## **Supporting Information**

## AgSbF<sub>6</sub>-Controlled Diastereodivergence in Alkyne

## Hydroarylation: Facile Access to Z- and E-Alkenyl Arenes

Minsik Min, Donghee Kim, and Sungwoo Hong\*

Center for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS) and Department of Chemistry, Korea Advance Institute of Science and Technology (KAIST), Daejeon 305-701, Korea

| I.   | General Methods and Materials                                                       | S2  |
|------|-------------------------------------------------------------------------------------|-----|
| II.  | Optimization Study                                                                  | S2  |
| III. | NMR Study                                                                           | S5  |
| IV.  | Computational Study on the Thermodynamic Stability                                  | S5  |
| V.   | Experimental Procedures                                                             | S6  |
|      |                                                                                     |     |
| Арр  | endix I                                                                             |     |
| Spe  | ctral Copies of <sup>1</sup> H- and <sup>13</sup> C-NMR Data Obtained in this Study | S30 |
| Арр  | endix II                                                                            |     |
| Cry  | stallographic Data                                                                  | S82 |

I. General Methods and Materials. Unless stated otherwise, reactions were performed in flame-dried glassware. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F<sup>254</sup> plates and visualization on TLC was achieved by UV light (254 and 365 nm). Flash column chromatography was undertaken on silica gel (400-630 mesh). <sup>1</sup>H NMR was recorded on 400 MHz and chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = respective to the second secomultiplet, dd = doublet of doublet, td = doublet of triplet, ddd = doublet of doublet. Coupling constants, J, were reported in hertz unit (Hz). <sup>13</sup>C NMR was recorded on 100 MHz and was fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of CDCl<sub>3</sub>. Mass spectral data were obtained from the KAIST Basic Science Institute by using ESI method. Commercial grade reagents and solvents were used without further purification except as indicated below. Dichloromethane was distilled from calcium hydride.

#### **II.** Optimization Study

|       | 0<br>+ Ph                                            | Ph Additives           |                     | Ph<br>+            | Pho<br>3a                                            |
|-------|------------------------------------------------------|------------------------|---------------------|--------------------|------------------------------------------------------|
| Entry | Catalyst (5 mol %)                                   | Ag Additive<br>(mol %) | Additive<br>(equiv) | Solvent            | Yield[%]<br>( <b>2a</b> : <b>3a</b> ) <sup>[b]</sup> |
| 1     | [RhCp*Cl <sub>2</sub> ] <sub>2</sub>                 | $AgNTf_2(20)$          | AcOH (2.0)          | 1,2-DCE            | -                                                    |
| 2     | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgNTf_2(20)$          | AcOH (2.0)          | Toluene            | -                                                    |
| 3     | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgNTf_2(20)$          | AcOH (2.0)          | CH <sub>3</sub> CN | -                                                    |
| 4     | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgNTf_2(20)$          | AcOH (2.0)          | DMF                | -                                                    |
| 5     | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgNTf_2(20)$          | AcOH (2.0)          | DMSO               | -                                                    |
| 6     | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgNTf_2(20)$          | AcOH (2.0)          | Dioxane            | < 10%                                                |
| 7     | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgNTf_2(20)$          | AcOH (2.0)          | EtOH               | -                                                    |
| 8     | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgNTf_2(20)$          | AcOH (2.0)          | DME                | 64% (84:16)                                          |
| 9     | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgNTf_2(20)$          | AcOH (2.0)          | <i>i</i> -PrOAc    | 30% (78:22)                                          |
| 10    | $[Ru(p-cymene)Cl_2]_2$                               | AgOAc (20)             | AcOH (2.0)          | 1,2-DCE            | -                                                    |

Table S1. Representative optimization study on Ru-catalyzed hydroarylation of chromone.<sup>[a]</sup>

| 11                | $[Ru(p-cymene)Cl_2]_2$                               | $AgBF_4(20)$                         | AcOH (2.0)                               | 1,2-DCE          | -           |
|-------------------|------------------------------------------------------|--------------------------------------|------------------------------------------|------------------|-------------|
| 12                | $[Ru(p-cymene)Cl_2]_2$                               | AgF (20)                             | AcOH (2.0)                               | 1,2-DCE          | 24% (91:9)  |
| 13                | $[Ru(p-cymene)Cl_2]_2$                               | Ag <sub>2</sub> CO <sub>3</sub> (20) | AcOH (2.0)                               | 1,2-DCE          | -           |
| 14                | $[Ru(p-cymene)Cl_2]_2$                               | AgOTFA (20)                          | AcOH (2.0)                               | 1,2-DCE          | -           |
| 15                | $[Ru(p-cymene)Cl_2]_2$                               | AgOTf(20)                            | AcOH (2.0)                               | 1,2-DCE          | 53% (64:36) |
| 16                | $[Ru(p-cymene)Cl_2]_2$                               | AgPF <sub>6</sub> (20)               | AcOH (2.0)                               | 1,2-DCE          | -           |
| 17                | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgNTf_2(20)$                        | AcOH (2.0)                               | 1,2-DCE          | 84% (80:20) |
| 18                | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgSbF_6(20)$                        | AcOH (2.0)                               | 1,2-DCE          | 90% (76:24) |
| 19                | $[Ru(p-cymene)Cl_2]_2$                               | $AgSbF_{6}$ (40)                     | AcOH (2.0)                               | 1,2-DCE          | 58% (7:93)  |
| 20                | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgSbF_6$ (40)                       | PivOH (2.0)                              | 1,2-DCE          | 56% (9:91)  |
| 21                | [Ru(p-cymene)Cl <sub>2</sub> ] <sub>2</sub>          | $AgSbF_6(40)$                        | AcOH (2.0)<br>Cu(OAc) <sub>2</sub> (0.1) | 1,2-DCE          | 71% (9:91)  |
| 22 <sup>[c]</sup> | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | AgSbF <sub>6</sub> (16+20)           | AcOH (2.0)<br>Cu(OAc) <sub>2</sub> (0.1) | 1, <b>2-D</b> CE | 87% (8:92)  |
| 23                | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | AgSbF <sub>6</sub> (20)              | AcOH (2.0)<br>Cu(OAc) <sub>2</sub> (0.1) | 1,2-DCE          | 88% (86:14) |
| 24                | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | AgSbF <sub>6</sub> (16)              | AcOH (2.0)<br>Cu(OAc) <sub>2</sub> (0.1) | 1,2-DCE          | 94% (91:9)  |
| 25                | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | $AgSbF_6(16)$                        | AcOH (2.0)                               | 1,2-DCE          | 77% (69:31) |
| 26                | [Ru( <i>p</i> -cymene)Cl <sub>2</sub> ] <sub>2</sub> | -                                    | AcOH (2.0)<br>Cu(OAc) <sub>2</sub> (0.1) | 1, <b>2-D</b> CE | -           |
| 27                | [Ru(p-cymene)Cl <sub>2</sub> ] <sub>2</sub>          | $AgSbF_{6}(20)$                      | -                                        | 1,2-DCE          | -           |

[a] Reaction conditions : **1a** (0.2 mmol), Diphenylalkyne (0.3 mmol). [b] Ratio was determined by <sup>1</sup>H NMR spectroscopy. [c] 20 mol% of  $AgSbF_6$  was added to the reaction mixture after consumption of chromone.





| 2                 | AgOTFA (20)             | AcOH (2.0) | 1,2-DCE            | 96% (74:26) |
|-------------------|-------------------------|------------|--------------------|-------------|
| 3                 | AgOTf (20)              | AcOH (2.0) | 1,2-DCE            | 95% (38:62) |
| 4                 | $Ag_2CO_3(20)$          | AcOH (2.0) | 1,2-DCE            | 91% (87:13) |
| 5                 | AgF (20)                | AcOH (2.0) | 1,2-DCE            | 93% (64:36) |
| 6                 | Ag <sub>2</sub> O (20)  | AcOH (2.0) | 1,2-DCE            | 99% (86:14) |
| 7                 | $AgPF_{6}(20)$          | AcOH (2.0) | 1,2-DCE            | 86% (17:83) |
| 8                 | $AgNTf_{2}(20)$         | AcOH (2.0) | 1,2-DCE            | 70% (10:90) |
| 9                 | AgNO <sub>3</sub> (20)  | AcOH (2.0) | 1,2-DCE            | 82% (20:80) |
| 10                | $AgSbF_6(20)$           | AcOH (2.0) | 1,2-DCE            | 93% (9:91)  |
| 11                | $AgSbF_6(20)$           | -          | 1,2-DCE            | 86% (9:91)  |
| 12                | -                       | AcOH (2.0) | 1,2-DCE            | -           |
| 13 <sup>[c]</sup> | $AgSbF_6(20)$           | AcOH (2.0) | CH <sub>3</sub> CN | 90% (90:10) |
| 14 <sup>[c]</sup> | $AgSbF_6(20)$           | AcOH (2.0) | dioxane            | 72% (77:23) |
| 15 <sup>[c]</sup> | $AgSbF_6(20)$           | AcOH (2.0) | toluene            | 88% (69:31) |
| 16 <sup>[c]</sup> | AgSbF <sub>6</sub> (20) | AcOH (2.0) | iPrOH              | 91% (75:25) |
| 17 <sup>[c]</sup> | AgSbF <sub>6</sub> (20) | AcOH (2.0) | DMF                | -           |

[a] Reactions were conducted with flavone (1.0 equiv),  $AgSbF_6$  (20 mol%), and additive(s) at 100 °C for 2 h. [b] Ratio was determined by <sup>1</sup>H NMR spectroscopy. [c] Reactions were carried out for 6 h.

#### Scheme S1. Ru-Catalyzed Hydroarylation of Aliphatic Alkynes



#### **III. NMR Study**



a) Flavone w/o AgSbF<sub>6</sub>, b) with 20 mol% AgSbF<sub>6</sub>, c) with 50 mol% AgSbF<sub>6</sub>

#### IV. Computational Study on the Thermodynamic Stability



-Z-isomer **3a** is more stable than *E*-isomer **2a** by 1.6 kcal/mol (Hartree-Fock calculations) and 1.0 kcal/mol (Density functional theory calculations).

#### **V. Experimental Procedures**

#### 1. General Procedure for the Stereodivergent Hydroarylation of Chromones



*Conditions A:* Reactions were conducted in Cap Test Tube. Chromone (0.2 mmol), acetylene (1.5 equiv),  $[Ru(p-cy mene)Cl_2]_2$  (5 mol%), AgSbF<sub>6</sub> (16 mol%), Cu(OAc)<sub>2</sub> (10 mol%), AcOH (2.0 equiv) were combined in 1,2-DCE (2. 0 mL). The reaction mixture was stirred at 100 °C for 2-4 h. The reaction mixture was monitored by TLC using 25% EtOAc and 75% *n*-Hexane as the mobile phase. The reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed with seq uentially aqueous NaHCO<sub>3</sub> and NH<sub>4</sub>Cl. The organic layer was dried over MgSO<sub>4</sub>. After removal of solvent, the resi due was purified by flash chromatography on silica gel (*n*-Hexane/EtOAc or *n*-Hexane/EtOAc/CH<sub>2</sub>Cl<sub>2</sub>) to give the *E*-selective product.



**(E)-5-(1,2-diphenylvinyl)-4H-chromen-4-one (2a).** Overall yield 94% (60.9 mg). White solid. mp 156 – 158 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.72 (dd, *J* = 6.0, 0.8 Hz, 1H), 7.67 (ddd, *J* = 8.3, 7.3, 0.8 Hz, 1H), 7.47 (dt, *J* = 8.5, 1.0 Hz, 1H), 7.40 (dt, *J* = 7.4, 1.0 Hz, 1H), 7.30 – 7.24 (m, 2H), 7.23 – 7.13 (m, 8H), 6.60 (s, 1H), 6.18 (dd, *J* = 6.0, 0.8 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 176.6, 157.6, 153.6, 144.8, 142.9, 139.5, 137.4, 132.5, 130.2, 129.4, 128.4, 127.9, 127.9, 127.5, 126.8, 126.6, 122.9, 117.9, 114.1. HRMS (ESI+) m/z calcd. for C<sub>23</sub>H<sub>16</sub>NaO<sub>2</sub>+[M+Na]<sup>+</sup> : 347.1043, found : 347.1024.



**(E)-5-(1,2-diphenylvinyl)-2-phenyl-4H-chromen-4-one (2b).** Overall yield 87% (69.6 mg). Pale yellow solid. mp 195 – 197 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.90 – 7.80 (m, 2H), 7.67 (dd, *J* = 8.4, 7.3 Hz, 1H), 7.55 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.51 – 7.44 (m, 3H), 7.38 (dd, *J* = 7.3, 1.1 Hz, 1H), 7.29 – 7.23 (m, 2H), 7.21 – 7.11 (m, 8H), 6.63 (s, 1H), 6.60 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 177.5, 161.6, 157.4, 144.7, 143.0, 139.6, 137.5, 132.6, 131.5, 131.3, 130.2, 129.4, 128.9, 128.4, 128.0, 127.9, 127.5, 126.8, 126.6, 126.1, 121.9, 117.8, 108.6. HRMS (ESI+) m/z calcd. for [C<sub>29</sub>H<sub>20</sub>NaO<sub>2</sub>]<sup>+</sup>: 423.1356, found : 423.1341.



