Ruthenium-Catalyzed Double-Fold C–H Tertiary

Alkoxycarbonylation of Arenes Using Di-tert-butyldicarbonate

Xiaohu Hong,^a Hao Wang,^a Bingxin Liu,^a and Bin Xu^{*,a,b,c}

^a School of Materials Science and Engineering, Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

^c Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China

Tel: (+86) 21-66132830; Fax: (+86) 21-66134594; E-mail: xubin@shu.edu.cn

Supporting Information

CONTENTS:

1. General Information S2
2. Synthesis and Characterization for <i>tert</i> -Butoxycarbonylation SubstratesS3
3. Synthesis and Characterization for <i>tert</i> -Butoxycarbonylation ProductsS11
4. Further Transformation of 4a
5. X-Ray Crystal Structure for Compound 2n
6. Synthesis and Characterization for Complex 8
7. Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra for All Compounds

1. General Information

All reagents and metal catalysts were obtained from commercial sources without further purification, and commercially available solvents were purified before use. All new compounds were fully characterized. All melting points were taken on a WRS-1A or a WRS-1B Digital Melting Point Apparatus without correction. Infrared spectra were obtained using an AVATAR 370 FT-IR spectrometer. ¹H, ¹³C and ¹⁹F NMR spectra were recorded with a Bruker AV-500 spectrometer operating at 500, 125 and 470 MHz, respectively, with chemical shift values being reported in ppm relative to chloroform ($\delta = 7.26$ ppm), dimethyl sulfoxide ($\delta = 2.50$ ppm) or TMS ($\delta = 0.00$ ppm) for ¹H NMR, chloroform ($\delta = 77.16$ ppm) or dimethyl sulfoxide ($\delta = 39.52$ ppm) for ¹³C NMR, and C₆F₆ ($\delta = -164.9$ ppm) for ¹⁹F NMR. Mass spectra and high resolution mass spectra (HRMS) were recorded with an Agilent 5975N using an Electron impact (EI) or Electrospray ionization (ESI) techniques. Elemental analyses were carried out on an Elementar Vario EL elemental analyzer. Silica gel plate GF254 were used for thin layer chromatography (TLC) and silica gel H or 300-400 mesh were used for flash column chromatography. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise indicated.

2. Synthesis and Characterization for tert-Butoxycarbonylation Substrates

General procedure for preparation of pyrimidine substrates: To a round-bottom flask was added 2-chloropyrimidine (3.0 mmol), arylboronic acid (1.2 equiv.), $Pd(PPh_3)_2Cl_2$ (2 mol%) and Na_2CO_3 (2 M, 10 mL) in dioxane (10 mL). The reaction mixture was heated at 90 °C until the 2-chloropyrimidine was consumed completely (monitored by TLC). The heterogeneous aqueous was concentrated under reduced pressure and the residue was diluted with EtOAc (15 mL), washed by H_2O (20 mL), brine (20 mL). The organic layer was dried over Na_2SO_4 , concentrated and purified by column chromatography on silica gel (eluent: PE / EtOAc = 10:1 to 3:1) to afford the coupling products.

2-Phenylpyrimidine (1a)¹: Following the general procedure with 2-chloropyrimidine (343.5 mg, 3.0 mmol), phenylboronic acid (439.2 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded 1a (446.0 mg, 95%) as a white solid. M.p. 36-37 °C. IR (KBr, cm⁻¹): 3065, 3038, 1566, 1555, 1418, 745, 691. ¹H NMR (CDCl₃, 500 MHz): δ 8.81 (d, *J* = 5.0 Hz, 2H), 8.47-8.42 (m, 2H), 7.52-7.48 (m, 3H), 7.19 (t, *J* = 5.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 164.9, 157.4, 137.7, 130.9, 128.7, 128.3, 119.2. EI-MS *m/z*: 156 (100) [M⁺], 103 (84), 76 (25).

2-*p*-**Tolyl-pyrimidine** (**1b**)¹: Following the general procedure with 2-chloropyrimidine (343.5 mg, 3.0 mmol), *p*-tolylboronic acid (489.6 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded **1b** (459.0 mg, 90%) as a white solid. M.p. 83-85 °C. IR (KBr, cm⁻¹): 3035, 2918, 1564, 1416, 1179, 841, 786, 730. ¹H NMR (CDCl₃, 500 MHz): δ 8.78 (d, *J* = 5.0 Hz, 2H), 8.33 (d, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 5.0 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 165.0, 157.3, 141.2, 135.0, 129.5, 128.2, 118.9, 21.6. EI-MS *m/z*: 170 (100) [M⁺], 169 (65), 117 (59), 89 (24).

2-(4-Methoxy-phenyl)-pyrimidine $(1c)^1$: Following the general procedure with 2-chloropyrimidine (343.5 mg, 3.0 mmol), 4-methoxyphenylboronic acid (547.2 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded **1c** (541.3 mg, 97%) as a white solid. M.p. 65-66 °C . IR (KBr, cm⁻¹): 3004, 2964, 1604,

1565, 1415, 1254, 1028, 855, 812, 797, 592. ¹H NMR (CDCl₃, 500 MHz): δ 8.75 (d, J = 4.5 Hz, 2H), 8.39 (dd, J = 7.0, 2.0 Hz, 2H), 7.11 (t, J = 5.0 Hz, 1H), 7.02-6.98 (m, 2H), 3.87 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 164.7, 162.0, 157.3, 130.4, 129.9, 118.5, 114.1, 55.5. EI-MS m/z: 186 (100) [M⁺], 171 (27), 143 (31), 133 (49), 90 (24).

2-(4-Ethoxyphenyl)-pyrimidine (1d)¹: Following the general procedure with 2-chloropyrimidine (343.5 mg, 3.0 mmol), 4-ethoxyphenylboronic acid (597.6 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂(42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded 1d (558.0 mg, 93%) as a white solid. M.p. 120-121 °C. IR (KBr, cm⁻¹): 3441, 3046, 2972, 1606, 1569, 1420, 1244, 854, 797, 641. ¹H NMR (500 MHz, CDCl₃): δ 8.74 (d, *J* = 5.0 Hz, 2H), 8.34 (dd, *J* = 7.0, 2.0 Hz, 2H), 7.10 (t, *J* = 5 Hz, 1H), 6.99-6.97 (m, 2H), 4.10 (q, *J* = 7.0 Hz, 2H), 1.44(t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 164.5, 161.5, 157.2, 129.9, 118.4, 114.6, 63.7, 14.9. EI-MS *m/z*: 200 (59) [M⁺], 172 (100), 119 (80).

