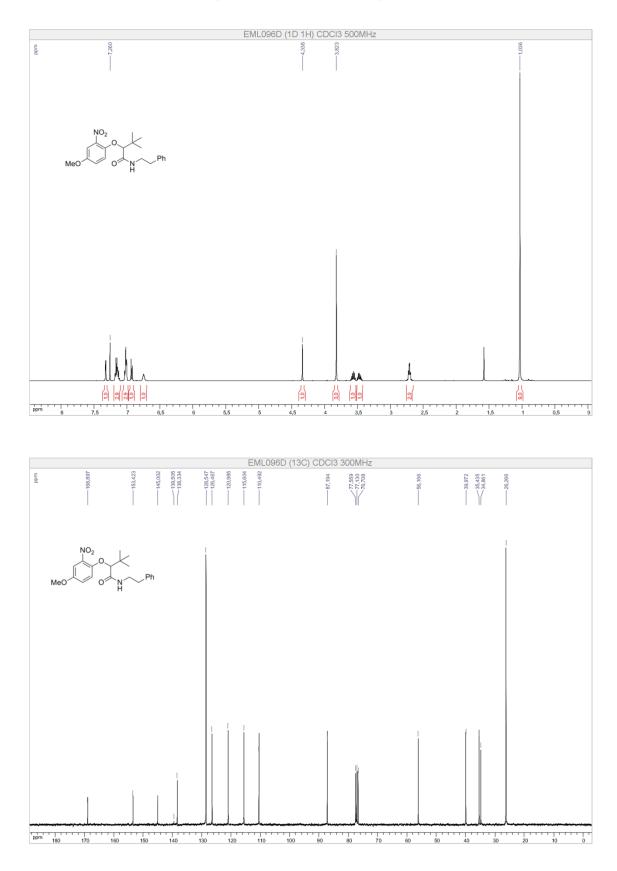


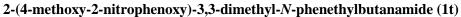
2-(4-chloro-2-nitrophenoxy)-N-(4-chlorobenzyl)-3,3-dimethylbutanamide (1p)

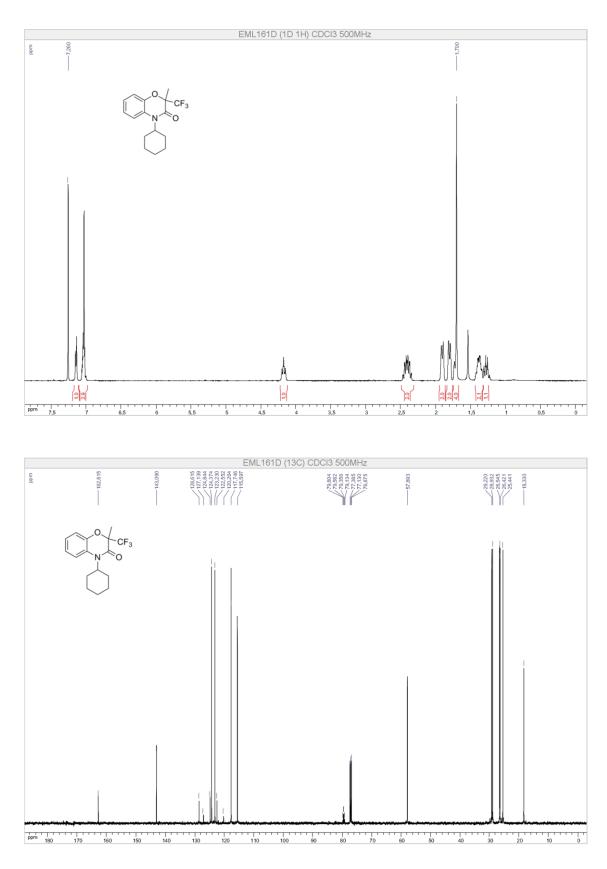


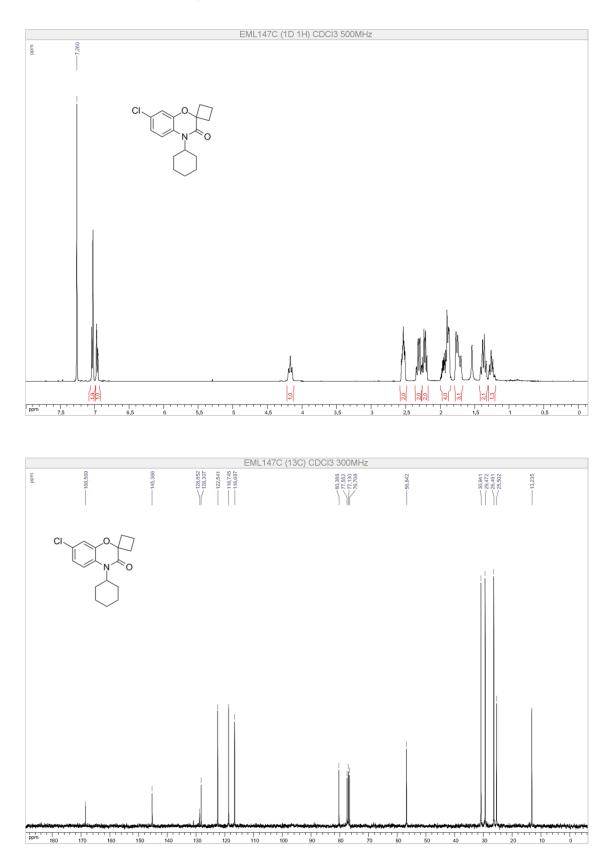

2-(4-bromo-2-nitrophenoxy)-N-(3,4-dimethoxyphenethyl)-3-methylbutanamide (1q)