**(E)**-*N*-(5-(1,2-diphenylvinyl)-2-methyl-4-oxo-4H-chromen-7-yl)acetamide (2c). Overall yield 83% (65.5 mg). White solid. mp 206 – 208 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.88 (s, 1H), 8.11 (d, *J* = 2.1 Hz, 1H), 7.17 – 7.00 (m, 10H), 6.96 (d, *J* = 2.1 Hz, 1H), 6.42 (s, 1H), 5.88 (s, 1H), 2.20 (s, 3H), 2.14 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 177.1, 169.4, 164.7, 158.6, 144.9, 142.6, 141.8, 139.3, 137.1, 130.0, 129.2, 127.8, 127.5, 126.9, 126.7, 119.4, 111.1, 107.1, 24.6, 19.9. HRMS (ESI+) m/z calcd. for [C<sub>26</sub>H<sub>21</sub>NNaO<sub>3</sub>]<sup>+</sup>: 418.1414, found : 418.1408.



(E)-5-(1,2-diphenylvinyl)-3-phenyl-4H-chromen-4-one. (2d). Overall yield 82% (65.6 mg). Pale yellow solid. mp 82 – 85 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.87 (d, J = 0.7 Hz, 1H), 7.64 (ddd, *J* = 8.3, 7.3, 0.6 Hz, 1H), 7.44 (dt, *J* = 8.4, 1.1 Hz, 1H), 7.39 (dt, *J* = 7.3, 0.9 Hz, 1H), 7.36 – 7.26 (m, 7H), 7.20 – 7.11 (m, 8H), 6.60 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 175.3, 157.3, 151.3, 145.4, 143.1, 139.6, 137.4, 132.4, 132.0, 130.3, 129.4, 128.8, 128.3, 128.3, 127.9, 127.8, 127.7, 127.5, 126.8, 126.6, 126.2, 122.7, 117.7. HRMS (ESI+) m/z calcd. for [C<sub>29</sub>H<sub>20</sub>NaO<sub>2</sub>]<sup>+</sup>: 423.1356, found : 423.1364.



(E)-1-(1,2-diphenylvinyl)-8-methyl-9H-xanthen-9-one (2e). Overall yield 80% (62.1 mg). White solid. mp 162 – 164 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.67 (dd, *J* = 8.4, 7.3 Hz, 1H), 7.50 – 7.40 (m, 2H), 7.37 (dd, *J* = 7.3, 1.2 Hz, 1H), 7.31 – 7.09 (m, 11H), 7.00 (dt, *J* = 7.4, 1.1 Hz, 1H), 6.76 (s, 1H), 2.52 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 178.4, 156.5, 156.4, 145.7, 143.6, 141.2, 139.7, 137.6, 132.9, 132.8, 130.6, 129.5, 127.9, 127.7, 127.4, 127.1, 126.8, 126.6, 126.3, 121.6, 117.2, 115.2, 22.1. HRMS (ESI+) m/z calcd. for [C<sub>28</sub>H<sub>20</sub>NaO<sub>2</sub>]<sup>+</sup>: 411.1356, found : 411.1340.



(E)-5-(1,2-bis(4-chlorophenyl)vinyl)-4H-chromen-4-one (2f). Overall yield 85% (66.6 mg). Pale yellow solid.
mp 89 – 92 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.75 (dd, J = 5.9, 0.6 Hz, 1H), 7.71 – 7.66 (m, 1H), 7.52 – 7.46 (m, 1H), 7.40 – 7.30 (m, 1H), 7.23 – 7.00 (m, 8H), 6.54 (s, 1H), 6.18 (d, J = 6.2 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 176.6, 157.6, 153.8, 143.9, 142.6, 137.6, 135.5, 132.8, 132.7, 132.5, 131.5, 130.6, 128.3, 128.2, 127.9, 127.1, 122.7, 118.4, 114.0. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>14</sub>Cl<sub>2</sub>NaO<sub>2</sub>]<sup>+</sup>: 415.0263, found : 415.0266.



**(E)-5-(1,2-diphenylvinyl)-7-methoxy-4H-chromen-4-one (2g).** Overall yield 90% (63.7 mg). White solid. mp 179 – 182 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.64 (d, *J* = 5.9 Hz, 1H), 7.31 – 7.25 (m, 2H), 7.23 – 7.14 (m, 8H), 6.99 (d, *J* = 2.6 Hz, 1H), 6.86 (d, *J* = 2.6 Hz, 1H), 6.61 (s, 1H), 6.11 (d, *J* = 5.9 Hz, 1H), 3.94 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 175.9, 162.5, 159.4, 153.1, 146.3, 142.9, 139.2, 137.3, 130.2, 129.4, 127.8, 127.8, 127.5,

126.9, 126.6, 117.4, 116.9, 113.9, 100.1, 55.8. HRMS (ESI+) m/z calcd. for  $[C_{24}H_{18}NaO_3]^+$ : 377.1148, found : 377.1145.



(E)-5-(1,2-diphenylvinyl)-4-oxo-4H-chromen-7-yl acetate (2h). Overall yield 80% (61.1 mg). White solid. mp 82 – 85 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, *J* = 6.0 Hz, 1H), 7.30 (d, *J* = 2.3 Hz, 1H), 7.26 – 7.09 (m, 11H), 6.60 (s, 1H), 6.17 (d, *J* = 5.9 Hz, 1H), 2.38 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  176.0, 168.4, 158.1, 153.7, 153.0, 146.5, 142.0, 139.0, 137.1, 130.2, 129.4, 128.5, 127.9, 127.6, 127.0, 126.8, 122.3, 120.7, 114.1, 110.6, 21.1. HRMS (ESI+) m/z calcd. for [C<sub>25</sub>H<sub>18</sub>NaO<sub>4</sub>]<sup>+</sup> : 405.1097, found : 405.1131.



(E)-5-(1,2-diphenylvinyl)-7-hydroxy-4H-chromen-4-one (2i). Overall yield 66% (44.8 mg). Pale brown solid. mp 230 – 232 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 10.86 (br, 1H), 8.03 (d, J = 5.9 Hz, 1H), 7.27 – 7.06 (m, 10H), 6.85 (d, J = 2.4 Hz, 1H), 6.80 (d, J = 2.4 Hz, 1H), 6.47 (s, 1H), 6.03 (d, J = 5.9 Hz, 1H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>) δ 174.9, 161.1, 158.9, 154.5, 145.7, 142.7, 139.4, 137.0, 129.7, 129.0, 127.9, 127.6, 126.9, 126.9, 126.7, 117.3, 115.2, 112.9, 102.2. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>16</sub>NaO<sub>3</sub>]<sup>+</sup> : 363.0992, found : 363.0965.



(E)-5-(1,2-diphenylvinyl)-4-oxo-4H-chromen-7-yl trifluoromethanesulfonate (2j). Overall yield 79% (74.5 mg).
Yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.75 (d, J = 5.9 Hz, 1H), 7.45 (d, J = 2.4 Hz, 1H), 7.35 - 7.10 (m, 11H), 6.62 (s, 1H), 6.22 (d, J = 5.9 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 175.2, 157.9, 153.9, 150.7, 148.0,

141.2, 138.4, 136.6, 130.2, 129.4, 129.2, 128.0, 127.7, 127.4, 127.1, 122.7, 121.4, 118.7 (q, *J*<sub>CF</sub> = 321.0 Hz), 114.6, 110.9. HRMS (ESI+) m/z calcd. for [C<sub>24</sub>H<sub>15</sub>F<sub>3</sub>NaO<sub>5</sub>S]<sup>+</sup> : 495.0484, found : 495.0501.



(E)-5-(1,2-diphenylvinyl)-6-fluoro-4H-chromen-4-one (2k). Overall yield 92% (62.9 mg). White solid. mp 178 – 180 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (d, *J* = 5.9 Hz, 1H), 7.48 – 7.45 (m, 2H), 7.40 – 7.34 (m, 2H), 7.25 – 7.14 (m, 8H), 6.58 (s, 1H), 6.23 (d, *J* = 5.9 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  176.8 (d, *J*<sub>CF</sub> = 2.8 Hz ), 156.7 (d, *J*<sub>CF</sub> = 242.8 Hz), 153.8, 153.7 (d, *J*<sub>CF</sub> = 1.9 Hz), 139.0, 137.0, 134.4, 130.29 (d, *J*<sub>CF</sub> = 19.0 Hz), 130.0, 129.9 (d, *J*<sub>CF</sub> = 1.6 Hz), 129.4, 127.9, 127.8, 127.1, 126.8, 124.0 (d, *J*<sub>CF</sub> = 2.6 Hz), 121.5 (d, *J*<sub>CF</sub> = 27.5 Hz), 119.2 (d, *J*<sub>CF</sub> = 8.6 Hz), 113.6. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>15</sub>FNaO<sub>2</sub>]<sup>+</sup> : 365.0948, found : 365.0934.



**(E)-6-chloro-5-(1,2-diphenylvinyl)-4H-chromen-4-one (2l).** Overall yield 90% (64.1 mg). White solid. mp 190 – 192 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.78 – 7.60 (m, 2H), 7.40 (d, *J* = 9.0 Hz, 1H), 7.28 – 7.23 (m, 4H), 7.21 – 7.08 (m, 6H), 6.46 (s, 1H), 6.22 (d, *J* = 5.9 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 176.2, 156.1, 153.7, 142.1, 138.7, 137.9, 137.4, 134.3, 132.0, 130.4, 129.4, 129.2, 128.0, 127.6, 127.0, 126.8, 124.6, 119.1, 114.4. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>15</sub>ClNaO<sub>2</sub>]<sup>+</sup> : 381.0653, found : 381.0657.



(E)-6-bromo-5-(1,2-diphenylvinyl)-4H-chromen-4-one (2m). Overall yield 90% (72.4 mg). White solid. mp 200 – 202 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, J = 9.0 Hz, 1H), 7.76 (d, J = 6.0 Hz, 1H), 7.38 (d, J = 9.0 Hz, 1H),

7.33 – 7.09 (m, 10H), 6.49 (s, 1H), 6.26 (d, J = 6.0 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  176.0, 156.7, 153.6, 144.1, 140.6, 137.6, 137.4, 137.3, 130.6, 129.4, 129.3, 128.0, 127.5, 127.0, 126.8, 124.9, 122.7, 119.4, 114.4. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>15</sub>BrNaO<sub>2</sub>]<sup>+</sup> : 425.0148, found : 425.0127.

*Conditions B*: Reactions were conducted in Cap Test Tube. Chromone (0.2 mmol), acetylene (1.5 equiv),  $[Ru(p-cy mene)Cl_2]_2$  (5 mol%), AgSbF<sub>6</sub> (16 mol%), Cu(OAc)<sub>2</sub> (10 mol%), AcOH (2.0 equiv) were combined in 1,2-DCE (2. 0 mL). The reaction mixture was stirred at 100 °C for 2-4 h. Additional AgSbF<sub>6</sub> (20 mol%) was added to the reaction n mixture after consumption of chromone. After completion of the isomerization (~2 h), the reaction mixture was d iluted with CH<sub>2</sub>Cl<sub>2</sub> and washed with sequentially aqueous NaHCO<sub>3</sub> and NH<sub>4</sub>Cl. The organic layer was dried over MgSO<sub>4</sub>. After removal of solvent, the residue was purified by flash chromatography on silica gel (*n*-Hexane/EtOAc or *n*-Hexane/EtOAc/CH<sub>2</sub>Cl<sub>2</sub>) to give the desired product.



(Z)-5-(1,2-diphenylvinyl)-4H-chromen-4-one (3a). Overall yield 87% (56.3 mg). Yellow soild. mp 150 – 153 °C.
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.76 (d, J = 5.8 Hz, 1H), 7.61 (dd, J = 8.6, 7.4 Hz, 1H), 7.50 (dd, J = 8.5, 1.3 Hz, 1H), 7.38 – 7.05 (m, 10H), 6.96 (ddd, J = 7.4, 1.6, 0.8 Hz, 2H), 6.17 (d, J = 6.0 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 176.4, 158.0, 153.9, 142.7, 142.6, 140.7, 137.4, 133.3, 129.3, 128.7, 128.0, 127.9, 127.1, 127.0, 126.5, 126.4, 124.1, 118.0, 113.9. HRMS (ESI+) m/z calcd. for C<sub>23</sub>H<sub>16</sub>NaO<sub>2</sub>+[M+Na]+: 347.1043, found : 347.1045.



(Z)-5-(1,2-diphenylvinyl)-2-phenyl-4H-chromen-4-one (3b). Overall yield 82% (65.5 mg). Yellow solid. mp 180 – 182 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.00 – 7.82 (m, 2H), 7.68 – 7.59 (m, 2H), 7.58 – 7.49 (m, 3H), 7.40 – 7.22 (m, 5H), 7.18 (dd, J = 6.3, 2.2 Hz, 1H), 7.15 – 7.06 (m, 4H), 7.04 – 6.95 (m, 2H), 6.67 (s, 1H). <sup>13</sup>C NMR (100 MHz,

CDCl<sub>3</sub>)  $\delta$  177.3, 161.9, 157.8, 142.7, 142.7, 140.6, 137.5, 133.3, 131.6, 131.4, 129.4, 129.0, 128.7, 128.0, 127.9, 127.1, 126.6, 126.4, 126.1, 123.2, 117.9, 108.5. HRMS (ESI+) m/z calcd. for  $[C_{29}H_{20}NaO_2]^+$ : 423.1356, found : 423.1333.