2-(4-Fluorophenyl)pyrimidine (1e)¹: Following the general procedure with 2-chloropyrimidine (343.5 mg, 3.0 mmol), 4-fluorophenylboronic acid (504.0 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded **1e** (469.8 mg, 90%) as a white solid. M.p. 54-56 °C. IR (KBr, cm⁻¹): 3441, 3047, 1603, 1564, 1418, 1216, 795. ¹H NMR (CDCl₃, 500 MHz): δ 8.78 (d, *J* = 5.0 Hz, 2H), 8.45 (dd, *J* = 8.5, 5.5 Hz, 2H), 7.19-7.14 (m, 3H); ¹⁹F NMR (CDCl₃, 470 MHz): -110.3 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 165.7, 163.7 (d, ¹*J*_{C-F} = 250 Hz), 163.8, 157.3, 133.8 (d, ⁴*J*_{C-F} = 2.5 Hz), 130.3 (d, ³*J*_{C-F} = 7.5 Hz), 119.0, 115.7, 115.5 (d, ²*J*_{C-F} = 21.25 Hz). EI-MS *m/z*: 174 (100) [M⁺], 121 (77), 94 (16).

2-(4-Chloro-phenyl)-pyrimidine (1f)¹: Following the general procedure with 2-chloropyrimidine (343.5 mg, 3.0 mmol), 4-chlorophenylboronic acid (561.6 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded **1f** (461.7 mg, 81%) as a white solid. M.p. 103-105 °C . IR (KBr, cm⁻¹): 3071, 1566, 1415, 1085, 1011, 848, 792, 774, 642. ¹H NMR (CDCl₃, 500 MHz): δ 8.79 (d, *J* = 4.5 Hz, 2H), 8.39 (dd, *J* = 7.0, 2.0 Hz, 2H), 7.47-7.44 (m, 2H), 7.19 (t, *J* = 5.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 163.9, 157.4, 137.2, 136.2, 129.6, 129.0, 119.4. EI-MS *m/z*: 192 (30) [M⁺ (³⁷Cl)], 190 (93) [M⁺ (³⁵Cl)], 139 (33), 137 (100), 102 (43).

$F_3C \longrightarrow N \longrightarrow N \longrightarrow N$

2-(4-(Trifluoromethyl)phenyl)pyrimidine $(1g)^{1}$: Following the general procedure with 2-chloropyrimidine (343.5 mg, 3.0 mmol), 4-(trifluoromethyl)phenylboronic acid (684.0 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After

reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded **1g** (564.5 mg, 84%) as a white solid. M.p. 107-108 °C; IR (KBr, cm⁻¹): 3046, 2928, 1559, 1425, 1327, 1168, 1151, 1106, 1064, 1014, 804, 793. ¹H NMR (CDCl₃, 500 MHz): δ 8.83 (d, J = 4.5 Hz, 2H), 8.56 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 8.5 Hz, 2H), 7.24 (t, J = 4.5 Hz, 1H); ¹⁹F NMR (CDCl₃,470 MHz): -62.7 (s, Ar-CF3); ¹³C NMR (CDCl₃, 125 MHz): δ 163.5, 157.5, 140.9, 132.5 (q, ² $_{J_{C-F}} = 32.5$ Hz), 128.6, 125.6 (q, ³ $_{J_{C-F}} = 3.75$ Hz), 124.3 (q, ¹ $_{J_{C-F}} = 271.25$ Hz), 120.0. EI-MS m/z: 224 (100) [M⁺], 171 (83), 155 (37), 121 (37).

2-(3-Fluorophenyl)pyrimidine (**1h**)¹: Following the general procedure with 2-chloropyrimidine (343.5 mg, 3.0 mmol), 3-fluorophenylboronic acid (504.0 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded **1h** (506.3 mg, 97%) as a white solid. M.p. 43-44°C. IR (KBr, cm⁻¹): 3076, 1613, 1591, 1579, 1488, 1456, 1323, 818, 753. ¹H NMR (CDCl₃, 500 MHz): δ 8.81 (d, *J* = 5.0 Hz, 2H), 8.24 (dt, *J* = 7.5, 1.0 Hz, 1H), 8.15 (dq, *J* = 10.5 , 1.5 Hz, 1H), 7.47-7.43 (m, 1H), 7.21 (t, *J* = 5.0 Hz, 1H), 7.20-7.16 (m, 1H); ¹⁹F NMR (CDCl₃, 470 MHz): -113.1 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 164.3, 163.7, 162.4 (d, ¹*J*_{C-F} = 242.8 Hz), 157.4, 140.1, 130.2 (d, ³*J*_{C-F} = 7.5 Hz), 123.9 (d, ⁴*J*_{C-F} = 2.6 Hz), 119.7, 117.8 (d, ²*J*_{C-F} = 21.25 Hz), 115.2 (d, ²*J*_{C-F} = 23.75 Hz). EI-MS (C₁₀H₇FN₂) *m*/*z* (%): 174 (100) [M⁺], 121 (75).

2-(3-Chlorophenyl)pyrimidine (**1i**)¹: Following the general procedure with 2-chloropyrimidine (343.5 mg, 3.0 mmol), 3-chlorophenylboronic acid (561.6 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded **1i** (461.7 mg, 81%) as a white solid. M.p. 52-54 °C. IR (KBr, cm⁻¹): 3068, 3030, 2954, 2854, 1565, 1549, 1419, 1406, 778. ¹H NMR (CDCl₃, 500 MHz): δ 8.81 (d, *J* = 5.0 Hz, 2H), 8.45 (d, *J* = 2.0 Hz, 1H), 7.34-7.32 (m, 1H), 7.46-7.40 (m, 2H), 7.21 (t, *J* = 5.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 163.4, 157.3, 139.3, 134.8, 130.7, 129.8, 128.3, 126.2, 119.5. EI-MS *m*/*z* (%):192 (35) [M⁺ (³⁷Cl)], 190 (100) [M⁺ (³⁵Cl)], 139 (26), 137 (81), 102 (41).