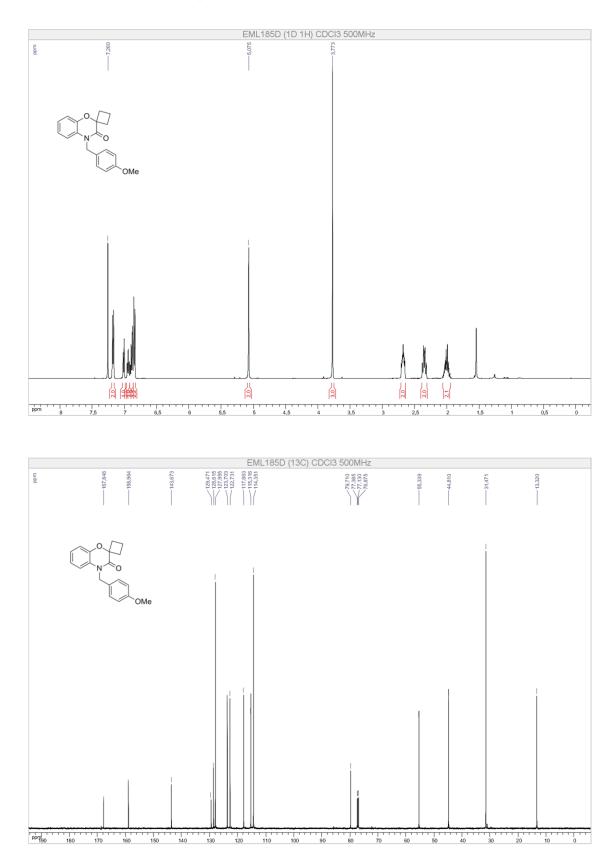


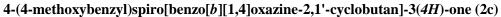


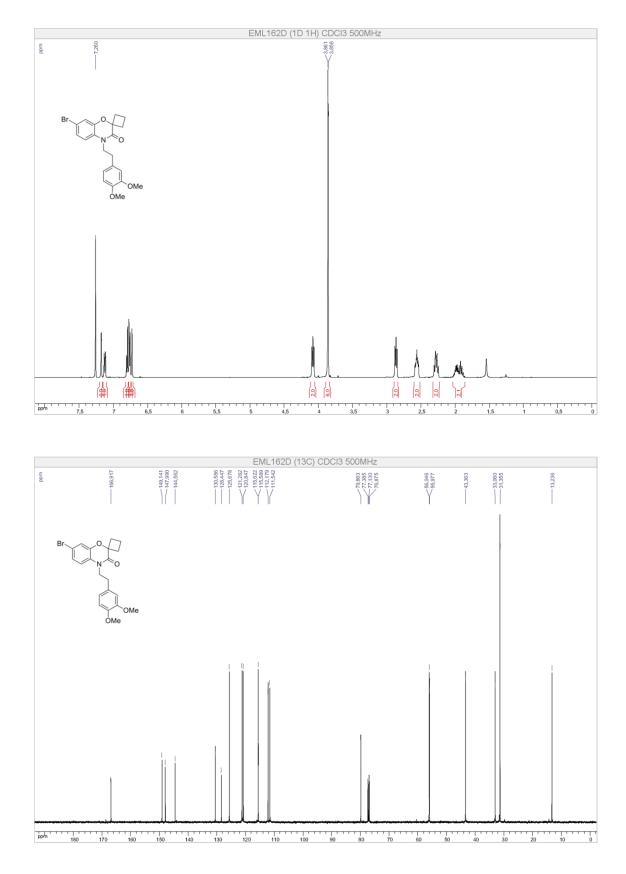

2-(4-bromo-2-nitrophenoxy)-3,3-dimethyl-*N*-phenethylbutanamide (1r)