(**Z**)-*N*-(5-(1,2-diphenylvinyl)-2-methyl-4-oxo-4H-chromen-7-yl)acetamide (3c). Overall yield 63% (49.6 mg). White solid. mp 280 – 282 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 10.39 (s, 1H), 8.16 (d, *J* = 2.0 Hz, 1H), 7.33 – 7.04 (m, 9H), 6.99 (d, *J* = 2.0 Hz, 1H), 6.97 – 6.93 (m, 2H), 5.96 (s, 1H), 2.33 (s, 3H), 2.06 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>) δ 175.4, 169.4, 165.1, 158.3, 143.5, 141.8, 141.7, 140.1, 137.1, 128.9, 128.1, 128.0, 127.0, 126.6, 126.1, 125.5, 118.1, 117.5, 110.5, 105.8, 24.2, 19.5. HRMS (ESI+) m/z calcd. for [C<sub>26</sub>H<sub>21</sub>NNaO<sub>3</sub>]<sup>+</sup> : 418.1414, found : 418.1415.



(Z)-5-(1,2-diphenylvinyl)-3-phenyl-4H-chromen-4-one (3d). Overall yield 78% (62.3 mg). Yellow soild. mp 74 – 76 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.97 (s, 1H), 7.63 (ddd, *J* = 8.3, 7.3, 0.7 Hz, 1H), 7.52 (dt, *J* = 8.3, 0.7 Hz, 1H), 7.44 – 7.20 (m, 10H), 7.19 – 7.04 (m, 5H), 7.00 – 6.93 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 175.1, 157.6, 151.8, 142.7, 142.4, 141.3, 137.6, 133.2, 131.8, 129.3, 128.9, 128.8, 128.3, 128.0, 127.9, 127.9, 127.0, 126.8, 126.6, 126.4, 126.0, 124.0, 117.9. HRMS (ESI+) m/z calcd. for [C<sub>29</sub>H<sub>20</sub>NaO<sub>2</sub>]<sup>+</sup>: 423.1356, found : 423.1354.



(**Z**)-1-(1,2-diphenylvinyl)-8-methyl-9H-xanthen-9-one (3e). Overall yield 66% (51.2 mg). Yellow solid. mp 155 – 157 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.60 (dd, *J* = 8.4, 7.4 Hz, 1H), 7.54 – 7.44 (m, 2H), 7.39 – 7.34 (m, 2H), 7.33 – 7.20 (m, 4H), 7.15 – 7.06 (m, 5H), 7.05 – 6.98 (m, 3H), 2.64 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 178.1, 156.7, 156.7, 143.2, 142.6, 141.8, 141.5, 137.6, 133.7, 133.1, 129.4, 127.9, 127.9, 127.4, 127.0, 126.8, 126.6, 126.5, 126.4, 122.4, 121.1, 117.3, 115.4, 22.8. HRMS (ESI+) m/z calcd. for [C<sub>28</sub>H<sub>20</sub>NaO<sub>2</sub>]<sup>+</sup>: 411.1356, found : 411.1335.



(Z)-5-(1,2-bis(4-chlorophenyl)vinyl)-4H-chromen-4-one (3f). Overall yield 71% (55.7 mg). Pale yellow solid. mp 153 – 155 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 (d, *J* = 6.0 Hz, 1H), 7.63 (ddd, *J* = 8.1, 7.3, 0.7 Hz, 1H), 7.52 (dt, *J* = 8.4, 0.9 Hz, 1H), 7.31 – 7.18 (m, 4H), 7.12 – 7.03 (m, 3H), 6.96 (s, 1H), 6.89 – 6.80 (m, 2H), 6.19 (d, *J* = 6.0 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  176.5, 158.1, 154.1, 142.3, 140.9, 139.8, 135.7, 133.5, 133.0, 132.3, 130.5, 128.6, 128.3, 128.2, 127.8, 126.1, 124.0, 118.5, 114.0. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>14</sub>Cl<sub>2</sub>NaO<sub>2</sub>]<sup>+</sup> : 415.0263, found : 415.0260.



(Z)-5-(1,2-diphenylvinyl)-7-methoxy-4H-chromen-4-one (3g). Overall yield 86% (60.8 mg). White solid. mp 170 - 172 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, J = 5.9 Hz, 1H), 7.38 – 7.21 (m, 5H), 7.17 – 7.07 (m, 3H), 7.05 (s, 1H), 7.03 – 6.96 (m, 2H), 6.89 (d, J = 2.5 Hz, 1H), 6.74 (d, J = 2.6 Hz, 1H), 6.11 (d, J = 5.9 Hz, 1H), 3.84 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.8, 163.1, 159.7, 153.4, 142.4, 142.2, 142.1, 137.4, 129.2, 128.0, 127.9, 127.1, 127.0, 126.5, 126.4, 118.1, 117.3, 113.8, 100.4, 55.7. HRMS (ESI+) m/z calcd. for [C<sub>24</sub>H<sub>18</sub>NaO<sub>3</sub>]<sup>+</sup> : 377. 1148, found : 377.1134.



(**Z**)-5-(1,2-diphenylvinyl)-4-oxo-4H-chromen-7-yl acetate (3h). Overall yield 77% (58.8 mg). White solid. mp 183 – 185 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.74 (d, *J* = 6.0 Hz, 1H), 7.37 (d, *J* = 2.3 Hz, 1H), 7.35 – 7.23 (m, 5H), 7.19 – 7.08 (m, 3H), 7.05 (s, 1H), 7.00 – 6.95 (m, 2H), 6.92 (d, *J* = 2.3 Hz, 1H), 6.15 (d, *J* = 6.0 Hz, 1H), 2.30 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 175.7, 168.2, 158.5, 153.9, 153.7, 142.4, 142.1, 141.7, 137.0, 129.3, 128.1, 128.0, 127.4, 127.2, 126.6, 122.4, 121.8, 114.0, 110.8, 21.1. HRMS (ESI+) m/z calcd. for [C<sub>25</sub>H<sub>18</sub>NaO<sub>4</sub>]<sup>+</sup> : 405.1097, found : 405.1131.



(**Z**)-5-(1,2-diphenylvinyl)-7-hydroxy-4H-chromen-4-one (**3**i). Overall yield 73% (49.6 mg). Pale brown solid. mp 238 – 240 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 10.79 (br, 1H), 8.08 (d, *J* = 5.9 Hz, 1H), 7.33 – 7.19 (m, 5H), 7.18 – 7.13 (m, 2H), 7.12 – 7.06 (m, 1H), 7.03 (s, 1H), 6.98 – 6.94 (m, 2H), 6.91 (d, *J* = 2.4 Hz, 1H), 6.51 (d, *J* = 2.4 Hz, 1H), 6.01 (d, *J* = 5.9 Hz, 1H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>) δ 174.8, 161.8, 159.3, 154.9, 142.0, 141.7, 141.4, 137.1, 128.9, 128.1, 128.0, 126.9, 126.6, 126.1, 125.4, 117.0, 116.4, 112.7, 102.6. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>16</sub>NaO<sub>3</sub>]<sup>+</sup> : 363.0992, found : 363.0981.



(Z)-5-(1,2-diphenylvinyl)-4-oxo-4H-chromen-7-yl trifluoromethanesulfonate (3j). Overall yield 87% (82.1 mg).
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.75 (d, J = 6.0 Hz, 1H), 7.42 (d, J = 2.5 Hz, 1H), 7.32 – 7.06 (m, 9H), 7.01 (d, J = 2.5 Hz, 1H), 6.93 – 6.82 (m, 2H), 6.17 (d, J = 6.0 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 175.1, 158.2, 154.3,

151.3, 144.3, 141.5, 141.0, 136.6, 129.2, 128.4, 128.2, 128.1, 127.5, 126.9, 126.5, 123.9, 121.8, 118.5 (q,  $J_{CF} = 321.3 \text{ Hz}$ ), 114.5, 111.1. HRMS (ESI+) m/z calcd. for  $[C_{24}H_{15}F_3NaO_5S]^+$ : 495.0484, found : 495.0496.



(Z)-5-(1,2-diphenylvinyl)-6-fluoro-4H-chromen-4-one (3k). Overall yield 91% (62.2 mg). White solid. mp 165 – 167 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, *J* = 5.9 Hz, 1H), 7.50 (dd, *J* = 9.2, 4.4 Hz, 1H), 7.43 – 7.36 (m, 3H), 7.34 – 7.30 (m, 2H), 7.29 – 7.24 (m, 1H), 7.22 (s, 1H), 7.17 – 7.08 (m, 3H), 7.03 – 6.98 (m, 2H), 6.16 (dd, *J* = 6.0, 0.5 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  176.3 (d, *J*<sub>CF</sub> = 2.6 Hz), 155.9 (d, *J*<sub>CF</sub> = 245.0 Hz), 154.0 (d, *J*<sub>CF</sub> = 2.0 Hz), 154.0, 141.5, 137.5, 134.2, 129.5 (d, *J*<sub>CF</sub> = 1.5 Hz), 128.4, 128.2, 128.0, 127.2, 126.8, 126.4, 126.2 (d, *J*<sub>CF</sub> = 19.2 Hz), 124.8 (d, *J*<sub>CF</sub> = 3.2 Hz), 121.7 (d, *J*<sub>CF</sub> = 27.4 Hz), 119.8 (d, *J*<sub>CF</sub> = 8.5 Hz), 113.5. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>15</sub>FNaO<sub>2</sub>]<sup>+</sup> : 365.0948, found : 365.0933.



(Z)-6-chloro-5-(1,2-diphenylvinyl)-4H-chromen-4-one (3l). Overall yield 92% (65.8 mg). White solid. mp 169 – 171 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, *J* = 6.0 Hz, 1H), 7.72 (d, *J* = 9.0 Hz, 1H), 7.47 (d, *J* = 9.0 Hz, 1H), 7.41 – 7.31 (m, 4H), 7.29 – 7.23 (m, 1H), 7.21 (s, 1H), 7.17 – 7.08 (m, 3H), 7.01 – 6.90 (m, 2H), 6.17 (d, *J* = 6.0 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.6, 156.3, 153.8, 140.7, 138.3, 138.0, 137.3, 134.5, 131.3, 128.6, 128.3, 128.2, 128.0, 127.2, 126.8, 126.4, 125.1, 119.4, 114.1. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>15</sub>ClNaO<sub>2</sub>]<sup>+</sup> : 381.0653, found : 381.0646.



(**Z**)-6-bromo-5-(1,2-diphenylvinyl)-4H-chromen-4-one (3m). Overall yield 82% (65.9 mg). White solid. mp 187 – 189 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.91 (d, *J* = 9.0 Hz, 1H), 7.74 (d, *J* = 5.9 Hz, 1H), 7.45 – 7.22 (m, 6H), 7.19 (s, 1H), 7.16 – 7.10 (m, 3H), 6.98 – 6.91 (m, 2H), 6.18 (d, *J* = 5.9 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 175.4, 156.9, 153.7, 140.5, 140.5, 139.8, 137.7, 137.3, 128.4, 128.2, 128.0, 127.2, 126.8, 126.5, 125.5, 122.0, 119.7, 114.1. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>15</sub>BrNaO<sub>2</sub>]<sup>+</sup> : 425.0148, found : 425.0150.

#### 2. General Procedure for the Silver-Catalyzed Isomerization of E-Alkenyl Arenes



Reactions were conducted in Cap Test Tube. E Alkene (0.1 mmol),  $AgSbF_6$  (20 mol%), AcOH (2.0 equiv) were combined in 1,2-DCE (1.0 mL). The reaction mixture was stirred at 100 °C for specified time. The reaction mixture was diluted with  $CH_2Cl_2$  and washed with sequentially aqueous NaHCO<sub>3</sub> and NH<sub>4</sub>Cl. The organic layer was dried over MgSO<sub>4</sub>. After removal of solvent, the residue was purified by flash chromatography on silica gel (*n*-Hexane/EtOAc or *n*-Hexane/EtOAc/CH<sub>2</sub>Cl<sub>2</sub>) to give the desired product.



(**Z**)-8-(1,2-diphenylvinyl)-2-methylisoquinolin-1(2H)-one (4a). Overall yield 95% (32.2 mg). Reaction time: 40 min. White solid. mp 180 – 182 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.66 – 7.48 (m, 2H), 7.40 – 7.16 (m, 6H), 7.13 – 7.01 (m, 5H), 6.95 – 6.88 (m, 2H), 6.50 (d, *J* = 7.3 Hz, 1H), 3.44 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 161.0, 144.3, 143.2, 141.6, 139.2, 137.7, 132.9, 131.9, 130.5, 129.4, 128.0, 127.8, 126.8, 126.4, 126.1, 126.0, 125.7, 125.3, 105.5, 37.2. HRMS (ESI+) m/z calcd. for [C<sub>24</sub>H<sub>19</sub>NNaO]<sup>+</sup> : 360.1359, found : 360.1348.