2,4-Diphenylpyrimidine $(1j)^1$: Following the general procedure with 2,4-dichloropyrimidine (447.0 mg, 3.0 mmol), phenylboronic acid (879.4 mg, 7.2 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded **1j** (584.6 mg, 81%) as a white solid. M.p. 70-72 °C. IR (KBr, cm⁻¹): 3032, 1561, 1542, 1423, 1379, 747, 688, 625. ¹H NMR (CDCl₃, 500 MHz): δ 8.84 (d, *J* = 5.5 Hz, 1H), 8.62-8.59 (m, 2H), 8.25-8.23 (m,2H), 7.60

(d, J = 5.0 Hz, 1H), 7.56-7.52 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 164.7, 164.0, 158.0, 138.0, 137.1, 131.1, 130.8, 129.1, 128.7, 128.4, 127.3, 114.6. EI-MS *m*/*z*: 232 (100) [M⁺], 129 (43), 102 (73).

5-Ethyl-2-phenylpyrimidine (1k)¹: Following the general procedure with 2-chloro-5-ethylpyrimidine (427.5 mg, 3.0 mmol), phenylboronic acid (439.2 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded 1k (518.8 mg, 94%) as a colorless oil. IR (KBr, cm⁻¹): 3063, 3029, 2968, 2932, 2874, 1586, 1544, 1430, 747, 694. ¹H NMR (CDCl₃, 500 MHz): δ 8.65 (s, 2H), 8.42-8.40 (m, 2H), 7.50-7.46 (m, 3H), 2.68 (q, *J* = 7.5 Hz, 2H), 1.30 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 162.6, 156.8, 137.5, 134.3, 130.5, 128.7, 128.0, 23.5, 15.1. EI-MS *m*/*z*: 184 (100) [M⁺], 169 (74), 157 (18), 103 (61).

2,5-Diphenylpyrimidine (**11**)²: Following the general procedure with 2,4-dichloropyrimidine (447.0 mg, 3.0 mmol), phenylboronic acid (439.2 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded **11** (552 mg, 79%) as a white solid. M.p. 182-184 °C. IR (KBr, cm⁻¹): 3028, 1567, 1548, 1429, 694, 631. ¹H NMR (CDCl₃, 500 MHz): δ 9.03 (s, 2H), 8.51-8.48 (m, 2H), 7.66-7.63 (m, 2H), 7.56-7.45 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz): δ 163.6, 155.4, 137.4, 134.7, 131.8, 130.9, 129.6, 128.9, 128.8, 128.3, 126.9. LC-MS (ESI) *m/z*: 233 [M⁺H].

 $\operatorname{A}_{\mathsf{N}}$

2-Phenylpyridine $(1m)^3$: Following the general procedure with 2-bromopyridine (474.0 mg, 3.0 mmol), phenylboronic acid (439.2 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded **1m** (423.0 mg, 91%) as a colorless liquid. IR (KBr, cm⁻¹): 3060, 2961, 2853, 1651, 1523, 750, 710. ¹H NMR (CDCl₃, 500 MHz): δ 8.73 (d, *J* = 4.5 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 2H), 7.81-7.75 (m, 2H), 7.70 (t, *J* = 7.5 Hz, 2H), 7.46-7.43 (m, 1H), 7.28-7.25 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 157.4, 149.5, 139.2, 137.1, 129.2, 128.9, 127.0, 122.2, 120.8. EI-MS *m*/*z* (%): 155 (100) [M⁺], 128 (27), 102 (13).

2-(1*H***-Pyrrol-1-yl)pyrimidine (10)¹:** NaH (60% dispersion in mineral oil, 440 mg, 11.0 mmol) was added in portions at 0 °C to a stirred solution of pyrrole (0.34 g, 5.0 mmol) in DMF (5 mL). After stirring for 30 min at 0 °C, 2-chloropyrimidine (0.69 g, 6.0 mmol) was added and the mixture was stirred at 130 °C for 24 h. Then, the reaction mixture was cooled to ambient temperature, poured into H₂O (25 mL) and extracted with EtOAc (2×30 mL). The combined organic phase was dried over Na₂SO₄. After filtration and evaporation of the solvents under

reduced pressure, the crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield **10** (0.46 g, 64%) as a colorless solid. M.p. 88-91°C. IR (KBr, cm⁻¹): 3146, 2924, 1573, 1482, 1441, 1076, 1058, 1023, 927, 852, 804, 736. ¹H NMR (CDCl₃, 500 MHz): δ 8.61 (d, J = 5.0 Hz, 2H), 7.79 (t, J = 1.0 Hz, 2H), 7.04 (t, J = 5.0 Hz, 1H), 6.35 (dd, J = 2.0 Hz, 1.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 158.4, 156.2, 119.1, 117.2, 112.1. LC-MS (ESI) m/z: 146 [M⁺H].

1-(Pyrimidin-2-yl)-1*H***-indole (1p)¹:** NaH (60% dispersion in mineral oil, 440 mg, 11.0 mmol) was added in portions at 0 °C to a stirred solution of indole (1.17 g, 10.0 mmol) in DMF (10 mL). After stirring for 30 min at 0 °C, 2-chloropyrimidine (1.37 g, 12.0 mmol) was added and the mixture was stirred at 130 °C for 24 h. Then, the reaction mixture was cooled to ambient temperature, poured into H₂O (50 mL) and extracted with EtOAc (4×30 mL). The combined organic phase was dried over Na₂SO₄. After filtration and evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc = 4/1) to yield **1p** (1.80 g, 92%) as a colorless solid. M.p. 66-68 °C. IR (KBr, cm⁻¹): 3138, 3108, 1575, 1525, 1455, 1309, 1204, 1080, 970, 778, 750, 733. ¹H NMR (500 MHz, CDCl₃): δ 8.83 (d, *J* = 8.5 Hz, 1H), 8.70 (d, *J* = 4.5 Hz, 2H), 8.29 (d, *J* = 3.5 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.38-7.35 (m, 1H), 7.27-7.24 (m, 1H), 7.05-7.02 (m, 1H), 6.72 (d, *J* = 3.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 158.1, 157.8, 135.4, 131.4, 125.9, 123.7, 122.2, 120.9, 116.4, 116.1, 107.0. LC-MS (ESI) *m/z*: 196 [M⁺H].