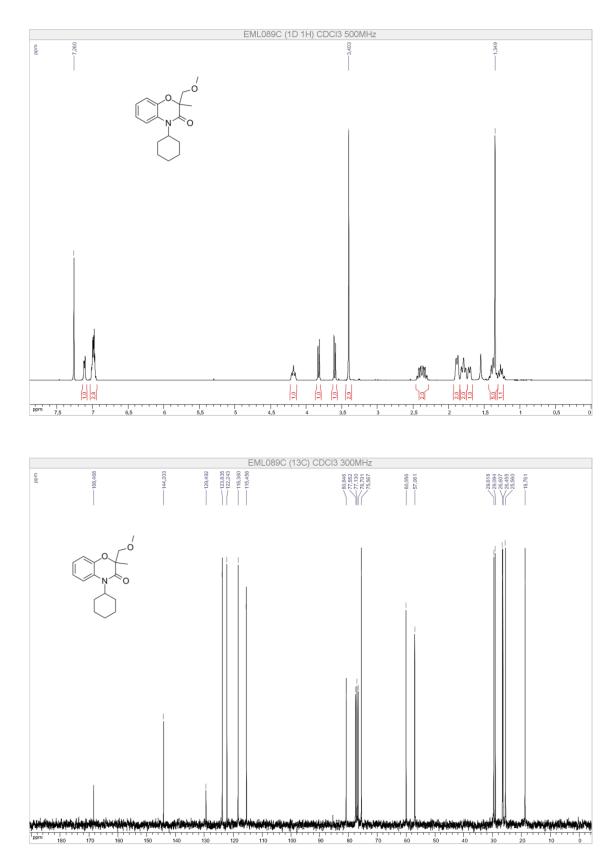


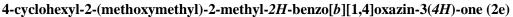


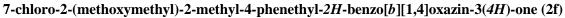


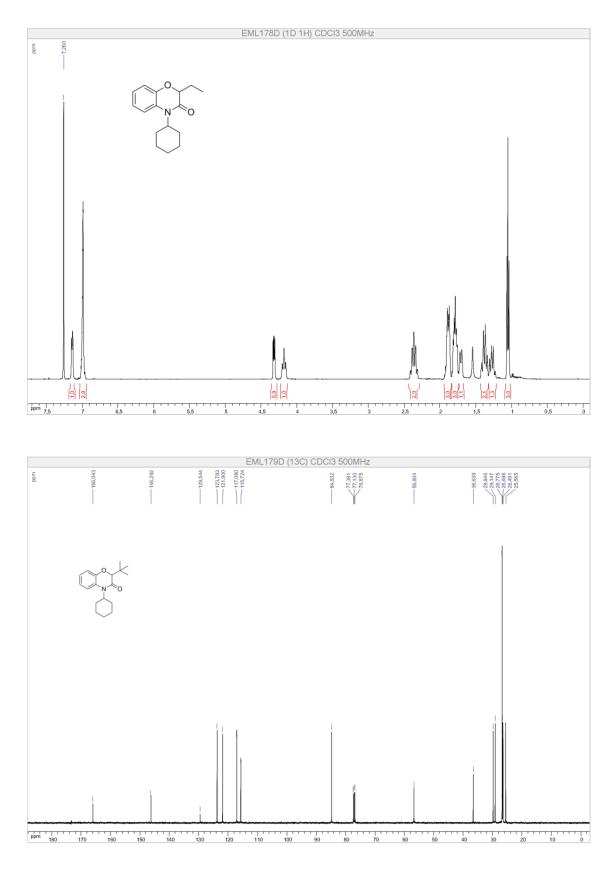


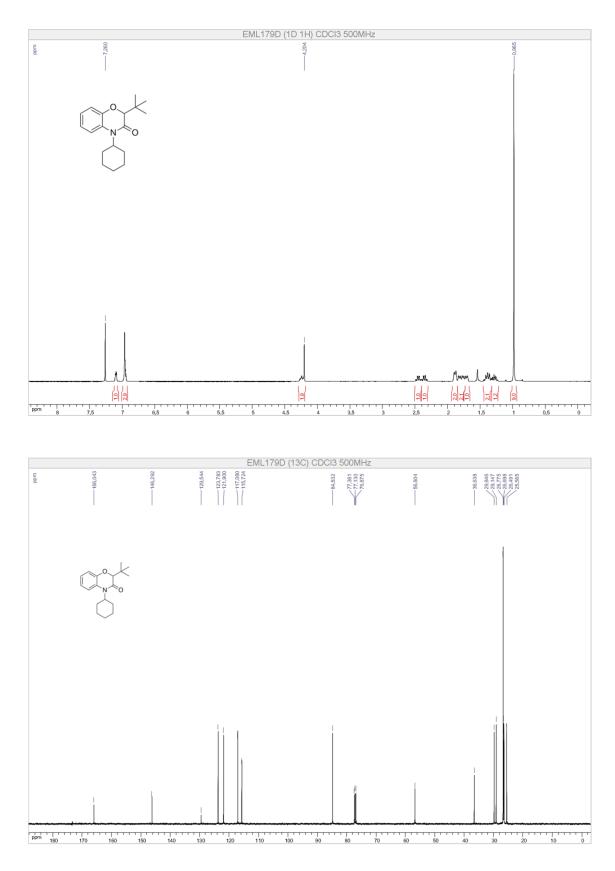

4-cyclohexyl-2-methyl-2-(trifluoromethyl)-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2a)

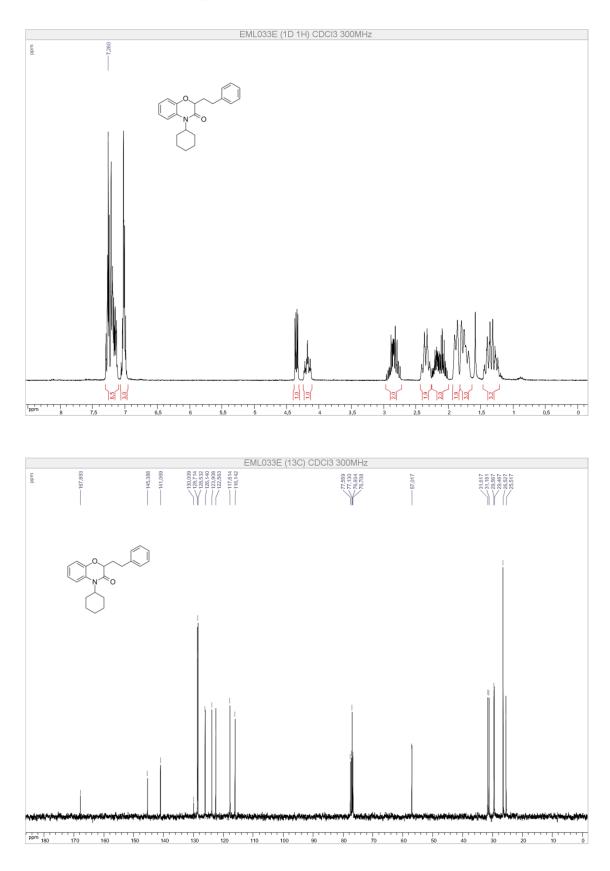

7-chloro-4-cyclohexylspiro[benzo[*b*][1,4]oxazine-2,1'-cyclobutan]-3(4*H*)-one (2b)