(**Z**)-8-(1,2-bis(4-(trifluoromethyl)phenyl)vinyl)-2-methylisoquinolin-1(2H)-one (4b). Overall yield 95% (44.9 mg). Reaction time: 1 h 30 min. Pale yellow solid. mp 174 – 176 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.59 – 7.54 (m, 2H), 7.53 – 7.47 (m, 2H), 7.44 – 7.36 (m, 2H), 7.33 – 7.25 (m, 2H), 7.14 (dd, *J* = 5.0, 3.5 Hz, 1H), 7.09 – 7.03 (m, 2H), 7.02 – 6.96 (m, 2H), 6.50 (d, *J* = 7.3 Hz, 1H), 3.41 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 160.9, 146.1, 145.6, 140.8, 140.7, 140.0, 139.5, 133.2, 132.2, 130.2, 129.5, 129.4, 129.1, 128.8, 128.7, 128.4, 128.0, 126.7, 126.7, 125.8, 125.6, 125.5, 125.1, 125.1, 125.1, 125.0, 124.9, 124.9, 124.8, 124.8, 122.9, 122.8, 105.7, 37.2. HRMS (ESI+) m/z calcd. for [C<sub>26</sub>H<sub>17</sub>F<sub>6</sub>NNaO]<sup>+</sup>: 496.1107, found : 496.1121.



(Z)-4-(1,2-diphenylvinyl)benzo[d][1,3]dioxol-5-yl diethylcarbamate (4c). Overall yield 92% (38.2 mg). Reaction time: 46 h. Pale yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 – 7.37 (m, 2H), 7.37 – 7.26 (m, 5H), 7.25 – 7.09 (m, 4H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.72 (d, *J* = 8.4 Hz, 1H), 5.80 (s, 1H), 5.45 (s, 1H), 3.17 (q, *J* = 7.1 Hz, 2H), 2.92 – 2.55 (m, 2H), 1.00 (t, *J* = 7.1 Hz, 3H), 0.85 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.6, 146.0, 144.6, 144.3, 141.2, 137.5, 131.8, 131.7, 128.7, 128.2, 128.0, 127.5, 127.2, 126.5, 116.4, 115.8, 107.3, 101.4, 41.7, 41.1, 13.7, 13.1. HRMS (ESI+) m/z calcd. for [C<sub>26</sub>H<sub>25</sub>NNaO<sub>4</sub>]<sup>+</sup> : 438.1676, found : 438.1687.



(Z)-methyl 4-(1,2-diphenylvinyl)benzo[d][1,3]dioxole-5-carboxylate (4d). Overall yield 95% (33.9 mg). Reaction time: 16 h. Yellow solid. mp 128 – 130 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (dd, J = 8.2, 0.6 Hz, 1H),

7.38 - 7.25 (m, 5H), 7.21 - 7.05 (m, 6H), 6.86 (dd, J = 8.2, 0.6 Hz, 1H), 5.91 (s, 1H), 5.62 (s, 1H), 3.57 (s, 3H).<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.6, 150.6, 146.1, 141.6, 137.6, 135.3, 129.2, 128.5, 128.3, 128.0, 127.4, 127.0, 126.7, 126.3, 124.9, 122.9, 107.3, 101.6, 51.7. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>18</sub>NaO<sub>4</sub>]<sup>+</sup> : 381.1097, found : 381.1080.



(**Z**)-*N*-(**2**-(**1**,**2**-diphenylvinyl)phenyl)acetamide (4e). Overall yield 94% (29.7 mg). Reaction time: 10 h. Pale orange solid. mp 143 – 145 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.29 (d, *J* = 8.3 Hz, 1H), 7.48 – 7.32 (m, 6H), 7.24 – 6.99 (m, 9H), 1.80 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 168.1, 141.7, 137.6, 136.2, 135.5, 130.7, 130.3, 129.5, 128.9, 128.9, 128.7, 128.5, 128.2, 127.9, 126.8, 124.6, 121.5, 24.4. HRMS (ESI+) m/z calcd. for [C<sub>22</sub>H<sub>19</sub>NNaO]<sup>+</sup> : 336.1359, found : 336.1335.



(**Z**)-*N*-(**2**-(**1**,**2**-diphenylvinyl)-4,5-dimethoxyphenyl)acetamide (4f). Overall yield 92% (34.2 mg). Reaction time: 10 h. Pale brown soild. mp 198 – 200 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.94 (s, 1H), 7.45 – 7.33 (m, 5H), 7.24 – 7.06 (m, 6H), 7.02 (br, 1H), 6.62 (s, 1H), 3.97 (s, 3H), 3.74 (s, 3H), 1.77 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 168.0, 148.7, 145.8, 141.8, 137.4, 136.2, 130.1, 129.1, 128.8, 128.7, 128.5, 128.3, 127.9, 126.9, 121.2, 112.8, 105.7, 56.0, 55.9, 24.3. HRMS (ESI+) m/z calcd. for [C<sub>24</sub>H<sub>23</sub>NNaO<sub>3</sub>]<sup>+</sup>: 396.1570, found : 396.1576.



(Z)-N-(2-(1,2-bis(4-fluorophenyl)vinyl)phenyl)acetamide (4g). Overall yield 86% (30.0 mg). Reaction time: 10 h. Pale yellow soild. mp 149 – 151 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.27 (d, *J* = 8.3 Hz, 1H), 7.43 (ddd, *J* = 8.4, 7.1,

1.9 Hz, 1H), 7.35 – 7.25 (m, 2H), 7.21 – 6.98 (m, 8H), 6.94 – 6.80 (m, 2H), 1.84 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.0, 162.7 (d,  $J_{CF}$  = 248.6 Hz) ,162.1 (d,  $J_{CF}$  = 247.9 Hz), 137.6 (d,  $J_{CF}$  = 3.3 Hz), 136.3, 135.3, 132.2 (d,  $J_{CF}$  = 3.5 Hz), 130.6, 130.5, 129.1, 128.7, 128.5, 128.4, 124.8, 121.8, 115.6 (d,  $J_{CF}$  = 21.5 Hz), 115.5 (d,  $J_{CF}$  = 21.4 Hz), 24.4. HRMS (ESI+) m/z calcd. for [C<sub>22</sub>H<sub>17</sub>F<sub>2</sub>NNaO]<sup>+</sup>: 372.1170, found : 372.1154.



(**Z**)-*N*-(**4**-chloro-2-(**1**,**2**-diphenylvinyl)phenyl)acetamide (4h). Overall yield 87% (30.1 mg). Reaction time: 10 h. White solid. mp 151 – 153 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.28 (d, *J* = 8.8 Hz, 1H), 7.45 – 7.31 (m, 6H), 7.25 – 7.20 (m, 4H), 7.17 (d, *J* = 2.5 Hz, 1H), 7.15 (br, 1H), 7.10 – 7.04 (m, 2H), 1.80 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 168.0, 141.1, 136.2, 135.7, 134.1, 131.1, 130.9, 130.3, 129.4, 128.9, 128.8, 128.8, 128.6, 128.4, 128.3, 126.8, 122.6, 24.4. HRMS (ESI+) m/z calcd. for [C<sub>22</sub>H<sub>18</sub>ClNNaO]<sup>+</sup> : 370.0969, found : 370.0956.



(**Z**)-diethyl (2-(1,2-diphenylvinyl)naphthalen-1-yl)phosphonate (4i). Overall yield 89% (39.4 mg). Reaction time: 20 min. White solid. mp 114 – 116 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.87 (d, *J* = 8.8 Hz, 1H), 8.07 – 8.00 (m, 1H), 7.96 – 7.89 (m, 1H), 7.72 – 7.54 (m, 2H), 7.41 – 7.20 (m, 6H), 7.17 – 7.02 (m, 6H), 4.39 – 3.25 (m, 4H), 1.31 – 0.53 (m, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 145.9, 145.8, 143.6, 143.4, 143.4, 137.2, 134.5, 134.4, 133.6, 133.6, 133.0, 132.9, 130.1, 129.9, 129.5, 128.6, 128.5, 127.3, 127.0, 126.9, 126.9, 126.6, 126.3, 125.7, 123.9, 61.7, 61.7, 61.5, 61.4, 16.2, 16.1, 16.1. HRMS (ESI+) m/z calcd. for [C<sub>28</sub>H<sub>27</sub>NaO<sub>3</sub>P]<sup>+</sup> 465.1590, found : 465.1628.



(**Z**)-(2-(1,2-diphenylvinyl)phenyl)diphenylphosphine oxide (4j). Overall yield 84% (38.2 mg). Reaction time: 60 h. White solid. mp 198 – 200 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.59 – 7.31 (m, 10H), 7.31 – 7.17 (m, 4H), 7.16 – 7.03 (m, 8H), 7.00 – 6.92 (m, 2H), 6.89 – 6.83 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 144.9, 144.8, 142.0, 141.0, 141.0, 137.2, 134.8, 134.7, 133.8, 133.3, 133.2, 133.1, 132.8, 132.3, 132.1, 132.0, 131.9, 131.8, 131.7, 131.6, 131.3, 131.3, 131.3, 131.0, 131.0, 129.7, 129.1, 128.0, 127.9, 127.8, 127.8, 127.7, 127.7, 127.6, 127.2, 127.1, 127.0, 126.9, 126.6. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>) δ 28.4. HRMS (ESI+) m/z calcd. for [C<sub>32</sub>H<sub>25</sub>NaOP]<sup>+</sup> :479.1535, found : 479.1551.



(E)-(2-(1,2-di(thiophen-2-yl)vinyl)phenyl)diphenylphosphine oxide (4k). Overall yield 92% (43.1 mg). Reaction time: 5 h. Pale yellow solid. mp 98 – 100 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (ddd, *J* = 13.2, 7.6, 1.3 Hz, 1H), 7.63 (tt, *J* = 7.5, 1.5 Hz, 1H), 7.56 – 7.48 (m, 3H), 7.47 – 7.30 (m, 5H), 7.28 – 7.21 (m, 2H), 7.16 (td, *J* = 7.7, 3.0 Hz, 2H), 7.04 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.01 (d, *J* = 5.1 Hz, 1H), 6.81 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.78 (s, 1H), 6.71 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.66 (d, *J* = 3.5 Hz, 1H), 6.37 (d, *J* = 2.6 Hz, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.5, 142.1, 142.1, 140.6, 135.5, 135.3, 133.0, 132.9, 132.0, 131.9, 131.9, 131.9, 131.8, 131.3, 131.3, 129.1, 128.4, 128.3, 127.9, 127.8, 127.8, 127.6, 127.2, 126.5, 126.5, 126.2, 124.3, 120.8. <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>)  $\delta$  27.6. HRMS (ESI+) m/z calcd. for [C<sub>28</sub>H<sub>21</sub>NaOPS<sub>2</sub>]<sup>+</sup> : 491.0664, found : 491.0690.



(**Z**)-(1-(2-(methylsulfinyl)phenyl)ethene-1,2-diyl)dibenzene (4l). Overall yield 91% (28.9 mg). Reaction time: 24 h. White soild. mp 121 – 123 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 7.99 (d, *J* = 7.9 Hz, 1H), 7.71 (td, *J* = 7.6, 1.4 Hz, 1H), 7.62 (td, *J* = 7.4, 1.4 Hz, 1H), 7.40 – 7.21 (m, 7H), 7.18 – 7.07 (m, 3H), 7.00 – 6.83 (m, 2H), 2.17 (s, 3H).

<sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>) δ 144.9, 140.6, 136.7, 135.8, 135.7, 131.2, 130.4, 129.3, 128.7, 128.3, 127.9, 127.6, 127.3, 126.1, 124.0, 41.6. HRMS (ESI+) m/z calcd. for [C<sub>21</sub>H<sub>18</sub>NaOS]<sup>+</sup>: 341.0971, found : 341.0962.



(Z)-1-(3-(1,2-diphenylvinyl)furan-2-yl)ethanone (4m). Overall yield 93% (26.8 mg). Reaction time: 1 h. Pale yellow solid. mp 98 – 100 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, *J* = 1.7 Hz, 1H), 7.49 – 7.32 (m, 5H), 7.28 – 7.14 (m, 6H), 6.45 (d, *J* = 1.7 Hz, 1H), 2.28 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  186.4, 148.5, 146.0, 140.8, 136.4, 132.6, 131.4, 130.8, 128.9, 128.5, 128.2, 127.8, 127.5, 126.4, 115.5, 26.9. HRMS (ESI+) m/z calcd. for [C<sub>20</sub>H<sub>16</sub>NaO<sub>2</sub>]<sup>+</sup> : 311.1043, found : 311.1016.



(**Z**)-1-(3-(1,2-diphenylvinyl)-7-methoxybenzofuran-2-yl)ethanone (4n). Overall yield 97% (35.7 mg). Reaction time: 1 h. White solid. mp 148 – 150 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.45 – 7.39 (m, 2H), 7.37 – 7.28 (m, 4H), 7.16 – 7.06 (m, 6H), 7.00 – 6.92 (m, 2H), 4.08 (s, 3H), 2.44 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 188.2, 148.4, 145.9, 144.4, 140.9, 136.4, 132.0, 131.1, 129.8, 128.7, 128.5, 128.3, 127.9, 127.6, 126.4, 124.6, 114.4, 109.6, 56.0, 27.6. HRMS (ESI+) m/z calcd. for [C<sub>25</sub>H<sub>20</sub>NaO<sub>3</sub>]<sup>+</sup> : 391.1305, found : 391.1290.