2-(Naphthalen-1-yl)pyrimidine (**1q**)¹: Following the general procedure with 2-chloropyrimidine (343.5 mg, 3.0 mmol), naphthalen-1-ylboronic acid (619.2 mg, 3.6 mmol), Pd(PPh₃)₂Cl₂ (42.1 mg, 0.06 mmol), Na₂CO₃ (2 M, 10 mL) and dioxane (10 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) afforded **1q** (531.5 mg, 86%) as a colorless oil. IR (KBr, cm⁻¹): 3044, 2966, 2925, 1567, 1554, 1419, 1390, 1254, 791, 774; ¹H NMR (CDCl₃, 500 MHz): δ 8.95 (d, *J* = 5.0 Hz, 2H), 8.62 (d, *J* = 8.0 Hz, 1H), 8.07 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 7.5 Hz, 1H), 7.61-7.50 (m, 3H), 7.31 (t, *J* = 5.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.2, 157.3, 135.7, 134.2, 131.0, 130.7, 129.5, 128.6, 127.0, 126.0, 125.7, 125.3, 118.9. EI-MS *m/z*: 206 (65) [M⁺], 205 (100), 153 (19), 126 (14).

1-Methyl-2-phenyl-1H-benzo[d]imidazole $(1r)^4$: NaH (60% dispersion in mineral oil, 440 mg, 11.0 mmol) was added in portions at 0 °C to a stirred solution of 2-phenyl-1*H*-benzo[*d*]imidazole (0.97 g, 5.0 mmol) in DMF (5 mL). After stirring for 30 min at 0 °C, iodomethane (0.85 g, 6.0 mmol) was added and the mixture was stirred at room temperature for 2 h. Then, the reaction mixture was poured into H₂O (25 mL) and extracted with EtOAc (2×30 mL). The combined organic phase was dried over Na₂SO₄. After filtration and evaporation of the solvents under

reduced pressure, the crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1) to yield **1r** (0.93 g, 89%) as a yellow solid. M.p. 90-92°C. IR (KBr, cm⁻¹): 3442, 2925, 1467, 1437, 1379, 753, 700. ¹H NMR (CDCl₃, 500 MHz): δ 7.87-7.85 (m, 1H), 7.80-7.78 (m, 2H), 7.57-7.53 (m, 3H), 7.43-7.41 (m, 1H), 7.35-7.32 (m, 2H), 3.88 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.7, 142.9, 136.5, 130.2, 129.7, 129.4, 128.7, 122.8, 122.4, 119.8, 109.6, 31.7. LC-MS (ESI) *m/z*: 209 [M⁺H].

General Procedure for preparation of imines: A solution of aryl amines (7.5 mmol) and substituted benzaldehydes (5.0 mmol) in CH_2Cl_2 (20 mL) was added MgSO₄ (2.0 g), the reaction mixture was stirred at room temperature overnight. The reaction mixture was then filtrated and purified by column chromatography to give pure substituted imines (**3a-3k**).

(*E*)-*N*-Benzylidene-4-methoxyaniline $(3a)^5$: Following the general procedure with 4-methoxyaniline (0.92 g, 7.5 mmol), benzaldehyde (0.53g, 5.0 mmol), MgSO₄ (2.0 g) and CH₂Cl₂ (20 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether) afforded **3a** (886.2 mg, 84%) as a white solid. M.p. 67-68 °C. IR (KBr, cm⁻¹): 2954, 1622, 1505, 1247, 1030, 834, 753, 687. ¹H NMR (CDCl₃, 500 MHz): δ 8.51 (s, 1H), 7.93-7.91 (m, 2H), 7.50-7.48 (m, 3H), 7.28 (d, *J* = 9.0 Hz, 2H), 6.97 (d, *J* = 9.0 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 158.4, 158.3, 144.8, 136.4, 131.0, 128.7, 128.6, 122.2, 114.4, 55.5. EI-MS *m/z* (%): 211 (89) [M⁺], 196 (100), 167 (21).

(*E*)-4-Methoxy-N-(4-methylbenzylidene)aniline (3b)⁵: Following the general procedure with 4-methoxyaniline (0.92 g, 7.5 mmol), 4-methylbenzaldehyde (0.60g, 5.0 mmol), MgSO₄ (2.0 g) and CH₂Cl₂ (20 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether) afforded **3b** (870.1 mg, 77%) as a white solid. M.p. 85-86 °C. IR (KBr, cm⁻¹): 2911, 1623, 1502, 1240, 1031, 836, 816. ¹H NMR (CDCl₃, 500 MHz): δ 8.47 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 9.0 Hz, 2H), 6.96 (d, *J* = 9.0 Hz, 2H), 3.86 (s, 3H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 158.4, 158.1, 145.0, 141.5, 133.8, 129.5, 128.6, 122.1, 114.3, 55.5, 21.6. EI-MS *m/z* (%): 225 (100) [M⁺], 210 (92), 167 (11).

(*E*)-4-Methoxy-N-(4-methoxybenzylidene)aniline $(3c)^6$: Following the general procedure with 4-methoxyaniline (0.92 g, 7.5 mmol), 4-methoxybenzaldehyde (0.68g, 5.0 mmol), MgSO₄ (2.0 g)

and CH₂Cl₂ (20 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether) afforded **3c** (980.1 mg, 81%) as a white solid. M.p. 142-143 °C. IR (KBr, cm⁻¹): 2959, 1621, 1509, 1249, 1028, 839, 742. ¹H NMR (CDCl₃, 500 MHz): δ 8.43 (s, 1H), 7.87 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 9.0 Hz, 2H), 7.00 (d, *J* = 9.0 Hz, 2H), 6.95 (d, *J* = 9.0 Hz, 2H), 3.89 (s, 3H), 3.85 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 162.0, 158.0, 157.9, 130.3, 122.0, 114.3, 114.1, 55.5, 55.4. EI-MS *m*/*z* (%): 241 (77) [M⁺], 229 (83), 214 (99), 185 (22), 144 (14).

