Supporting Information for

Ligand-controlled divergent formation of alkenyl- or allylboronates catalyzed by Pd, and synthetic applications

Alicia Martos-Redruejo, Ruth López-Durán, Elena Buñuel, Diego J. Cárdenas*

Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Table of Contents

General methods	S2
Preparation and characterization of precursor allylcarbonates.	S3-S4
Representative procedure for preparation of allylcarbonates.	S4-S5
Experimental data of allylcarbonates.	S5-S14
General procedure for synthesis of allylboronates.	S14
Experimental data of allylboronates.	S15-S19
General procedure for synthesis of alkenylboronates.	S19
Experimental data of akenylboronates.	S19-S23
Oxidation of alkenylboronate 3ef to 4	S23-S24
Suzuki cross-coupling reactions of allylboronates and experimental data	S24-S27
Suzuki cross-coupling of allylboronates	S27-S29
Synthesis of allylboronate 7	S29
Cycloisomerization of allylboronate 7.	S30
¹ H-NMR and ¹³ C-NMR spectra.	S32-S120
X-ray diffraction analysis.	S121-S140
Computational studies	S141-S148
References	S148

General methods.

The solvents used, THF (SDS, anhydrous, analytical grade), DMF (SDS, anhydrous, analytical grade), toluene (SDS, anhydrous, analytical grade), MeOH (SDS, anhydrous, analytical grade), CH₂Cl₂ (SDS, anhydrous, analytical grade), Et₂O (SDS, anhydrous, analytical grade), 1,4-dioxane (SDS, anhydrous, analytical grade), xylene (Carlo Erba, mix of isomers) and DMSO (SDS, anhydrous, analytical grade) were further dried by standing with activated 4 Å molecular sieves under Ar atmosphere for several days prior to use. Commercially *n*-pentane RPE (Carlo Erba, analytical grade), *n*-hexane (Scharlab, extra pure), ethyl acetate (Scharlab, exta pure), and diethyl ether (Aldrich, puriss. p.a.) were used as received. Commercially available reagents were used without additional bis(pinacolato)diboron purification. Palladium(II) acetate (Strem Chemicals), (Fluorochem), bis(phenylsulfonyl)methane (Fluorochem), dimethyl malonate (Aldrich), *N*-(tert-butoxycarbonyl)-*p*-toluenesulfonamide (TCI), 4-iodobenzonitrile (Acros Organics), cesium fluoride (Aldrich) chloro(triethylphosphine)gold(I) (Strem Chemicals), (Fluorochem), silver hexafluoroantimonate(V) tricyclohexylphosphine (Aldrich), potassium tert-butoxide (Fluka), 1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride (Alfa Aesar), potassium carbonate (Panreac), sodium hydride 60 % dispersion in mineral oil (Aldrich), sodium hydroxide (Panreac), hydrogen peroxide solution 33% w/v (Panreac), and 2-butene-1,4-diol (97%) (Acros Organic) were used as received and stored at room temperature.

Dimethyl propargylmalonate (Fluka), tetrakis(triphenylphosphine)palladium(0) (Alfa Aesar), 3-bromo-1-(trimethylsilyl)-1-propyne (Aldrich), 1-bromo-2-butyne (Aldrich), propargyl bromide solution 80 wt. % in toluene (Aldrich), and ethyl-4-bromocrotonate (Aldrich) were used as received and stored at 4 °C. Silicagel 60 (0.40-0.063 mm) was used for flash chromatography purchased from SDS, and TLC-aluminium plates with 0.25 mm of silicagel 60 (F_{254}) were used for thin-layer chromatography, purchased from Macherey-Nagel. ¹H-NMR (300 MHz) and ¹³C-NMR (75 MHz) spectra were recorded using CDCl₃ (7.26 ppm ¹H, 77.2 ppm ¹³C) as internal standard. Bruker AMX-300 was the spectrometer used. Reagents were weighted on air, reactions were performed under Ar and subsequent work-up was performed on air.

Preparation and characterization of precursor allylcarbonates.

Dimethyl 2-(but-2-ynyl)malonate,¹ dimethyl 2-(3-phenylprop-2-ynyl)malonate,² dimethyl 2-(3-(trimethylsilyl)prop-2-yn-1-yl)malonate,³ N-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide,⁴ N-(prop-2-ynyl)-p-toluenesulfonamide,⁵ N-(but-2-ynyl)-p-toluenesulfonamide,¹ dimethyl 2-(4-phenylbut-3-yn-1-yl)malonate,⁶ dimethyl 2-(3-(4-methoxyphenyl)prop-2-yn-1-yl)malonate,⁷ 4-methyl-N-(3-(trimethylsilyl)prop-2-yn-1-yl)benzenesulfonamide,⁸ (*E*)-4-bromobut-2-en-1-yl methyl carbonate,⁹ (*Z*)-4-hydroxybut-2-en-1-yl methyl carbonate,¹⁰ and (pent-3-yne-1,1-diyldisulfonyl)dibenzene¹¹ were prepared according to previously described procedures.

(Z)-4-bromobut-2-en-1-yl methyl carbonate

stirred overnight at room temperature and then neutralized with saturated aq NaHCO₃ solution. The organic layer was washed with brine, dried (Na₂SO₄), and the solvent was carefully evaporated. The residue was purified by flash chromatography on silica gel (hexane/EtOAc 2:1, phosphomolybdic acid stain (2.6 mmol/100 mL ethanol)) to afford the title compound as an orange oil (3.94 g, 92%).

¹H NMR (300 MHz, CDCl₃) δ 6.04 – 5.91 (m, 1H), 5.72 (dt, *J* = 10.8, 6.8 Hz, 1H), 4.76 (dd, *J* = 6.8, 1.2 Hz, 2H), 4.02 (d, *J* = 8.4 Hz, 2H), 3.80 (s, 3H).¹³C NMR (75 MHz, CDCl₃) ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 155.72 (C), 130.51 (CH), 127.61 (CH), 62.56 (CH₂), 55.09 (CH₃), 25.56 (CH₂).

(E)-5,5-bis(phenylsulfonyl)pent-2-en-1-yl methyl carbonate

PhO₂S O O O To a suspension of NaH (60% in mineral oil, 115.4 mg, SO₂Ph O 4,81 mmol) in anhydrous DMF (15 mL) under Ar atmosphere at 0 °C, bis(phenylsulfonyl)methane (1.29 g, 4,37 mmol) was slowly added, and the mixture was stirred at room temperature for 30 minutes (formation of H₂ bubbles was observed during the addition). Then, the electrophile (E)-4-bromobut-2-en-1-yl methyl carbonate (1,0 g, 4,81 mmol), was added dropwise and the mixture was allowed to react at 70 °C for 15 h. Monitoring by TLC indicated reaction completion. Then, water and CH₂Cl₂ were added into the resulting mixture. The aqueous layer was separated and extracted several times with CH₂Cl₂. The combined organic phases were repeatedly washed with water, twice with saturated NaCl aqueous solution, and dried over anhydrous MgSO₄. The solvent was removed under vacuum and the crude was purified by flash chromatography on silica gel (hexane/EtOAc 2:1, molybdophosphoric acid stain -2.6 mmol/100 mL ethanol-) to afford the title compound as a yellowish oil (1.43 g, 77%). ¹H NMR (300 MHz, CDCl₃) δ 8.00 (dd, J = 10.5, 3.1 Hz, 4H), 7.75 (t, J = 7.4 Hz, 2H), 7.63 (dd, J = 9.7, 5.7 Hz, 4H), 5.88 – 5.74 (m, 1H), 5.67 – 5.55 (m, 1H), 4.56 – 4.46 (m, 3H), 3.83 (s, 3H), 2.99 (t, J = 6.2 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 137.95 (C), 134.88 (C), 129.85 (C), 129.57 (CH), 129.32 (CH), 129.06 (CH), 128.16 (CH), 83.50 (CH), 67.46 (CH₂), 55.01 (CH₃), 28.68 (CH₂). HRMS-ESI: [MNa]⁺ Calcd. for C₁₉H₂₀O₇SNa: 447.0542; found: 447.0533.

Representative procedure for preparation of allylcarbonates.

The general alkylation procedure for the synthesis of **1a-q** is described below.

To a suspension of NaH (60% in mineral oil, 1.1 equiv) in anhydrous THF or DMF (solvent and volume will be indicated in every case) under Ar atmosphere at 0 °C, the corresponding propargyl derivative was slowly added (1 equiv) and the mixture was stirred at room temperature for 15 minutes (formation of H_2 bubbles was observed during

the addition). Then, the electrophile (*E*)-4-bromobut-2-en-1-yl methyl carbonate or (*Z*)-4bromobut-2-en-1-yl methyl carbonate (1.2 equiv), was added dropwise and the mixture was allowed to react at room temperature. The reaction progress was monitored by TLC. Then, when using THF, most of the solvent was removed under vacuum and later, water and Et₂O were added into the resulting mixture. The aqueous layer was separated and extracted successively with Et₂O. In the case of using DMF, similar extractive work-up with $CH_2Cl_2/water$ was employed. The combined organic phases were washed several times with water and twice with saturated aqueous solution of NaCl. In all the cases, the combined organic phases were dried over anhydrous MgSO₄. Solvent was removed under vacuum and the crude was purified by flash chromatography.

Experimental data of allylcarbonates.

(*E*)-Dimethyl 2-(but-2-yn-1-yl)-2-(4-((methoxycarbonyl)oxy)but-2-en-1-yl)malonate (1a)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (8 h) and using THF (10 mL) as solvent, from **dimethyl 2-(prop-2-yn-1-yl)malonate** (574 mg, 3.35 mmol) and (*E*)-4-bromobut-2-en-1-yl methyl carbonate

(772 mg, 3.71 mmol). Product **1a** was obtained as a colourless oil (450 mg, 39 %) by flash chromatography using hexane/EtOAc 15:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 5.80 – 5.57 (m, 2H), 4.56 (d, *J* = 5.5 Hz, 2H), 3.78 (s, 3H), 3.73 (s, 6H), 2.78 (t, *J* = 7.6 Hz, 2H), 2.72 (d, *J* = 2.5 Hz, 2H), 1.75 (t, *J* = 2.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 170.38 (C), 155.64 (C), 129.91 (CH), 128.37 (CH), 79.26 (C), 73.16 (C), 67.96 (CH₂), 57.29 (CH₃), 54.85 (C), 52.80(CH₃), 35.23 (CH₂), 23.32 (CH₂), 3.56 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₁₅H₂₀O₇Na: 335.1101; found: 335.1106.

(Z)-Dimethyl 2-(but-2-yn-1-yl)-2-(4-((methoxycarbonyl)oxy)but-2-en-1-yl)malonate (1b)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (8 h) and using THF (15 mL) as solvent, from **dimethyl 2-(prop-2-yn-1-yl)malonate** (839 mg, 4.92 mmol), and (*Z*)-4-bromobut-2-en-1-yl methyl carbonate (1.1 g, 5.28 mmol). Product 1b was obtained as a colourless oil (550 mg,

39%) by flash chromatography using hexane/EtOAc 15:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 5.80 – 5.60 (m, 1H), 5.56 – 5.36 (m, 1H), 4.72 (d, *J* = 6.8 Hz, 2H), 3.76 (s, 3H), 3.71 (s, 6H), 2.85 (d, *J* = 7.9 Hz, 2H), 2.71 (d, *J* = 2.5 Hz, 2H), 1.72 (dd, *J* = 12.6, 10.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 170.36 (C), 155.79 (C), 128.23 (CH), 127.67 (CH), 79.42 (C), 73.20 (C), 63.64 (CH₂), 57.03 (C), 54.86 (CH₃), 52.90 (CH₃), 30.44 (CH₂), 23.24 (CH₂), 3.52 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₁₅H₂₀O₇Na: 335.1101; found: 335.1107.

(*E*)-Dimethyl 2-(4-((methoxycarbonyl)oxy)but-2-en-1-yl)-2-(3-phenylprop-2-yn-1yl)malonate (1c)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (8 h) and using THF (10 mL) as solvent, from **dimethyl 2-(prop-2-yn-1-yl)malonate** (1.0 g, 4.06 mmol), and **(E)-4-bromobut-2-en-1-yl methyl carbonate**

(1.0 g, 4.80 mmol). Compound **1c** was obtained as a colourless oil (1.07 g, 66%) by flash chromatography using hexane/EtOAc 15:1 as eluent

¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.30 (m, 2H), 7.28 – 7.22 (m, 3H), 5.81 – 5.60 (m, 2H), 4.55 (d, *J* = 5.2 Hz, 2H), 3.74 (s, 3H), 3.73 (s, 6H), 2.98 (s, 2H), 2.85 (d, *J* = 6.3 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 170.21 (C), 155.63 (C), 131.74 (CH), 129.66 (CH), 128.66 (CH), 128.32 (CH), 128.16 (CH), 123.15 (C), 84.05 (C), 83.92 (C), 67.90 (CH₂), 57.33 (C), 54.87 (CH₃), 52.93 (CH₃), 35.44 (CH₂), 23.92 (CH₂). HRMS-ESI: [MH]⁺ Calcd. for C₂₀H₂₃O₇: 375.1438; found: 375.1457.

(Z)-dimethyl2-(4-((methoxycarbonyl)oxy)but-2-en-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonate (1d)

yellowish oil (665 mg, 68%) by flash chromatography using hexane/EtOAc 8:1 as eluent. ¹H NMR (300 MHz, CDCl₃) δ 7.37 (dd, J = 6.7, 3.1 Hz, 2H), 7.30 – 7.26 (m, 3H), 5.83 – 5.69 (m, 1H), 5.55 (dd, J = 19.0, 8.0 Hz, 1H), 4.75 (d, J = 6.8 Hz, 2H), 3.77 (s, 6H), 3.75 (s, 3H), 3.02 (s, 2H), 2.95 (d, J = 7.8 Hz, 2H).¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 170.25 (C), 155.79 (C), 131.84 (CH), 128.38 (CH), 128.25 (CH), 128.20 (CH), 127.92 (CH), 123.12 (C), 84.01 (C), 63.57 (CH₂), 57.23 (C), 54.91 (CH₃), 53.07 (CH₃), 30.66 (CH₂), 23.97 (CH₂).

(*E*)-4-(*N*-(but-2-yn-1-yl)-4-methylphenylsulfonamido)but-2-en-1-yl methyl carbonate (1e)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (8 h) and using DMF (10 mL) as solvent, from *N*-(but-2-yn-1-yl)-4-methylbenzenesulfonamide (711 mg, 3.43 mmol), and (*E*)-4-bromobut-2-en-1-yl methyl carbonate (835

mg, 4.01 mmol). Product **1e** was obtained as a yellowish oil yellowish oil (550 mg, 46%) by flash chromatography using hexane/EtOAc 15:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.74 – 7.68 (m, 2H), 7.31 – 7.25 (m, 2H), 5.75 (qt, *J* = 15.5, 5.8 Hz, 2H), 4.59 (dd, *J* = 5.5, 0.8 Hz, 2H), 4.02 – 3.96 (m, 2H), 3.82 – 3.74 (m, 5H), 2.41 (s, 3H), 1.53 (t, *J* = 2.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 155.63 (C), 143.47 (C), 136.29 (C), 129.42 (CH), 129.25 (CH), 128.42 (CH), 128.00 (CH), 81.89 (C), 71.73 (C), 67.36 (CH₂), 54.99 (CH₃), 47.75 (CH₂), 36.72 (CH₂), 21.63 (CH₃), 3.35 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₁₇H₂₁NO₅NaS: 374.1032; found: 374.1048.

(Z)/(E)-4-(N-(but-2-yn-1-yl)-4-methylphenylsulfonamido)but-2-en-1-yl methyl carbonate (1f)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (8 h) and using DMF (10 mL) as solvent, from *N*-(but-2-yn-1-yl)-4-methylbenzenesulfonamide (711 mg, 3.43 mmol), and (*Z*)-4-bromobut-2-en-1-yl methyl carbonate (835 mg, 4.01 mmol). The mixture of the two isomers of $1f(Z/E \ 1:1.4)$ was obtained

as a yellowish oil (250 g, 25%) by flash chromatography using hexane/EtOAc 15:1 as eluent. The mixture of two isomers was confirmed by GC-MS.

¹H NMR (300 MHz, CDCl₃) δ 7.61 (dd, J = 8.2, 2.6 Hz, 2H), 7.29 – 7.12 (m, 2H), 5.77 – 5.44 (m, 2H), 4.60 (d, J = 6.6 Hz, 1H), 4.48 (d, J = 5.4 Hz, 1H), 3.92 - 3.85 (m, 2H), 3.78 (d, J = 7.2 Hz, 1H), 3.70 (d, J = 5.9 Hz, 1H), 3.65 (d, J = 3.0 Hz, 3H), 2.30 (s, 3H), 1.44 – 1.41 (q, J = 2.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 155.29 (C), 155.20 (C), 143.28 (C), 143.19 (C), 135.84 (C), 135.55 (C), 129.16 (CH), 129.10 (CH), 128.69 (CH), 128.48 (CH), 128.14 (CH), 128.12 (CH), 127.62 (CH), 127.58 (CH), 81.83 (C), 81.62 (C), 71.31 (C), 71.23 (C), 66.92 (CH₂), 62.78 (CH₂), 54.54 (CH₃), 47.44 (CH₃), 42.86 (CH₃), 36.41 (CH₂), 36.36 (CH₂), 21.19 (CH₃), 2.92 (CH₃), 2.87 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₁₇H₂₁NO₅SNa: 374.1032; found: 374.1025.

(Z/E)-methyl(4-(4-methyl-N-(3-(trimethylsilyl)prop-2-yn-1-yl)phenylsulfonamido)but-2-en-1-yl) carbonate (1g)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (8 h) and using DMF (10 mL) as solvent from 4-methyl-*N*-(3-(trimethylsilyl)prop-2-yn-1-yl)

OMe benzenesulfonamide (1.31 g, 4.65 mmol), and (E)-4-bromobut-

2-en-1-yl methyl carbonate (1.16 g, 5.57 mmol). Product **1g** (Z/E 0.09:1) was obtained as a yellowish oil yellowish oil (450 mg, 25%) by flash chromatography using hexane/EtOAc 1:15 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.73 (dd, J = 12.2, 8.7 Hz, 2H), 7.35 – 7.23 (m, 2H), 5.94 – 5.63 (m, 2H), 4.62 (dd, J = 9.8, 4.0 Hz, 2H), 4.08 (s, 2H), 3.87 – 3.74 (m, 5H), 2.41 (s, 3H), -0.01 (s, 9H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 155.61 (C), 143.59 (C), 136.10 (C), 129.66 (CH), 128.86 (CH), 128.74 (CH), 127.91 (CH), 97.84 (C), 91.28 (C),

67.30 (CH₂), 54.98 (CH₃), 47.72 (CH₂), 37.14 (CH₂), 21.64 (CH₃), -0.30 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₁₉H₂₈NO₅SiS: 410.1451; found: 410.1474.