(**Z**)-5-(1,2-diphenylvinyl)chroman-4-one (4o). Overall yield 90% (29.3 mg). Reaction time: 15 min. White solid. mp 147 – 149 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.52 – 7.42 (m, 1H), 7.42 – 7.24 (m, 5H), 7.22 – 7.03 (m, 4H), 7.03 – 6.96 (m, 3H), 6.91 – 6.80 (m, 1H), 4.61 – 4.38 (m, 2H), 2.88 – 2.55 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 190.1, 163.1, 142.7, 142.4, 141.9, 137.4, 135.2, 129.1, 128.0, 127.9, 127.1, 126.7, 126.5, 126.4, 125.2, 120.4, 117.6, 66.7, 38.3. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>18</sub>NaO<sub>2</sub>]<sup>+</sup> : 349.1199, found : 349.1183.



(Z)-8-(1,2-diphenylvinyl)-3,4-dihydronaphthalen-1(2H)-one (4p). Overall yield 94% (30.3 mg). Reaction time: 15 min. Yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.43 (t, *J* = 7.6 Hz, 1H), 7.36 – 7.23 (m, 6H), 7.16 – 7.06 (m, 4H), 6.96 – 6.85 (m, 3H), 3.02 (td, *J* = 5.9, 2.2 Hz, 2H), 2.45 (dd, *J* = 7.5, 5.9 Hz, 2H), 2.06 (p, *J* = 6.1 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  197.3, 145.9, 143.9, 142.9, 141.6, 137.7, 132.7, 132.4, 130.8, 129.2, 128.4, 128.0, 127.8, 127.0, 126.7, 126.2, 126.0, 39.7, 30.6, 23.0. HRMS (ESI+) m/z calcd. for [C<sub>24</sub>H<sub>20</sub>NaO]<sup>+</sup> : 347.1406, found : 347.1396.



(**Z**)-**5**-(**1**,**2**-**diphenylvinyl**)-**2**-**phenyl**-**4**H-**thiochromen**-**4**-**one** (**4q**). Overall yield 84% (34.8 mg). Reaction time: 4 h 30 min. Pale brown solid. mp 103 – 105 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.78 – 7.64 (m, 3H), 7.61 – 7.44 (m, 4H), 7.38 – 7.21 (m, 6H), 7.16 – 6.94 (m, 7H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 180.3, 150.3, 144.5, 143.1, 142.9, 139.6, 137.6, 136.1, 132.2, 131.2, 130.6, 130.3, 129.4, 129.2, 128.0, 127.9, 127.0, 126.7, 126.5, 126.4, 126.2, 125.7, 124.4. HRMS (ESI+) m/z calcd. for [C<sub>29</sub>H<sub>20</sub>NaOS]<sup>+</sup> : 439.1127, found : 439.1129.



**(Z)-1-benzyl-5-(1,2-diphenylvinyl)quinolin-4(1H)-one (4r).** Overall yield 68% (27.9 mg). Reaction time: 48 h. Pale yellow solid. mp 130 – 132 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.57 – 7.26 (m, 10H), 7.24 – 7.14 (m, 3H), 7.12

- 6.85 (m, 7H), 6.13 (d, J = 7.7 Hz, 1H), 5.30 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  177.4, 144.7, 143.2, 142.6, 141.8, 141.3, 137.9, 135.3, 131.7, 129.3, 129.1, 128.2, 127.9, 127.7, 127.3, 126.7, 126.5, 126.5, 126.1, 125.9, 125.4, 115.9, 111.5, 56.7. HRMS (ESI+) m/z calcd. for [C<sub>30</sub>H<sub>23</sub>NNaO]<sup>+</sup> : 436.1672, found : 436.1667.



#### **Scheme 3. Hydroarylation of Aryl Phosphonates**

*E Selective Hydroarylation*: Reactions were conducted in screw cap test tube. Aryl Phosphonate (0.2 mmol), Diphenylacetylene (2.0 equiv),  $[RhCp^*Cl_2]_2$  (3 mol%), AgSbF<sub>6</sub> (10 mol%), Cu(OAc)<sub>2</sub> (10 mol%), PivOH (1.0 equiv) were combined in 1,2-DCE (1.0 mL). The reaction mixture was stirred at 110 °C for 12 h. The reaction mixture was monitored by TLC using 50% EtOAc and 50% *n*-Hexane as the mobile phase. The reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed with sequentially aqueous NaHCO<sub>3</sub> and NH<sub>4</sub>Cl. The organic layer was dried over MgSO<sub>4</sub>. After removal of solvent, the residue was purified by flash chromatography on silica gel (*n*-Hexane/EtOAc) to give the desired product.

*Z Selective Hydroarylation*: Reactions were conducted in screw cap test tube. Aryl Phosphonate (0.2 mmol), Diphenylacetylene (2.0 equiv),  $[RhCp^*Cl_2]_2$  (2.5 mol%), AgSbF<sub>6</sub> (10 mol%), Cu(OAc)<sub>2</sub> (10 mol%), PivOH (1.0 equiv) were combined in 1,2-DCE (1.0 mL). The reaction mixture was stirred at 110 °C for 12 h. Additional AgSbF<sub>6</sub> (20 mol%) was added to the reaction mixture after 12 h. After completion of the isomerization, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed with sequentially aqueous NaHCO<sub>3</sub> and NH<sub>4</sub>Cl. The organic layer was dried over MgSO<sub>4</sub>. After removal of solvent, the residue was purified by flash chromatography on silica gel (*n*-Hexane/EtOAc) to give the desired product.



**(E)-diethyl (2-(1,2-diphenylvinyl)naphthalen-1-yl)phosphonate.** Overall yield 82% (72.3 mg). Colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.90 (dd, *J* = 8.8, 1.1 Hz, 1H), 7.95 – 7.80 (m, 2H), 7.63 (ddd, *J* = 8.6, 6.9, 1.5 Hz, 1H), 7.55 (ddd, *J* = 8.0, 6.9, 1.2 Hz, 1H), 7.43 – 7.33 (m, 2H), 7.32 – 7.17 (m, 9H), 6.67 (s, 1H), 4.07 (s, 4H), 1.24 (t, *J* = 7.1 Hz, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 150.4, 150.3, 143.0, 143.0, 139.9, 137.4, 134.1, 134.0, 132.6, 132.5, 132.0, 131.9, 131.3, 131.3, 130.7, 129.5, 128.8, 128.5, 128.3, 128.3, 128.0, 128.0, 127.8, 127.8, 127.7, 127.2, 127.1, 126.9, 126.0, 124.1, 122.3, 61.8, 61.7, 16.3, 16.3. [Ref] *Org. Lett.* **2013**, *15*, 4504.



(**Z**)-diethyl (2-(1,2-diphenylvinyl)naphthalen-1-yl)phosphonate. Overall yield 81% (71.6 mg). White solid. mp 114 – 116 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.87 (d, *J* = 8.8 Hz, 1H), 8.07 – 8.00 (m, 1H), 7.96 – 7.89 (m, 1H), 7.72 – 7.54 (m, 2H), 7.41 – 7.20 (m, 6H), 7.17 – 7.02 (m, 6H), 4.39 – 3.25 (m, 4H), 1.31 – 0.53 (m, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 145.9, 145.8, 143.6, 143.4, 143.4, 137.2, 134.5, 134.4, 133.6, 133.6, 133.0, 132.9, 130.1, 129.9, 129.5, 128.6, 128.5, 127.3, 127.0, 126.9, 126.9, 126.6, 126.3, 125.7, 123.9, 61.7, 61.7, 61.5, 61.4, 16.2, 16.1, 16.1. HRMS (ESI+) m/z calcd. for [C<sub>28</sub>H<sub>27</sub>NaO<sub>3</sub>P]<sup>+</sup>465.1590, found : 465.1628.



(E)-diethyl (2-(1,2-diphenylvinyl)-5-methylphenyl)phosphonate. Overall yield 61% (49.5 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.88 (dd, J = 14.3, 1.8 Hz, 1H), 7.37 – 7.06 (m, 12H), 6.72 (s, 1H), 4.22 – 3.87 (m, 4H), 2.42 (s, 3H), 1.23 (t, J = 7.0 Hz, 6H). [Ref] Org. Lett. 2013, 15, 4504.



(Z)-diethyl (2-(1,2-diphenylvinyl)-5-methylphenyl)phosphonate. Overall yield 80% (64.5 mg). δ 8.04 (dd, J = 14.9, 1.9 Hz, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.37 – 7.07 (m, 10H), 7.01 – 6.90 (m, 2H), 3.97 – 3.35 (m, 4H), 2.49 (s, 3H), 0.97 (t, J = 7.0 Hz, 3H), 0.84 (t, J = 7.0 Hz, 3H). [Ref] *Org. Lett.* 2013, *15*, 4504.

As mentioned in the text, DCE proved to be the most suitable solvent for the  $AgSbF_6$ -catalyzed isomerization, and the tandem hydroarylation/isomerization process was sluggish in other solvents (e.g., dioxane, *i*PrOH, and toluene). We envisaged that the resulting *E*-isomers would be prone to isomerization upon the addition of  $AgSbF_6$ in DCE without solvent exchange. Indeed, a convenient one-pot procedure was found to proceed through the hydroarylation and subsequent isomerization to deliver the *Z*-selective alkene products (Table 3S).

Table 3S. One-pot sequence for the hydroarylation/isomerization process.



(Z)-8-(1,2-diphenylvinyl)-2-methylisoquinolin-1(2H)-one (4a). Overall yield 80% (26.9 mg). Reactions were conducted in screw cap test tube. 2-methylisoquinolin-1(2H)-one (0.1 mmol), diphenylacetylene (1.5 equiv),  $[Ru(p-cymene)Cl_2]_2$  (5 mol%), AgSbF<sub>6</sub> (20 mol%), AcOH (4.0 equiv) were combined in 1,4-Dioxane (0.4 mL). The reaction mixture was stirred at 100 °C for 2 h. AgSbF<sub>6</sub> (20 mol%) and 1,2-DCE (2.0 mL) were added to the reaction mixture. After 1 h, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed with sequentially aqueous NaHCO<sub>3</sub> and NH<sub>4</sub>Cl. The organic layer was dried over MgSO<sub>4</sub>. After removal of solvent, the residue was purified by flash chromatography on silica gel (*n*-Hexane : EtOAc = 2 : 1) to give the desired product (4a) as white solid.

(Z)-*N*-(2-(1,2-diphenylvinyl)-4,5-dimethoxyphenyl)acetamide (4f). Overall yield 76% (28.3 mg). Reactions were conducted in screw cap test tube. N-(3,4-dimethoxyphenyl)acetamide (0.1 mmol), diphenylacetylene (1.2 equiv),  $[\operatorname{Ru}(p\text{-cymene})\operatorname{Cl}_2]_2$  (5 mol%), AgSbF<sub>6</sub> (20 mol%), PivOH (5.0 equiv) were combined in *i*PrOH (0.2 mL). The reaction mixture was stirred at 100 °C for 6 h. AgSbF<sub>6</sub> (20 mol%) and 1,2-DCE (2.0 mL) were added to the reaction mixture. After 12 h, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed with sequentially aqueous NaHCO<sub>3</sub> and NH<sub>4</sub>Cl. The organic layer was dried over MgSO<sub>4</sub>. After removal of solvent, the residue was purified by flash chromatography on silica gel (*n*-Hexane : EtOAc = 1 : 1) to give the desired product (4f) as pale brown solid.

(Z)-1-(3-(1,2-diphenylvinyl)-7-methoxybenzofuran-2-yl)ethanone (4n). Overall yield 78% (28.6 mg). Reactions were conducted in screw cap test tube. 1-(7-methoxybenzofuran-2-yl)ethanone (0.1 mmol), diphenylacetylene (2.0 equiv), RuH<sub>2</sub>(CO)(PPh<sub>3</sub>)<sub>3</sub> (10 mol%) were combined in toluene (0.2 mL). The reaction mixture was stirred at 135 °C for 30 min. AgSbF<sub>6</sub> (20 mol%), AcOH (2.0 equiv) and 1,2-DCE (2.0 mL) were added to the reaction mixture. After 2 h, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed with sequentially aqueous NaHCO<sub>3</sub> and NH<sub>4</sub>Cl. The organic layer was dried over MgSO<sub>4</sub>. After removal of solvent, the residue was purified by flash chromatography on silica gel (*n*-Hexane : EtOAc = 6 : 1) to give the desired product (4n) as white solid.

#### 3. Preparation of Starting Materials

Starting materials  $(4a^{[1]}, 4b^{[1]}, 4c^{[2]}, 4d^{[3]}, 4e^{[3]}, 4f^{[3]}, 4g^{[3]}, 4h^{[3]}, 4i^{[4]}, 4j^{[5]}, 4k^{[5]}, 4l^{[6]})$  were prepared by the reported method.

General Procedure for the Preparation of E-Alkenyl Arenes (4m - 4r)<sup>[7]</sup>

Reactions were conducted in screw cap test tube. Substrate (2 mmol), diphenylacetylene (4 mmol),  $RuH_2(CO)(PPh_3)_3$  (6 mol%) were combined in toluene (4 mL). The reaction mixture was stirred at 135 °C for 1 h. Toluene was removed under the reduced pressure and the residue was purified by flash chromatography on silica gel to give desired product.