(*E*)-*N*-(4-Chlorobenzylidene)-4-methoxyaniline $(3d)^5$: Following the general procedure with 4-methoxyaniline (0.92 g, 7.5 mmol), 4-chlorobenzaldehyde (0.70g, 5.0 mmol), MgSO₄ (2.0 g) and CH₂Cl₂ (20 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether) afforded **3d** (1131.6 mg, 92%) as a yellow solid. M.p. 122-124 °C. IR (KBr, cm⁻¹): 2961, 1620, 1505, 1254, 1029, 838, 821. ¹H NMR (CDCl₃, 500 MHz): δ 8.46 (s, 1H), 7.85 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 9.0 Hz, 2H), 7.26 (d, *J* = 9.0 Hz, 2H), 6.96 (d, *J* = 9.0 Hz, 2H), 3.85 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 158.5, 156.7, 144.4, 136.9, 134.9, 129.7, 129.0, 122.2, 114.4, 55.5. EI-MS *m/z*: 247 (31) [M⁺ (³⁷Cl)], 245 (100) [M⁺ (³⁵Cl)], 230 (96), 167 (15).

(*E*)-N-(4-fluorobenzylidene)-4-methoxyaniline (3e)⁷: Following the general procedure with 4-methoxyaniline (0.92 g, 7.5 mmol), 4-fluorobenzaldehyde (0.62g, 5.0 mmol), MgSO₄ (2.0 g) and CH₂Cl₂ (20 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether) afforded **3e** (874.0 mg, 76%) as a white solid. M.p. 96- 97 °C. IR (KBr, cm⁻¹): 2966, 1623, 1506, 1252, 1029, 844, 748. ¹H NMR (CDCl₃, 500 MHz): δ 8.46 (s, 1H), 7.92-7.89 (m, 2H), 7.26-7.24 (m, 2H), 7.19-7.15 (m, 2H), 6.97-6.95 (m, 2H), 3.85 (s, 3H); ¹⁹F NMR (CDCl₃, 470 MHz): -108.6 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 164.5 (d, ¹*J*_{C-F} = 250.0 Hz), 158.3, 156.8, 144.6, 132.8 (d, ⁴*J*_{C-F} = 2.8 Hz), 130.5 (d, ³*J*_{C-F} = 8.8 Hz), 122.1, 115.8 (d, ²*J*_{C-F} = 21.8 Hz), 114.4, 55.5. EI-MS *m/z* (%): 229 (87) [M⁺], 214 (100), 185 (22), 144 (6).

(*E*)-4-Methoxy-N-(3-methylbenzylidene)aniline (3f)⁸: Following the general procedure with 4-methoxyaniline (0.92 g, 7.5 mmol), 3-methylbenzaldehyde (0.60 g, 5.0 mmol), MgSO₄ (2.0 g) and CH₂Cl₂ (20 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether) afforded **3f** (858.8 mg, 76%) as a white solid. M.p. 39-41 °C. IR (KBr, cm⁻¹): 2952, 1624, 1504, 1245, 1035, 831, 788. ¹H NMR (CDCl₃, 500 MHz): δ 8.48 (s, 1H), 7.78 (s, 1H), 7.68 (d, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.31 (d, *J* = 7.5 Hz, 1H), 7.28-7.25 (m, 2H), 6.96 (d, *J* = 9.0 Hz, 2H), 3.86 (s, 3H), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 158.7, 158.2, 144.9, 138.5, 136.3, 131.9, 128.7, 128.6, 126.2, 122.2, 114.4, 55.5, 21.3. EI-MS *m*/*z* (%): 225 (100) [M⁺], 210 (32), 167 (9).

(*E*)-*N*-(**3-Fluorobenzylidene**)-**4-methoxyaniline** (**3g**)⁵: Following the general procedure with 4-methoxyaniline (0.92 g, 7.5 mmol), 3-fluorobenzaldehyde (0.62g, 5.0 mmol), MgSO₄ (2.0 g) and CH₂Cl₂ (20 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether) afforded **3g** (713.0 mg, 62%) as a colorless oil. IR (KBr, cm⁻¹): 2961, 1621, 1504, 1249, 1028, 837, 779, 682. ¹H NMR (CDCl₃, 500 MHz): δ 8.48 (d, *J* = 1.0 Hz, 1H), 7.69-7.67 (m, 1H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.47-7.42 (m, 1H), 7.28-7.27 (m, 2H), 7.20-7.16 (m, 1H), 6.97-6.96 (m, 2H), 3.86 (s, 3H); ¹⁹F NMR (CDCl₃, 470 MHz): -112.6 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 163.1 (d, ¹*J*_{C-F} = 245.1 Hz), 158.6, 156.6 (d, ⁴*J*_{C-F} = 3.1 Hz), 144.2, 138.8 (d, ³*J*_{C-F} = 7.3 Hz), 130.2 (d, ³*J*_{C-F} = 8.1 Hz), 124.7 (d, ⁴*J*_{C-F} = 2.6 Hz), 122.3, 117.9 (d, ²*J*_{C-F} = 21.6 Hz), 114.5 (d, ²*J*_{C-F} = 21.3 Hz), 114.4, 55.5. EI-MS *m*/*z* (%): 229 (90) [M⁺], 214 (100), 185 (23).

(*E*)-*N*-Benzylideneaniline (3h)⁶: Following the general procedure with aniline (0.70 g, 7.5 mmol), benzaldehyde (0.53 g, 5.0 mmol), MgSO₄ (2.0 g) and CH₂Cl₂ (20 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether) afforded 1h (734.4 mg, 81%) as a white solid. M.p. 54-55 °C. IR (KBr, cm⁻¹): 2888, 1626, 1590, 1483, 1192, 762, 693. ¹H NMR (CDCl₃, 500 MHz): δ 8.50 (s, 1H), 7.96-7.94 (m, 2H), 7.53-7.50 (m, 3H), 7.46-7.42 (m, 2H), 7.28-7.25 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 160.4, 152.0, 136.2, 131.4, 129.1, 128.8, 128.7, 125.9, 120.9. EI-MS *m/z* (%): 181 (100) [M⁺], 152 (4), 104 (10), 77 (34).

