Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

S1

- Supporting Information -

A lipophilic "fully-*anti*" dodecamer from mutagenic (5'S)-5',8-cyclo-2'-deoxyguanosine

Silvia Pieraccini,^{*a*} Michael A. Terzidis,^{*b*} Enrico J. Baldassarri, ^{*c*} Giovanna Fragneto, ^{*d*} Paolo Mariani, ^{*c*} Stefano Masiero, * ^{*a*} and Chryssostomos Chatgilialoglu* ^{*b*}

a. Dipartimento di Chimica 'Giacomo Ciamician', Alma Mater Studiorum - Università di Bologna, via San Giacomo 11, 40126 Bologna, Italy.

b. Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy.

c. Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Ranieri 65, Ancona, Italy.

d. Institut Laue-Langevin, BP 156 F-38042 Grenoble, France.

stefano.masiero@unibo.it chrys@isof.cnr.it

Table of Contents

A. Materials and methods	S2
B. CD measurements	S 3
C. NMR experiments	S4

A. Materials and methods.

Derivative 1 was prepared as reported in Terzidis, M. A.; Chatgilialoglu, C. *Aust. J. Chem.* 2013, *66*, 330. Chemicals were purchased from Aldrich Chemical Co. (Aldrich or Fluka catalogues) and used without further purification.

CD spectra were recorded on a JASCO J-715 Spectropolarimeter (path length = 0.01 cm).

NMR spectra were recorded on a Varian Inova (600 MHz) instrument equipped with either a direct or a reverse probe.

SANS experiments were performed at the D11 instrument (ILL, Grenoble, France). The used neutron wavelenght λ was 6 Å and two sample-detector distances (8 and 1.2 m) were used in order to cover a Q-range ($Q = (4\pi \sin \theta)/\lambda$, where 2 θ is the scattering angle) from 0.01 to 0.5 Å⁻¹. Samples were measured at different temperatures in a 1 mm thick quartz cell. Raw data, obtained at different sample-to-detector distances, have been radially averaged, calibrated using transmission values and detector efficiency and transformed in absolute units (cm⁻¹). Moreover, the CDCl₃ contribution corrected for the 1 volume fraction has been subtracted from the solution signal. The SANS curves report macroscopic differential scattering cross sections, I(Q), measured as a function of the modulus of the momentum transfer. Fitting parameters are: $Rc = 7.8 \pm 0.9$ Å, $t=4.5 \pm 0.8$ Å, $L = 12.6 \pm 1.5$ Å, $SLD_{core} = 4.34 \, 10^{-6}$ Å⁻² and $SLD_{shell} = 2.02 \, 10^{-6}$ Å⁻² at 5°C; $Rc = 7.7 \pm 1.0$ Å, $t = 4.1 \pm 0.8$ Å, $L = 12.7 \pm 1.3$ Å, $SLD_{core} = 4.30 \, 10^{-6}$ Å⁻² and $SLD_{shell} = 2.01 \, 10^{-6}$ Å⁻² at 25°C; $Rc = 8.7 \pm 1.1$ Å, $t=4.1 \pm 0.5$ Å, $L = 11.8 \pm 1.5$ Å, $SLD_{core} = 4.29 \, 10^{-6}$ Å⁻² and $SLD_{shell} = 2.02 \, 10^{-6}$ Å⁻² at 50°C.

1-SrP₂ solutions. CDCl₃ solutions containing the dodecameric complex (1-SrP₂ solutions) were prepared by solid-liquid extraction: 1 mL of 1 solution (8, 30 or 50 mM) was stirred with one equivalent (unless otherwise specified) of solid strontium picrate for four days at room temperature. The organic phase was then separated from the excess of solid salt by centrifugation, and used for CD, NMR or SANS investigations.

In titration experiments with cryptand [2.2.2], a 1-SrP₂ CDCl₃ solution ([1] = 8 mM) was added with increasing amounts of solid cryptand. Subsequent titration with trifluoromethanesulfonic acid (Thf) was carried out by adding increasing amounts of a 35 mM CDCl₃ solution of the acid.

B. CD measurements

Figure S1. CD/UV spectra recorded at different temperatures on a CDCl₃ solution of **1** (8 mM) after extraction of 1/6 eq. of SrP₂. <u>Blue trace:</u> 5°C; <u>Red trace:</u> 25°C; <u>Green trace:</u> 40°C.

Figure S2. CD spectra recorded in CDCl₃ at 25°C. <u>Black trace</u>: **1** 8 mM; <u>blue trace</u> (solution S₀): **1** 8 mM after solid-liquid extraction of 1/6 eq. of SrP₂; <u>Pink trace</u>: solution S₀ added with 1/2 eq. of cryptand [2.2.2] relative to Sr^{2+} ; <u>Red trace</u> (solution S₁): solution S₀ added with 1 eq. of cryptand [2.2.2] relative to Sr^{2+} ; <u>Green trace</u>: solution S₁ added with $\frac{1}{2}$ eq. of Htf relative to [2.2.2]; <u>Violet trace</u>: solution S₁ added with 1 eq. of Htf relative to [2.2.2].

C. NMR experiments

Figure S3. ¹H NMR spectra recorded on 1 in CDCl₃ (30 mM) at different temperatures. Peaks are assigned as reported in Terzidis, M. A.; Chatgilialoglu, C. *Aust. J. Chem.* 2013, *66*, 330.