(*Z/E*)-methyl (4-(4-methyl-*N*-(3-(trimethylsilyl)prop-2-yn-1yl)phenylsulfonamido)but-2-en-1-yl) carbonate (1h)

Following the general alkylation procedure for the synthesis of allylcarbonates (8 h) and using DMF (10 mL) as solvent, from 4methyl-N-(3-(trimethylsilyl)prop-2-yn-1-yl)benzenesulfonamide (1.31 g, 4.65 mmol), and (Z)-4-bromobut-2-en-1-yl methyl

carbonate (1.16 g, 5.57 mmol). **1h** (*Z/E* 0.4:1) was obtained as a yellowish oil yellowish oil (400 mg, 22%) by flash chromatography using hexane/EtOAc 15:1 as eluent. The presence of isomers was confirmed by GC-MS.

¹H NMR (300 MHz, CDCl₃) δ 7.72 – 7.59 (m, 2H), 7.29 – 7.16 (m, 2H), 5.87 – 5.47 (m, 2H), 4.71 – 4.48 (m, 2H), 4.06 – 3.96 (m, 2H), 3.89 – 3.72 (m, 2H), 3.69 (d, *J* = 3.7 Hz, 3H), 2.34 (s, 3H), -0.08 (d, *J* = 0.7 Hz, 9H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 155.35 (C), 143.47 (C), 143.39 (C), 135.85 (C), 135.63 (C), 129.52 (CH), 129.46 (CH), 129.35 (CH), 128.59 (CH), 128.54 (CH), 128.45 (CH), 127.72 (CH), 127.67 (CH), 97.64 (C), 97.56 (C), 91.14 (C), 91.02 (C), 67.04 (CH₂), 66.92 (CH₂), 62.87 (CH₂), 54.70 (CH₃), 47.54 (CH₂), 42.96 (CH₂), 36.91 (CH₂), 36.80 (CH₂), 21.39 (CH₃), -0.53 (CH₃), -0.64 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₁₉H₂₈NO₅SiS: 410.1451; found: 410.1474.

(Z)-methyl (4-(4-methyl-*N*-(3-(trimethylsilyl)prop-2-yn-1-yl)phenylsulfonamido)but-2-en-1-yl) carbonate (1i)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (12 h) and using DMF (10 mL) as solvent, from *N*-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4methylbenzenesulfonamide (530 mg, 1.68 mmol), and (*Z*)-4-bromobut-2-en-1-yl methyl carbonate (386.4 mg, 1.85

mmol). Product **1i** was obtained as a yellowish oil yellowish oil (561 mg, 75%) by flash chromatography using hexane/EtOAc 6:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.30 – 7.24 (m, 2H), 7.03 (d, *J* = 8.7 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 2H), 5.85 (dt, *J* = 13.2, 6.3 Hz, 1H), 5.70 (dt, *J* = 11.0, 7.2 Hz, 1H), 4.74 (d, *J* = 6.7 Hz, 2H), 4.29 (s, 2H), 3.98 (d, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 3.73 (s, 3H), 2.36 (s, 3H).¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 159.90 (C), 155.67 (C), 143.74 (C), 135.95 (C), 133.18 (CH), 129.74 (CH), 129.00 (CH), 128.69 (CH), 128.02 (CH), 114.26 (C), 113.93 (CH), 85.95 (C), 80.18 (C), 63.15 (CH₂), 55.44 (CH₃), 54.98 (CH₃), 43.41 (CH₂), 37.24 (CH₂), 21.62 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₂₃H₂₆NO₆S: 444.1475; found: 444.1495.

(Z)-dimethyl 2-(4-((methoxycarbonyl)oxy)but-2-en-1-yl)-2-(3-phenylprop-2-yn-1yl)malonate (1j)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (13 h) and using THF (8 mL) as solvent, from **dimethyl 2-(4-phenylbut-3-yn-1-yl)malonate** (567.3 mg, 2.18 mmol), and (**Z**)-4-bromobut-2-en-1-yl methyl carbonate

(501.5 mg, 2.40 mmol) Compound **1j** was obtained as a yellowish oil (626.8 mg, 74%) by flash chromatography using hexane/EtOAc 6:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.29 – 7.26 (m, 3H), 5.80 – 5.66 (m, 1H), 5.65 – 5.51 (m, 1H), 4.70 (d, J = 6.8 Hz, 2H), 3.77 (s, 3H), 3.73 (s, 6H), 2.80 (d, J = 7.4 Hz, 2H), 2.49 – 2.36 (m, 2H), 2.31 – 2.21 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 171.15 (C), 155.84 (C), 131.70 (CH), 128.54 (CH), 128.36 (CH), 127.90 (CH), 127.17 (CH), 123.75 (C), 88.57 (C), 81.33 (C), 63.43 (CH₂), 57.07 (C), 54.97 (CH₃), 52.82 (CH₃), 32.11 (CH₂), 31.22 (CH₂), 15.14 (CH₂). HRMS-ESI: [MH]⁺ Calcd. for C₂₁H₂₅O₇: 389.1594; found: 389.1612.

(E)-dimethyl 2-allyl-2-(4-((methoxycarbonyl)oxy)but-2-en-1-yl)malonate (1k)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (8 h) and using THF (20 mL) as solvent, from **dimethyl 2-allylmalonate** (989 mg, 5.74 mmol), and **(E)-4-bromobut-2-en-1-yl methyl carbonate** (1.45 g, 4.83 mmol). Compound **1k** was obtained as a

colourless oil (550 mg, 32%) by flash chromatography using hexane/EtOAc 15:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 5.72 – 5.57 (m, 3H), 5.14 – 5.05 (m, 2H), 4.55 (d, *J* = 3.9 Hz, 2H), 3.78 (s, 3H), 3.71 (s, 6H), 2.68 – 2.58 (m, 4H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 171.01 (C), 155.60 (C), 132.15 (CH), 130.19 (CH), 128.08 (CH), 119.45 (CH₂), 67.92 (CH₂), 57.64 (C), 54.81 (CH₃), 52.48 (CH₃), 37.21 (CH₂), 35.58 (CH₂).). HRMS-ESI: [MNa]⁺ Calcd. for C₁₄H₂₀O₇Na: 323.1101; found: 323.1103.

(E)-dimethyl 2-(4-((methoxycarbonyl)oxy)but-2-en-1-yl)malonate (11)

Following the general alkylation procedure for the MeO_2C O OMe Synthesis of allylcarbonates (8 h) and using THF (25 mL) as solvent, from **dimethyl malonate** (3.36 g, 25.44 mmol), and (*E*)-4-bromobut-2-en-1-yl methyl carbonate (5.30 g, 25.60 mmol). Compound 11 was obtained as a colourless oil (1.6 g, 11%) by flash chromatography using hexane/EtOAc 15:1 as eluent. ¹H NMR (300 MHz, CDCl₃) δ 5.83 – 5.54 (m, 2H), 4.50 (d, *J* = 5.5 Hz, 2H), 3.72 (s, 3H), 3.68 (s, 6H), 3.40 (t, *J* = 7.5 Hz, 1H), 2.60 (t, *J* = 6.8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 169.06 (C), 155.55 (C), 131.51 (CH), 126.72 (CH), 67.81 (CH₂), 54.76 (CH₃), 52.57 (CH), 51.22 (CH₃), 31.42(CH₂). HRMS-ESI: [MNa]⁺ Calcd. for C₁₁H₁₆O₇Na: 283.0788; found: 283.0795.

(*E*)-dimethyl 2-(4-((methoxycarbonyl)oxy)but-2-en-1-yl)-2-(3-(4-methoxyphenyl)prop -2-yn-1-yl)malonate (1m)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (12 h) and using THF (15 mL) as solvent, from **dimethyl 2-(prop-2-yn-1-yl)malonate** (623 mg, 2.26 mmol), and **(E)-4-**

bromobut-2-en-1-yl methyl carbonate (469 mg, 2.26 mmol). Product **1m** was obtained as a colourless oil (200 mg, 22%) by flash chromatography using hexane/EtOAc 6:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.29 (dq, J = 6.8, 2.4 Hz, 2H), 6.85 – 6.77 (m, 2H), 5.83 – 5.62 (m, 2H), 4.57 (d, J = 5.1 Hz, 2H), 3.80 (s, 3H), 3.78 (s, 3H), 3.76 (d, J = 2.9 Hz, 6H), 2.98 (s, 2H), 2.87 (d, J = 6.2 Hz, 2H). ¹³C NMR (76 MHz, CDCl₃, DEPT-135) δ 170.34 (C), 158.87 (C), 155.70 (C), 133.19 (C), 129.86 (CH), 128.63 (CH), 115.39 (C), 114.01 (CH), 83.79 (C), 82.50 (C), 68.00 (CH₂), 57.47 (C), 55.44 (CH₃), 54.92 (CH₃), 52.94 (CH₃), 35.50 (CH₂), 24.04 (CH₂). HRMS-ESI: [MNa]⁺ Calcd. for C₂₁H₂₄O₈Na: 427.1363; found: 427.1377.

(Z)-dimethyl 2-(4-((methoxycarbonyl)oxy)but-2-en-1-yl)-2-(3-(4-methoxyphenyl)prop -2-yn-1-yl)malonate (1n)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (20 h) and using THF (15 mL) as solvent, from **dimethyl 2-(prop-2-yn-1-yl)malonate** (1.2 g, 4.35 mmol) and **(Z)-4-bromobut-2-en-1-yl methyl carbonate** (1.0 g, 4.78 mmol).

Compound **1n** was obtained as a yellowish oil (1.2 g, 68%) by flash chromatography using hexane/EtOAc 8:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 6.84 – 6.76 (m, 2H), 5.83 – 5.68 (m, 1H), 5.61 – 5.48 (m, 1H), 4.75 (dd, J = 6.8, 1.1 Hz, 2H), 3.79 (s, 3H), 3.76 (s, 6H), 3.75 (s, 3H), 3.00 (s, 2H), 2.94 (d, J = 7.9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 170.30 (C), 159.61 (C), 155.78 (C), 133.21 (CH), 128.25 (CH), 127.86 (CH), 115.26 (C), 114.00 (CH), 83.80 (C), 82.38 (C), 63.58 (CH₂), 57.25 (C), 55.41 (CH₃), 54.89 (CH₃), 53.02 (CH₃), 30.63 (CH₂), 23.97 (CH₂). HRMS-ESI: [MH]⁺ Calcd. for C₂₁H₂₅O₈: 405.1543; found: 405.1567.

(*E*)-methyl (4-(4-methyl-*N*-(prop-2-yn-1-yl)phenylsulfonamido)but-2-en-1-yl) carbonate (10)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (13 h) and using DMF (10 mL) as solvent, from **4-methyl-***N***-(prop-2-yn-1-yl)benzene sulfonamide** (400 mg, 1.91 mmol) and (*E*)**-4-bromobut-2-en-1-yl methyl carbonate**

(437.7 mg, 2.10 mmol). Compound **10** was obtained as a yellowish oil (406.3 mg, 63%) by flash chromatography using hexane/EtOAc 6:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, J = 7.9 Hz, 2H), 7.32 – 7.23 (m, 2H), 5.90 – 5.63 (m, 2H), 4.59 (d, J = 5.5 Hz, 2H), 4.06 (d, J = 1.2 Hz, 2H), 3.83 (d, J = 6.1 Hz, 2H), 3.78 – 3.74 (m, 3H), 2.41 (s, 3H), 2.03 (t, J = 2.4 Hz, 1H).¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 155.45 (C), 143.70 (C), 135.90 (C), 129.54 (CH), 128.78 (CH), 128.54 (CH), 127.71 (CH), 76.41 (C), 74.02 (CH), 67.10 (CH₂), 54.85 (CH₃), 47.63 (CH₂), 36.00 (CH₂), 21.52 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₁₆H₁₉NO₅NaS: 360.0876; found: 360.0868.

(*E*)-5,5-bis(phenylsulfonyl)non-2-en-7-yn-1-yl methyl carbonate (1p)

Following the *general alkylation procedure* for the synthesis of allylcarbonates (13 h, 70 °C) and using DMF (10 mL) as solvent, from (pent-3-yne-1,1-diyldisulfonyl)dibenzene

(594 mg, 1.70 mmol) and **(E)-4-bromobut-2-en-1-yl methyl carbonate** (390 mg, 1.88 mmol). Compound **1p** was obtained as a yellowish oil (476.5 mg, 77%) by flash chromatography using hexane/EtOAc 4:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, *J* = 7.5 Hz, 4H), 7.70 (t, *J* = 7.4 Hz, 2H), 7.58 (t, *J* = 7.7 Hz, 4H), 6.13 – 5.96 (m, 1H), 5.87 – 5.70 (m, 1H), 4.63 (d, *J* = 6.1 Hz, 2H), 3.79 (s, 3H), 3.13 (d, *J* = 2.5 Hz, 2H), 3.08 (d, *J* = 7.1 Hz, 2H), 1.62 (t, *J* = 2.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 155.62 (C), 137.02 (C), 134.79 (CH), 131.61 (CH), 129.71 (CH), 129.42 (CH), 129.22 (CH), 128.61 (CH), 127.57 (CH), 88.95 (C), 82.18 (CH), 70.65 (CH), 67.83 (CH₂), 54.89 (CH₃), 32.53 (CH₂), 21.43 (CH₂), 3.65 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₂₃H₂₄O₇NaS₂: 499.0855; found: 499.0836.

(*E*)-5,5-bis(phenylsulfonyl)-8-(trimethylsilyl)oct-2-en-7yn-1-yl methyl carbonate (1q)

To a suspension of NaH (60% in mineral oil, 1.2 equiv) in anhydrous DMF under Ar atmosphere at 0 °C, (*E*)-5,5bis(phenylsulfonyl)pent-2-en-1-yl methyl carbonate (500

mg, 1.18 mmol) was slowly added, and the mixture was stirred at room temperature for 30 minutes (formation of H_2 bubbles were observed during the addition). Then, (3-bromoprop-1-yn-1-yl)trimethylsilane (247.6 mg, 1.29 mmol), was added dropwise and

the mixture was allowed to react at 70 °C for 15 h. Monitoring by TLC indicated completion of the reaction. Then, water and CH_2Cl_2 were added into the resulting mixture. The aqueous layer was separated and extracted several times with CH_2Cl_2 . The combined organic phases were repeatedly washed with water and twice with saturated aqueous solution of NaCl. The combined organic phases were dried over anhydrous MgSO₄. The solvent was removed under vacuum and the crude was purified by flash chromatography on silica gel (hexane/EtOAc 2:1, molybdophosphoric acid as stain -2.6 mmol/100 mL ethanol-) to afford the title compound **1q** as a white solid (396.8 mg, 63%).

¹H NMR (300 MHz, CDCl₃) δ 8.13 – 8.06 (m, 4H), 7.76 – 7.67 (m, 2H), 7.561 – 7.54 (m, 4H), 6.14 – 6.02 (m, 1H), 5.88 – 5.75 (m, 1H), 4.64 (d, *J* = 6.2 Hz, 2H), 3.79 (s, 3H), 3.19 (s, 2H), 3.11 (d, *J* = 6.8 Hz, 2H), 0.11 (s, 9H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 155.70 (C), 136.80 (C), 134.93 (CH), 131.70 (CH), 129.95 (CH), 128.78 (CH), 127.30 (CH), 97.48 (C), 91.96 (C), 88.89 (C), 67.85 (CH₂), 54.94 (CH₃), 32.39 (CH₂), 22.36 (CH₂), -0.19 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₂₅H₃₀O₇NaSiS₂: 557.1094; found: 557.1093.

General procedure for the synthesis of allylboronates

Scheme S2

A solution of allylcarbonate and bis(pinacolato)diboron (1.2 equiv) in 0.6 mL of xylene was added to a previously prepared solution containing the catalytic system. The latter was prepared by addition of a solution of IMesHCl (5 mol%) and *t*-BuOK (5 mol%) in anhydrous xylene (0.5 mL) to a suspension of Pd(OAc)₂ (5 mol%) in anhydrous xylene (0.25 mL) under Ar atmosphere, and heating in a sealed tube at 50 °C for 15 min. After

addition of the reagents on the catalytic solution, the mixture was stirred at 50 °C during the corresponding time indicated below for each compound. After cooling the mixture to room temperature, the solvent was evaporated and the crude was purified by flash chromatography (hexane/Et₂O or pentane/Et₂O, it will be specified in each case, molybdophosphoric acid as stain -2.6 mmol/100 mL ethanol-) to give the product.

Experimental data of allylboronates.

(*E*)-dimethyl 2-(but-2-yn-1-yl)-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-en-1-yl)malonate (2ab)

From compound **1a** (300 mg, 0.99 mmol), following the *general alkylation procedure*, after 15 minutes at 50 °C and using xylene (1.5 mL) as solvent. Compound **2ab** was obtained as a colourless oil (196 mg, 54%) by flash chromatography using hexane/Et₂O 5:1 as eluent.

When the reaction was performed using compound **1b** (100 mg, 0.32 mmol) after 15 minutes at 50 °C and xylene (1.5 mL) as solvent, the product **2ab** was obtained in 71% yield (83 mg).

¹H NMR (300 MHz, CDCl₃) δ 5.57 (dt, *J* = 15.0, 7.5 Hz, 1H), 5.16 (dt, *J* = 15.0, 7.5 Hz, 1H), 3.68 (s, 6H), 2.68 (dd, *J* = 5.0, 2.2 Hz, 4H), 1.71 (t, *J* = 2.4 Hz, 3H), 1.61 (d, *J* = 7.4 Hz, 2H), 1.21 (s, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 170.81 (C), 130.83 (CH), 123.41 (CH), 83.63 (CH), 83.37 (CH), 78.73 (CH), 73.67 (CH), 57.72 (CH), 52.65 (CH₃), 35.65 (CH₂), 25.17 (CH₃), 24.91 (CH₃), 23.00 (CH₂), 3.61 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₁₃H₁₈O₅Na: 277.1046; found: 277.1053.

(*E*)-dimethyl 2-(3-phenylprop-2-yn-1-yl)-2-(4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)but-2-en-1-yl)malonate (2cd)

From compound **1c** (50 mg, 0.17 mmol) following the *general alkylation procedure*, after 15 minutes at 50 °C and xylene (1.5 mL) as solvent. Product **2cd** was obtained as a colourless oil (20 mg, 30%) by flash chromatography using hexane/Et₂O 5:1 as eluent.

When the reaction was performed using compound 1d (300 mg, 0.80 mmol) after 15 minutes at 50 °C and xylene (1.5 mL) as solvent, compound 2cd was obtained in 47% yield (164 mg) after column chromatography (hexane/Et₂O 5:1).

¹H NMR (300 MHz, CDCl₃) δ 7.27 (ddd, J = 7.2, 5.0, 3.4 Hz, 2H), 7.19 – 7.16 (m, 3H), 5.57 (dt, J = 15.0, 7.5 Hz, 1H), 5.16 (dt, J = 15.0, 4.4 Hz, 1H), 3.66 (s, 6H), 2.91 (s, 2H), 2.71 (d, J = 7.5 Hz, 2H), 1.57 (d, J = 7.4 Hz, 2H), 1.14 (s, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 170.64 (C), 131.82 (CH), 131.21 (CH), 128.30 (CH), 128.01 (CH), 123.52 (C), 123.24 (CH), 84.73 (C), 83.53 (C), 83.39 (C), 57.77 (C), 52.78 (CH₃), 35.86 (CH₂), 24.91 (CH₃), 23.61 (CH₂). HRMS-ESI: [MNa]⁺ Calcd. for C₂₄H₃₁BO₆Na:449.2105; found: 449.2091

(*E*)-*N*-(but-2-yn-1-yl)-4-methyl-*N*-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)but-2-en-1-yl)benzenesulfonamide (2ef)

From compound **1e** (50 mg, 0.14 mmol) following the *general* alkylation procedure, after 15 minutes at 50 °C and xylene (1.5 mL) as solvent. Compound **2ef** was obtained as a colourless oil (44.7 mg, 78%) by flash chromatography using hexane/Et₂O 5:1 as eluent. When the reaction was performed using **1f** (Z/E 1:1.4) (100

mg, 0.28 mmol) after 15 minutes at 50 °C and xylene (1.5 mL) as solvent, product **2ef** was obtained in 63% yield (72.3 mg) after column chromatography (hexane/Et₂O 5:1).

¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 5.64 (dt, *J* = 15.1, 7.5 Hz, 1H), 5.31 – 5.14 (m, 1H), 3.92 (d, *J* = 2.1 Hz, 2H), 3.63 (d, *J* = 6.3 Hz, 2H), 2.33 (s, 3H), 1.59 (d, *J* = 7.3 Hz, 2H), 1.44 (t, *J* = 2.1 Hz, 3H), 1.14 (s, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 143.14 (C), 136.53 (C), 132.28 (CH), 129.27 (CH), 128.06 (CH), 123.91 (CH), 83.52 (C), 83.30 (C), 81.31 (C), 72.04 (C), 48.62 (CH₂), 35.92 (CH₂), 24.90 (CH₃), 24.70 (CH₃), 21.62 (CH₃), 3.36 (CH₃). (Minimal amount of pinacol was detected by NMR).HRMS-ESI: [MH]⁺ Calcd. for C₁₅H₁₉NO₃S: 294.1158; found: 294.1175.

(*E*)-4-methyl-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-en-1-yl)-*N*-(3-(trimethylsilyl)prop-2-yn-1-yl)benzenesulfonamide (2gh)

From compound **1g** (50 mg, 0.13 mmol) following the *general alkylation procedure*, after 15 minutes at 50 °C and xylene (1.5 mL) as solvent. Compound **2gh** was obtained as a colourless oil (41 mg, 69%) using hexane/Et₂O 5:1 as eluent. When the reaction was performed using **1h** (Z/E 0.4:1) (100 mg, 0.25 mmol) after 15

minutes at 50 °C and xylene (1.5 mL) as solvent, product **2gh** was obtained in 67% yield (39 mg), after column chromatography (hexane/Et₂O 5:1).

¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.29 (dd, *J* = 12.0, 6.5 Hz, 2H), 5.83 – 5.67 (m, 1H), 5.34 (dt, *J* = 7.0, 5.1 Hz, 1H), 4.10 (s, 2H), 3.76 (d, *J* = 7.0 Hz, 2H), 2.42 (s, 3H), 1.70 (d, *J* = 7.4 Hz, 2H), 1.24 (s, 12H), -0.00 (s, 9H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 143.27 (C), 136.38 (C), 132.62 (CH), 129.54 (CH), 127.97 (CH), 123.65 (CH), 98.34 (C), 90.69 (C), 83.50 (C), 48.56 (CH₂), 36.43 (CH₂), 24.90 (CH₃), 21.63 (CH₃), -0.23 (CH₃).). (Minimal amount of pinacol was detected by NMR) HRMS-ESI: [MNa]⁺ Calcd. for C₂₃H₃₆BNO₄SSiNa: 484.1784; found: 484.1785.

(*E*)-*N*-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-en-1-yl)benzenesulfonamide (2i)

From compound **1i** (100 mg, 0.22 mmol) following the *general alkylation procedure*, after 15 minutes at 50 °C and xylene (1.5 mL) as solvent. Product **2i** was obtained as a colourless oil (80 mg, 72%) by flash chromatography using hexane/Et₂O 6:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.26 – 7.12 (m, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.68 (d, *J* = 8.8 Hz, 2H), 5.78 – 5.64 (m, 1H), 5.37 – 5.24 (m, 1H), 4.20 (s, 2H), 3.76 - 3.67 (m, 5H), 2.27 (s, 3H), 1.63 (d, *J* = 7.3 Hz, 2H), 1.16 (s, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 159.69 (C), 143.31 (C), 136.36 (C), 133.10 (CH), 132.64 (CH), 129.52 (CH), 128.00 (CH), 123.75 (CH), 114.69 (C), 113.82 (CH), 85.48 (C), 83.52 (C), 80.66 (C), 55.42 (CH₃), 48.85 (CH₂), 36.40 (CH₂), 24.90 (CH₃), 21.57 (CH₃). HRMS-ESI: [MH]+ Calcd. for C₂₇H₃₅BNO₅S: 496.2323; found: 496.2336.

(*E*)-dimethyl 2-(but-2-yn-1-yl)-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-en-1-yl)malonate (2j)

From compound **1j** (100 mg, 0.26 mmol) following the *general alkylation procedure*, after 15 minutes at 50 °C and xylene (1.5 mL) as solvent. Product **2j** was obtained as a colourless oil (42 mg, 37%) by flash chromatography using hexane/Et₂O 10:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 7.40 (d, J = 3.7 Hz, 2H), 7.31 – 7.26 (m, 3H), 5.76 – 5.55 (m, 1H), 5.31 – 5.17 (m, 1H), 3.74 (s, 6H), 2.75 (d, J = 7.3 Hz, 1H), 2.68 (d, J = 7.3 Hz, 1H), 2.42 (t, J = 7.9 Hz, 2H), 2.31 – 2.20 (m, 2H), 1.73 (d, J = 8.1 Hz, 1H), 1.68 (d, J = 7.3 Hz, 1H), 1.26 (d, J = 3.5 Hz, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 171.61 (C), 171.51 (CH), 131.65 (CH), 130.75 (CH), 128.29 (CH), 127.74 (CH), 123.90 (C), 123.42 (CH), 122.26 (CH), 89.08 (C), 83.38 (C), 81.00 (C), 57.43 (C), 52.62 (CH₃), 52.56 (CH₃), 36.36 (CH₂), 31.62 (CH₂), 24.89 (CH₃), 24.70 (CH₃), 14.93 (CH₂). HRMS-ESI: [MNa]⁺ Calcd. for C₂₅H₃₃BO₆Na: 463.2262; found: 463.2249.

(*E*)-dimethyl 2-allyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-en-1yl)malonate (2k)

From compound 1k (150 mg, 0.55 mmol) following the *general alkylation procedure*, after 15 minutes at 50 °C and xylene (1.5 mL) as solvent. Product 2k was obtained as a colourless oil (135 mg, 70%) by flash chromatography using hexane/Et₂O 5:1 as eluent

¹H NMR (300 MHz, CDCl₃) δ 5.70 – 5.47 (m, 2H), 5.24 – 5.00 (m, 3H), 3.68 (s, 6H), 2.58 (dd, J = 11.9, 7.5 Hz, 4H), 1.62 (d, J = 7.3 Hz, 2H), 1.22 (s, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 171.47 (C), 132.67 (CH), 130.61 (CH), 123.55 (CH), 119.07 (CH₂), 83.34 (C), 58.03 (C), 52.38 (CH₃), 36.82 (CH₂), 35.93 (CH₂), 24.90 (CH₃). Minimal amount of pinacol was detected by NMR. HRMS-ESI: [MH]⁺ Calcd. for C₁₈H₃₀BO₆: 353.2129; found: 353.2146.

(*E*)-dimethyl 2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-en-1yl)malonate (2l)

From compound **11** (448 mg, 1.72 mmol) following the *general alkylation procedure*, after 15 minutes at 50 °C and xylene (1.5 mL) as solvent. Product **21** was obtained as

a colourless oil (316 mg, 59%) by flash chromatography using hexane/Et₂O 5:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 5.55 (dt, *J* = 14.9, 7.3 Hz, 1H), 5.30 (dt, *J* = 15.1, 6.9 Hz, 1H), 3.70 (s, 6H), 3.37 (t, *J* = 7.6 Hz, 1H), 2.55 (t, *J* = 7.2 Hz, 2H), 1.60 (d, *J* = 7.2 Hz, 2H), 1.21 (s, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 169.55 (C), 128.97 (CH), 125.61 (CH), 83.32 (C), 52.48 (CH), 52.21 (CH₃), 32.16 (CH₂), 24.86 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₁₅H₂₆BO₆: 313.1816; found: 313.1827.

General procedure for the synthesis of alkenylboronates.

A carousel tube was charged with the corresponding allylcarbonate (1 equiv) and bis(pinacolato)diboron (1.2 equiv) in anhydrous 1,4-dioxane or xylene (it will be specified in each case). Then, a solution of $Pd(OAc)_2$ (5 mol%) and $P(Cy)_3$ (5 mol %) in the corresponding solvent (0.6 mL) was added dropwise under Ar atmosphere. The mixture was stirred during the stated time at the temperature indicated below for every starting compound. After cooling the mixture to room temperature, the solvent was evaporated and the crude was purified by flash chromatography (hexane/Et₂O or pentane/Et₂O, as specified in each case, molybdophosphoric acid as stain-2.6 mmol/100 mL ethanol-) to afford the product.

Experimental data of alkenylboronates.

(*E*)-dimethyl 3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethylidene)-4vinylcyclopentane-1,1-dicarboxylate (3ab)

From compound **1a** (68 mg, 0.23 mmol), following the *general alkylation procedure*, after 8 h at 80°C in 1,4-dioxane (1.5 mL) as solvent. Product **3ab** was obtained as a colourless oil (60 mg, 72%) by flash chromatography using

hexane/EtOAc 10:1 as eluent.

When the reaction was performed using compound **1b** (100 mg, 0.32 mmol) after 2.5 h at 110°C in 1,4-dioxane (1.5 mL), the product **3ab** was obtained in 71% yield (82.4 mg).

¹H NMR (300 MHz, CDCl₃) $\delta \delta 5.79 - 5.64$ (m, 1H), 4.95 - 4.84 (m, 2H), 3.87 (broad s, 1H), 3.71 (s, 3H), 3.68 (s, 3H), 3.29 - 3.11 (m, 1H), 2.84 (d, *J* = 17.9 Hz, 1H), 2.57 (dd, *J* = 13.3, 8.4 Hz, 1H), 2.37 (dd, *J* = 13.4, 2.9 Hz, 1H), 1.72 (s, 3H), 1.21 (d, *J* = 2.5 Hz, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 172.68 (C), 172.44 (C), 156.33 (C), 141.49 (CH), 113.56 (CH₂), 83.02 (C), 58.60 (C), 52.92 (CH₃), 52.76 (CH₃), 46.32 (CH), 39.70 (CH₂), 39.25 (CH₂), 25.07 (CH₃), 24.94 (CH₃), 17.64 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₁₉H₂₉BO₆Na: 387.1949; found: 387.1966.

(*E*)-dimethyl 3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-4vinylcyclopentane-1,1-dicarboxylate (3cd)

From compound **1c** (150 mg, 0.40 mmol), following the *general alkylation procedure*, after 8 h at 50 °C in xylene (1.5 mL) as solvent. Product **3cd** was obtained as a colourless oil (25 mg, 26%) by flash chromatography using hexane/EtOAc 6:1 as eluent.

When the reaction was performed using compound **1d** (112 mg, 0.30 mmol) under the same conditions, the product **3cd** was obtained in 18% yield (23 mg).

¹H NMR (300 MHz, CDCl₃) δ 7.28 (dd, J = 11.9, 4.3 Hz, 2H), 7.18 (t, J = 7.3 Hz, 1H), 7.14 – 7.08 (m, 2H), 5.96 – 5.77 (m, 1H), 5.17 – 5.04 (m, 1H), 5.00 (dd, J = 10.2, 1.4 Hz, 1H), 4.07 – 3.94 (m, 1H), 3.67 (s, 3H), 3.64 (s, 3H), 3.14 (dd, J = 17.4, 1.2 Hz, 1H), 2.78 – 2.62 (m, 2H), 2.30 (dd, J = 13.4, 4.8 Hz, 1H), 1.21 (d, J = 4.5 Hz, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 172.28 (C), 172.21 (C), 157.33 (C), 142.71 (C), 141.32 (CH), 128.69 (CH), 128.08 (CH), 125.94 (CH), 114.16 (CH₂), 83.38 (C), 58.73 (C), 52.84 (CH₃),

52.81 (CH₃), 46.14 (CH), 40.20 (CH₂), 39.36 (CH₂), 25.05 (CH₃), 24.85 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₂₄H₃₂BO₆: 427.2286; found: 427.2308.

(*Z*)-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethylidene)-1-tosyl-4vinylpyrrolidine (3ef)

From compound **1e** (50 mg, 0.14 mmol), following the *general alkylation procedure*, after 12 h at 50 °C in xylene (1.5 mL) as solvent. Product **3ef** was obtained as a colourless oil (41 mg, 71%) by flash chromatography using hexane/ Et₂O 10:1 as eluent.

When the reaction was performed using $1f(Z/E \ 1:1.4)$ (33 mg, 0.094 mmol) under the same conditions, the product 3ef was obtained in 61% yield (34.5 mg).

¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 5.79 (ddd, J = 17.0, 10.2, 6.7 Hz, 1H), 5.08 (d, J = 17.2 Hz, 1H), 4.94 (d, J = 10.2 Hz, 1H), 4.01 (d, J = 15.4 Hz, 1H), 3.87 (t, J = 6.0 Hz, 1H), 3.55 (t, J = 12.9 Hz, 2H), 3.03 (dd, J = 9.1, 6.3 Hz, 1H), 2.42 (s, 3H), 1.60 (s, 3H), 1.20 (s, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 152.67 (C), 143.68 (C), 138.91 (CH), 132.61 (C), 129.73 (CH), 128.01 (CH), 114.25 (CH₂), 83.36 (C), 53.30 (CH₂), 50.81 (CH₂), 45.94 (CH), 24.97 (CH₃), 21.64 (CH₃), 17.20 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₂₁H₃₁BNO₅S: 404.2061; found: 404.2076.

(E)-dimethyl 3-((4-methoxyphenyl)(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methylene)-4-vinylcyclopentane-1,1-dicarboxylate (3mn)

From compound **1m** (100 mg, 0.32 mmol), following the *general alkylation procedure*, after 12 h at 50 °C in 1,4dioxane (1.5 mL) as solvent. Product **3mn** was obtained as a colourless oil (79 mg, 68%), by flash chromatography using hexane/Et₂O 10:1 as eluent.

When the reaction was performed using compound **1n** (150 mg, 0.37 mmol) under the same conditions, compound **3mn** was obtained in 37% yield (63 mg).

¹H NMR (300 MHz, CDCl₃) δ 7.04 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 5.94 – 5.76 (m, 1H), 5.08 (d, J = 17.2 Hz, 1H), 4.98 (d, J = 10.2 Hz, 1H), 4.05 – 3.93 (m, 1H),

3.79 (s, 3H), 3.67 (s, 3H), 3.63 (s, 3H), 3.16 (d, J = 17.5 Hz, 1H), 2.79 – 2.69 (m, 1H), 2.69 – 2.61 (m, 1H), 2.28 (dd, J = 13.4, 4.7 Hz, 1H), 1.21 (d, J = 3.5 Hz, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 172.31 (C), 172.22 (C), 157.78 (C), 156.80 (C), 141.36 (CH), 134.97 (C), 129.79 (CH), 114.09 (CH₂), 113.48 (CH), 83.33 (C), 58.72 (C), 55.26 (CH₃), 52.82 (CH₃), 46.13 (CH), 40.21 (CH₂), 39.30 (CH₂), 25.05 (CH₃), 24.85 (CH₃). Minimal amount of pinacol was detected by NMR. HRMS-ESI: [MNa]⁺ Calcd. for C₂₅H₃₃BO₇Na: 479.2211; found: 479.2224.

(*E*)-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-1-tosyl-4vinylpyrrolidine (30)

From compound **10** (100 mg, 0.31 mmol), following the *general alkylation procedure*, after 8 h at 50 °C in xylene (1.5 mL) as solvent. Product **30** was obtained as a colourless oil (64.2 mg,

53%), by flash chromatography using hexane/Et₂O 10:1 as eluent. ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 7.9 Hz, 2H), 5.77 (ddd, J = 17.0, 10.2, 6.8 Hz, 1H), 5.29 (s, 1H), 5.12 (d, J = 17.1 Hz, 1H), 4.97 (d, J = 10.2Hz, 1H), 4.08 (d, J = 15.2 Hz, 1H), 3.83 (t, J = 5.8 Hz, 1H), 3.62 (d, J = 15.1 Hz, 1H), 3.52 (d, J = 9.4 Hz, 1H), 3.15 (dd, J = 9.3, 6.4 Hz, 1H), 2.43 (s, 3H), 1.21 (s, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 161.23 (C), 143.77 (C), 137.97 (CH), 132.83 (C), 129.79 (CH), 128.01 (CH), 114.98 (CH₂), 83.37 (C), 53.39 (CH₂), 53.33 (CH₂), 46.27 (CH), 25.02 (CH₃), 24.93 (CH₃), 21.68 (CH₃). Minimal amount of pinacol was detected by NMR. HRMS-ESI: [MH]⁺ Calcd. for C₂₀H₂₉BNO₄S: 390.1904; found: 390.1923.

(*E*)-2-(1-(4,4-bis(phenylsulfonyl)-2-vinylcyclopentylidene)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3p)

From compound **1p** (50 mg, 0.11 mmol), following the *general alkylation procedure*, after 8 h at 50 °C in xylene (1.5 mL) as solvent. Product **3p** was obtained as a colourless oil (36 mg, 65%) using hexane/EtOAc 6:1 as eluent.

Using $Pd(OAc)_2$ (15 mol%) and 1,4-dioxane (1.2 mL), compound **3p** was obtained as a colourless oil (57 mg, 73%).

¹H NMR (300 MHz, CDCl₃) δ 8.08 (t, *J* = 12.0 Hz, 2H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.72 (t, *J* = 7.4 Hz, 1H), 7.61 (q, *J* = 7.1 Hz, 3H), 7.50 (t, *J* = 7.6 Hz, 2H), 5.76 (ddd, *J* = 17.3, 10.1, 7.5 Hz, 1H), 4.98 (d, *J* = 17.0 Hz, 1H), 4.88 (d, *J* = 10.1 Hz, 1H), 3.82 – 3.69 (m, 1H), 3.36 (d, *J* = 18.3 Hz, 1H), 3.14 (d, *J* = 18.2 Hz, 1H), 2.95 (dd, *J* = 16.0, 9.4 Hz, 1H), 2.69 (dd, *J* = 16.0, 5.5 Hz, 1H), 1.54 (s, 3H), 1.18 (d, *J* = 2.0 Hz, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 154.15 (C), 141.37 (CH), 137.65 (C), 136.64 (C), 134.65 (CH), 131.31 (CH), 131.02 (CH), 128.94 (CH), 128.87 (CH), 113.71 (CH₂), 92.85 (C), 83.18 (C), 46.25 (CH), 36.65 (CH₂), 36.56 (CH₂), 25.19 (CH₃), 24.91 (CH₃), 18.38 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₂₇H₃₄BO₆S₂: 529.1184; found: 529.1882.