(*E*)-N-benzylidene-4-methylaniline (3i)⁹: Following the general procedure with *p*-toluidine (0.80 g, 7.5 mmol), benzaldehyde (0.53 g, 5.0 mmol), MgSO₄ (2.0 g) and CH₂Cl₂ (20 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether) afforded **3i** (895.5 mg, 92%) as a white solid. M.p. 33-35 °C. IR (KBr, cm⁻¹): 3024, 2919, 2873, 1627, 1504, 1191, 814, 691, 536. ¹H NMR (CDCl₃, 500 MHz): δ 8.51 (s, 1H), 7.95-7.93 (m, 2H), 7.52-7.49 (m, 3H), 7.24 (d, *J* = 8.5 Hz, 2H), 7.19 (d, *J* = 8.5 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 159.6, 149.4, 136.3, 135.8, 131.2, 129.8, 128.8, 128.7, 120.8, 21.0. EI-MS *m/z* (%): 195 (100) [M⁺], 180 (4), 118 (8), 91 (24), 65 (10).

(*E*)-*N*-benzylidene-4-chloroaniline (3j)⁶: Following the general procedure with 4-chloroaniline (0.96 g, 7.5 mmol), benzaldehyde (0.53 g, 5.0 mmol), MgSO₄ (2.0 g) and CH₂Cl₂ (20 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether) afforded **3j** (777.6 mg, 78%) as a yellow solid. M.p. 61-62 °C. IR (KBr, cm⁻¹): 2873, 1625, 1483, 1190, 1088, 831, 820, 756, 689. ¹H NMR (CDCl₃, 500 MHz): δ 8.46 (s, 1H), 7.93 (dd, *J* = 7.5, 1.5 Hz,

2H), 7.52-7.49 (m, 3H), 7.39-7.37 (m, 2H), 7.20-7.17 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 160.7, 150.4, 135.9, 131.6, 131.5, 129.2, 128.9, 128.8, 122.2. EI-MS *m*/*z*: 217 (36) [M⁺ (³⁷Cl)], 215 (100) [M⁺ (³⁵Cl)], 138 (10), 111 (26), 77 (16).

(*E*)-Methyl 2-(((4-methoxyphenyl)imino)methyl)benzoate (3k)¹⁰: Following the general procedure with 4-methoxyaniline (0.92 g, 7.5 mmol), methyl 2-formylbenzoate (0.82 g, 5.0 mmol), MgSO₄ (2.0 g) and CH₂Cl₂ (20 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether) afforded 3k (511.1 mg, 38%) as a yellow solid. M.p. 59-60 °C. IR (KBr, cm⁻¹): 3411, 2952, 1713, 1500, 1253, 1120, 841, 761, 706. ¹H NMR (CDCl₃, 500 MHz): δ 9.26 (s, 1H), 8.27 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.99 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.63 (td, *J* = 7.5, 1.0 Hz, 1H), 7.52 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.34-7.31 (m, 2H), 6.97-6.94 (m, 2H), 3.96 (s, 3H), 3.85 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.4, 158.5, 157.6, 144.8, 137.4, 132.3, 130.3, 130.0, 128.3, 122.6, 114.3, 55.5, 52.4. EI-MS *m*/*z* (%): 269 (28) [M⁺], 254 (100), 238 (13), 166 (15), 105 (14).

3. Synthesis and Characterization for tert-Butoxycarbonylation Products

General Procedure for *tert***-Butoxycarbonylation:** To a 15 mL flask was added substrates (0.5 mmol), $[RuCl_2(p\text{-cymene})]_2$ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). The reaction mixture was stirred at 120 °C under N₂ atmosphere. Upon completion, the reaction was purified by column chromatography to give the esterification product.

Di*tert***-butyl 2-(pyrimidin-2-yl)isophthalate (2a):** Following the general procedure with **1a** (78.0 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2a** (147.7 mg, 83%) as a gray white solid. M.p. 158-159 °C. IR (KBr, cm⁻¹): 2977, 1712, 1557, 1409, 1321, 1141, 854, 775. ¹H NMR (CDCl₃, 500 MHz): δ 8.81 (d, *J* = 5.0 Hz, 2H), 7.99 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 8.0 Hz, 1H), 7.32 (t, *J* = 5.0 Hz, 1H), 1.30 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.4, 166.1, 156.3, 139.1, 133.7, 132.4, 128.4, 119.1, 81.5, 27.7. EI-MS *m*/*z* (%): 356 (14) [M⁺], 300 (38), 245 (79), 227 (95), 156 (100). Anal. Calcd. For C₂₀H₂₄N₂O₄: C, 67.40; H, 6.79; N, 7.86. Found: C, 67.37; H, 6.68; N, 7.85.

tert-Butyl 2-(pyrimidin-2-yl)benzoate (2a'): IR (KBr, cm⁻¹): 2975, 1717, 1562, 1416, 1299, 1123,

754. ¹H NMR (CDCl₃, 500 MHz): δ 8.85 (d, *J* = 5.0 Hz, 2H), 7.92 (d, *J* = 7.5 Hz, 1H), 7.76 (d, *J* = 7.5 Hz, 1H), 7.58 (td, *J* = 7.5, 1.0 Hz, 1H), 7.52 (td, *J* = 7.5, 1.0 Hz, 1H), 7.30 (t, *J* = 5.0 Hz, 1H), 1.44 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.0, 166.3, 156.8, 138.0, 134.3, 130.4, 129.9, 129.4, 129.1, 119.0, 81.3, 27.8. LC-MS (ESI) *m*/*z*: 257 [M⁺H]. HRMS: *m*/*z* calcd for C₁₅H₁₆N₂O₂ [M+H]⁺ 257.1290, Found: 257.1278.