#### **Compound Characterizations:**



(E)-1-(3-(1,2-diphenylvinyl)furan-2-yl)ethanone. Pale yellow solid. mp 103 – 105 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (d, J = 1.7 Hz, 1H), 7.33 – 7.25 (m, 5H), 7.21 – 7.11 (m, 6H), 6.36 (d, J = 1.7 Hz, 1H), 2.52 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  187.5, 148.0, 144.2, 139.2, 136.4, 136.0, 132.9, 132.5, 129.7, 129.6, 128.4, 127.9, 127.5, 127.3, 115.2, 27.7. HRMS (ESI+) m/z calcd. for [C<sub>20</sub>H<sub>16</sub>NaO<sub>2</sub>]<sup>+</sup>: 311.1043, found : 311.1021.



**(E)-1-(3-(1,2-diphenylvinyl)-7-methoxybenzofuran-2-yl)ethanone.** Yellow solid. mp 121 – 123 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.38 – 7.33 (m, 2H), 7.31 – 7.22 (m, 8H), 7.19 – 7.12 (m, 1H), 7.05 (dd, *J* = 7.8, 1.0 Hz, 1H), 6.98 (s, 1H), 6.96 (dd, *J* = 7.8, 1.0 Hz, 1H), 4.07 (s, 3H), 2.66 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 189.0, 148.2, 145.8, 143.7, 138.6, 136.3, 133.3, 131.6, 130.3, 130.0, 129.7, 129.5, 128.2, 128.0, 127.6, 127.4, 124.3, 114.3, 109.3, 56.0, 28.1. HRMS (ESI+) m/z calcd. for [C<sub>25</sub>H<sub>20</sub>NaO<sub>3</sub>]<sup>+</sup> : 391.1305, found : 391.1290.



(E)-5-(1,2-diphenylvinyl)chroman-4-one. Dark brown oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.49 (dd, J = 8.4, 7.4 Hz, 1H), 7.33 – 7.16 (m, 10H), 7.09 (dd, J = 7.4, 1.2 Hz, 1H), 7.04 (dd, J = 8.4, 1.2 Hz, 1H), 6.62 (s, 1H), 4.47 (t, J = 6.4 Hz, 2H), 2.70 (t, J = 6.4 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 190.1, 162.8, 146.3, 143.3, 139.4, 137.4, 134.3, 130.1, 129.3, 127.8, 127.5, 127.4, 126.8, 126.5, 125.0, 119.5, 117.5, 66.5, 38.5. HRMS (ESI+) m/z calcd. for [C<sub>23</sub>H<sub>18</sub>NaO<sub>2</sub>]<sup>+</sup> : 349.1199, found : 349.1199.



(E)-8-(1,2-diphenylvinyl)-3,4-dihydronaphthalen-1(2H)-one. Yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47 (t, J = 7.6 Hz, 1H), 7.33 (dd, J = 7.6, 1.2 Hz, 1H), 7.29 – 7.07 (m, 11H), 6.56 (s, 1H), 2.98 (t, J = 6.1 Hz, 2H), 2.51 (t, J = 6.7 Hz, 2H), 2.08 (q, J = 6.5 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  197.7, 145.9, 145.5, 144.2, 139.9, 137.7, 131.8, 131.7, 130.5, 130.3, 129.3, 128.2, 127.8, 127.5, 127.1, 126.8, 126.4, 39.9, 30.5, 22.9. HRMS (ESI+) m/z calcd. for [C<sub>24</sub>H<sub>20</sub>NaO]<sup>+</sup> : 347.1406, found : 347.1424.



**(E)-5-(1,2-diphenylvinyl)-2-phenyl-4H-thiochromen-4-one.** Pale brown solid. mp 124 – 126 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.72 – 7.58 (m, 4H), 7.58 – 7.44 (m, 4H), 7.34 – 7.27 (m, 2H), 7.25 – 7.14 (m, 8H), 7.06 (s, 1H), 6.58 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 180.5, 149.9, 147.0, 144.5, 139.7, 139.2, 137.7, 136.1, 131.7, 130.6, 130.4, 130.3, 129.4, 129.2, 129.2, 127.9, 127.5, 126.8, 126.8, 126.7, 126.5, 126.2, 124.4. HRMS (ESI+) m/z calcd. for [C<sub>29</sub>H<sub>20</sub>NaOS]<sup>+</sup> : 439.1127, found : 439.1128.



**(E)-1-benzyl-5-(1,2-diphenylvinyl)quinolin-4(1H)-one.** Pale yellow solid. mp 113 – 115 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.52 – 7.46 (m, 1H), 7.44 – 7.26 (m, 8H), 7.24 – 7.09 (m, 10H), 6.55 (s, 1H), 6.12 (d, *J* = 7.7 Hz, 1H), 5.21 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 177.5, 145.3, 144.8, 142.4, 141.4, 140.0, 137.8, 135.2, 130.8, 130.2, 129.3, 129.0, 128.0, 127.6, 127.3, 127.0, 126.4, 126.1, 126.1, 125.8, 125.1, 115.7, 111.6, 56.6. HRMS (ESI+) m/z calcd. for [C<sub>30</sub>H<sub>23</sub>NNaO]<sup>+</sup>: 436.1672, found : 436.1668.

#### Reference

- (1) P. Zhao, R. Niu, F. Wang, K. Han, X. Li, Org. Lett. 2012, 14, 4166.
- (2) M. C. Reddy, M. Jeganmohan, Chem. Commun. 2013, 49, 481.
- (3) R. Manikandan, M. Jeganmohan, Org. Lett. 2014, 16, 912.
- (4) D. Zhao, C. Nimphius, M. Lindale, F. Glorius, Org. Lett. 2013, 15, 4504.
- (5) M. Itoh, Y. Hashimoto, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2013, 78, 8098.
- (6) K. Nobushige, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2014, 16, 1188.
- (7) F. Kakiuchi, Y. Yamamoto, N. Chatani, S. Murai, Chem. Lett. 1995, 681.

# Appendix I

## Spectral Copies of <sup>1</sup>H and <sup>13</sup>C NMR Data

# **Obtained in this Study**

#### (E)-5-(1,2-diphenylvinyl)-4H-chromen-4-one (2a).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>



(E)-N-(5-(1,2-diphenylvinyl)-2-methyl-4-oxo-4H-chromen-7-yl)acetamide (2c).

<sup>400</sup> MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

#### (E)-1-(1,2-diphenylvinyl)-8-methyl-9H-xanthen-9-one (2e).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

#### (E)-5-(1,2-bis(4-chlorophenyl)vinyl)-4H-chromen-4-one (2f).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>
(E)-5-(1,2-diphenylvinyl)-7-methoxy-4H-chromen-4-one (2g).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

(E)-5-(1,2-diphenylvinyl)-4-oxo-4H-chromen-7-yl acetate (2h).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

(E)-5-(1,2-diphenylvinyl)-7-hydroxy-4H-chromen-4-one (2i).



400 MHz, <sup>1</sup>H NMR in DMSO-d<sub>6</sub>



100 MHz, <sup>13</sup>C NMR in DMSO-d<sub>6</sub>



(E)-5-(1,2-diphenylvinyl)-4-oxo-4H-chromen-7-yl trifluoromethanesulfonate (2j).

400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub> (*E/Z* Mixture 81:19)



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub> (*E/Z* Mixture 81:19)

# (E)-5-(1,2-diphenylvinyl)-6-fluoro-4H-chromen-4-one (2k).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

(E)-6-chloro-5-(1,2-diphenylvinyl)-4H-chromen-4-one (2l).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

## (Z)-5-(1,2-diphenylvinyl)-4H-chromen-4-one (3a).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>



(Z)-*N*-(5-(1,2-diphenylvinyl)-2-methyl-4-oxo-4H-chromen-7-yl)acetamide (3c).

400 MHz, <sup>1</sup>H NMR in DMSO-d<sub>6</sub>



100 MHz, <sup>13</sup>C NMR in DMSO-d<sub>6</sub>

### (Z)-5-(1,2-diphenylvinyl)-3-phenyl-4H-chromen-4-one (3d).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

### (Z)-1-(1,2-diphenylvinyl)-8-methyl-9H-xanthen-9-one (3e).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

## (Z)-5-(1,2-diphenylvinyl)-7-methoxy-4H-chromen-4-one (3g).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

# (Z)-5-(1,2-diphenylvinyl)-4-oxo-4H-chromen-7-yl acetate (3h).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

(Z)-5-(1,2-diphenylvinyl)-7-hydroxy-4H-chromen-4-one (3i).



400 MHz, <sup>1</sup>H NMR in DMSO-d<sub>6</sub>



100 MHz, <sup>13</sup>C NMR in DMSO-d<sub>6</sub>



(Z)-5-(1,2-diphenylvinyl)-4-oxo-4H-chromen-7-yl trifluoromethanesulfonate (3j).

400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub> (*E/Z* Mixture 5:95)



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub> (*E/Z* Mixture 5:95)

# (Z)-5-(1,2-diphenylvinyl)-6-fluoro-4H-chromen-4-one (3k).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

(Z)-6-chloro-5-(1,2-diphenylvinyl)-4H-chromen-4-one (3l).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

(Z)-6-bromo-5-(1,2-diphenylvinyl)-4H-chromen-4-one (3m).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

### (Z)-8-(1,2-bis(4-(trifluoromethyl)phenyl)vinyl)-2-methylisoquinolin-1(2H)-one (4b).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>



# (Z)-4-(1,2-diphenylvinyl)benzo[d][1,3]dioxol-5-yl diethylcarbamate (4c).

400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

# (Z)-N-(2-(1,2-diphenylvinyl)phenyl)acetamide (4e).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

## (Z)-N-(2-(1,2-bis(4-fluorophenyl)vinyl)phenyl)acetamide (4g).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>



## (Z)-diethyl (2-(1,2-diphenylvinyl)naphthalen-1-yl)phosphonate (4i).

400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

### (Z)-(2-(1,2-diphenylvinyl)phenyl)diphenylphosphine oxide (4j).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

## (Z)-(1-(2-(methylsulfinyl)phenyl)ethene-1,2-diyl)dibenzene (4l)



400 MHz, <sup>1</sup>H NMR in DMSO-d<sub>6</sub>(60 °C)



100 MHz, <sup>13</sup>C NMR in DMSO-d<sub>6</sub> (60 °C)

# (Z)-1-(3-(1,2-diphenylvinyl)furan-2-yl)ethanone (4m).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>



# (Z)-1-(3-(1,2-diphenylvinyl)-7-methoxybenzofuran-2-yl)ethanone (4n).

400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

#### (Z)-5-(1,2-diphenylvinyl)chroman-4-one (40).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>
#### (Z)-5-(1,2-diphenylvinyl)-2-phenyl-4H-thiochromen-4-one (4q).



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

### Preparation of Starting Materials (E-Isomer)





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>



(E)-1-(3-(1,2-diphenylvinyl)-7-methoxybenzofuran-2-yl)ethanone.

400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

#### (E)-5-(1,2-diphenylvinyl)chroman-4-one.



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>



(E)-8-(1,2-diphenylvinyl)-3,4-dihydronaphthalen-1(2H)-one.