(*E*)-((4,4-bis(phenylsulfonyl)-2-vinylcyclopentylidene)(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)methyl)trimethylsilane (3q)

From compound **1q** (100 mg, 0.19 mmol), following the *general alkylation procedure*, after 40 min at 130 °C in xylene (2 mL) as solvent. Product **3q** was obtained, with some traces of an unidentified compound, as a colourless oil (61 mg, 56%)

by flash chromatography using pentane/Et₂OAc 10:1 as eluent.

¹H NMR (300 MHz, CDCl₃) δ 8.08 – 8.00 (m, 4H), 7.74 – 7.66 (m, 2H), 7.63 – 7.54 (m, 4H), 5.78 (ddd, *J* = 17.3, 10.1, 7.4 Hz, 1H), 5.09 – 4.99 (m, 2H), 3.62 (q, *J* = 7.8 Hz, 1H), 3.46 (dd, *J* = 18.5, 2.1 Hz, 1H), 3.27 (d, *J* = 18.5 Hz, 1H), 2.77 (dd, *J* = 15.4, 9.1 Hz, 1H), 2.53 (dd, *J* = 15.5, 7.9 Hz, 1H), 1.22 (d, *J* = 1.4 Hz, 12H), 0.15 (s, 9H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 163.14 (C), 140.35 (CH), 137.13 (C), 136.43 (C), 134.72 (CH), 134.68 (CH), 131.37 (CH), 131.33 (CH), 128.98 (CH), 128.82 (CH), 116.49 (CH₂), 92.79 (C), 83.23 (C), 49.82 (CH), 40.10 (CH₂), 36.91 (CH₂), 25.88 (CH₃), 25.40 (CH₃), 0.83 (CH₃). HRMS-ESI: [MNa]+ Calcd. for C₂₃H₂₉BO₆S₂SiNa: 527.1166; found: 527.1481.

Oxidation of alkenylboronate 3ef to 4

To a solution of alkenylboronate **3ef** (34 mg, 0.084 mmol, 1 equiv) in THF (2 mL), an aqueous solution of NaOH (3M, 0.42 mmol, 3 equiv) was slowly added at room temperature. Then, the mixture was cooled to 0 °C and a solution of H_2O_2 (33% w/v, 4.37 mmol, 30 equiv) was added dropwise. After addition, the reaction was stirred at room temperature for 8 h. Then, water and Et₂O were added into the resulting mixture. The aqueous layer was separated and extracted with Et₂O (3 x 10 mL). The combined organic phases were dried over anhydrous Mg_2SO_4 and filtered through anhydrous Na_2SO_4 . The solvent was removed under vacuum and the crude was purified by flash chromatography (hexane/EtOAc 8:1) to afford the title compound as a yellowish oil (10 mg, 41%).

¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 5.73 – 5.57 (m, 1H), 5.09 (dd, *J* = 13.8, 3.0 Hz, 2H), 3.56 (dd, *J* = 10.0, 7.9 Hz, 1H), 3.41 (ddd, *J* = 27.1, 10.1, 8.0 Hz, 2H), 3.09 (dd, *J* = 9.9, 8.1 Hz, 1H), 2.96 – 2.74 (m, 2H), 2.45 (s, 3H), 2.11 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 205.64 (C), 143.80 (C), 136.27 (CH), 133.38 (C), 129.79 (CH), 127.66 (CH), 117.88 (CH₂), 56.03 (CH), 52.55 (CH₂), 49.24 (CH₂), 45.83 (CH), 30.06 (CH₃), 21.56 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₁₅H₂₀NO₃S: 294.1158; found: 294.1157.

Suzuki cross-coupling reactions of alkenylboronates and experimental data

A solution of 4-iodobenzonitrile (23.9 mg, 0.10 mmol) in toluene (0.5 mL), EtOH (0.15 mL) and H₂O (0.15 mL) was added to a dry tube containing alkenylboronate **3ab** (10 mg, 0.042 mmol), K₂CO₃ (60.3 mg, 0.44 mmol) and Pd(PPh₃)₄

(30.16 mg, 0.026 mmol), under Ar atmosphere. The mixture was heated at 80 °C for 4 h in the sealed tube. After cooling to room temperature, the solvent was removed under vacuum and the crude was purified by flash chromatography (hexane/Et₂O 8:1). The product **5ab** was obtained as a yellowish oil (20.78 mg, 72%).¹²

¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 5.30 (ddd, *J* = 17.3, 10.2, 7.4 Hz, 1H), 4.62 (d, *J* = 10.1 Hz, 1H), 4.53 (d, *J* = 17.1 Hz, 1H), 3.77 (s, 3H), 3.73 (s, 3H), 3.40 – 3.28 (m, 1H), 3.20 – 3.02 (m, 2H), 2.53 (dd, *J* = 13.3, 8.0 Hz, 1H), 2.12 (dd, *J* = 13.3, 6.6 Hz, 1H), 2.00 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 172.35 (C), 172.07 (C), 148.52 (C), 139.26 (CH), 138.74 (C), 131.94 (CH), 130.18 (C), 128.96 (CH), 119.22 (C), 114.90 (CH₂), 110.20 (C), 58.75 (C), 53.09 (CH₃), 52.96 (CH₃), 45.86 (CH), 40.96 (CH₂), 39.39 (CH₂), 21.93 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₂₀H₂₁NO₄Na: 362.1362; found: 362.1367.

(E)-4-(1-(1-tosyl-4-vinylpyrrolidin-3-ylidene)ethyl)benzonitrile (5ef)

A solution of 4-iodobenzonitrile (18.14 mg, 0.079 mmol) in toluene (0.5 mL), EtOH (0.15 mL) and H₂O (0.15 mL) was added to a dry tube containing the alkenylboronate **3hi** (25 mg,

0.062 mmol), K_2CO_3 (50 mg, 0.37 mmol) and Pd(PPh₃)₄ (8.3 mg, 0.007 mmol), under Ar atmosphere, and the mixture was heated at 80 °C for 4 h in the sealed tube. After cooling to room temperature, the solvent was removed under vacuum and the crude was purified by flash chromatography (hexane/Et₂O 10:1). The product **5ef** was obtained as yellowish oil (13 mg, 57%).¹²

¹H NMR (300 MHz, CDCl₃) δ 7.66 (t, J = 7.1 Hz, 2H), 7.49 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 5.39 (ddd, J = 17.1, 10.2, 7.1 Hz, 1H), 4.70 (d, J = 10.3 Hz, 1H), 4.53 (d, J = 17.1 Hz, 1H), 3.98 – 3.73 (m, 2H), 3.15 (s, 3H), 2.41 – 2.34 (m, 3H), 1.85 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 147.17 (C), 143.94 (C), 137.21 (CH), 135.32 (C), 133.03 (CH), 132.97 (C), 132.13 (CH), 130.41 (C), 129.88 (CH), 128.59 (CH), 128.08 (C), 115.91 (CH₂), 110.84 (C), 54.08 (CH₂), 50.88 (CH₂), 45.59 (CH), 21.72 (CH₃), 21.53 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₂₂H₂₃N₂O₂S: 379.1474; found: 379.1480.

(Z)-4-(1-(4,4-bis(phenylsulfonyl)-2-vinylcyclopentylidene)ethyl)benzonitrile (5p)

A solution of 4-iodobenzonitrile (24.45 mg, 0.11 mmol) in toluene (0.5 mL), EtOH (0.15 mL) and H₂O (0.15 mL) was added to a dry tube containing the alkenylboronate **3p** (47 mg, 0.089 mmol), K₂CO₃ (61.48 mg, 0.44 mmol) and

 $Pd(PPh_3)_4$ (10.2 mg, 0.009 mmol) under Ar atmosphere, and the mixture was heated at 80 °C for 4 h in the sealed tube. After cooling to room temperature, the solvent was removed under vacuum and the crude was purified by flash chromatography (hexane/Et₂O 3:1). The product **5p** was obtained as a yellowish oil (33 mg, 73%).¹²

¹H NMR (300 MHz, CDCl₃) δ 8.11 – 8.03 (m, 4H), 7.80 – 7.70 (m, 2H), 7.67 – 7.53 (m, 6H), 7.18 (d, *J* = 8.2 Hz, 2H), 5.27 (dt, *J* = 17.1, 8.8 Hz, 1H), 4.53 (d, *J* = 10.0 Hz, 1H), 4.32 (d, *J* = 16.9 Hz, 1H), 3.69 – 3.50 (m, 2H), 3.12 (d, *J* = 18.0 Hz, 1H), 2.81 – 2.67 (m, 1H), 2.51 (dd, *J* = 15.2, 7.8 Hz, 1H), 1.92 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 147.69 (C), 138.43 (CH), 137.15 (C), 136.89 (C), 136.06 (C), 134.99 (CH), 134.83 (CH), 132.15 (CH), 131.25 (CH), 131.22 (CH), 131.07 (CH), 129.04 (CH), 128.99 (CH), 128.94 (C), 119.07 (CH₂), 115.27 (C), 110.62 (C), 92.38 (CH), 46.37 (C), 37.96 (CH₂),

36.58 (CH₂), 22.45 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₂₈H₂₆NO₄S₂: 504.1297; found: 504.1281.

Synthesis of (Z)-dimethyl 3-(1-(4-cyanophenyl)ethylidene)-4-vinylcyclopentane-1,1dicarboxylate (5ab) from allylcarbonate 1a

Scheme S6

A dry carousel tube was charged with allylcarbonate **1a** (100 mg, 3.12 mmol, 1 equiv), bis(pinacolato)diboron (97.5mg, 0.38 mmol, 1.2 equiv), and anhydrous xylene (0.75 mL) under Ar atmosphere. Then, a solution of $Pd(OAc)_2$ (3.59 mg, 0.016 mmol, 5 mol%) and $P(Cy)_3$ (13.48 mg, 0.048 mmol, 5 mol%) in xylene (0.75 mL) was added dropwise under Ar. The mixture was was heated at 50 °C for 8 h. After cooling to room temperature, the solvent was removed under vacuum and the resulting compound **3ab** was used without further purification.

Then, a mixture of crude alkenylboronate **3ab**, K_2CO_3 (219.89 mg, 1.59 mmol, 5 equiv) and Pd(PPh_3)_4 (3.6 mg, 0.0031 mmol, 10 mol%), was treated with a solution of 4-iodobenzonitrile (87.60 mg, 0.38 mmol, 1.2 equiv) in toluene (0.5 mL), EtOH (0.15 mL) and H₂O (0.15 mL) under Ar atmosphere, and the mixture was heated at 80 °C for 8 h in a sealed tube. After cooling to room temperature the solvent was removed under vacuum and the crude was purified by flash chromatography (hexane/Et₂O 5:1). Compound **5ab** was obtained as a yellowish oil (67.5 mg, 63%).

¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 5.30 (ddd, *J* = 17.3, 10.2, 7.4 Hz, 1H), 4.62 (d, *J* = 10.1 Hz, 1H), 4.53 (d, *J* = 17.1 Hz, 1H), 3.77 (s, 3H), 3.73 (s, 3H), 3.40 – 3.28 (m, 1H), 3.20 – 3.02 (m, 2H), 2.53 (dd, *J* = 13.3, 8.0 Hz, 1H), 2.12 (dd, *J* = 13.3, 6.6 Hz, 1H), 2.00 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 172.35 (C), 172.07 (C), 148.52 (C), 139.26 (CH), 138.74 (C), 131.94 (CH), 130.18

(C), 128.96 (CH), 119.22 (C), 114.90 (CH₂), 110.20 (C), 58.75 (C), 53.09 (CH₃), 52.96 (CH₃), 45.86 (CH), 40.96 (CH₂), 39.39 (CH₂), 21.93 (CH₃). HRMS-ESI: [MNa]⁺ Calcd. for C₂₀H₂₁NO₄Na: 362.1362; found: 362.1367

Suzuki cross-coupling of allylboronates

Dimethyl 2-(but-2-yn-1-yl)-2-(2-(4-cyanophenyl)but-3-en-1-yl)malonate (6ab)

A solution of 4-iodobenzonitrile (20.74 mg, 0.09 mmol) in dry THF (4 mL) was added to a dry tube containing the allylboronate **2ab** (48 mg, 0.14 mmol), CsF (83.41 mg, 0.55 mmol) and Pd(PPh₃)₄ (23.79 mg, 0.021 mmol, 15 mol%) under Ar atmosphere; and the mixture was heated at 80 °C for 3 h in the

sealed tube. After cooling to room temperature the solvent was removed under vacuum and the crude was purified by flash chromatography (hexane/Et₂O 4:1). The product was obtained as a yellowish oil (23 mg, 52%).¹³

¹H NMR (300 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2H), 7.34 – 7.30 (m, 2H), 5.85 (ddd, J = 17.2, 10.2, 8.0 Hz, 1H), 5.08 – 4.96 (m, 2H), 3.74 – 3.68 (m, 1H), 3.65 (s, 3H), 3.50 (s, 3H), 2.94 – 2.71 (m, 2H), 2.63 – 2.45 (m, 2H), 1.74 (t, J = 2.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 170.60 (C), 170.46 (C), 149.38 (C), 140.30 (CH), 132.40 (CH), 128.79 (CH), 118.98 (C), 116.01 (CH₂), 110.52 (C), 79.65 (C), 73.09 (C), 56.33 (C), 52.75 (CH₃), 52.69 (CH₃), 45.79 (CH), 37.09 (CH₂), 23.62 (CH₂), 3.61 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₂₀H₂₂NO₄: 340.1543; found: 340.1533.

Dimethyl 2-(2-(4-cyanophenyl)but-3-en-1-yl)-2-(3-phenylprop-2-yn-1-yl)malonate (6cd)

A solution of 4-iodobenzonitrile (55.73 mg, 0.24 mmol) in THF (1.5 mL) was added to a dry tube containing the allylboronate **2cd** (138 mg, 0.32 mmol), CsF (224 mg, 0.98 mmol) and Pd(PPh₃)₄ (64 mg, 0.055 mmol, 15 mol%), under Ar atmosphere; and the mixture was heated at 80 °C for 3 h in a sealed tube. After cooling

to room temperature the solvent was removed under vacuum and the crude was purified by flash chromatography (hexane/Et₂O 5:1). The product **6cd** was obtained as a yellowish oil (76 mg, 51%).¹³

¹H NMR (300 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.36 – 7.27 (m, 7H), 5.89 (ddd, J = 16.9, 10.2, 7.9 Hz, 1H), 5.07 (dt, J = 5.1, 1.0 Hz, 1H), 5.03 (dt, J = 11.8, 1.0 Hz, 1H), 3.70 (s, 3H), 3.54 (s, 3H), 3.48 (dd, J = 13.3, 6.2 Hz, 1H), 3.22 – 2.98 (m, 2H), 2.72 – 2.55 (m, 2H).¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 170.38 (C), 170.26 (C), 149.23 (C), 140.19 (CH), 132.44 (CH), 131.70 (CH), 128.77 (CH), 128.41 (CH),128.33 (CH), 123.02 (C), 118.92 (C), 116.14 (CH₂), 110.58 (C), 84.31 (C), 83.87 (C), 56.44 (C), 52.87 (CH₃), 52.81 (CH₃), 45.87 (CH), 37.23 (CH₂), 24.15 (CH₂). HRMS-ESI: [MH]⁺ Calcd. for C₂₅H₂₄NO₄:402.1699; found: 402.1712.

N-(but-2-yn-1-yl)-*N*-(2-(4-cyanophenyl)but-3-en-1-yl)-4-methylbenzenesulfonamide (6ef)

A solution of 4-iodobenzonitrile (14 mg, 0.06 mmol) in THF (1.5 mL) was added to a dry tube containing the allylboronate **2ef** (80 mg, 0.20 mmol), CsF (138.4 mg, 0.91 mmol) and Pd(PPh₃)₄ (39.4 mg, 0.034 mmol, 15 mol%) under Ar atmosphere; and the mixture was heated at 80 °C for 8 h in the sealed tube. After cooling to room temperature the

solvent was removed under vacuum and the crude was purified by flash chromatography (hexane/Et₂O 4:1). The product **6ef** was obtained as a yellowish oil (24.75 mg, 33%).¹³

¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 5.4 Hz, 2H), 5.90 (ddd, *J* = 17.6, 10.3, 7.6 Hz, 1H), 5.19 – 5.01 (m, 2H), 3.99 3.93 (m, 1H), 3.76 – 3.64 (m, 2H), 3.44 – 3.27 (m, 2H), 2.35 (s, 3H), 1.48 (t, *J* = 2.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 146.54 (C), 143.46 (CH), 137.25 (C), 135.73 (C), 132.45 (CH), 129.32 (CH), 128.89 (CH), 127.83 (CH), 118.75 (C), 117.86 (CH₂), 110.92 (C), 82.01 (C), 71.40 (C), 50.45 (CH₂), 48.53 (CH), 37.70 (CH₂), 21.51 (CH₃), 3.24 (CH₃). HRMS-ESI: [MH]⁺ Calcd. for C₂₂H₂₃N₂O₂S: 379.1474; found: 379.1465.

Synthesis of allylboronate 7

To a suspension of NaH (60% in mineral oil, 15 mg, 0.36 mmol) in anhydrous THF (10 mL) under Ar atmosphere at 0 $^{\circ}$ C, was slowly added **2l** (102 mg, 0.33 mmol) and the mixture was stirred at room temperature for 30 minutes (formation of H₂ bubbles were observed during the addition). Then,

propargyl bromide solution (80 wt. % in toluene, 42.4 mg, 0.36 mmol), was added dropwise and the mixture was allowed to react at room temperature for 12 h. Monitoring by TLC indicated the completion of the reaction. Then water and Et₂O were added into the resulting mixture. The aqueous layer was separated and extracted successively with Et₂O (3 x 25 mL). The combined organic phases were washed several times with water, twice with saturated aqueous solution of NaCl, and dried over anhydrous MgSO₄. The solvent was removed under vacuum and the crude was purified by flash chromatography (hexane/Et₂O 15:1, to afford the title compound as a colourless oil (80 mg, 70%).

¹H NMR (300 MHz, CDCl₃) δ 5.67 – 5.51 (m, 1H), 5.21 – 5.06 (m, 1H), 3.69 (s, 6H), 2.74 (d, J = 2.7 Hz, 2H), 2.70 (d, J = 7.5 Hz, 2H), 1.96 (t, J = 2.7 Hz, 1H), 1.60 (d, J = 7.3 Hz, 2H), 1.20 (s, 12H). ¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 170.37 (C), 131.26 (CH), 122.96 (CH), 83.32 (C), 79.14 (C), 71.29 (CH), 57.28 (C), 52.71 (CH₃), 35.52 (CH₂), 24.84 (CH₃), 22.56 (CH₂). HRMS-ESI: [MH]⁺ Calcd. for C₁₈H₂₈BO₆: 351.1973; found: 351.1986

Cycloisomerization of allylboronate 7.