Di*tert***-butyl 5-methyl-2-(pyrimidin-2-yl)isophthalate (2b):** Following the general procedure with **1b** (85.0 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2b** (175.8 mg, 95%) as a gray white solid. M.p. 157-158 °C. IR (KBr, cm⁻¹): 2984, 1710, 1561, 1410, 1338, 1266, 1155, 846. ¹H NMR (CDCl₃, 500 MHz): δ 8.81 (d, *J* = 5.0 Hz, 2H), 7.78 (s, 2H), 7.30 (t, *J* = 5.0 Hz, 1H), 2.47 (s, 3H), 1.30 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.4, 166.4, 156.3, 138.6, 136.3, 133.6, 132.8, 118.9, 81.4, 27.7, 21.0. LC-MS (ESI) *m/z*: 371 [M⁺H]. HRMS: *m/z* calcd for C₂₁H₂₆N₂O₄ [M⁺H] 371.1971, Found: 371.1963.

Di*tert***-butyl 5-methoxy-2-(pyrimidin-2-yl)isophthalate (2c):** Following the general procedure with **1c** (93.0 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2c** (158.3 mg, 82%) as a gray white solid. M.p. 179-180 °C. IR (KBr, cm⁻¹): 2980, 1709, 1567, 1408, 1347, 1268, 1158, 1062, 846. ¹H NMR (CDCl₃, 500 MHz): δ 8.78 (d, *J* = 5.0 Hz, 2H), 7.45 (s, 2H), 7.27 (t, *J* = 5.0 Hz, 1H), 3.89 (s, 3H), 1.27 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.1, 166.1, 159.2, 156.3, 135.2, 131.5, 118.9, 117.6, 81.6, 55.8, 27.7. EI-MS *m*/*z* (%): 386 (22) [M⁺], 286 (22), 257 (25), 186 (100), 83 (20). HRMS: *m*/*z* calcd for C₂₁H₂₆N₂O₅ [M⁺] 386.1842, Found: 386.1844.

Di*tert***-butyl 5-ethoxy-2-(pyrimidin-2-yl)isophthalate (2d):** Following the general procedure with **1d** (100.0 mg, 0.5 mmol), $[RuCl_2(p-cymene)]_2$ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2d** (182.0 mg, 91%) as a gray white solid. M.p. 103-104 °C. IR (KBr, cm⁻¹): 2977, 1724, 1564, 1410, 1341, 1258, 1158, 837. ¹H NMR (CDCl₃, 500 MHz): δ 8.78

(d, J = 5.0 Hz, 2H), 7.46 (s, 2H), 7.29 (t, J = 5.0 Hz, 1H), 4.16 (q, J = 6.0 Hz, 2H), 1.46 (t, J = 6.0 Hz, 3H), 1.29 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.2, 166.1, 158.5, 156.3, 135.2, 131.4, 118.8, 118.1, 81.6, 64.1, 27.7, 14.6. LC-MS (ESI) *m/z*: 401 [M⁺H]. HRMS: *m/z* calcd for C₂₂H₂₈N₂O₅ [M⁺H] 401.2076, Found: 401.2070.

Di*tert*-**butyl 5-fluoro-2-(pyrimidin-2-yl)isophthalate (2e):** Following the general procedure with **1e** (87.0 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2e** (179.5 mg, 96%) as a gray white solid. M.p. 116-117 °C. IR (KBr, cm⁻¹): 2986, 1715, 1561, 1411, 1344, 1258, 1157, 976, 842. ¹H NMR (CDCl₃, 500 MHz): δ 8.80 (dd, *J* = 5.0, 1.0 Hz, 2H), 7.68 (dd, *J* = 8.5, 1.5 Hz, 2H), 7.33 (td, *J* = 5.0, 1.0 Hz, 1H), 1.32 (s, 18H); ¹⁹F NMR (CDCl₃, 470 MHz): -111.4 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 166.5, 164.8 (d, ⁴*J*_{C-F} = 2.5 Hz), 161.7(d, ¹*J*_{C-F} = 250.0 Hz), 156.4, 135.9 (d, ³*J*_{C-F} = 7.5 Hz), 135.4 (d, ⁴*J*_{C-F} = 2.5 Hz), 119.4 (d, ²*J*_{C-F} = 22.5 Hz), 119.2, 82.2, 27.6. LC-MS (ESI) *m/z*: 375 [M⁺H]. HRMS: *m/z* calcd for C₂₀H₂₃FN₂O₄ [M⁺H] 375.1720, Found: 375.1713.

Di*tert***-butyl 5-chloro-2-(pyrimidin-2-yl)isophthalate (2f):** Following the general procedure with **1f** (95.3 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2f** (175.7 mg, 90%) as a gray white solid. M.p. 149-152 °C. IR (KBr, cm⁻¹): 2983, 1713, 1567, 1406, 1254, 1150, 891. ¹H NMR (CDCl₃, 500 MHz): δ 8.78 (d, *J* = 5.0 Hz, 2H), 7.91 (s, 2H), 7.30 (t, *J* = 5.0 Hz, 1H), 1.28 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.4, 164.9, 156.4, 137.4, 135.3, 134.5, 132.1, 119.3, 82.3, 27.6. EI-MS *m/z* (%): 392 (0.49) [M⁺ (³⁷Cl)], 390 (0.68) [M⁺ (³⁵Cl)], 317 (9), 290 (17), 261 (51), 190 (100). HRMS: *m/z* calcd for C₂₀H₂₃ClN₂O₄ [M⁺] 390.1346, Found: 390.1350.