400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

#### (E)-5-(1,2-diphenylvinyl)-2-phenyl-4H-thiochromen-4-one.



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>





400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>



400 MHz, <sup>1</sup>H NMR in CDCl<sub>3</sub>



100 MHz, <sup>13</sup>C NMR in CDCl<sub>3</sub>

# Appendix II

## **Crystallographic Data for 3b**

Crystallographic Data for 3b



Table 1. Crystal data and structure refinement for **3b**.

| Identification code             | 0115b-1                            |                         |
|---------------------------------|------------------------------------|-------------------------|
| Empirical formula               | C29 H20 O2                         |                         |
| Formula weight                  | 400.45                             |                         |
| Temperature                     | 120(2) K                           |                         |
| Wavelength                      | 0.71073 Å                          |                         |
| Crystal system                  | Orthorhombic                       |                         |
| Space group                     | Pna2(1)                            |                         |
| Unit cell dimensions            | a = 7.9125(4) Å                    | α=90°.                  |
|                                 | b = 17.8240(9) Å                   | β= 90°.                 |
|                                 | c = 29.6276(16) Å                  | $\gamma = 90^{\circ}$ . |
| Volume                          | 4178.5(4) Å <sup>3</sup>           |                         |
| Z                               | 8                                  |                         |
| Density (calculated)            | 1.273 Mg/m <sup>3</sup>            |                         |
| Absorption coefficient          | 0.079 mm <sup>-1</sup>             |                         |
| F(000)                          | 1680                               |                         |
| Crystal size                    | 0.43 x 0.33 x 0.30 mm <sup>3</sup> |                         |
| Theta range for data collection | 1.33 to 30.27°.                    |                         |
| Index ranges                    | -10<=h<=10, -25<=k<=11, -41        | <=l<=34                 |

| Reflections collected             | 43042                                       |
|-----------------------------------|---------------------------------------------|
| Independent reflections           | 10984 [R(int) = 0.0243]                     |
| Completeness to theta $= 25.00$   | 100.0 %                                     |
| Absorption correction             | Semi-empirical from equivalents             |
| Max. and min. transmission        | 0.9768 and 0.9670                           |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters    | 10984 / 1 / 559                             |
| Goodness-of-fit on F <sup>2</sup> | 1.097                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0429, wR2 = 0.1135                   |
| R indices (all data)              | R1 = 0.0497, wR2 = 0.1254                   |
| Largest diff. peak and hole       | 0.355 and -0.221 e. <sup>-3</sup>           |

|       | х        | у       | Z       | U(eq) |
|-------|----------|---------|---------|-------|
| O(1)  | 9158(2)  | 4946(1) | 4014(1) | 36(1) |
| O(2)  | 7788(2)  | 6828(1) | 4710(1) | 29(1) |
| O(3)  | 3988(2)  | 5249(1) | 1502(1) | 40(1) |
| O(4)  | 5799(1)  | 6609(1) | 2495(1) | 26(1) |
| C(1)  | 8454(3)  | 8245(1) | 4421(1) | 36(1) |
| C(2)  | 8497(3)  | 8983(1) | 4266(1) | 45(1) |
| C(3)  | 8460(3)  | 9132(1) | 3810(1) | 42(1) |
| C(4)  | 8361(2)  | 8545(1) | 3503(1) | 39(1) |
| C(5)  | 8313(2)  | 7809(1) | 3657(1) | 33(1) |
| C(6)  | 8371(2)  | 7653(1) | 4114(1) | 27(1) |
| C(7)  | 8336(2)  | 6868(1) | 4277(1) | 24(1) |
| C(8)  | 8806(2)  | 6252(1) | 4045(1) | 28(1) |
| C(9)  | 8705(2)  | 5501(1) | 4231(1) | 25(1) |
| C(10) | 8058(2)  | 5466(1) | 4697(1) | 23(1) |
| C(11) | 7665(2)  | 6138(1) | 4918(1) | 25(1) |
| C(12) | 7121(3)  | 6169(1) | 5362(1) | 33(1) |
| C(13) | 6964(2)  | 5509(1) | 5600(1) | 34(1) |
| C(14) | 7328(2)  | 4824(1) | 5391(1) | 29(1) |
| C(15) | 7854(2)  | 4792(1) | 4946(1) | 25(1) |
| C(16) | 8079(2)  | 4035(1) | 4733(1) | 25(1) |
| C(17) | 9321(2)  | 3557(1) | 4843(1) | 30(1) |
| C(18) | 10774(2) | 3672(1) | 5145(1) | 33(1) |
| C(19) | 11402(2) | 4370(1) | 5285(1) | 41(1) |
| C(20) | 12766(3) | 4422(2) | 5576(1) | 50(1) |
| C(21) | 13534(3) | 3779(2) | 5732(1) | 56(1) |
| C(22) | 12959(3) | 3083(2) | 5595(1) | 55(1) |
| C(23) | 11600(2) | 3027(1) | 5299(1) | 43(1) |
| C(24) | 6709(2)  | 3803(1) | 4415(1) | 25(1) |
| C(25) | 7051(2)  | 3321(1) | 4058(1) | 32(1) |
| C(26) | 5802(3)  | 3117(1) | 3758(1) | 36(1) |
| C(27) | 4176(2)  | 3392(1) | 3807(1) | 35(1) |
| C(28) | 3796(2)  | 3860(1) | 4167(1) | 38(1) |
| C(29) | 5062(2)  | 4065(1) | 4468(1) | 32(1) |
| C(30) | 5470(2)  | 8121(1) | 2513(1) | 31(1) |
| C(31) | 5518(2)  | 8899(1) | 2507(1) | 38(1) |

Table 2. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>  $x \ 10^3$ ) for **3b**. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| C(32) | 5157(3) | 9291(1) | 2117(1) | 42(1) |
|-------|---------|---------|---------|-------|
| C(33) | 4714(3) | 8905(1) | 1730(1) | 46(1) |
| C(34) | 4659(3) | 8126(1) | 1732(1) | 37(1) |
| C(35) | 5049(2) | 7725(1) | 2122(1) | 26(1) |
| C(36) | 5037(2) | 6897(1) | 2122(1) | 23(1) |
| C(37) | 4378(2) | 6456(1) | 1800(1) | 26(1) |
| C(38) | 4524(2) | 5644(1) | 1809(1) | 27(1) |
| C(39) | 5355(2) | 5341(1) | 2215(1) | 23(1) |
| C(40) | 5908(2) | 5842(1) | 2547(1) | 23(1) |
| C(41) | 6596(2) | 5603(1) | 2954(1) | 28(1) |
| C(42) | 6756(2) | 4846(1) | 3032(1) | 30(1) |
| C(43) | 6252(2) | 4332(1) | 2705(1) | 30(1) |
| C(44) | 5553(2) | 4562(1) | 2300(1) | 26(1) |
| C(45) | 5014(2) | 3970(1) | 1967(1) | 30(1) |
| C(46) | 3599(2) | 3574(1) | 2026(1) | 31(1) |
| C(47) | 2312(2) | 3631(1) | 2381(1) | 29(1) |
| C(48) | 2130(2) | 4203(1) | 2701(1) | 30(1) |
| C(49) | 928(2)  | 4163(1) | 3038(1) | 35(1) |
| C(50) | -134(2) | 3550(1) | 3065(1) | 40(1) |
| C(51) | -26(2)  | 2992(1) | 2753(1) | 43(1) |
| C(52) | 1167(2) | 3024(1) | 2412(1) | 37(1) |
| C(53) | 6231(2) | 3787(1) | 1592(1) | 30(1) |
| C(54) | 5803(3) | 3353(1) | 1225(1) | 41(1) |
| C(55) | 6947(3) | 3197(1) | 888(1)  | 51(1) |
| C(56) | 8550(3) | 3472(1) | 903(1)  | 56(1) |
| C(57) | 9051(4) | 3905(2) | 1275(1) | 73(1) |
| C(58) | 7891(3) | 4052(2) | 1619(1) | 57(1) |
|       |         |         |         |       |

Table 3. Bond lengths [Å] and angles  $[\circ]$  for **3b**.

| O(1)-C(9)   | 1.2337(19) |
|-------------|------------|
| O(2)-C(7)   | 1.356(2)   |
| O(2)-C(11)  | 1.3795(19) |
| O(3)-C(38)  | 1.227(2)   |
| O(4)-C(36)  | 1.357(2)   |
| O(4)-C(40)  | 1.3788(18) |
| C(1)-C(2)   | 1.393(3)   |
| C(1)-C(6)   | 1.394(2)   |
| C(2)-C(3)   | 1.379(3)   |
| C(3)-C(4)   | 1.388(3)   |
| C(4)-C(5)   | 1.389(3)   |
| C(5)-C(6)   | 1.385(3)   |
| C(6)-C(7)   | 1.481(2)   |
| C(7)-C(8)   | 1.349(2)   |
| C(8)-C(9)   | 1.450(2)   |
| C(9)-C(10)  | 1.473(2)   |
| C(10)-C(11) | 1.399(2)   |
| C(10)-C(15) | 1.419(2)   |
| C(11)-C(12) | 1.386(2)   |
| C(12)-C(13) | 1.376(2)   |
| C(13)-C(14) | 1.399(3)   |
| C(14)-C(15) | 1.382(2)   |
| C(15)-C(16) | 1.501(2)   |
| C(16)-C(17) | 1.340(2)   |
| C(16)-C(24) | 1.496(2)   |
| C(17)-C(18) | 1.471(2)   |
| C(18)-C(23) | 1.399(3)   |
| C(18)-C(19) | 1.402(3)   |
| C(19)-C(20) | 1.384(3)   |
| C(20)-C(21) | 1.377(4)   |
| C(21)-C(22) | 1.382(4)   |
| C(22)-C(23) | 1.391(3)   |
| C(24)-C(25) | 1.388(2)   |
| C(24)-C(29) | 1.394(2)   |
| C(25)-C(26) | 1.377(3)   |
| C(26)-C(27) | 1.385(3)   |
| C(27)-C(28) | 1.387(3)   |
| C(28)-C(29) | 1.391(3)   |

| C(30)-C(31)      | 1.387(2)   |
|------------------|------------|
| C(30)-C(35)      | 1.398(3)   |
| C(31)-C(32)      | 1.380(3)   |
| C(32)-C(33)      | 1.381(3)   |
| C(33)-C(34)      | 1.389(3)   |
| C(34)-C(35)      | 1.392(3)   |
| C(35)-C(36)      | 1.477(2)   |
| C(36)-C(37)      | 1.341(2)   |
| C(37)-C(38)      | 1.452(2)   |
| C(38)-C(39)      | 1.473(2)   |
| C(39)-C(40)      | 1.398(2)   |
| C(39)-C(44)      | 1.421(2)   |
| C(40)-C(41)      | 1.390(2)   |
| C(41)-C(42)      | 1.376(2)   |
| C(42)-C(43)      | 1.391(3)   |
| C(43)-C(44)      | 1.383(3)   |
| C(44)-C(45)      | 1.507(2)   |
| C(45)-C(46)      | 1.335(2)   |
| C(45)-C(53)      | 1.505(3)   |
| C(46)-C(47)      | 1.466(3)   |
| C(47)-C(48)      | 1.401(2)   |
| C(47)-C(52)      | 1.414(2)   |
| C(48)-C(49)      | 1.381(3)   |
| C(49)-C(50)      | 1.381(3)   |
| C(50)-C(51)      | 1.361(3)   |
| C(51)-C(52)      | 1.383(3)   |
| C(53)-C(54)      | 1.378(3)   |
| C(53)-C(58)      | 1.398(3)   |
| C(54)-C(55)      | 1.377(3)   |
| C(55)-C(56)      | 1.361(4)   |
| C(56)-C(57)      | 1.403(4)   |
| C(57)-C(58)      | 1.395(3)   |
| C(7)-O(2)-C(11)  | 119.41(13) |
| C(36)-O(4)-C(40) | 119.52(12) |
| C(2)-C(1)-C(6)   | 120.09(19) |
| C(3)-C(2)-C(1)   | 120.3(2)   |
| C(2)-C(3)-C(4)   | 119.84(18) |
| C(3)-C(4)-C(5)   | 119.95(19) |
| C(6)-C(5)-C(4)   | 120.61(18) |

| C(5)-C(6)-C(1)    | 119.20(16) |
|-------------------|------------|
| C(5)-C(6)-C(7)    | 120.50(15) |
| C(1)-C(6)-C(7)    | 120.30(16) |
| C(8)-C(7)-O(2)    | 121.95(14) |
| C(8)-C(7)-C(6)    | 126.74(15) |
| O(2)-C(7)-C(6)    | 111.30(13) |
| C(7)-C(8)-C(9)    | 122.75(16) |
| O(1)-C(9)-C(8)    | 121.61(16) |
| O(1)-C(9)-C(10)   | 123.79(15) |
| C(8)-C(9)-C(10)   | 114.59(14) |
| C(11)-C(10)-C(15) | 117.08(15) |
| C(11)-C(10)-C(9)  | 118.60(14) |
| C(15)-C(10)-C(9)  | 124.28(14) |
| O(2)-C(11)-C(12)  | 114.21(14) |
| O(2)-C(11)-C(10)  | 122.62(15) |
| C(12)-C(11)-C(10) | 123.17(15) |
| C(13)-C(12)-C(11) | 118.67(16) |
| C(12)-C(13)-C(14) | 120.06(17) |
| C(15)-C(14)-C(13) | 121.28(16) |
| C(14)-C(15)-C(10) | 119.72(14) |
| C(14)-C(15)-C(16) | 118.20(14) |
| C(10)-C(15)-C(16) | 121.94(15) |
| C(17)-C(16)-C(24) | 120.59(15) |
| C(17)-C(16)-C(15) | 123.82(15) |
| C(24)-C(16)-C(15) | 115.35(13) |
| C(16)-C(17)-C(18) | 129.20(16) |
| C(23)-C(18)-C(19) | 117.78(18) |
| C(23)-C(18)-C(17) | 116.70(18) |
| C(19)-C(18)-C(17) | 125.51(17) |
| C(20)-C(19)-C(18) | 121.4(2)   |
| C(21)-C(20)-C(19) | 119.9(2)   |
| C(20)-C(21)-C(22) | 120.1(2)   |
| C(21)-C(22)-C(23) | 120.3(2)   |
| C(22)-C(23)-C(18) | 120.5(2)   |
| C(25)-C(24)-C(29) | 118.42(16) |
| C(25)-C(24)-C(16) | 120.71(15) |
| C(29)-C(24)-C(16) | 120.87(15) |
| C(26)-C(25)-C(24) | 120.98(17) |
| C(25)-C(26)-C(27) | 120.43(18) |
| C(26)-C(27)-C(28) | 119.60(17) |
|                   |            |