Scheme S8

A solution of allylboronate 7 (100 mg, 0.28 mmol) in CH₂Cl₂ (0.5 mL) was added to a mixture of AuPPh₃Cl (3.0 mol%) and AgSbF₆ (3.0 mol%) in CH₂Cl₂ (1 mL). The mixture was stirred at room temperature for 5 minutes, before being filtered through a silica gel plug which was rinsed with diethyl ether. The resulting solution was then evaporated in vacuo to afford the crude product. The ratio of the two isomers observed (by GC-MS) was determined by ¹H-NMR. The residue was purified by flash chromatography (hexane \rightarrow hexane/EtOAc (5:1) to give a mixture of products that could not be separated (8:9 = 1:1) (72 mg, 72%).¹⁴

¹H NMR (300 MHz, CDCl₃) δ 6.36 (d, *J* = 10.1 Hz, 1H), 6.12 (d, *J* = 15.7 Hz, 2H), 5.93 – 5.30 (m, 8H), 3.70 (s, 12H), 3.66 (s, 6H), 3.06 (d, *J* = 18.2 Hz, 8H), 2.71 (d, *J* = 36.8 Hz, 4H), 1.88 (d, *J* = 8.5 Hz, 1H), 1.74 – 1.67 (m, 5H), 1.22 (s, 24H), 1.19 (s, 12H).

¹³C NMR (75 MHz, CDCl₃, DEPT-135) δ 172.72 (C), 172.63 (C), 171.62 (C), 139.86 (C), 128.91 (C), 127.81 (CH), 127.34 (CH), 126.56 (CH), 126.19 (CH), 125.06 (CH), 124.10 (CH), 124.03 (CH), 123.68 (CH), 123.09 (CH), 83.46 (C), 83.42 (C), 83.33 (C), 59.43 (C), 58.83 (C), 54.29 (C), 52.88 (CH₃), 52.67 (CH₃), 43.25 (CH₂), 40.80 (CH₂), 40.42 (CH₂), 39.98 (CH₂), 37.39 (CH₂), 31.88 (CH₂), 24.85 (CH₃), 24.82 (CH₃).

¹H-NMR and ¹³C-NMR spectra

¹H-NMR and ¹³C-NMR spectra of dienynes precursors.

¹H-NMR and ¹³C-NMR spectra of allylcarbonates

S48

S53

S60

¹H-NMR and ¹³C-NMR spectra of allylboronates

¹H-NMR and ¹³C-NMR spectra of alkenylboronates

 $<^{172.68}_{172.44}$

-58.60 $\angle 52.92$ -52.76-46.32< 39.70< 39.25

 $<^{25.07}_{24.94}$ -17.64

S83

¹H-NMR and ¹³C-NMR spectra of synthetic applications of allyl- and alkenylboronates

X-ray diffraction analysis

X-ray diffraction analysis of 3mn

Single crystals of **compound 3mn** suitable for X-ray diffraction were obtained by slow evaporation of a solution of the compound in hexane at room temperature. Details of the crystal structure, data acquisition and refining are given in the following tables.

Crystal Structure Report for Compound 3mn

A clear colourless prismatic-like specimen of $C_{25}H_{33}BO_7$, approximate dimensions 0.10 mm x 0.19 mm x 0.24 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

Table 1: Data collection details for compound 3mn.

Axis	dx/mm	20/°	ω/°	φ/°	χ/°	Width/°	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Phi	34.959	20.50	12.48	-347.51	28.87	0.50	739	40.00	0.71073	50	30.0	n/a
Omega	34.959	5.50	3.78	-182.80	-61.97	0.50	89	40.00	0.71073	50	30.0	n/a
Phi	34.959	-12.00	-14.73	-313.05	82.04	0.50	739	40.00	0.71073	50	30.0	n/a

A total of 1567 frames were collected. The total exposure time was 17.41 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 16041 reflections to a maximum θ angle of 25.35° (0.83 Å resolution), of which 4463 were independent (average redundancy 3.594, completeness = 99.4%, R_{int} = 3.45%, R_{sig} = 3.74%) and 3099 (69.44%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 9.5236(5) Å, <u>b</u> = 11.7389(8) Å, <u>c</u> = 12.5461(8) Å, α = 62.680(3)°, β = 84.635(3)°, γ = 81.559(3)°, volume = 1232.12(13) Å³, are based upon the refinement of the XYZ-centroids of 4086 reflections above 20 $\sigma(I)$ with 5.580° < 2 θ < 49.09°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.900. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9792 and 0.9913.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -1, with Z = 2 for the formula unit, $C_{25}H_{33}BO_7$. The final anisotropic full-matrix least-squares refinement on F^2

with 305 variables converged at R1 = 4.77%, for the observed data and wR2 = 18.11% for all data. The goodness-of-fit was 1.004. The largest peak in the final difference electron density synthesis was 0.290 e⁻/Å³ and the largest hole was -0.306 e⁻/Å³ with an RMS deviation of 0.094 e⁻/Å³. On the basis of the final model, the calculated density was 1.230 g/cm³ and F(000), 488 e⁻.

Table 2. Sample and crystal data for compound 3mn.

Identification code	compound 3mn		
Chemical formula	C ₂₅ H ₃₃ BO ₇		
Formula weight	456.32		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal size	0.10 x 0.19 x 0.24 m	n	
Crystal habit	clear colourless prismatic		
Crystal system	triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.5236(5) Å	$\alpha = 62.680(3)^{\circ}$	
	b = 11.7389(8) Å	$\beta = 84.635(3)^{\circ}$	
	c = 12.5461(8) Å	$\gamma = 81.559(3)^{\circ}$	
Volume	1232.12(13) Å ³		
Z	2		
Density (calculated)	1.230 Mg/cm ³		
Absorption coefficient	0.088 mm ⁻¹		
F(000)	488		

Table 3. Data collection and structure refinement for compound 3mn.

Theta range for data collection	1.83 to 25.35°
Index ranges	-11<=h<=11, -14<=k<=14, -15<=l<=15
Reflections collected	16041
Independent reflections	4463 [R(int) = 0.0345]
Coverage of independent reflections	99.4%
Absorption correction	multi-scan
Max. and min. transmission	0.9913 and 0.9792
Structure solution technique	direct methods
Structure solution program	SHELXS-97 (Sheldrick, 2008)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-97 (Sheldrick, 2008)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	4463 / 0 / 305
Goodness-of-fit on F ²	1.004
Δ/σ_{max}	0.018
Final R indices	3099 data; $I > 2\sigma(I) $ $ \begin{array}{c} R1 = 0.0477, wR2 = \\ 0.1441 \end{array} $
	all data $R1 = 0.0787, wR2 = 0.1811$
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.1253P)^2+0.0174P]$

	where $P = (F_0^2 + 2F_c^2)/3$
Largest diff. peak and hole	0.290 and -0.306 eÅ ⁻³
R.M.S. deviation from mean	0.094 eÅ ⁻³

Table 4. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for compound 3mn

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
B1	0.2156(2)	0.7944(2)	0.1748(2)	0.0369(6)
C1	0.1218(2)	0.89087(19)	0.21489(18)	0.0357(5)
C2	0.1216(2)	0.03292(19)	0.13417(18)	0.0351(5)
C3	0.1221(2)	0.1201(2)	0.1811(2)	0.0416(5)
C4	0.1211(2)	0.2509(2)	0.1086(2)	0.0464(6)
C5	0.1223(2)	0.2998(2)	0.9850(2)	0.0413(5)
C6	0.1236(2)	0.2161(2)	0.93518(19)	0.0396(5)
C7	0.1250(2)	0.0843(2)	0.00987(19)	0.0373(5)
C8	0.1329(3)	0.4841(2)	0.7931(2)	0.0633(7)
C9	0.3634(2)	0.7260(2)	0.0564(2)	0.0441(6)
C10	0.2822(3)	0.7583(3)	0.9455(2)	0.0628(7)
C11	0.5223(2)	0.7187(3)	0.0286(3)	0.0630(7)
C12	0.3158(2)	0.6077(2)	0.1703(2)	0.0429(5)
C13	0.2621(3)	0.5062(2)	0.1475(3)	0.0582(7)
C14	0.4267(3)	0.5431(3)	0.2681(3)	0.0602(7)
C15	0.0423(2)	0.84824(19)	0.31751(18)	0.0362(5)
C16	0.9289(2)	0.9282(2)	0.35599(19)	0.0399(5)
C17	0.8241(2)	0.83128(19)	0.43507(18)	0.0382(5)
C18	0.9261(2)	0.7083(2)	0.5047(2)	0.0463(6)
C19	0.0461(2)	0.7071(2)	0.41383(19)	0.0425(5)
C20	0.1853(3)	0.6483(3)	0.4737(2)	0.0596(7)
C21	0.2813(3)	0.7064(3)	0.4841(3)	0.0809(9)
C22	0.7354(2)	0.8745(2)	0.5196(2)	0.0452(6)
C23	0.5376(3)	0.8315(3)	0.6559(3)	0.0799(9)
C24	0.7266(2)	0.8084(2)	0.35940(19)	0.0404(5)
C25	0.5390(3)	0.9055(3)	0.2237(3)	0.0713(8)
01	0.12322(19)	0.43085(15)	0.92020(15)	0.0576(5)
02	0.19768(14)	0.66692(14)	0.21819(13)	0.0433(4)
03	0.32166(14)	0.83150(14)	0.08833(14)	0.0452(4)
04	0.63006(19)	0.80208(17)	0.57097(16)	0.0639(5)
05	0.7565(2)	0.9603(2)	0.54014(18)	0.0733(6)
06	0.64150(17)	0.91520(15)	0.29605(15)	0.0544(5)
O7	0.72520(19)	0.70859(17)	0.35579(17)	0.0647(5)

Table 5. Bond lengths (Å) for compound 3mn

B1-O2	1.369(3)	B1-O3	1.370(3)
B1-C1	1.573(3)	C1-C15	1.349(3)
C1-C2	1.502(3)	C2-C7	1.389(3)

C2-C3	1.396(3)	C3-C4	1.378(3)
C4-C5	1.385(3)	C5-O1	1.372(3)
C5-C6	1.383(3)	C6-C7	1.392(3)
C8-O1	1.420(3)	C9-O3	1.461(3)
C9-C10	1.519(3)	C9-C11	1.520(3)
C9-C12	1.555(3)	C12-O2	1.462(2)
C12-C13	1.510(3)	C12-C14	1.533(3)
C15-C16	1.517(3)	C15-C19	1.536(3)
C16-C17	1.545(3)	C17-C22	1.515(3)
C17-C24	1.519(3)	C17-C18	1.543(3)
C18-C19	1.541(3)	C19-C20	1.496(3)
C20-C21	1.268(4)	C22-O5	1.195(3)
C22-O4	1.331(3)	C23-O4	1.450(3)
C24-O7	1.195(3)	C24-O6	1.330(3)
C25-O6	1.443(3)		

Table 6. Bond angles (°) for compound 3mn

O2-B1-O3	112.73(19)	O2-B1-C1	124.37(19)
O3-B1-C1	122.86(19)	C15-C1-C2	120.65(19)
C15-C1-B1	121.46(19)	C2-C1-B1	117.88(18)
C7-C2-C3	116.44(19)	C7-C2-C1	122.34(18)
C3-C2-C1	121.20(18)	C4-C3-C2	122.1(2)
C3-C4-C5	120.2(2)	O1-C5-C6	124.6(2)
O1-C5-C4	116.1(2)	C6-C5-C4	119.3(2)
C5-C6-C7	119.6(2)	C2-C7-C6	122.27(19)
O3-C9-C10	106.81(19)	O3-C9-C11	108.69(18)
C10-C9-C11	110.3(2)	O3-C9-C12	102.28(17)
C10-C9-C12	113.45(19)	C11-C9-C12	114.6(2)
O2-C12-C13	108.48(17)	O2-C12-C14	106.35(18)
C13-C12-C14	109.6(2)	O2-C12-C9	102.24(16)
C13-C12-C9	115.4(2)	C14-C12-C9	114.07(18)
C1-C15-C16	126.75(19)	C1-C15-C19	125.42(19)
C16-C15-C19	107.76(17)	C15-C16-C17	103.88(16)
C22-C17-C24	109.41(18)	C22-C17-C18	111.24(17)
C24-C17-C18	110.62(18)	C22-C17-C16	112.19(18)
C24-C17-C16	111.53(17)	C18-C17-C16	101.69(17)
C19-C18-C17	105.38(17)	C20-C19-C15	115.01(19)
C20-C19-C18	111.49(19)	C15-C19-C18	104.84(16)
C21-C20-C19	127.5(3)	O5-C22-O4	123.6(2)
O5-C22-C17	125.6(2)	O4-C22-C17	110.8(2)
O7-C24-O6	123.6(2)	O7-C24-C17	125.4(2)
O6-C24-C17	110.97(18)	C5-O1-C8	117.9(2)
B1-O2-C12	107.37(16)	B1-O3-C9	107.35(16)
C22-O4-C23	116.8(2)	C24-O6-C25	116.74(19)

Table 7. Anisotropic atomic displacement parameters (Å²) for compound 3mn

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
B1	0.0350(12)	0.0387(14)	0.0372(13)	-0.0170(11)	-0.0055(10)	-0.0029(10)
C1	0.0359(10)	0.0346(12)	0.0355(12)	-0.0144(9)	-0.0059(9)	-0.0029(8)
C2	0.0324(10)	0.0370(12)	0.0367(12)	-0.0167(10)	-0.0037(8)	-0.0042(8)
C3	0.0486(12)	0.0454(14)	0.0330(12)	-0.0173(10)	-0.0006(9)	-0.0138(10)
C4	0.0546(13)	0.0476(14)	0.0471(14)	-0.0280(12)	0.0036(10)	-0.0168(10)
C5	0.0369(11)	0.0359(12)	0.0451(13)	-0.0126(11)	0.0014(9)	-0.0080(9)
C6	0.0388(11)	0.0425(13)	0.0334(12)	-0.0140(10)	-0.0002(9)	-0.0039(9)
C7	0.0377(11)	0.0382(12)	0.0379(12)	-0.0192(10)	-0.0004(9)	-0.0033(9)
C8	0.0696(17)	0.0438(15)	0.0537(16)	-0.0032(12)	-0.0002(13)	-0.0055(12)
C9	0.0394(11)	0.0450(13)	0.0510(14)	-0.0263(11)	0.0040(10)	-0.0013(9)
C10	0.0637(16)	0.0754(19)	0.0518(16)	-0.0320(15)	0.0018(12)	-0.0070(13)
C11	0.0437(13)	0.0649(17)	0.080(2)	-0.0363(15)	0.0138(13)	-0.0041(11)
C12	0.0396(11)	0.0408(13)	0.0515(14)	-0.0254(11)	0.0013(10)	-0.0008(9)
C13	0.0612(15)	0.0542(16)	0.0741(18)	-0.0420(14)	0.0088(13)	-0.0123(12)
C14	0.0594(15)	0.0484(15)	0.0668(17)	-0.0227(13)	-0.0107(13)	0.0055(11)
C15	0.0372(11)	0.0336(12)	0.0351(12)	-0.0134(10)	-0.0049(9)	-0.0007(8)
C16	0.0438(11)	0.0371(12)	0.0380(12)	-0.0165(10)	-0.0021(9)	-0.0032(9)
C17	0.0440(11)	0.0340(12)	0.0328(11)	-0.0137(10)	0.0016(9)	-0.0004(9)
C18	0.0535(13)	0.0395(13)	0.0345(12)	-0.0103(10)	0.0020(10)	0.0037(10)
C19	0.0486(12)	0.0356(12)	0.0347(12)	-0.0113(10)	0.0017(10)	0.0026(9)
C20	0.0626(16)	0.0531(16)	0.0451(15)	-0.0112(13)	-0.0026(12)	0.0093(12)
C21	0.075(2)	0.085(2)	0.072(2)	-0.0246(18)	-0.0231(16)	-0.0018(17)
C22	0.0511(13)	0.0437(14)	0.0353(12)	-0.0157(11)	-0.0041(10)	0.0047(10)
C23	0.081(2)	0.089(2)	0.0618(18)	-0.0376(17)	0.0283(15)	0.0064(16)
C24	0.0466(12)	0.0377(13)	0.0368(12)	-0.0182(10)	0.0073(9)	-0.0057(9)
C25	0.0688(17)	0.073(2)	0.079(2)	-0.0362(17)	-0.0279(15)	-0.0074(14)
01	0.0749(11)	0.0368(9)	0.0534(11)	-0.0137(8)	0.0058(8)	-0.0116(8)
02	0.0442(8)	0.0403(9)	0.0476(9)	-0.0234(7)	0.0066(7)	-0.0047(6)
O3	0.0412(8)	0.0411(9)	0.0543(10)	-0.0236(8)	0.0078(7)	-0.0068(6)
O4	0.0681(11)	0.0630(12)	0.0638(12)	-0.0359(10)	0.0290(9)	-0.0115(9)
05	0.0911(14)	0.0829(15)	0.0731(13)	-0.0589(12)	0.0122(11)	-0.0174(11)
06	0.0602(10)	0.0439(10)	0.0617(11)	-0.0244(9)	-0.0201(8)	-0.0008(8)
O7	0.0807(12)	0.0479(11)	0.0778(13)	-0.0390(10)	-0.0102(10)	-0.0028(9)

Table 8. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for compound 3mn

	x/a	y/b	z/c	U(eq)
H3	0.1231	1.0890	0.2639	0.05
H4	0.1195	1.3065	0.1429	0.056
H6	0.1236	1.2477	-0.1477	0.048

	x/a	y/b	z/c	U(eq)
H7	0.1282	1.0287	-0.0246	0.045
H8A	0.2184	1.4458	-0.2305	0.095
H8B	0.1347	1.5757	-0.2409	0.095
H8C	0.0523	1.4668	-0.2353	0.095
H10A	0.1820	0.7650	-0.0364	0.094
H10B	0.3072	0.6913	-0.0789	0.094
H10C	0.3060	0.8389	-0.1182	0.094
H11A	0.5428	0.7948	-0.0427	0.094
H11B	0.5529	0.6438	0.0163	0.094
H11C	0.5716	0.7128	0.0946	0.094
H13A	0.2332	0.4383	0.2223	0.087
H13B	0.3365	0.4713	0.1099	0.087
H13C	0.1826	0.5445	0.0958	0.087
H14A	0.4594	0.6075	0.2836	0.09
H14B	0.5054	0.5002	0.2417	0.09
H14C	0.3846	0.4812	0.3403	0.09
H16A	-0.1178	0.9989	0.2870	0.048
H16B	-0.0306	0.9630	0.4014	0.048
H18A	-0.0363	0.7111	0.5726	0.056
H18B	-0.1225	0.6319	0.5339	0.056
H19	0.0224	0.6553	0.3765	0.051
H20	0.2035	0.5588	0.5072	0.072
H21A	0.2689	0.7960	0.4524	0.097
H21B	0.3642	0.6596	0.5235	0.097
H23A	-0.4123	0.8047	0.7281	0.12
H23B	-0.5446	0.7865	0.6743	0.12
H23C	-0.4914	0.9228	0.6214	0.12
H25A	-0.4149	0.9078	0.1514	0.107
H25B	-0.5349	0.9765	0.2036	0.107
H25C	-0.5013	0.8257	0.2679	0.107

Crystal Structure Report for Compound 3p

Single crystals of **compound 3p** suitable for X-ray diffraction were obtained by slow evaporation of a solution of the compound in hexane at room temperature. Details of the crystal structure, data acquisition and refining are given in the following table.