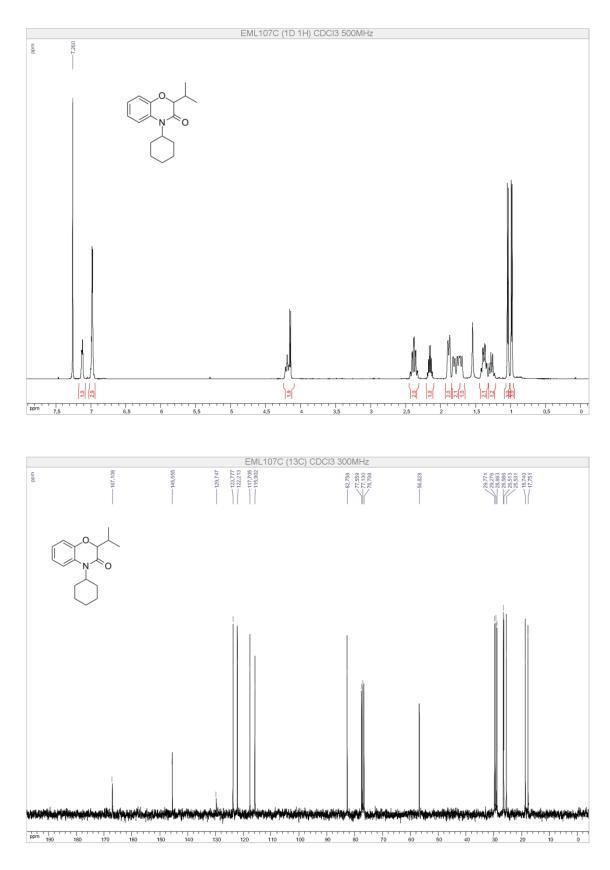


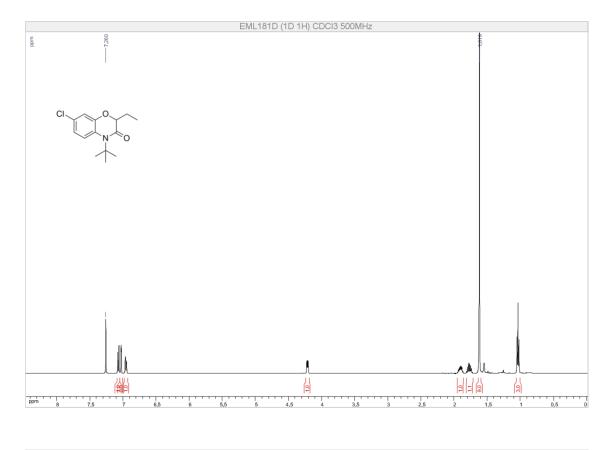


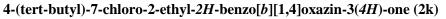

7-bromo-4-(3,4-dimethoxyphenethyl)spiro[benzo[b][1,4]oxazine-2,1'-cyclobutan]-3(4H)-one (2d)

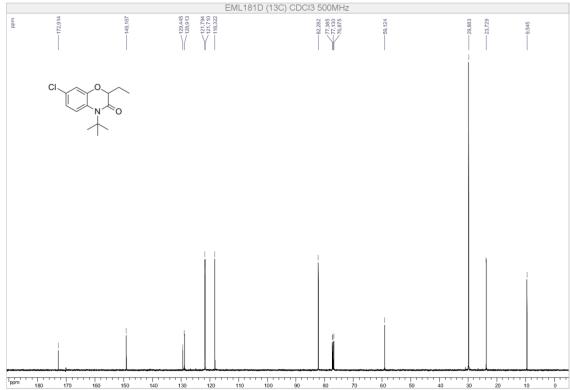


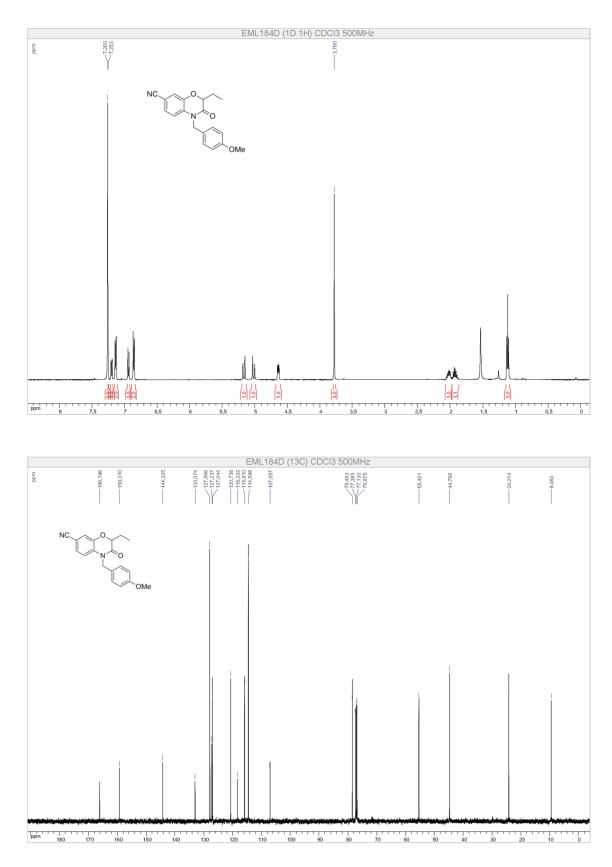



4-cyclohexyl-2-ethyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2g)

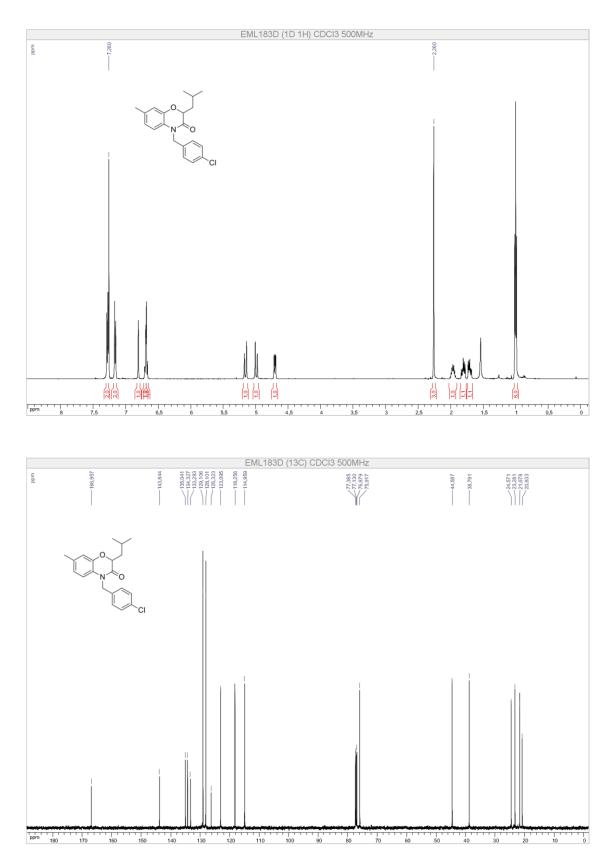

2-(tert-butyl)-4-cyclohexyl-2H-benzo[b][1,4]oxazin-3(4H)-one (2h)