| C(27)-C(28)-C(29) | 119.73(17) |
|-------------------|------------|
| C(28)-C(29)-C(24) | 120.81(17) |
| C(31)-C(30)-C(35) | 119.99(18) |
| C(32)-C(31)-C(30) | 120.71(19) |
| C(31)-C(32)-C(33) | 119.72(16) |
| C(32)-C(33)-C(34) | 120.2(2)   |
| C(33)-C(34)-C(35) | 120.61(19) |
| C(34)-C(35)-C(30) | 118.81(14) |
| C(34)-C(35)-C(36) | 120.84(16) |
| C(30)-C(35)-C(36) | 120.35(16) |
| C(37)-C(36)-O(4)  | 122.00(13) |
| C(37)-C(36)-C(35) | 125.95(16) |
| O(4)-C(36)-C(35)  | 112.05(14) |
| C(36)-C(37)-C(38) | 122.67(16) |
| O(3)-C(38)-C(37)  | 122.10(16) |
| O(3)-C(38)-C(39)  | 123.34(15) |
| C(37)-C(38)-C(39) | 114.56(14) |
| C(40)-C(39)-C(44) | 117.73(15) |
| C(40)-C(39)-C(38) | 118.64(13) |
| C(44)-C(39)-C(38) | 123.56(14) |
| O(4)-C(40)-C(41)  | 115.16(13) |
| O(4)-C(40)-C(39)  | 122.37(14) |
| C(41)-C(40)-C(39) | 122.47(14) |
| C(42)-C(41)-C(40) | 118.89(15) |
| C(41)-C(42)-C(43) | 120.13(17) |
| C(44)-C(43)-C(42) | 121.59(15) |
| C(43)-C(44)-C(39) | 119.18(15) |
| C(43)-C(44)-C(45) | 118.32(14) |
| C(39)-C(44)-C(45) | 122.50(15) |
| C(46)-C(45)-C(53) | 121.29(16) |
| C(46)-C(45)-C(44) | 121.39(16) |
| C(53)-C(45)-C(44) | 117.01(15) |
| C(45)-C(46)-C(47) | 129.80(16) |
| C(48)-C(47)-C(52) | 116.53(16) |
| C(48)-C(47)-C(46) | 127.39(15) |
| C(52)-C(47)-C(46) | 116.04(16) |
| C(49)-C(48)-C(47) | 121.52(16) |
| C(50)-C(49)-C(48) | 120.14(19) |
| C(51)-C(50)-C(49) | 120.03(19) |
| C(50)-C(51)-C(52) | 120.61(18) |

| C(51)-C(52)-C(47) | 121.12(19) |
|-------------------|------------|
| C(54)-C(53)-C(58) | 117.65(18) |
| C(54)-C(53)-C(45) | 123.18(17) |
| C(58)-C(53)-C(45) | 119.15(17) |
| C(55)-C(54)-C(53) | 121.7(2)   |
| C(56)-C(55)-C(54) | 121.1(2)   |
| C(55)-C(56)-C(57) | 119.1(2)   |
| C(58)-C(57)-C(56) | 119.4(2)   |
| C(57)-C(58)-C(53) | 121.0(2)   |
|                   |            |

Symmetry transformations used to generate equivalent atoms:

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| O(1)  | 47(1)           | 28(1)           | 32(1)           | -8(1)           | 9(1)            | 0(1)            |
| O(2)  | 41(1)           | 21(1)           | 25(1)           | 1(1)            | 6(1)            | -1(1)           |
| O(3)  | 59(1)           | 29(1)           | 31(1)           | -7(1)           | -14(1)          | -1(1)           |
| O(4)  | 33(1)           | 19(1)           | 26(1)           | -5(1)           | -3(1)           | -1(1)           |
| C(1)  | 51(1)           | 26(1)           | 31(1)           | 0(1)            | -2(1)           | -3(1)           |
| C(2)  | 62(1)           | 24(1)           | 50(1)           | 1(1)            | 1(1)            | -4(1)           |
| C(3)  | 45(1)           | 29(1)           | 52(1)           | 12(1)           | 3(1)            | -3(1)           |
| C(4)  | 41(1)           | 39(1)           | 36(1)           | 13(1)           | 4(1)            | -5(1)           |
| C(5)  | 35(1)           | 34(1)           | 31(1)           | 3(1)            | 4(1)            | -4(1)           |
| C(6)  | 26(1)           | 25(1)           | 29(1)           | 3(1)            | 1(1)            | -3(1)           |
| C(7)  | 26(1)           | 25(1)           | 21(1)           | 1(1)            | 1(1)            | -4(1)           |
| C(8)  | 30(1)           | 30(1)           | 23(1)           | 0(1)            | 3(1)            | -3(1)           |
| C(9)  | 26(1)           | 26(1)           | 23(1)           | -3(1)           | 1(1)            | -5(1)           |
| C(10) | 24(1)           | 22(1)           | 24(1)           | -2(1)           | 0(1)            | -2(1)           |
| C(11) | 30(1)           | 22(1)           | 24(1)           | 0(1)            | 2(1)            | -2(1)           |
| C(12) | 47(1)           | 27(1)           | 25(1)           | -4(1)           | 8(1)            | -1(1)           |
| C(13) | 42(1)           | 35(1)           | 24(1)           | -1(1)           | 8(1)            | -6(1)           |
| C(14) | 32(1)           | 26(1)           | 29(1)           | 5(1)            | 1(1)            | -5(1)           |
| C(15) | 24(1)           | 23(1)           | 27(1)           | -2(1)           | 0(1)            | -2(1)           |
| C(16) | 26(1)           | 22(1)           | 28(1)           | -1(1)           | 0(1)            | -3(1)           |
| C(17) | 28(1)           | 27(1)           | 35(1)           | 0(1)            | -2(1)           | 1(1)            |
| C(18) | 23(1)           | 45(1)           | 31(1)           | -1(1)           | 1(1)            | 4(1)            |
| C(19) | 27(1)           | 50(1)           | 45(1)           | -5(1)           | -3(1)           | 1(1)            |
| C(20) | 31(1)           | 75(2)           | 43(1)           | -15(1)          | -1(1)           | -5(1)           |
| C(21) | 29(1)           | 102(2)          | 35(1)           | 2(1)            | -6(1)           | 2(1)            |
| C(22) | 33(1)           | 82(2)           | 48(1)           | 19(1)           | -2(1)           | 19(1)           |
| C(23) | 34(1)           | 51(1)           | 43(1)           | 6(1)            | 2(1)            | 11(1)           |
| C(24) | 27(1)           | 20(1)           | 27(1)           | 3(1)            | -2(1)           | -1(1)           |
| C(25) | 34(1)           | 25(1)           | 37(1)           | -4(1)           | -1(1)           | -1(1)           |
| C(26) | 44(1)           | 27(1)           | 38(1)           | -4(1)           | -7(1)           | -5(1)           |
| C(27) | 39(1)           | 28(1)           | 40(1)           | 4(1)            | -13(1)          | -10(1)          |
| C(28) | 29(1)           | 36(1)           | 49(1)           | 7(1)            | -6(1)           | 1(1)            |
| C(29) | 31(1)           | 30(1)           | 35(1)           | -1(1)           | -2(1)           | 4(1)            |
| C(30) | 34(1)           | 23(1)           | 38(1)           | -3(1)           | 1(1)            | -1(1)           |
| C(31) | 37(1)           | 23(1)           | 53(1)           | -11(1)          | -5(1)           | -1(1)           |

Table 4. Anisotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for **3b**. The anisotropic displacement factor exponent takes the form : - $2\pi^2$ [ h<sup>2</sup> a<sup>\*2</sup>U<sup>11</sup> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sup>12</sup> ]

| C(32) | 38(1) | 20(1) | 69(1) | 1(1)   | -14(1) | 2(1)   |
|-------|-------|-------|-------|--------|--------|--------|
| C(33) | 50(1) | 28(1) | 60(2) | 10(1)  | -18(1) | 0(1)   |
| C(34) | 42(1) | 28(1) | 42(1) | 1(1)   | -11(1) | -2(1)  |
| C(35) | 24(1) | 20(1) | 35(1) | -1(1)  | 2(1)   | -1(1)  |
| C(36) | 23(1) | 21(1) | 26(1) | -1(1)  | 3(1)   | -1(1)  |
| C(37) | 32(1) | 22(1) | 25(1) | 0(1)   | -1(1)  | -1(1)  |
| C(38) | 32(1) | 23(1) | 25(1) | -4(1)  | 0(1)   | -2(1)  |
| C(39) | 24(1) | 21(1) | 23(1) | -3(1)  | 3(1)   | -3(1)  |
| C(40) | 23(1) | 18(1) | 26(1) | -2(1)  | 3(1)   | -1(1)  |
| C(41) | 29(1) | 28(1) | 26(1) | -6(1)  | -2(1)  | 2(1)   |
| C(42) | 29(1) | 31(1) | 29(1) | 0(1)   | -3(1)  | 6(1)   |
| C(43) | 28(1) | 23(1) | 38(1) | 1(1)   | -2(1)  | 3(1)   |
| C(44) | 25(1) | 22(1) | 33(1) | -4(1)  | 0(1)   | -1(1)  |
| C(45) | 35(1) | 22(1) | 32(1) | -2(1)  | 0(1)   | 1(1)   |
| C(46) | 37(1) | 24(1) | 33(1) | -5(1)  | -1(1)  | -3(1)  |
| C(47) | 27(1) | 29(1) | 31(1) | 2(1)   | -3(1)  | 2(1)   |
| C(48) | 25(1) | 24(1) | 40(1) | 1(1)   | 2(1)   | 0(1)   |
| C(49) | 29(1) | 37(1) | 37(1) | 5(1)   | 3(1)   | 10(1)  |
| C(50) | 27(1) | 44(1) | 49(1) | 21(1)  | 6(1)   | 8(1)   |
| C(51) | 27(1) | 40(1) | 62(1) | 14(1)  | -4(1)  | -8(1)  |
| C(52) | 34(1) | 33(1) | 45(1) | -1(1)  | -7(1)  | -5(1)  |
| C(53) | 35(1) | 22(1) | 32(1) | -1(1)  | 4(1)   | 2(1)   |
| C(54) | 42(1) | 47(1) | 34(1) | -5(1)  | -7(1)  | 5(1)   |
| C(55) | 61(1) | 55(1) | 36(1) | -11(1) | -2(1)  | 18(1)  |
| C(56) | 66(2) | 51(1) | 51(2) | -1(1)  | 28(1)  | 23(1)  |
| C(57) | 52(1) | 78(2) | 90(2) | -29(2) | 35(2)  | -14(1) |
| C(58) | 45(1) | 59(1) | 68(2) | -34(1) | 21(1)  | -18(1) |
|       |       |       |       |        |        |        |

|        | Х     | у    | Z    | U(eq) |
|--------|-------|------|------|-------|
|        |       |      |      |       |
| H(1A)  | 8481  | 8146 | 4736 | 43    |
| H(2A)  | 8552  | 9385 | 4476 | 54    |
| H(3A)  | 8501  | 9636 | 3705 | 50    |
| H(4A)  | 8327  | 8646 | 3188 | 46    |
| H(5A)  | 8240  | 7409 | 3446 | 40    |
| H(8A)  | 9221  | 6312 | 3746 | 33    |
| H(12A) | 6861  | 6636 | 5500 | 40    |
| H(13A) | 6608  | 5518 | 5906 | 40    |
| H(14A) | 7211  | 4372 | 5558 | 35    |
| H(17A) | 9255  | 3076 | 4706 | 36    |
| H(19A) | 10882 | 4816 | 5178 | 49    |
| H(20A) | 13171 | 4900 | 5667 | 60    |
| H(21A) | 14461 | 3814 | 5935 | 67    |
| H(22A) | 13494 | 2641 | 5703 | 65    |
| H(23A) | 11230 | 2547 | 5201 | 51    |
| H(25A) | 8163  | 3131 | 4019 | 38    |
| H(26A) | 6058  | 2785 | 3517 | 44    |
| H(27A) | 3325  | 3261 | 3595 | 42    |
| H(28A) | 2676  | 4040 | 4207 | 46    |
| H(29A) | 4800  | 4387 | 4714 | 38    |
| H(30A) | 5722  | 7858 | 2784 | 38    |
| H(31A) | 5803  | 9166 | 2774 | 45    |
| H(32A) | 5212  | 9823 | 2114 | 51    |
| H(33A) | 4446  | 9173 | 1462 | 55    |
| H(34A) | 4352  | 7864 | 1465 | 45    |
| H(37A) | 3792  | 6685 | 1556 | 32    |
| H(41A) | 6950  | 5957 | 3174 | 33    |
| H(42A) | 7211  | 4673 | 3310 | 36    |
| H(43A) | 6391  | 3811 | 2762 | 35    |
| H(46A) | 3394  | 3199 | 1805 | 38    |
| H(48A) | 2849  | 4629 | 2686 | 36    |
| H(49A) | 832   | 4557 | 3252 | 41    |
| H(50A) | -941  | 3517 | 3302 | 48    |
| H(51A) | -778  | 2577 | 2768 | 52    |
| H(52A) | 1218  | 2632 | 2195 | 45    |

Table 5. Hydrogen coordinates (  $x~10^4)$  and isotropic displacement parameters (Å  $^2~x~10^3)$  for 3b.

| H(54A) | 4691  | 3156 | 1204 | 49 |
|--------|-------|------|------|----|
| H(55A) | 6611  | 2893 | 640  | 61 |
| H(56A) | 9321  | 3372 | 664  | 67 |
| H(57A) | 10170 | 4095 | 1293 | 88 |
| H(58A) | 8234  | 4336 | 1874 | 69 |
|        |       |      |      |    |