Figure S4. ¹H NMR spectra recorded on **1** in CDCl₃ (8 mM) at different temperatures. Peaks are assigned as reported in Terzidis, M. A.; Chatgilialoglu, C. *Aust. J. Chem.* **2013**, *66*, 330.

Figure S5. ¹H NMR spectra recorded at 25°C in CDCl₃. Spectrum (a): initial solution S_i containing **1** 30 mM. Spectra (b)-(d): solutions obtained from S_i by solid-liquid extraction of SrP₂, performed in the presence of (b) 1/16 eq., (c) 1/8 eq.,(d) \geq 1/6 eq. of salt relative to **1**. <u>Blue asterisks</u>: **1** signals; <u>red dots:</u> **D** signals. The picrate anion is labeled with "P".

Figure S6. ¹H NMR spectra recorded in CDCl₃ at 0°C. (a) initial solution S_i, containing **1** (8 mM) and 1/6 eq. of SrP₂; (b) solution S_i added with 0.75 eq. of [2.2.2] relative to Sr²⁺; (c) solution S₁, obtained by solution S_i added with 1 eq. of [2.2.2] relative to Sr²⁺; (d) solution S₁ added with 0.25 eq. of Htf relative to [2.2.2]; (e) solution S₁ added with 0.5 eq. of Htf relative to [2.2.2]; (f) solution S₁ added with 1 eq. of Htf relative to [2.2.2]; (f) solution S₁ added with 1 eq. of Htf relative to [2.2.2]; (f) solution S₁ added with 0.5 eq. of Htf relative to [2.2.2]; (f) solution S₁ added with 0.5 eq. of Htf relative to [2.2.2]; (f) solution S₁ added with 1 eq. of Htf relative to [2.2.2]; (f) solution S₁ added with 1 eq. of Htf relative to [2.2.2]; (f) solution S₁ added with 1 eq. of Htf relative to [2.2.2]; (f) solution S₁ added with 1 eq. of Htf relative to [2.2.2]; (f) solution S₁ added with 1 eq. of [2.2.2] (from integration uncomplexed [1] ≤ 10%).

<u>Red dots</u>: **D** signals; <u>blue asterisks</u>: **1** signals; "P": picrate counterion of the **D** species; "P*": picrate counterion of cryptate [$Sr^{2+} \subset 2.2.2$].

The broad resonance appearing at $8 \div 8.5$ ppm in spectra (e) and (f) can be ascribed to protonation of cryptand [2.2.2]. See for comparison spectrum (g).

(g) CDCl₃ solution of cryptand [2.2.2] (1.3 mM) upon solid-liquid extraction of SrP₂ (performed with an excess of salt), and added with 0.5 eq. of Htf (relative to cryptand). Spectrum is recorded at 25°C.

Figure S7. ¹H NMR experiments, recorded at different temperatures, on a 30 mM CDCl₃ solution of 1 after solid-liquid extraction of SrP_2 (1/6 eq. relative to 1). In the upper part, spectrum of 1 (30 mM) is reported for comparison. For assignment of amino protons see Figure S8.

Figure S8. Top: ¹H NMR spectrum of $1/SrP_2$ 6:1 in CDCl₃ at -20°C ([1] = 30 mM). Bottom: expansion of the 1.8-13 ppm interval of the same spectrum.

	α	β	γ	
H1'	6.35	6.37	5.85	
H2'	2.33	2.40	2.32	
H2''	2.12	2.10	2.03	
H3'	4.77	4.76	4.56	
H4'	4.69	4.63	4.43	
H5'	5.21	5.10	4.98	
HN1	12.72	11.52	12.48	
bound HN2	*	8.3	9.5	
free HN2	*	4.9	4.8	
C2	153.91 153.77 152.78 n.a.			
C4	149.75 148.32 147.12 n.a.			
C5	115.07	115.86	114.28	
C6	159.53	157.02	159.17	
C8	144.24	143.01	144.65	
C1'	84.70	84.51	84.51	
C2'	45.18	45.52	45.85	
C3'	69.35	69.16	69.07	
C4'	86.63	86.71	86.27	
C5'	65.81	65.19	65.15	

* protons are supposed to be exchanged-broadened into the baseline

n.a. = not assigned

Table S1. ¹H and ¹³C chemical shifts for **D** signals (relative to residual $CHCl_3 - 7.25$ and 77.0 ppm, respectively).

Figure S9. ¹³C NMR spectrum of $1/SrP_2$ 6:1 in CDCl₃ at -19°C ([1] = 30 mM).

Figure S10. a) Top view of a G-quartet formed by 1, seen from the *tail* face. b) Side view of the same quartet.

Figure S11. Sugars region of the gCOSY spectrum of 1/SrP₂ 6:1 in CDCl₃ at -19°C ([1] = 30 mM).

Figure S12. Sugars region of the gHSQC spectrum of 1/SrP 6:1 in CDCl₃ at -19°C ([1] = 30 mM).

Figure S13. Sugars region of the gHMBC spectrum of 1/SrP 6:1 in CDCl₃ at -19°C ([1] = 30 mM).

Figure S14. Noesy1d spectra recorded at -19° C on 1/SrP 6:1 in CDCl₃ ([1] = 30 mM). Mixing time 300 ms, 256 scans, a shaped (50 Hz) pulse centered at the peak of interest was used for resonance selection.

Figure S15. Portion of the 2D-noesy (top) and 1D-noesy spectra showing contacts between picrate protons and H1' γ / 5' γ .