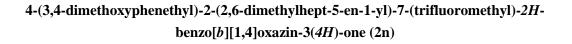


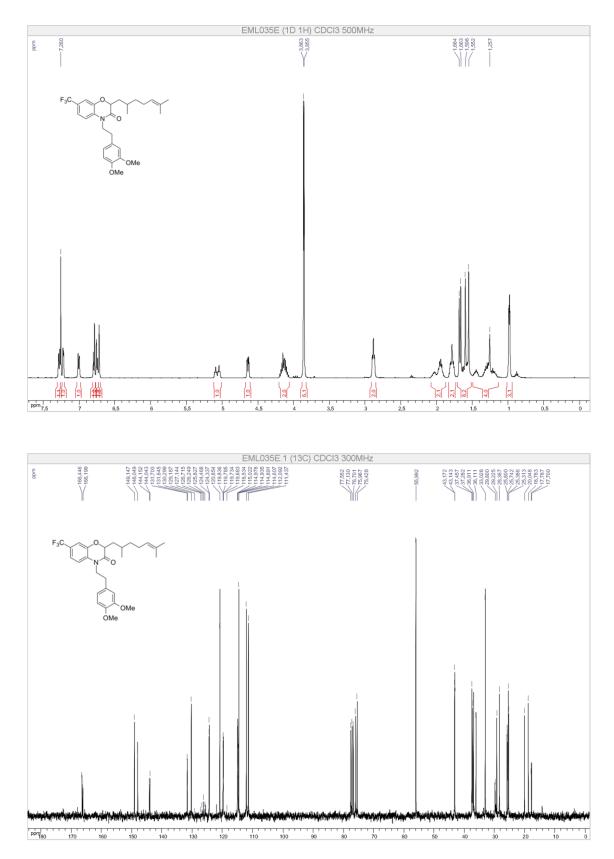

4-cyclohexyl-2-phenethyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2i)

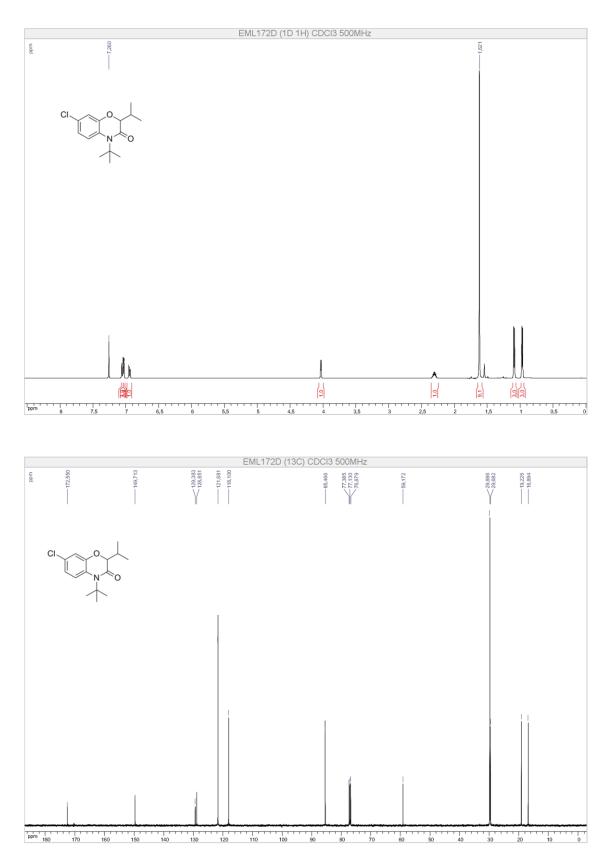


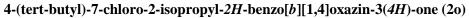
4-cyclohexyl-2-isopropyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2j)

