SUPPORTING INFORMATION

Mechanochemical Lithiation of Layered Polysilane

Masataka Ohashi,¹ Hideyuki Nakano,^{1, 2} Tetsuya Morishita,³ Michelle J. S. Spencer,⁴ Yuka Ikemoto,⁵ Chihiro Yogi,⁶ and Toshiaki Ohta⁶

¹Toyota Central R&D Laboratories, Inc., Nagakute, Aichi 480-1192, Japan

²Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan

³Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology,

Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

⁴School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia

⁵SPring-8 Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 Japan

⁶SR Center, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

Content of the Supporting Information:

1. Experimental Section: chemicals, general procedures, and synthetic procedures

2. Details of the structural analysis for the obtained Si_6H_6/nLi . Figures S1–S7, color of the composites, XRD patterns of milled Si_6H_6 without Li, SEM images, Infrared microspectroscopic analysis, theoretical study on the partial vibrational density of state for Si and Li in the composite and Li K-edge XANES analysis respectively.

3. References

1. Experimental Section

Chemicals. All reagents and solvents were purchased from Aldrich, TCI, or Wako Chemicals and were of the highest commercial quality and used without further purification. Calcium silicide (CaSi₂) was prepared according to the literature.¹

General procedures. Powder x-ray diffraction measurement was performed on a Rigaku RINT-TTR diffractometer with CuKα radiation (50 kV, 300 mA). The UV–vis diffuse reflectance spectrum was recorded on a JASCO V-670 spectrophotometer with an integrating sphere unit (JASCO ISN-723). Fourier transform infrared (FTIR) spectra were recorded on a Nicolet iS50 FT-IR spectrometer with a diamond attenuated total reflection unit. The infrared absorption spectra of the low wavenumber region were measured using a synchrotron-radiation source and the BL43IR beamline infrared microscope at SPring-8.² The infrared beam was focused on an area of approximately 20 μm in diameter on a thin sample. The field emission scanning electron microscope (FE-SEM) image was obtained using an Hitachi S-3600N electron microscope with an acceleration voltage of 15 kV. Li K-edge and Si K-edge X-ray absorption near-edge structure (XANES) analysis was performed with the BL-2 and BL-10 double crystal monochromator beamlines at the Synchrotron Radiation Center at Ritsumeikan University. The theoretical XANES spectrum was calculated using the FEFF program. The current–voltage (I–V) profile was measured by a KEITHLEY 2636A System Source Meter. The self-supported composite disk for I–V measurement (10 mm in diameter and approximately 0.2 mm in thickness) was prepared by using a die set and miniature manual press, and the I–V curve was measured in the perpendicular direction of the disk. The diffuse reflectance UV–vis spectrum was recorded on a JASCO V-670 spectrophotometer with an integrating sphere unit (JASCO ISN-723). The samples were encapsulated in a sealed cell under argon atmosphere.

Synthesis of layered polysilane (Si₆H₆). Si₆H₆ was prepared according to the method described by Yamanaka et al.³ Approximately 1 g of CaSi₂ was immersed in 500 mL of 37% HCl. The mixture was stirred continuously at -30 °C for 7 days. The obtained as-made Si₆H₆ was rinsed with cooled HCl (100 ml) and dilute HF (10 ml) solution and then vacuum dried at room temperature.

2. Details of the structural analysis.

Figure S1. Color of the obtained composites: (a) Si_6H_6 , (b) $Si_6H_6/1Li$, (c) $Si_6H_6/3Li$, and (d) $Si_6H_6/6Li$

Figure S2. X-ray diffraction patterns of (a) Si_6H_6 and (b) milled Si_6H_6

Figure S3. Field-emission scanning electron microscope (FE-SEM) images of Si_6H_6 (a) and $Si_6H_6/6Li$ (b). Samples for FE-SEM observation were prepared by dropping and drying Si_6H_6 or $Si_6H_6/6Li$ dispersion in THF on a flat plate. FE-SEM images of before and after the lithiation of Si_6H_6 clearly suggest that the plate-like shapes of Si_6H_6 , which resulted from the stacking of the layers were completely destroyed by the milling process. In addition, the aggregates of the lithiated layer were observed as atypical particles (black spots on image b).

Figure S4. Infrared microspectroscopic analysis of the low wavenumber region of (a) Si_6H_6 , (b) $Si_6H_6/3Li$, and (c) $Si_6H_6/6Li$

Figure S5. The partial vibrational density of state (DOS) of X, Y, and Z directions for (A) Si and (B) Li in a Si₆Li₆ model calculated using *ab initio* molecular-dynamics data. The X and Y directions are parallel to the sheet surface, and the Z direction is perpendicular to the sheet surface. The calculated vibration spectra appeared at 100–500 cm⁻¹. Si–Li vibration can be attributed to 450 cm⁻¹ due to the typical peak of the vibrational DOS of the Z direction because the Si–Li bond is present in a direction perpendicular to Si-NS.

Figure S6. Li K-edge XANES spectra of (a) Si_6H_6/Li , (b) $Si_6H_6/3Li$, (c) $Si_6H_6/6Li$, and (d) LiCl. Si_6H_6/nLi showed a peak attributed to the Li cation at 60.6 eV. These spectra indicated that Li exists as a cationic species in the composite. Although $Si_6H_6/6Li$ exhibited broad peaks at 62–67 eV, we could not attribute those peaks because they changed dramatically in relation to the baseline set for the spectrum.

3. References.

 S. Yamanaka, H. Itoh and M. Hattori, in *Expanded Clays and Other Microporous Solids*, (Eds: M. L. Occelli and H. E. Robson), van Nostrand Reinhold, New York, 1992, pp. 296–317.

[2] H. Kimura, T. Moriwaki, S. Takahashi, H. Aoyagi, T. Matsushita, Y. Ishizawa, M. Masaki, S. Oishi, H. Ohkuma, T. Namba, M. Sakurai, S. Kimura, H. Okamura, H. Nakagawa, T. Takahashi, K. Fukui, K. Shinoda, Y. Kondoh, T. Sata, M. Okuno, M. Matsunami, R. Koyanagi, Y. Yoshimatsu and T. Ishikawa, *Nucl. Instrum. Methods Phys. Res. A*, 2001, 467–468, 441–444.

[3] S. Yamanaka, H. Matsu-ura and M. Ishikawa, Mater. Res. Bull., 1996, 31, 307-316.