A clear colourless prismatic-like specimen of $C_{27}H_{33}BO_6S_2$, approximate dimensions 0.04 mm x 0.06 mm x 0.19 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

Axis	dx/mm	20/°	ω/°	φ/°	χ/°	Width/°	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Phi	35.000	18.00	4.37	15.98	36.29	0.50	639	120.00	0.71073	50	30.0	n/a
Omega	35.000	-12.00	-98.48	-66.65	30.74	0.50	178	120.00	0.71073	50	30.0	n/a
Omega	35.000	15.50	13.11	75.75	-42.86	0.50	111	120.00	0.71073	50	30.0	n/a
Omega	35.000	-17.00	-105.88	-93.28	32.60	0.50	130	120.00	0.71073	50	30.0	n/a
Omega	35.000	-7.00	-37.77	-213.27	93.98	0.50	63	120.00	0.71073	50	30.0	n/a
Omega	35.000	-9.50	-2.08	-265.18	-44.66	0.50	141	120.00	0.71073	50	30.0	n/a
Phi	35.000	8.00	167.83	-37.63	-99.07	0.50	195	120.00	0.71073	50	30.0	n/a

A total of 1457 frames were collected. The total exposure time was 48.57 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 50200 reflections to a maximum θ angle of 29.41° (0.72 Å resolution), of which 7595 were independent (average redundancy 6.610, completeness = 98.7%, R_{int} = 6.10%, R_{sig} = 5.76%) and 4803 (63.24%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 8.1024(2) Å, <u>b</u> = 13.4762(3) Å, <u>c</u> = 25.6608(5) Å, β = 96.5180(10)°, volume = 2783.78(11) Å³, are based upon the refinement of the XYZ-centroids of 9994 reflections above 20 $\sigma(I)$ with 5.060° < 2 θ < 56.57°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.897. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9577 and 0.9909.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/c 1, with Z = 4 for the formula unit, $C_{27}H_{33}BO_6S_2$. The final anisotropic full-matrix least-squares refinement on F² with 331 variables converged at R1 = 6.01%, for the observed data and wR2 = 17.94% for all data. The goodness-of-fit was 1.018. The largest peak in the final difference electron density synthesis was 0.611 e⁻/Å³ and the largest hole was -0.528 e⁻/Å³ with an RMS deviation of 0.155 e⁻/Å³. On the basis of the final model, the calculated density was 1.261 g/cm³ and F(000), 1120 e⁻.

Table 2. Sample and crystal data for compound 3p

Identification code compound 3m

Chemical formula	$C_{27}H_{33}BO_6S_2$				
Formula weight	528.46				
Temperature	296(2) K	296(2) K			
Wavelength	0.71073 Å	0.71073 Å			
Crystal size	0.04 x 0.06 x 0.19 m	0.04 x 0.06 x 0.19 mm			
Crystal habit	clear colourless prisr	clear colourless prismatic			
Crystal system	monoclinic				
Space group	P 1 21/c 1				
Unit cell dimensions	a = 8.1024(2) Å	$\alpha = 90^{\circ}$			
	b = 13.4762(3) Å	$\beta = 96.5180(10)^{\circ}$			
	c = 25.6608(5) Å	$\gamma = 90^{\circ}$			
Volume	2783.78(11) Å ³				
Z	4				
Density (calculated)	1.261 Mg/cm ³				
Absorption coefficient	0.229 mm ⁻¹				
F(000)	1120				

Table 3. Data collection and structure refinement for compound 3p.

Theta range for data collection	1.60 to 29.41°		
Index ranges	-10<=h<=11, -18<=k<=18, -35<=l<=35		
Reflections collected	50200		
Independent reflections	7595 [R(int) = 0.0610]		
Coverage of independent reflections	98.7%		
Absorption correction	multi-scan		
Max. and min. transmission	0.9909 and 0.9577		
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (Sheldrick, 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-97 (Sheldrick, 2008)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	7595 / 0 / 331		
Goodness-of-fit on F ²	1.018		
Δ/σ_{max}	0.010		
Final R indices	4803 data; I> $2\sigma(I) \frac{R1 = 0.0601, wR2 = 0.1482}{0.1482}$		
	all data $R1 = 0.1082, wR2 = 0.1794$		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.1068P) ² +0.0863P] where P=(F_o^2 +2 F_c^2)/3		
Extinction coefficient	0.0227(19)		
Largest diff. peak and hole	0.611 and -0.528 eÅ ⁻³		
R.M.S. deviation from mean	0.155 eÅ ⁻³		

Table 4. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for compound 3p.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
B1	0.1897(4)	0.2121(2)	0.06852(10)	0.0443(7)
C1	0.8229(3)	0.09438(16)	0.32814(8)	0.0318(5)
C2	0.8161(3)	0.00973(18)	0.35838(9)	0.0399(5)
C3	0.6706(3)	0.98623(19)	0.37897(10)	0.0464(6)
C4	0.5329(3)	0.0464(2)	0.36844(10)	0.0476(6)
C5	0.5398(3)	0.1307(2)	0.33864(10)	0.0476(6)
C6	0.6850(3)	0.15612(19)	0.31852(9)	0.0409(5)
C7	0.2183(3)	0.94921(17)	0.21057(9)	0.0366(5)
C8	0.3324(3)	0.92796(19)	0.25342(10)	0.0454(6)
C9	0.4925(3)	0.9028(2)	0.24503(12)	0.0563(7)
C10	0.5384(3)	0.8986(2)	0.19506(13)	0.0598(8)
C11	0.4231(4)	0.9186(2)	0.15270(12)	0.0620(8)
C12	0.2626(3)	0.9450(2)	0.15988(10)	0.0477(6)
C16	0.9332(3)	0.19527(16)	0.15130(8)	0.0340(5)
C17	0.1229(3)	0.18911(16	0.16313(8)	0.0325(5)
C18	0.2354(3)	0.19775(18)	0.12881(8)	0.0382(5)
C19	0.8730(3)	0.29571(19)	0.13280(9)	0.0433(6)
C20	0.7768(4)	0.3140(3)	0.08923(12)	0.0704(9)
C21	0.4205(3)	0.1938(2)	0.14633(10)	0.0515(7)
C25	0.2099(5)	0.2703(4)	0.98621(11)	0.0952(14)
C26	0.0813(5)	0.1925(3)	0.98362(11)	0.0938(14)
C27	0.0125(3)	0.11562(15)	0.23691(7)	0.0301(5)
C28	0.1652(3)	0.17130(17	0.22113(7)	0.0322(5)
C29	0.8679(3)	0.16787(17)	0.20391(8)	0.0340(5)
C30	0.3411(7)	0.2688(5)	0.94960(16)	0.141(2)
C31	0.9170(7)	0.2042(5)	0.95267(15)	0.152(3)
C32	0.1638(10)	0.0903(4)	0.96440(19)	0.189(3)
C33	0.1204(9)	0.3739(4)	0.9821(2)	0.176(3)
01	0.14358(19	0.07004(14	0.22220(0)	0.0441(4)
01))	0.33320(6)	0.0441(4)

	x/a	y/b	z/c	U(eq)
02	0.0256(2)	0.23751(13)	0.31635(6)	0.0470(4)
03	0.9557(2)	0.92642(12)	0.26094(6)	0.0406(4)
O4	0.9170(2)	0.97641(12)	0.16785(6)	0.0414(4)
07	0.2918(3)	0.2630(2)	0.03985(7)	0.0812(7)
08	0.0565(3)	0.17544(19)	0.03875(7)	0.0809(8)
S 1	0.01122(6)	0.98238(4)	0.21858(2)	0.03183(16)
S2	0.01429(7)	0.13213(4)	0.308099(19)	0.03276(17)

Table 5. Bond lengths (Å) for compound 3p.

B1-08	1.344(4)	B1-07	1.354(3)
B1-C18	1.561(3)	C1-C2	1.384(3)
C1-C6	1.393(3)	C1-S2	1.763(2)
C2-C3	1.382(3)	C3-C4	1.381(4)
C4-C5	1.374(4)	C5-C6	1.380(3)
C7-C8	1.384(3)	C7-C12	1.389(3)
C7-S1	1.771(2)	C8-C9	1.381(3)
C9-C10	1.376(4)	C10-C11	1.377(4)
C11-C12	1.381(4)	C16-C19	1.498(3)
C16-C17	1.534(3)	C16-C29	1.550(3)
C17-C18	1.343(3)	C17-C28	1.508(3)
C18-C21	1.517(3)	C19-C20	1.311(4)
C25-O7	1.462(4)	C25-C26	1.475(5)
C25-C30	1.496(6)	C25-C33	1.570(7)
C26-O8	1.469(3)	C26-C31	1.479(6)
C26-C32	1.632(7)	C27-C29	1.537(3)
C27-C28	1.540(3)	C27-S2	1.839(2)
C27-S1	1.856(2)	O1-S2	1.4350(16)
O2-S2	1.4373(17)	O3-S1	1.4368(16)
O4-S1	1.4345(15)		

Table 6. Bond angles (°) for compound 3p

O8-B1-O7	112.2(2)	O8-B1-C18	127.0(2)
O7-B1-C18	120.7(2)	C2-C1-C6	120.6(2)
C2-C1-S2	119.57(17)	C6-C1-S2	119.38(17)
C3-C2-C1	119.5(2)	C4-C3-C2	119.7(2)
C5-C4-C3	120.8(2)	C4-C5-C6	120.2(2)
C5-C6-C1	119.1(2)	C8-C7-C12	121.0(2)

C8-C7-S1	121.09(18)	C12-C7-S1	117.88(19)
C9-C8-C7	118.8(2)	C10-C9-C8	120.9(3)
C11-C10-C9	119.8(3)	C10-C11-C12	120.7(3)
C11-C12-C7	118.9(3)	C19-C16-C17	113.25(18)
C19-C16-C29	111.11(18)	C17-C16-C29	104.38(16)
C18-C17-C28	124.5(2)	C18-C17-C16	127.23(19)
C28-C17-C16	108.30(17)	C17-C18-C21	121.6(2)
C17-C18-B1	123.9(2)	C21-C18-B1	114.4(2)
C20-C19-C16	125.5(3)	O7-C25-C26	103.7(3)
O7-C25-C30	108.1(4)	C26-C25-C30	120.7(4)
O7-C25-C33	106.3(3)	C26-C25-C33	108.1(4)
C30-C25-C33	109.0(4)	O8-C26-C25	103.9(2)
O8-C26-C31	108.7(3)	C25-C26-C31	122.4(4)
O8-C26-C32	105.3(3)	C25-C26-C32	107.6(4)
C31-C26-C32	107.6(4)	C29-C27-C28	102.53(16)
C29-C27-S2	114.31(14)	C28-C27-S2	106.64(13)
C29-C27-S1	108.76(14)	C28-C27-S1	112.73(15)
S2-C27-S1	111.59(11)	C17-C28-C27	103.76(16)
C27-C29-C16	105.94(16)	B1-O7-C25	107.8(2)
B1-O8-C26	107.5(2)	O4-S1-O3	118.50(10)
O4-S1-C7	107.10(10)	O3-S1-C7	109.73(11)
O4-S1-C27	105.74(9)	O3-S1-C27	108.02(9)
C7-S1-C27	107.19(10)	O1-S2-O2	118.61(11)
O1-S2-C1	108.80(10)	O2-S2-C1	106.60(10)
O1-S2-C27	107.37(9)	O2-S2-C27	105.01(10)
C1-S2-C27	110.30(9)		

Table 7. Anisotropic atomic displacement parameters (Å²) for compound 3p

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
B1	0.0523(17)	0.0503(17)	0.0324(12)	-0.0007(12)	0.0136(12)	-0.0053(13)
C1	0.0345(11)	0.0356(12)	0.0267(10)	-0.0018(9)	0.0099(8)	0.0007(9)
C2	0.0432(13)	0.0404(13)	0.0371(12)	0.0022(10)	0.0093(10)	0.0079(10)
C3	0.0520(15)	0.0439(14)	0.0462(14)	0.0061(11)	0.0175(12)	-0.0036(11)
C4	0.0410(14)	0.0567(16)	0.0480(14)	-0.0042(12)	0.0175(11)	-0.0059(12)
C5	0.0358(13)	0.0587(16)	0.0497(14)	0.0014(12)	0.0105(11)	0.0108(11)
C6	0.0407(13)	0.0453(14)	0.0386(12)	0.0066(10)	0.0122(10)	0.0075(10)
C7	0.0366(12)	0.0353(12)	0.0389(12)	-0.0086(10)	0.0084(10)	-0.0027(9)
C8	0.0410(13)	0.0496(15)	0.0453(13)	-0.0086(11)	0.0030(11)	0.0010(11)
C9	0.0381(14)	0.0571(17)	0.0724(19)	-0.0134(15)	0.0005(13)	0.0021(12)
C10	0.0384(14)	0.0511(17)	0.093(2)	-0.0176(15)	0.0224(15)	-0.0038(12)
C11	0.0638(19)	0.0646(19)	0.0638(18)	-0.0121(15)	0.0345(15)	-0.0036(15)
C12	0.0516(15)	0.0533(16)	0.0403(13)	-0.0059(12)	0.0146(11)	0.0012(12)
C16	0.0352(12)	0.0399(13)	0.0267(10)	0.0010(9)	0.0022(9)	-0.0040(9)
C17	0.0345(11)	0.0349(12)	0.0283(10)	0.0019(9)	0.0049(8)	-0.0043(9)

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C18	0.0380(12)	0.0445(14)	0.0330(11)	0.0003(10)	0.0088(9)	-0.0030(10)
C19	0.0420(13)	0.0470(14)	0.0424(12)	0.0079(11)	0.0110(10)	-0.0003(11)
C20	0.067(2)	0.084(2)	0.0591(18)	0.0249(17)	0.0033(15)	0.0161(17)
C21	0.0380(14)	0.0700(19)	0.0483(14)	0.0041(13)	0.0129(11)	-0.0055(12)
C25	0.109(3)	0.144(4)	0.0337(15)	0.0164(19)	0.0100(17)	-0.045(3)
C26	0.113(3)	0.140(4)	0.0286(13)	-0.0015(19)	0.0120(17)	-0.040(3)
C27	0.0306(11)	0.0360(12)	0.0238(9)	-0.0007(8)	0.0041(8)	-0.0040(9)
C28	0.0290(10)	0.0410(12)	0.0268(10)	-0.0008(9)	0.0045(8)	-0.0076(9)
C29	0.0302(11)	0.0407(12)	0.0317(10)	0.0005(9)	0.0056(9)	-0.0012(9)
C30	0.137(4)	0.235(6)	0.061(2)	0.022(3)	0.048(3)	-0.047(4)
C31	0.140(4)	0.258(8)	0.050(2)	0.018(3)	-0.022(3)	-0.077(5)
C32	0.378(11)	0.116(4)	0.085(3)	-0.043(3)	0.082(5)	-0.032(6)
C33	0.311(9)	0.112(4)	0.093(4)	0.033(3)	-0.029(5)	0.044(5)
01	0.0326(8)	0.0678(12)	0.0313(8)	0.0015(8)	0.0014(6)	0.0034(8)
O2	0.0628(11)	0.0415(10)	0.0388(9)	-0.0100(7)	0.0147(8)	-0.0127(8)
O3	0.0459(9)	0.0397(9)	0.0381(9)	0.0009(7)	0.0127(7)	-0.0049(7)
O4	0.0431(9)	0.0439(10)	0.0349(8)	-0.0069(7)	-0.0057(7)	-0.0054(7)
O7	0.0823(15)	0.123(2)	0.0383(10)	0.0190(11)	0.0076(10)	-0.0401(14)
08	0.0892(17)	0.123(2)	0.0313(9)	-0.0004(11)	0.0091(10)	-0.0474(15)
S 1	0.0317(3)	0.0350(3)	0.0290(3)	-0.0037(2)	0.0046(2)	-0.0037(2)
S2	0.0339(3)	0.0401(3)	0.0250(3)	-0.0032(2)	0.0062(2)	-0.0035(2)

Table 8. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for compound 3p.

x/a	y/b	z/c	U(eq)
-0.0912	-0.0310	0.3648	0.048
-0.3345	-0.0699	0.3998	0.056
-0.5656	0.0297	0.3817	0.057
-0.5537	0.1708	0.3320	0.057
-0.3094	0.2137	0.2988	0.049
0.3018	-0.0694	0.2873	0.055
0.5703	-0.1114	0.2735	0.068
0.6469	-0.1177	0.1899	0.072
0.4537	-0.0857	0.1189	0.074
0.1854	-0.0403	0.1313	0.057
-0.1050	0.1456	0.1247	0.041
-0.0935	0.3497	0.1540	0.052
-0.2596	0.2621	0.0669	0.084
-0.2549	0.3788	0.0806	0.084
0.4388	0.1924	0.1840	0.077
0.4732	0.2513	0.1336	0.077
0.4667	0.1351	0.1325	0.077
0.1816	0.2335	0.2400	0.039
0.2648	0.1313	0.2280	0.039
	x/a -0.0912 -0.3345 -0.5656 -0.5537 -0.3094 0.3018 0.5703 0.6469 0.4537 0.1854 -0.1050 -0.0935 -0.2596 -0.2596 -0.2549 0.4388 0.4732 0.4667 0.1816 0.2648	x/ay/b-0.0912-0.0310-0.3345-0.0699-0.56560.0297-0.55370.1708-0.30940.21370.3018-0.06940.5703-0.11140.6469-0.11770.4537-0.08570.1854-0.0403-0.10500.1456-0.09350.3497-0.25960.2621-0.25490.37880.43880.19240.47320.25130.18160.23350.26480.1313	x/a y/b z/c -0.0912 -0.0310 0.3648 -0.3345 -0.0699 0.3998 -0.5656 0.0297 0.3817 -0.5537 0.1708 0.320 -0.3094 0.2137 0.2988 0.3018 -0.0694 0.2873 0.5703 -0.1114 0.2735 0.6469 -0.1177 0.1899 0.4537 -0.0857 0.1189 0.1854 -0.0403 0.1313 -0.1050 0.1456 0.1247 -0.0935 0.3497 0.1540 -0.2596 0.2621 0.0669 -0.2549 0.3788 0.0806 0.4388 0.1924 0.1840 0.4732 0.2513 0.1325 0.1816 0.2335 0.2400 0.2648 0.1313 0.2280

	x/a	y/b	z/c	U(eq)
H29A	-0.1649	0.2271	0.2216	0.041
H29B	-0.2273	0.1240	0.1979	0.041
H30A	0.4080	0.3275	-0.0453	0.212
H30B	0.2895	0.2666	-0.0860	0.212
H30C	0.4099	0.2112	-0.0434	0.212
H31A	-0.1526	0.1490	-0.0408	0.228
H31B	-0.0694	0.2066	-0.0840	0.228
H31C	-0.1337	0.2647	-0.0373	0.228
H32A	0.2748	0.0837	-0.0184	0.283
H32B	0.1667	0.0924	-0.0729	0.283
H32C	0.0984	0.0346	-0.0268	0.283
H33A	0.0193	0.3700	-0.0018	0.264
H33B	0.0953	0.3917	-0.0542	0.264
H33C	0.1919	0.4231	-0.0003	0.264

Crystal Structure Report for Compound 6ef

Single crystals of **compound 6ef** suitable for X-ray diffraction were obtained by slow evaporation of a solution of the compound in hexane at -18°C. Details of the crystal structure, data acquisition and refining are given in the following table.