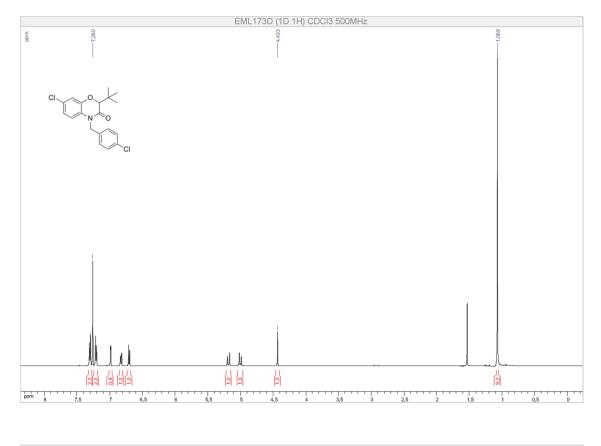


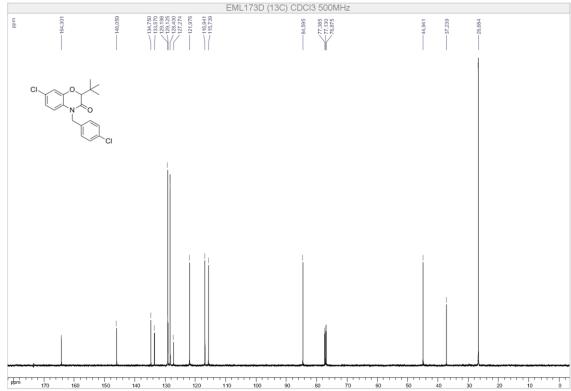


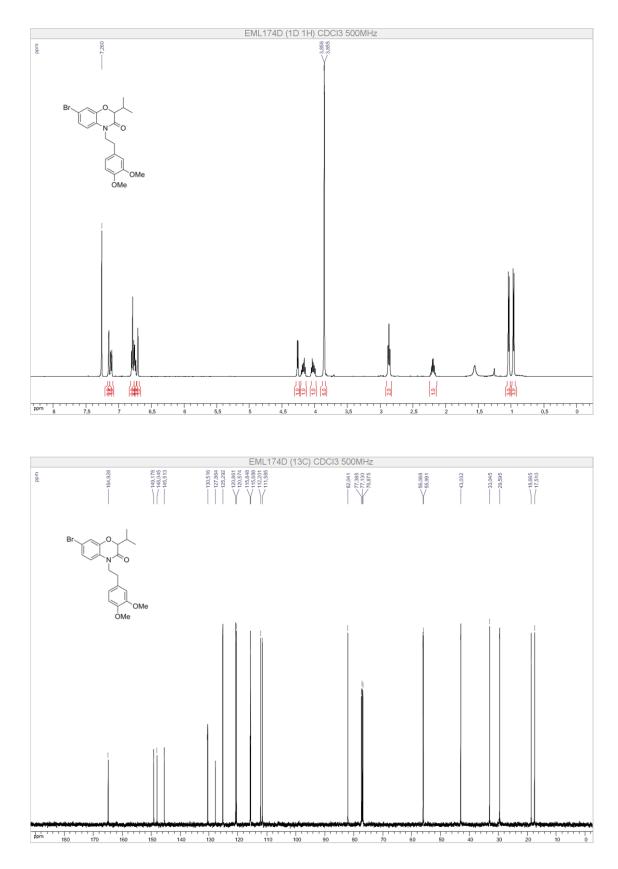


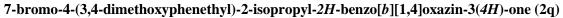

2-ethyl-4-(4-methoxybenzyl)-3-oxo-3,4-dihydro-2*H*-benzo[*b*][1,4]oxazine-7-carbonitrile (2l)

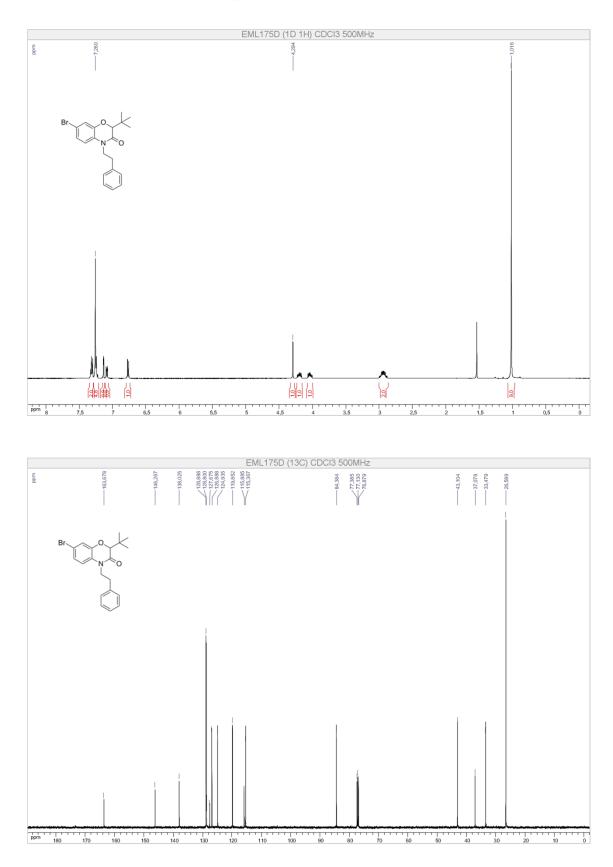


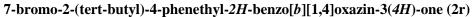

4-(4-chlorobenzyl)-2-isobutyl-7-methyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2m)

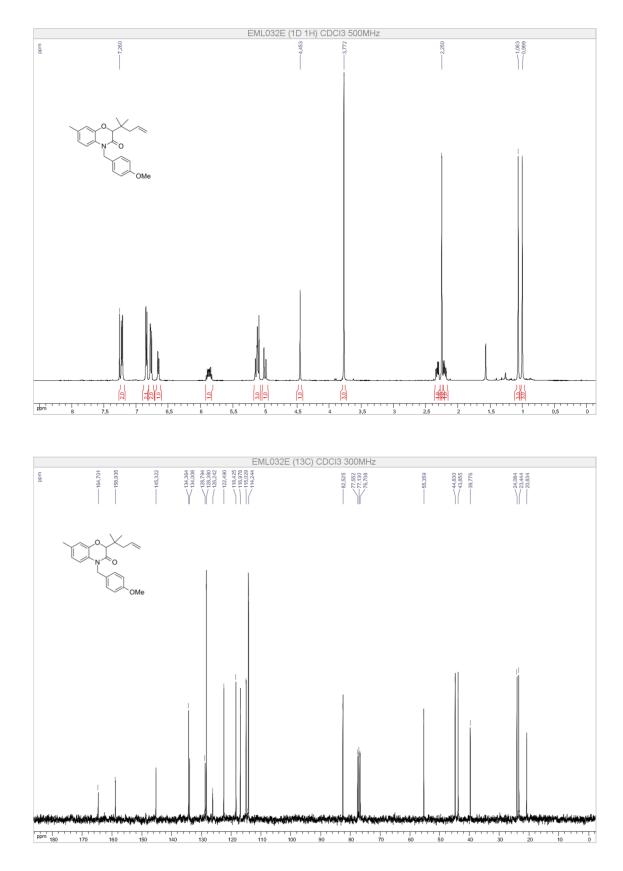


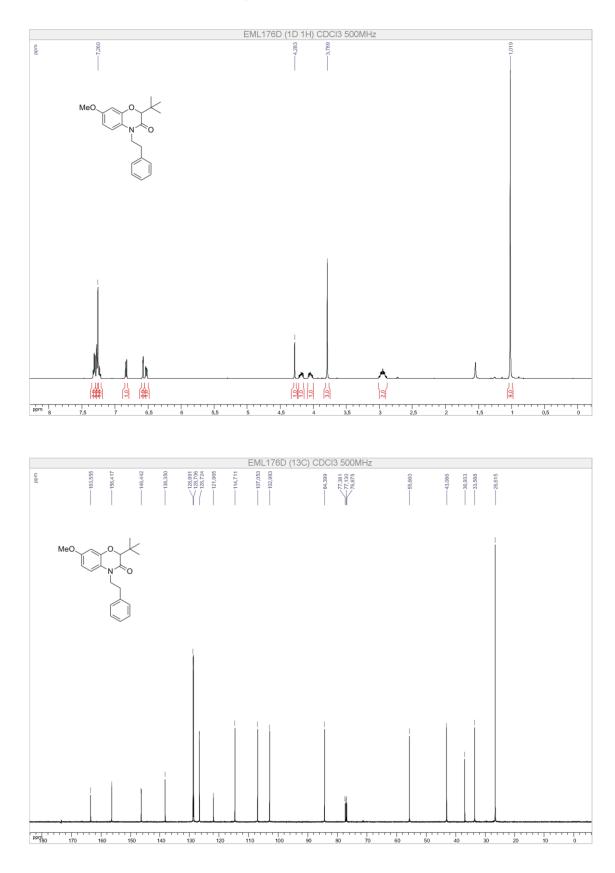


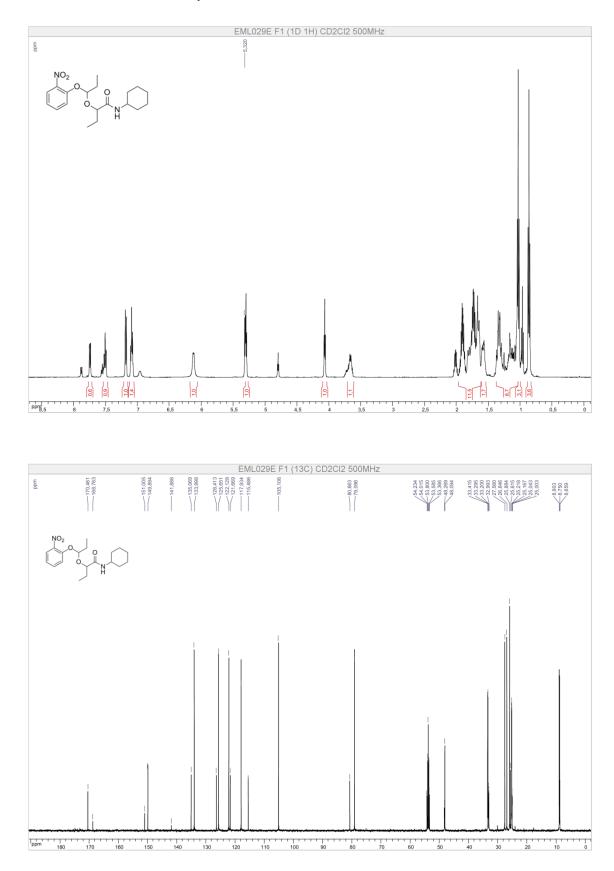


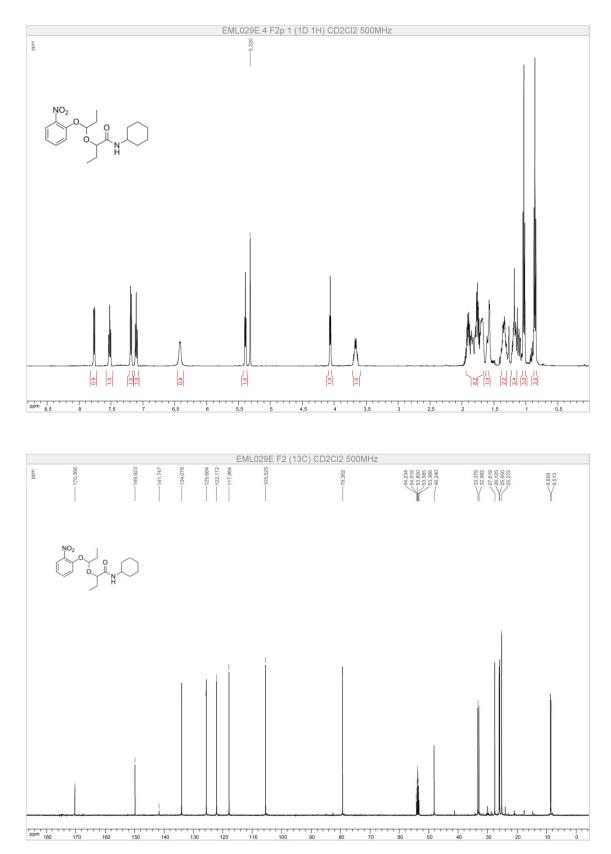



2-(tert-butyl)-7-chloro-4-(4-chlorobenzyl)-2H-benzo[b][1,4]oxazin-3(4H)-one (2p)






4-(4-methoxybenzyl)-7-methyl-2-(2-methylpent-4-en-2-yl)-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2s)


2-(tert-butyl)-7-methoxy-4-phenethyl-2*H*-benzo[*b*][1,4]oxazin-3(4*H*)-one (2t)

N-cyclohexyl-2-(1-(2-nitrophenoxy)propoxy)butanamide (3g)

Diastereomer 1 (contaminated by Passerini-Smiles adduct)

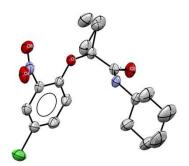
Diastereomer 2

X-ray crystallographic studies

The single crystals of 1b, 2b, 2p, and 2r suitable for X-ray analysis were grown either after slow evaporation in isopropyl oxide (2b) or after concentration in dichloromethane for the three others. All the data collections were carried out by means of an Enraf-Nonius Kappa-CCD diffractometer using graphite-monochromated Mo- $K\alpha$ ($\lambda = 0.71073$ Å) radiation at ambient temperature. The determination of crystal class and unit cell parameters was carried out by the COLLECT program package^{S1} running the Denzo-HKL2000 program.^{S2} The raw frame data were integrated using Denzo and scaled and reduced merged after semi-empirical absorption correction using Scalepack^{S2} to yield the reflection data file. The structures were solved by Direct Methods with the SHELX-S97 structure solution program ^{S3} and refined with the SHELX-L2012 refinement package on F^2 anisotropically for all the non-hydrogen atoms by the full-matrix least-squares method. The C9 atom of the cyclobutane in **1b** with elongated displacement was split over two positions with refined occupancy ratio of 0.82(2) - 0.18(2). Soft restraints on bond distances (SADI sd 0.002) and on anisotropic displacement parameters (DELU sd 0.01 and SIMU sd 0.04)) were applied to the atoms of the resulting puckered cyclobutane whose dihedral angles are 17.4 (3)° for the major conformer and 11.4(2)°. The hydrogen atoms located on Fourier difference maps were nevertheless placed at the calculated positions and were included in the structure calculation without further refinement of the parameters, except for the N-bound H atom in **1b** freely refined with $U_{iso}(H)=1.2 U_{eq}(N)$. Thermal ellipsoid plots of the molecular structures were made using MERCURY.^{S4} The ellipsoids enclose 50 % of the electronic density.