A colorless prismatic-like specimen of $C_{22}H_{23}N_2O_2S$, approximate dimensions 0.16 mm x 0.27 mm x 0.36 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

Ta	ble	1:	Data c	ollection	n detai	ils for	com	pound	6ef.			
		• /		10 10	10	<i>i</i> 0 *	*** ***		m •	,	***	

Axis	dx/mm	20/°	ω/°	φ/°	χ/°	Width/°	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Phi	35.105	20.50	12.48	-347.51	28.87	0.50	739	60.00	0.71073	50	30.0	n/a
Omega	35.105	3.00	1.55	28.75	-87.66	0.50	77	60.00	0.71073	50	30.0	n/a

Axis	dx/mm	20/°	ω/°	φ /°	χ/°	Width/°	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Phi	35.105	-12.00	-14.73	-313.05	82.04	0.50	739	60.00	0.71073	50	30.0	n/a

A total of 1555 frames were collected. The total exposure time was 25.92 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 40940 reflections to a maximum θ angle of 25.39° (0.83 Å resolution), of which 3871 were independent (average redundancy 10.576, completeness = 99.7%, R_{int} = 3.49%, R_{sig} = 1.92%) and 2891 (74.68%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 12.1138(10) Å, <u>b</u> = 15.4374(14) Å, <u>c</u> = 22.576(2) Å, volume = 4221.8(7) Å³, are based upon the refinement of the XYZ-centroids of 9885 reflections above 20 $\sigma(I)$ with 5.277° < 2 θ < 46.58°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.869. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9409 and 0.9731.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P b c a, with Z = 8 for the formula unit, $C_{22}H_{23}N_2O_2S$. The final anisotropic full-matrix least-squares refinement on F² with 256 variables converged at R1 = 4.63%, for the observed data and wR2 = 17.33% for all data. The goodness-of-fit was 1.011. The largest peak in the final difference electron density synthesis was 0.254 e⁻/Å³ and the largest hole was -0.237 e⁻/Å³ with an RMS deviation of 0.073 e⁻/Å³. On the basis of the final model, the calculated density was 1.194 g/cm³ and F(000), 1608 e⁻.

Table 2. Sample and crystal data for compound 6ef.

Identification code	compound 6ef	
Chemical formula	$C_{22}H_{23}N_2O_2S$	
Formula weight	379.48	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal size	0.16 x 0.27 x 0.36 mm	
Crystal habit	colorless prismatic	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	a = 12.1138(10) Å	$\alpha = 90^{\circ}$
	b = 15.4374(14) Å	$\beta = 90^{\circ}$
	c = 22.576(2) Å	$\gamma = 90^{\circ}$
Volume	4221.8(7) Å ³	
Z	8	
Density (calculated)	1.194 Mg/cm ³	
Absorption coefficient	0.171 mm ⁻¹	
F(000)	1608	

Table 3. Data collection and structure refinement for compound 6ef.

Theta range for data collection	1.80 to 25.39°
Index ranges	-14<=h<=14, -18<=k<=18, -27<=l<=27
Reflections collected	40940

3871 [R(int) = 0.0])349]			
99.7%				
multi-scan				
0.9731 and 0.9409	9			
direct methods				
SHELXS-97 (She	eldrick, 2008)			
Full-matrix least-squares on F ²				
SHELXL-97 (She	eldrick, 2008)			
$\Sigma w (F_o^2 - F_c^2)^2$				
3871 / 0 / 256				
1.011				
0.025				
2891 data; I>2σ(I	$\binom{R1 = 0.0463, WR2 =}{0.1445}$			
all data	R1 = 0.0678, wR2 = 0.1733			
w=1/[$\sigma^2(F_o^2)$ +(0.1 where P=(F_o^2 +2F_o^2)	$(142P)^{2}+0.8202P]$ $(2^{2})/3$			
0.254 and -0.237	eÅ-3			
0.073 eÅ ⁻³				
	3871 [R(int) = 0.0 99.7% multi-scan 0.9731 and 0.9409 direct methods SHELXS-97 (She Full-matrix least-3 SHELXL-97 (She $\Sigma w(F_o^2 - F_c^2)^2$ 3871 / 0 / 256 1.011 0.025 2891 data; I>2 σ (I all data w=1/[$\sigma^2(F_o^2)$ +(0.1 where P=(F_o^2 +2 F_o 0.254 and -0.237 0.073 eÅ-3			

Table 4. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for compound 6ef.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.66423(18)	0.79852(13)	0.00611(10)	0.0545(5)
C2	0.5742(2)	0.81397(16)	0.97035(12)	0.0695(7)
C3	0.5624(2)	0.89341(18)	0.94390(13	0.0816(8)
C4	0.6381(2)	0.95934(17	0.95248(11	0.0731(7)
C5	0.7277(2)	0.94313(15	0.98884(11	0.0699(7)
C6	0.74171(18)	0.86374(15	0.01562(10	0.0615(6)
C8	0.5169(3)	0.45881(18	0.22446(12)	0.0814(8)
C9	0.4994(2)	0.54645(17	0.21884(11	0.0754(7)
C10	0.46967(17	0.58187(15)	0.16541(10	0.0600(6)
C11	0.4611(2)	0.52787(17)	0.11690(12)	0.0754(7)

	x/a	y/b	z/c	U(eq)
C12	0.4785(2)	0.43944(16)	0.12162(12)	0.0746(7)
C13	0.50583(18)	0.40474(15	0.17602(11	0.0620(6)
C14	0.68707(19	0.73847(15	0.15611(11	0.0633(6)
C15	0.50290(18	0.72178(14	0.10818(11	0.0619(6)
C16	0.44577(19	0.67826(16)) 0.16071(12	0.0672(6)
C17	0.5231(2)	0.31267(18)	0.18137(12)	0.0716(7)
C18	0.6244(4)	0.0462(2)	0.92261(16	0.1123(11)
C19	0.6939(2)	0.90984(16)	0.16048(11	0.0667(6)
C20	0.7045(3)	0.00452(17	0.15831(16	0.0943(9)
C21	0.68823(18)	0.83336(16)	0.15981(10)	0.0619(6)
C22	0.3232(2)	0.6957(2)	0.15550(17)	0.0952(10)
N1	0.5355(2)	0.23918(16)	0.18559(12)	0.0885(7)
N4	0.62191(14)	0.70290(10)	0.10679(8)	0.0547(5)
01	0.79379(14)	0.68187(12)	0.05076(9)	0.0827(6)
02	0.61498(17)	0.63625(10)	0.00823(8)	0.0792(5)
S 1	0.67919(5)	0.69731(3)	0.04123(3)	0.0600(2)
C23A	0.2685(4)	0.7511(5)	0.1843(3)	0.114(2)
C23B	0.2507(13)	0.6504(16)	0.1777(8)	0.160(10)

Table 5. Bond lengths (Å) for compound 6ef.

C1-C2	1.377(3)	C1-C6	1.393(3)
C1-S1	1.762(2)	C2-C3	1.371(4)
С2-Н2	0.93	C3-C4	1.383(4)
С3-Н3	0.93	C4-C5	1.384(4)
C4-C18	1.510(4)	C5-C6	1.377(3)
С5-Н5	0.93	С6-Н6	0.93
C8-C9	1.375(4)	C8-C13	1.382(4)
С8-Н8	0.93	C9-C10	1.372(3)
С9-Н9	0.93	C10-C11	1.380(3)
C10-C16	1.520(3)	C11-C12	1.385(3)
C11-H11	0.93	C12-C13	1.380(3)
C12-H12	0.93	C13-C17	1.442(3)

C14-C21	1.467(3)	C14-N4	1.471(3)
C14-H14A	0.97	C14-H14B	0.97
C15-N4	1.471(3)	C15-C16	1.529(3)
C15-H15A	0.97	C15-H15B	0.97
C16-C22	1.513(4)	C16-H16	0.98
C17-N1	1.148(3)	C18-H18A	0.96
C18-H18B	0.96	C18-H18C	0.96
C19-C21	1.183(3)	C19-C20	1.468(3)
C20-H20A	0.96	C20-H20B	0.96
C20-H20C	0.96	C22-C23B	1.23(2)
C22-C23A	1.263(6)	C22-H22A	0.93
C22-H22B	0.93	N4-S1	1.637(2)
01-S1	1.4249(18)	O2-S1	1.4313(18)
С23А-Н23А	0.93	C23A-H23B	0.93
C23B-H23C	0.93	C23B-H23D	0.93

Table 6. Bond angles (°) for compound 6ef.

C2-C1-C6	119.9(2)	C2-C1-S1	119.92(17)
C6-C1-S1	120.15(18)	C3-C2-C1	119.5(2)
С3-С2-Н2	120.2	С1-С2-Н2	120.2
C2-C3-C4	121.9(2)	С2-С3-Н3	119.1
С4-С3-Н3	119.1	C5-C4-C3	118.0(2)
C5-C4-C18	120.8(3)	C3-C4-C18	121.2(3)
C6-C5-C4	121.2(2)	С6-С5-Н5	119.4
С4-С5-Н5	119.4	C5-C6-C1	119.5(2)
С5-С6-Н6	120.2	С1-С6-Н6	120.2
C9-C8-C13	120.4(2)	С9-С8-Н8	119.8
С13-С8-Н8	119.8	C10-C9-C8	120.9(2)
С10-С9-Н9	119.6	С8-С9-Н9	119.6
C9-C10-C11	118.5(2)	C9-C10-C16	120.1(2)
C11-C10-C16	121.4(2)	C10-C11-C12	121.5(2)
C10-C11-H11	119.2	C12-C11-H11	119.2
C13-C12-C11	119.2(2)	С13-С12-Н12	120.4
С11-С12-Н12	120.4	C12-C13-C8	119.5(2)
C12-C13-C17	119.5(2)	C8-C13-C17	121.0(2)
C21-C14-N4	114.88(18)	C21-C14-H14A	108.5
N4-C14-H14A	108.5	C21-C14-H14B	108.5
N4-C14-H14B	108.5	H14A-C14-H14B	107.5
N4-C15-C16	111.91(18)	N4-C15-H15A	109.2
C16-C15-H15A	109.2	N4-C15-H15B	109.2
C16-C15-H15B	109.2	H15A-C15-H15B	107.9
C22-C16-C10	111.5(2)	C22-C16-C15	107.8(2)
C10-C16-C15	113.47(19)	С22-С16-Н16	108.0
C10-C16-H16	108.0	С15-С16-Н16	108.0
N1-C17-C13	179.1(3)	C4-C18-H18A	109.5
C4-C18-H18B	109.5	H18A-C18-H18B	109.5
C4-C18-H18C	109.5	H18A-C18-H18C	109.5

H18B-C18-H18C	109.5	C21-C19-C20	176.9(3)
C19-C20-H20A	109.5	С19-С20-Н20В	109.5
H20A-C20-H20B	109.5	С19-С20-Н20С	109.5
H20A-C20-H20C	109.5	H20B-C20-H20C	109.5
C19-C21-C14	176.2(3)	C23B-C22-C23A	78.4(10)
C23B-C22-C16	124.6(7)	C23A-C22-C16	126.6(4)
C23B-C22-H22A	65.8	C23A-C22-H22A	116.7
C16-C22-H22A	116.7	C23B-C22-H22B	117.7
C23A-C22-H22B	64.8	С16-С22-Н22В	117.7
H22A-C22-H22B	87.5	C14-N4-C15	115.83(18)
C14-N4-S1	118.46(15)	C15-N4-S1	116.43(15)
O1-S1-O2	119.86(12)	01-S1-N4	106.58(11)
O2-S1-N4	105.96(11)	O1-S1-C1	108.46(11)
O2-S1-C1	107.09(11)	N4-S1-C1	108.46(9)
С22-С23А-Н23А	120.0	С22-С23А-Н23В	120.0
Н23А-С23А-Н23В	120.0	С22-С23В-Н23С	120.0
C22-C23B-H23D	120.0	H23C-C23B-H23D	120.0

Table 7. Anisotropic atomic displacement parameters (Å²) for compound 6ef.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0557(12)	0.0479(12)	0.0600(13)	-0.0038(9)	0.0052(9)	0.0033(9)
C2	0.0643(14)	0.0582(14)	0.0860(17)	0.0049(12)	-0.0152(12)	-0.0063(10)
C3	0.0782(17)	0.0688(17)	0.098(2)	0.0119(14)	-0.0214(14)	0.0042(13)
C4	0.0917(18)	0.0557(14)	0.0719(16)	0.0054(11)	0.0039(13)	0.0019(13)
C5	0.0839(17)	0.0572(14)	0.0687(15)	-0.0044(11)	0.0086(12)	-0.0166(12)
C6	0.0588(13)	0.0631(14)	0.0626(13)	-0.0001(11)	-0.0001(10)	-0.0067(10)
C8	0.110(2)	0.0752(18)	0.0592(14)	0.0113(13)	0.0019(13)	0.0014(15)
C9	0.0953(18)	0.0721(17)	0.0589(14)	0.0020(12)	0.0085(12)	-0.0009(14)
C10	0.0479(11)	0.0625(14)	0.0697(14)	-0.0009(11)	0.0036(9)	-0.0024(9)
C11	0.0863(17)	0.0680(16)	0.0719(16)	0.0095(13)	-0.0213(13)	-0.0011(13)
C12	0.0858(17)	0.0643(16)	0.0737(16)	-0.0028(12)	-0.0164(13)	-0.0084(12)
C13	0.0552(12)	0.0606(14)	0.0703(15)	0.0099(11)	0.0025(10)	-0.0064(10)
C14	0.0659(14)	0.0541(13)	0.0698(14)	0.0067(11)	-0.0107(11)	-0.0028(10)
C15	0.0548(12)	0.0518(12)	0.0790(15)	0.0042(11)	-0.0030(10)	0.0083(9)
C16	0.0570(13)	0.0649(15)	0.0797(16)	-0.0029(12)	0.0032(11)	0.0068(10)
C17	0.0640(14)	0.0681(17)	0.0826(17)	0.0130(13)	0.0006(12)	-0.0091(12)
C18	0.162(3)	0.0621(17)	0.113(3)	0.0201(17)	-0.005(2)	0.0034(19)
C19	0.0672(14)	0.0575(15)	0.0756(16)	-0.0057(12)	0.0013(11)	-0.0029(11)
C20	0.0908(19)	0.0556(15)	0.136(3)	-0.0071(17)	0.0062(18)	-0.0050(14)
C21	0.0616(13)	0.0603(14)	0.0639(14)	-0.0041(11)	-0.0017(10)	-0.0032(10)
C22	0.0572(16)	0.103(2)	0.125(3)	0.013(2)	0.0144(16)	0.0143(15)
N1	0.0870(16)	0.0648(15)	0.1138(19)	0.0188(13)	-0.0007(13)	-0.0066(12)
N4	0.0517(10)	0.0441(10)	0.0682(12)	0.0011(8)	-0.0044(8)	0.0003(7)
01	0.0617(10)	0.0788(12)	0.1075(15)	0.0063(10)	0.0071(9)	0.0260(9)
O2	0.1052(13)	0.0470(9)	0.0854(12)	-0.0137(8)	-0.0076(10)	-0.0018(9)
S1	0.0610(4)	0.0453(3)	0.0738(4)	-0.0037(2)	0.0011(2)	0.0091(2)
C23A	0.070(3)	0.132(6)	0.138(4)	-0.012(4)	0.019(3)	0.029(3)

	U_{11}	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C23B	0.103(11)	0.21(2)	0.168(15)	0.051(14)	0.033(9)	0.067(12)

Table 8. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for compound 6ef.

	x/a	y/b	z/c	U(eq)
H2	0.5219	0.7709	-0.0358	0.083
H3	0.5019	0.9032	-0.0805	0.098
H5	0.7795	0.9866	-0.0047	0.084
H6	0.8024	0.8537	0.0399	0.074
H8	0.5364	0.4358	0.2611	0.098
H9	0.5078	0.5822	0.2517	0.091
H11	0.4433	0.5514	0.0802	0.09
H12	0.4718	0.4039	0.0886	0.09
H14A	0.6580	0.7156	0.1930	0.076
H14B	0.7625	0.7182	0.1523	0.076
H15A	0.4693	0.7017	0.0717	0.074
H15B	0.4921	0.7839	0.1106	0.074
H16	0.4723	0.7061	0.1970	0.081
H18A	0.6522	1.0910	-0.0519	0.168
H18B	0.5476	1.0563	-0.0852	0.168
H18C	0.6647	1.0465	-0.1140	0.168
H20A	0.7569	1.0203	0.1283	0.141
H20B	0.7295	1.0255	0.1960	0.141
H20C	0.6341	1.0298	0.1492	0.141
H22A	0.2843	0.6622	0.1283	0.696(9)
H22B	0.3012	0.7440	0.1340	0.304
H23A	0.2070	0.7340	0.2060	0.136
H23B	0.2897	0.8090	0.1839	0.136
H23C	0.1973	0.6754	0.2019	0.192
H23D	0.2492	0.5911	0.1703	0.192

Calculations

Computational methods

Calculations were performed with Gaussian 09^{15} at DFT level and in the presence of a solvent (xylene-mixture) at the Polarizable Continuum Model (PCM) using the integral equation formalism variant (IEFPCM).¹⁶ The geometries of all structures here reported were optimized using the M06 hybrid functional.¹⁷ Optimizations were carried out using the standard 6-31G(d) basis set for C, H, N and O. The LANL2DZ basis set, which includes the relativistic effective core potential (ECP) of Hay and Wadt and employs a split-valence (double- ζ) basis set, was used for Pd.¹⁸ Minima were characterized by calculation of the Hessian eigenvalues. Electronic energies were corrected with the zero-point vibrational energy (ZPE) without scaling.