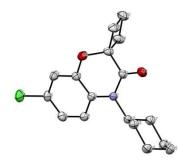
Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC- 965234 (**1b**), CCDC- 965235 (**2b**), CCDC-965236 (**2b**), and CCDC-965237 (**2r**). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Identification code		compound_1b	compound_2b	compound_2p	compound_2r	
Empirical formula		$C_{17} \; H_{21} \; CI \; N_2 \; O_4$	$C_{17} H_{20} Cl \; N \; O_2$	$C_{19} H_{19} Cl_2 N O_2$	C ₂₀ H ₂₂ Br N O ₂	
Formula weight		352.81	305.79	364.25	388.30	
Temperature (K)		293(2) К				
Wavelength (Å)		0.71073				
Crystal system		Monoclinic	Triclinic,	Monoclinic	Monoclinic	
Space group		P 21/c	P -1	P 21/c	P 21/c	
Unit cell	a (Å)	11.6880(10)	5.8800(10)	5.9540(10)	7.2170(10)	
dimensions	b	17.404(3)	9.120(2)	8.628(2)	11.276(2)	
	с	9.965(2)	14.895(2)	34.703(5)	22.803(3)	
	α (°)	90	77.537(2)	90	90	
	β	113.76(5)	85.432(3)	93.476(2)	92.725(3)	
	γ	90	77.725(3)	90	90	

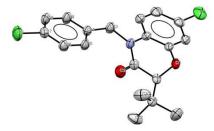

Volume (Å ³)	1855.2(8)	761.6(2)	1779.5(6)	1853.6(5)	
Ζ,	4	2	4	4	
Calcd density (Mg/m ³)	1.263	1.333	1.360	1.391	
Absorpt° coeff (mm ⁻¹)	0.228	0.255	0.376	2.229	
F(000)	744	324	760	800	
Crystal size (mm)	0.53 x 0.36 x 0.14	0.56 x 0.36 x 0.10	0.30 x 0.30 x 0.30	0.51 x 0.28 x 0.24	
θ range for data collection					
(°)	3.27 to 25.36	3.55 to 26.34	3.33 to 26.23	3.35 to 25.51	
	-14 ≤ h ≤ 14,	-7 ≤ h ≤ 6,	-7 ≤ h ≤ 7,	-8 ≤ h ≤ 8,	
Limiting indices	-20 ≤ k ≤ 19,	$-11 \leq k \leq 11,$	$-10 \le k \le 9$,	-12 ≤ k ≤ 13,	
	-11 ≤ ≤ 12	-18 ≤ l ≤ 18	-42 ≤ I ≤ 42	-27 ≤ l ≤ 27	
Reflections collected /	22970 /	6531/	9987 /	11449 /	
unique	3381	3038	3429	3395	
R(int)	0.0219	0.0237	0.0279	0.0350	
Completeness to θ_{\max}	0.995	0.979	0.959	0.987	
Absorption correction	Semi-empirical from equivalents				
Max. and min.					
transmission	0.96 and 0.88	0.98 and 0.92	0.89 and 0.78	0.58 and 0.44	
Refinement method	Full-matrix least-squares on F ²				
Data / restraints /	3381/21/	3035 / 0 /	3420 / 0 /	3391/0/	
parameters	231	190	221	221	
Goodness-of-fit on F ²	1.037	1.017	1.032	1.027	
Final R indices	R1 = 0.0449,	R1 = 0.0512,	R1 = 0.0473,	R1 = 0.0497,	
[l>2σ(l)]	wR2 = 0.1335	wR2 = 0.1098	wR2 = 0.1199	wR2 = 0.1178	
R indices	R1 = 0.0762,	R1 = 0.0615,	R1 = 0.0773,	R1 = 0.0770,	
(all data)	wR2 = 0.1527	wR2 = 0.1217	wR2 = 0.1357	wR2 = 0.1362	
Extinction coefficient	0.036(5)	n/a	0.024(4)	0.014(2)	
Largest diff. peak and hole (e.A ⁻³)	0.197 and -0.228	0.196 and -0.320	0.226 and -0.219	0.448 and -0.452	

S1 Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

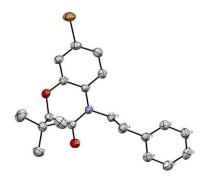
S2 Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Volume 276, Macromolecular Crystallography, part A, edited by C.W. Carter, Jr. & R.M. Sweet, 307-326, New York: Academic Press.

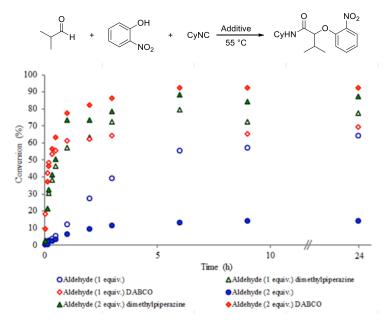

- *S3* Sheldrick, G.M. (2008). *Acta Cryst.* A**64**, 112-122; Welter, R. (2006). *Acta Cryst.* A**62**, s252.
- *S4* Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J.Appl. Cryst.* **39**, 453-457.

1b gradient of concentration in dichloromethane



Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013


2b slow evaporation in diisopropyl oxide solution



2p in dichloromethane

2r in dichloromethane

Kinetic studies