M06/6-31G(d) (C, N, O, H) LANL2DZ (Pd), PCM (Xylene-mixture)

Center	Atomic	Atomic	Coord	inates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-4.717838	4.487254	-0.180538
2	6	0	-5.407327	5.441349	0.091175
3	6	0	-3.867268	3.344237	-0.482697
4	6	0	-2.724152	3.170090	0.519457
5	6	0	-1.860143	1.961009	0.174982

6	6	0)	-0.723201	1.758742	1.132624
7	46	0)	0.362142	-0.127791	1.281061
8	6	0)	-0.956109	1.174998	2.403314
9	6	0)	0.115481	0.847390	3.243563
10	6	0)	0.565715	-0.748982	-0.688221
11	7	0)	-0.270874	-1.529443	-1.419829
12	6	0)	0.303243	-1.889615	-2.633681
13	6	0)	1,527750	-1.318636	-2.662625
14	7	0)	1.669165	-0.625189	-1.466103
15	6	0	,)	2 828522	0 139575	-1 110617
16	6	0	,)	-1 603441	-1 865570	-1 01/060
17	6	0	, \	2 016502	-0 516035	-0 527672
10	0	0	, ,	5.910505	-0.510955	-0.527072
10	0	0	,	5.032031	0.233430	-0.203189
19	6	0)	5.075359	1.62/851	-0.444252
20	6	0)	3.969116	2.238408	-1.036990
21	6	0)	2.830342	1.512211	-1.377936
22	6	0)	-1.795651	-2.911848	-0.104314
23	6	0)	-3.103622	-3.174131	0.300363
24	6	0)	-4.188623	-2.433201	-0.170568
25	6	0)	-3.952780	-1.422900	-1.101560
26	6	0)	-2.664321	-1.126544	-1.546915
27	6	0)	1.643519	2.179345	-2.004776
28	6	0)	3.869442	-1.986355	-0.248922
29	6	0)	6.278397	2.437279	-0.060925
30	6	0)	-5.576028	-2.717248	0.322868
31	6	0)	-2.439842	-0.067532	-2.585304
32	6	0)	-0.646074	-3.728577	0.398184
33	8	0)	1,477008	-1.817059	1.799947
34	6	0)	2.364396	-1.631713	2.837595
35	1	0	,)	-6 017369	6 285855	0 332429
36	1	0	,)	-4 474808	2 423922	-0 502687
27	1	0	, N	-3 110100	2.423922	-1 407097
20	1	0	, \	-2 110010	1 003356	0 5/0000
20	1	0	, ,	-2.110010	4.005550	1 522400
39	1	0	,	-3.139697	3.054666	1.532408
40	1	0)	-2.488209	1.053250	0.155182
41	1	0)	-1.465/82	2.080621	-0.84/154
42	1	0)	0.108143	2.4/01/6	1.051502
43	1	0)	-1.936037	0.723469	2.588153
44	1	0)	-0.052067	0.229071	4.123321
45	1	0)	1.024301	1.453601	3.249739
46	1	0)	-0.220545	-2.512821	-3.346682
47	1	0)	2.315023	-1.334278	-3.405062
48	1	0)	5.893043	-0.234763	0.255376
49	1	0)	3.993994	3.310212	-1.243580
50	1	0)	-3.279074	-3.985768	1.009244
51	1	0)	-4.793483	-0.848087	-1.495966
52	1	0)	1.881413	3.208013	-2.298949
53	1	0)	1.293384	1.639656	-2.896014
54	1	0)	0.796179	2.215558	-1.303827
55	1	0)	3.786460	-2.573528	-1.175134
56	1	0)	4.778112	-2.310292	0.272884
57	1	0)	2.991219	-2.217529	0.380633
5 x	1	0)	7 184279	1 820034	-0 024313
50 50	1	0	,)	6 153106	3 250167	-0 7677/3
60	1	0	, N	6 157501	2 000002	0.101143
00 61	1	0	,)	0.132381 5 747360	-2 260640	U.9332UI
οı	1	0	,	-5./4/360	-2.260640	1.30/83/
62	1	0	J	-6.336876	-2.319053	-0.359235
63	1	0)	-5.749770	-3.794823	0.436535
64	1	0)	-3.281461	0.635062	-2.613181

65	1	0	-1.520928	0.504967	-2.400325
66	1	0	-2.345974	-0.505419	-3.589815
67	1	0	-0.027536	-4.093804	-0.434514
68	1	0	0.026219	-3.147618	1.052987
69	1	0	-1.010621	-4.599138	0.956476
70	1	0	1.880028	-1.389306	3.808674
71	1	0	2.956680	-2.555374	3.006894
72	1	0	3.109840	-0.822825	2.656130
Zero-point corre	ction=			0.606382	(Hartree/Particle)
Thermal correct	ion to	Energy=		0.643805	
Thermal correct	ion to	Enthalpy=		0.644749	
Thermal correct	ion to	Gibbs Fre	e Energy=	0.537362	
Sum of electron	ic and	zero-poin	t Energies=	-1475	.831495
Sum of electron	ic and	thermal E	nergies=	-1475	.794073
Sum of electron	ic and	thermal E	nthalpies=	-1475	.793129
Sum of electron	ia and	+hormol E	roo Enorgios-	-1475	900515

Center	Atomic	Atomic	Coor	dinates (Ang	(stroms)
Number	Number	Туре	Х	Y	Z
Ţ	6	0	4.824246	-0.46/04/	-0.333439
2	6	0	3.352795	-0.211261	-0.011520
3	6	0	2.461151	-1.243382	-0.637345
4	46	0	0.301348	-1.693355	-0.217760
5	6	0	2.327716	-2.511272	-0.031801
6	6	0	1.494474	-3.491173	-0.585856
7	15	0	-0.971197	0.331304	-0.040080
8	6	0	5.727418	0.635482	0.223308
9	6	0	7.140080	0.386505	-0.028701
10	6	0	8.304870	0.156865	-0.252141
11	6	0	-2.310618	0.114490	1.242241
12	6	0	-0.155302	1.959430	0.343852
13	6	0	-1.837947	0.669933	-1.661994
14	6	0	-2.987160	1.392508	1.745276
15	6	0	-4.170365	1.047833	2.647639
16	6	0	-3.738492	0.173491	3.818974
17	6	0	-3.021732	-1.081183	3.332822
18	6	0	-1.843260	-0.736559	2.429004
19	6	0	0.713377	2.437960	-0.823044
20	6	0	1.449648	3.731777	-0.484120

21	6	0	2.255344	3.615796	0.803946
22	6	0	1.362206	3.178658	1.957318
23	6	0	0.661366	1.862887	1.636208
24	6	0	-2.684543	1.944680	-1.743025
25	6	0	-3.111975	2.205189	-3.185571
26	6	0	-3.891520	1.023314	-3.750298
27	6	0	-3.104234	-0.274655	-3.611936
28	6	0	-2.664126	-0.516249	-2.170686
29	8	0	-1.594640	-2.541891	-0.123390
30	6	0	-1.698275	-3.821308	0.372319
31	1	0	5.131824	-1.439963	0.079547
32	1	0	4.963772	-0.538039	-1.422893
33	1	0	3.084720	0.797019	-0.360718
34	1	0	3.216626	-0.204863	1.083733
35	1	0	2.380728	-1.196930	-1.730030
36	1	0	2.668008	-2.623818	1.002274
37	1	0	1.257325	-4.388284	-0.017205
38	1	0	1.359686	-3.559884	-1.667386
39	1	0	5.438667	1.602078	-0.219791
40	1	0	5.554826	0.738779	1.306906
41	1	0	9.336720	-0.044137	-0.448451
42	1	0	-3.054202	-0.494495	0.699571
43	1	0	-0.952618	2.707853	0.503510
44	1	0	-0.985295	0.784296	-2.358320
45	1	0	-2.263296	1.991452	2.325548
46	1	0	-3.320142	2.028694	0.914126
47	1	0	-4.648006	1.969765	3.009751
48	1	0	-4.930318	0.512345	2.053684
49	1	0	-3.053149	0.752133	4.462496
50	1	0	-4.605309	-0.089971	4.441815
51	1	0	-2.682369	-1.686576	4.185565
52	1	0	-3.725973	-1.711336	2.761708
53	1	0	-1.083361	-0.185425	3.011044
54	1	0	-1.371180	-1.649668	2.046158
55	1	0	1.433387	1.644040	-1.084736
56	1	0	0.100781	2.597323	-1.722193
57	1	0	2.095848	4.024526	-1.323863
58	1	0	0.706366	4.539376	-0.367175
59	1	0	3.060092	2.871555	0.670515
60	1	0	2.748933	4.570513	1.033707
61	1	0	1.943081	3.079491	2.885083
62	1	0	0.602749	3.957683	2.143768
63	1	0	1.412515	1.062046	1.529262
64	1	0	0.014674	1.567038	2.475330
65	1	0	-3.588027	1.812461	-1.124283
66	1	0	-2.154622	2.822170	-1.344145
67	1	0	-3.710853	3.125659	-3.241324
68	1	0	-2.210325	2.380509	-3.798529
69	1	0	-4.842128	0.927424	-3.197850
70	1	0	-4.158679	1.206310	-4.800978
71	1	0	-3.702162	-1.125470	-3.968424
72	1	0	-2.210414	-0.229540	-4.258202
73	1	0	-3.559233	-0.628855	-1.534658
74	1	0	-2.110311	-1.457049	-2.065147
75	1	0	-1.229636	-3.960731	1.373930
76	1	0	-2.767494	-4.090130	0.499030
77	1	0	-1.259971	-4.603740	-0.285069

Zero-point correction=

0.691501 (Hartree/Particle)

Thermal correction to	Energy=	0.725945
Thermal correction to	Enthalpy=	0.726889
Thermal correction to	Gibbs Free Energy=	0.625552
Sum of electronic and	zero-point Energies=	-1598.837538
Sum of electronic and	thermal Energies=	-1598.803094
Sum of electronic and	thermal Enthalpies=	-1598.802150
Sum of electronic and	thermal Free Energies=	-1598.903487

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	 6	0	-1.196967	-1.713631	0.065685	
2	6	0	-0.104551	-2.186475	-0.231881	
3	6	0	-2.573888	-1.374207	0.416226	
4	6	0	-3.161607	-0.155119	-0.298300	
5	6	0	-2.546585	1.170528	0.143450	
6	6	0	-1.167585	1.408822	-0.381070	
7	46	0	0.512472	-0.025873	-0.029826	
8	6	0	-0.147647	1.997062	0.384494	
9	6	0	1.173958	1.998131	-0.118088	
10	8	0	2.311580	-1.030829	0.003852	
11	6	0	3.473089	-0.302923	0.133725	
12	1	0	0.818893	-2.695631	-0.439991	
13	1	0	-3.194078	-2.254344	0.191542	
14	1	0	-2.639558	-1.222726	1.505329	
15	1	0	-3.050595	-0.275437	-1.386761	
16	1	0	-4.239958	-0.137127	-0.091875	
17	1	0	-3.199691	1.984613	-0.210995	
18	1	0	-2.545040	1.230988	1.243907	
19	1	0	-1.069069	1.434586	-1.472114	
20	1	0	-0.327705	2.196096	1.443439	
21	1	0	1.998310	2.279914	0.535196	
22	1	0	1.354608	2.126466	-1.187810	
23	1	0	3.538272	0.279733	1.079167	
24	1	0	4.345592	-0.986476	0.136046	
25	1	0	3.654379	0.423026	-0.689365	
Zero-poi	.nt correction=			0.206345	 (Hartree/Particle)	
Thermal	correction to	Energy=		0.219689		
Thermal	correction to	Enthalpy=		0.220633		
Thermal	correction to	Gibbs Free	Energy=	0.166479		
Sum of	electronic and	zero-point	Energies=	-552	.734049	
Sum of	electronic and	thermal Ene	ergies=	-552	.720705	
Sum of	electronic and	thermal Ent	halpies=	-552	.719761	
Sum of	electronic and	thermal Fre	ee Energies=	-552	.773915	

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.000351	0.002423	-0.293081
2	7	0	1.057839	-0.009236	0.576339
3	6	0	0.676847	-0.008267	1.916533
4	6	0	-0.673702	0.006547	1.917750
5	7	0	-1.057045	0.011429	0.578171
6	6	0	-2.420538	0.022359	0.152941
7	6	0	2.420793	-0.020510	0.149371
8	6	0	-3.141809	-1.175066	0.158132
9	6	0	-4.476892	-1.137461	-0.239814
10	6	0	-5.088048	0.049902	-0.642896
11	6	0	-4.331889	1.221622	-0.641650
12	6	0	-2.994405	1.231612	-0.249641
13	6	0	2.992572	-1.229914	-0.257826
14	6	0	4.327050	-1.219596	-0.657532
15	6	0	5.085234	-0.048271	-0.657003
16	6	0	4.473855	1.139856	-0.258843
17	6	0	3.140689	1.176998	0.147860
18	6	0	-2.180973	2.489378	-0.267966
19	6	0	-2.487363	-2.459963	0.567256
20	6	0	-6.517631	0.059190	-1.096983
21	6	0	6.529874	-0.073703	-1.059769
22	6	0	2.485404	2.463277	0.551141
23	6	0	2.176082	-2.485632	-0.280791
24	1	0	1.398333	-0.016623	2.724280
25	1	0	-1.393689	0.012574	2.726857
26	1	0	-5.054130	-2.064439	-0.241218
27	1	0	-4.796388	2.158172	-0.956974
28	1	0	4.787623	-2.154899	-0.982502
29	1	0	5.048054	2.068484	-0.271682
30	1	0	-2.793139	3.353040	-0.552061
31	1	0	-1.730411	2.694125	0.713848
32	1	0	-1.348984	2.401359	-0.979991
33	1	0	-2.274065	-2.486814	1.645240
34	1	0	-3.127228	-3.318362	0.332624
35	1	0	-1.524545	-2.593703	0.054504
36	1	0	-7.123006	-0.667347	-0.540500
37	1	0	-6.973725	1.049048	-0.971840
38	1	0	-6.598503	-0.202820	-2.161507
39	1	0	6.715996	-0.819410	-1.842859
40	1	0	6.863001	0.902368	-1.433344
41	1	0	7.175605	-0.333018	-0.208610
42	1	0	3.125926	3.320955	0.315691
43	1	0	1.523712	2.595655	0.035928
44	1	0	2.269628	2.492965	1.628556

45	1	0	1.730861	-2.696233	0.702233
46	1	0	1.340048	-2.390433	-0.987122
47	1	0	2.784668	-3.348688	-0.574241

Zero-point correction=	0.396943 (Hartree/Particle)
Thermal correction to Energy=	0.419994
Thermal correction to Enthalpy=	0.420938
Thermal correction to Gibbs Free Energy=	0.344029
Sum of electronic and zero-point Energies=	-923.043939
Sum of electronic and thermal Energies=	-923.020888
Sum of electronic and thermal Enthalpies=	-923.019943
Sum of electronic and thermal Free Energies=	-923.096853

 PCy_3

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	 15	0	0.002014	-0.123292	-1.057849	
2	6	0	0.088998	1.605761	-0.299268	
3	6	0	-1.317348	-0.990815	-0.044795	
4	6	0	1.580706	-0.926650	-0.438084	
5	6	0	-0.416060	1.788356	1.133861	
6	6	0	-0.240258	3.229525	1.608230	
7	6	0	-0.940203	4.206384	0.671640	
8	6	0	-0.430268	4.044608	-0.754456	
9	6	0	-0.592827	2.607952	-1.240101	
10	6	0	-1.252822	-2.508088	-0.243034	
11	6	0	-2.383896	-3.219900	0.494739	
12	6	0	-3.748284	-2.687967	0.074999	
13	6	0	-3.823319	-1.179512	0.274102	
14	6	0	-2.696042	-0.474747	-0.472531	
15	6	0	1.868232	-0.899918	1.062615	
16	6	0	3.132284	-1.689154	1.395621	
17	6	0	4.329577	-1.155054	0.618057	
18	6	0	4.056184	-1.163965	-0.881533	
19	6	0	2.784568	-0.390366	-1.219633	
20	1	0	1.169225	1.848124	-0.303571	
21	1	0	-1.183490	-0.781298	1.031467	
22	1	0	1.461099	-1.984449	-0.739533	
23	1	0	-1.488732	1.533428	1.184586	
24	1	0	0.098259	1.101550	1.820925	
25	1	0	-0.619941	3.337339	2.634704	
26	1	0	0.836308	3.470708	1.644963	
27	1	0	-2.026148	4.008811	0.691739	

28	1	0	-0.803216	5.240772	1.017826	
29	1	0	-0.948855	4.736610	-1.433654	
30	1	0	0.639308	4.315750	-0.787957	
31	1	0	-1.669009	2.367250	-1.310175	
32	1	0	-0.190554	2.495180	-2.257483	
33	1	0	-1.318839	-2.732675	-1.323259	
34	1	0	-0.285925	-2.906420	0.098873	
35	1	0	-2.320905	-4.304330	0.324318	
36	1	0	-2.254597	-3.065685	1.580003	
37	1	0	-3.913517	-2.918619	-0.991475	
38	1	0	-4.548898	-3.194376	0.632864	
39	1	0	-4.797414	-0.792461	-0.058032	
40	1	0	-3.743944	-0.948547	1.350703	
41	1	0	-2.813685	-0.644612	-1.557737	
42	1	0	-2.769905	0.613460	-0.323601	
43	1	0	2.011025	0.145453	1.388047	
44	1	0	1.013805	-1.293058	1.634668	
45	1	0	3.328109	-1.656665	2.477205	
46	1	0	2.972709	-2.750481	1.137286	
47	1	0	4.533095	-0.119264	0.941071	
48	1	0	5.232724	-1.737594	0.849616	
49	1	0	4.911980	-0.747690	-1.432340	
50	1	0	3.941808	-2.207199	-1.222426	
51	1	0	2.940482	0.675457	-0.974185	
52	1	0	2.582107	-0.433787	-2.300278	
Zero-point c	orrection=			0.483027	(Hartree/Partic	cle)
Thermal correction to Energy=			0.502178			
Thermal correction to Enthalpy=			0.503122			
Thermal correction to Gibbs Free Energy=			0.436236			
Sum of electronic and zero-point Energies=			-1046.	076021		
Sum of electronic and thermal Energies=			-1046.	056870		
Sum of electronic and thermal Enthalpies=			-1046.	055925		
Sum of elec	tronic and	thermal Free	Energies=	-1046.	122812	

References

- (1) Zhang, Q.; Xu, W.; Lu, X. J. Org. Chem. 2005, 70, 1505 1507.
- (2) Schiller, R.; Pour, M.; Fáková, H.; Kuneš, J.; Císařová, I. J. Org. Chem. 2004, 69, 6761 - 6765.
- (3) Buisine, O.; Aubert, C.; Malacria, M. Chem. Eur. J. 2001, 7, 3517 3525.
- (4) Liu, R.; Winston-McPherson, G. N.; Yang, Z-Y.; Zhou, X.; Song, W.; Guzei, I. A.;
- Xu, X.; Tang, W. J. Am. Chem. Soc. 2013, 135, 8201-8204.
- (5) Kavanagh, Y.; Chaney, C. M.; Muldoon, J.; Evans, P. J. Org. Chem. 2008, 73, 8601-8604.

(6) (a) Pardo-Rodríguez, V.; Buñuel, E.; Collado-Sanz, D.; Cárdenas, D. J. Chem. Commun. 2012, 48, 10517-10519. (b) Schiller, R.; Pour, M.; Fáková, H.; Kuneš, J.; Císařová, I. J. Org. Chem. Soc., 2004, 69, 6761-6765.

(7) López-Durán, R.; Martos-Redruejo, A.; Buñuel, E.; Cárdenas, D. J. *Chem. Commun.* **2013**, *49*, 10691-10693.

(8) Trost, B. M.; Machacek, M. R.; Faulk, B. D. J. Am. Chem. Soc., 2006, 128, 6745–6754.

(9) Trost, B. M.; Sacchi, K. L.; Schroeder, G. M.; Asakawa, N. Org. Lett. 2002, 4, 3427-3430.

(10) Fernández-Rivas, C.; Méndez, M.; Nieto-Oberhuber, C.; Echavarren, A. M. J. Org. Chem. 2002, 67, 5197 – 5201.

(11) Peppers, B. P.; Diver, S.T. J. Am. Chem. Soc., 2004, 126, 9524-9525.

(12) Zhou, H.; Moberg, C. J. Am. Chem. Soc. 2012, 134, 15992 - 15999.

(13) Pilkington, L. I.; Barker, D. J. Org. Chem. 2012, 77, 8156 - 8166.

(14) Lee, J. C.; H.; Hall, D. G. Tetrahedron Lett. 2011, 52, 321-324.

(15) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

(16) Tomasi, J.; Mennucci, B.; Cammi, R. "Quantum mechanical continuum solvation models," *Chem. Rev.*, 105 (2005) 2999-3093.

(17) Zhao, Y.; Truhlar, D. G. "The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals," *Theor. Chem. Acc.*, 120 (2008) 215-41.

Comment [R]: Reaction conditions from:

(18) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648- 5653. (b) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.