Di*tert*-**butyl 2-(pyrimidin-2-yl)-5-(trifluoromethyl)isophthalate (2g):** Following the general procedure with **1g** (112.0 mg, 0.5 mmol), $[RuCl_2(p-cymene)]_2$ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2g** (152.6 mg, 72%) as a gray white solid. M.p. 143-144 °C. IR (KBr, cm⁻¹): 2982, 1726, 1563, 1370, 1275, 1162. ¹H NMR (CDCl₃, 500 MHz): δ

8.83 (d, J = 5.0 Hz, 2H), 8.22 (d, J = 0.5 Hz, 2H), 7.37 (t, J = 5.0 Hz, 1H), 1.33 (s, 18H); ¹⁹F NMR (CDCl₃, 470 MHz): -62.8 (s, Ar-CF₃); ¹³C NMR (CDCl₃, 125 MHz): δ 166.2, 164.8, 156.5, 142.0, 134.7, 130.9 (q, ² $_{J_{C-F}} = 32.5$ Hz), 129.1 (q, ³ $_{J_{C-F}} = 3.3$ Hz), 123.1 (q, ¹ $_{J_{C-F}} = 271.2$ Hz), 119.5, 82.5, 27.6. LC-MS (ESI) m/z: 425 [M⁺H]. HRMS: m/z calcd for C₂₁H₂₃F₃N₂O₄ [M⁺H] 425.1688, Found: 425.1681.

Di*tert***-butyl 4-fluoro-2-(pyrimidin-2-yl)isophthalate (2h):** Following the general procedure with **1h** (87.0 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2h** (132.7 mg, 71%) as a gray white solid. M.p. 119-120 °C. IR (KBr, cm⁻¹): 2984, 1724, 1562, 1449, 1397, 1318, 1249, 1160, 1113, 848. ¹H NMR (CDCl₃, 500 MHz): δ 8.82 (d, *J* = 5.0 Hz, 2H), 7.94 (dd, *J* = 8.5, 5.5 Hz, 1H), 7.33 (t, *J* = 5.0 Hz, 1H), 7.24 (t, *J* = 9.0 Hz, 1H), 1.40 (s, 9H), 1.30 (s, 9H); ¹⁹F NMR (CDCl₃, 470 MHz): -110.4 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 166.5 (d, ³*J*_{C-F} = 7.5 Hz), 163.0, 161.0 (d, ¹*J*_{C-F} = 250.0 Hz), 156.5, 139.9 (d, ⁴*J*_{C-F} = 3.7 Hz), 133.0 (d, ³*J*_{C-F} = 9.3 Hz), 129.6 (d, ⁴*J*_{C-F} = 3.7 Hz), 124.2 (d, ²*J*_{C-F} = 17.6 Hz), 119.5, 116.4 (d, ²*J*_{C-F} = 22.3 Hz), 82.7, 81.6, 27.8, 27.7. LC-MS (ESI) *m/z*: 375 [M⁺H]. HRMS: *m/z* calcd for C₂₀H₂₃FN₂O₄ [M⁺H] 375.1720, Found: 375.1711.

Di*tert***-butyl 4-chloro-2-(pyrimidin-2-yl)isophthalate (2i):** Following the general procedure with **1i** (95.0 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2i'** (8.7 mg, 6%) as colorless oil and **2i** (83.8 mg, 43%) as a gray white solid. M.p. 93-94 °C. IR (KBr, cm⁻¹): 2979, 1712, 1563, 1394, 1313, 1252, 1131, 848. ¹H NMR (CDCl₃, 500 MHz): δ 8.79 (d, *J* = 5.0 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 5.0 Hz, 1H), 1.40 (s, 9H), 1.28 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 165.5, 165.4, 164.5, 156.6, 138.6, 135.2, 134.1, 132.2, 131.2, 130.0, 119.5, 82.9, 81.8, 27.8, 27.6. LC-MS (ESI) *m/z*: 391 [M⁺H]. HRMS: *m/z* calcd for C₂₀H₂₃ClN₂O₄ [M⁺H] 391.1425, Found: 391.1418.

tert-Butyl 4-chloro-2-(pyrimidin-2-yl)benzoate (2i'): IR (KBr, cm⁻¹): 2925, 1720, 1560, 1424, 1301, 1173, 1123, 822. ¹H NMR (CDCl₃, 500 MHz): δ 8.84 (d, *J* = 5.0 Hz, 2H), 7.92 (d, *J* = 2.0 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.49 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.30 (t, *J* = 5.0 Hz, 1H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.1, 165.2, 156.9, 139.7, 136.5, 132.6, 130.6, 130.0, 129.4,

119.4, 81.6, 27.8. LC-MS (ESI) *m*/*z*: 291 [M⁺H]. HRMS: *m*/*z* calcd for C₁₅H₁₅ClN₂O₂ [M⁺H] 291.0900, Found: 291.0890.

Di*tert*-butyl 2-(4-phenylpyrimidin-2-yl)isophthalate (2j): Following the general procedure with 1j (166.0 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 2j (179.3 mg, 83%) as a gray white solid. M.p. 152-153 °C. IR (KBr, cm⁻¹): 2979, 1711, 1568, 1425, 1369, 1285, 1138, 859, 774. ¹H NMR (CDCl₃, 500 MHz): δ 8.83 (d, *J* = 5.0 Hz, 1H), 8.13-8.11 (m, 2H), 7.99 (d, *J* = 7.5 Hz, 2H), 7.73 (d, *J* = 5.0 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.49-7.46 (m, 3H), 1.22 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.3, 166.3, 163.7, 156.7, 139.2, 136.3, 133.8, 132.4, 131.0, 128.9, 128.4, 127.3, 114.9, 81.5, 27.7. EI-MS *m/z* (%): 432 (9) [M⁺], 332 (39), 276 (29), 232 (100), 129 (27). HRMS: *m/z* calcd for C₂₆H₂₈N₂O₄ [M⁺] 432.2049, Found: 432.2050.

Di*tert***-butyl 2-(5-ethylpyrimidin-2-yl)isophthalate (2k):** Following the general procedure with **1k** (92.0 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2k** (165.1 mg, 86%) as a gray white solid. M.p. 146-147 °C. IR (KBr, cm⁻¹): 2978, 1719, 1319, 1286, 1140, 768. ¹H NMR (CDCl₃, 500 MHz): δ 8.66 (s, 2H), 7.97 (d, *J* = 7.5 Hz, 2H), 7.53 (t, *J* = 7.5 Hz, 1H), 2.76 (q, *J* = 8.0 Hz, 2H), 1.37 (t, *J* = 8.0 Hz, 3H), 1.30 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.2, 164.7, 155.8, 138.8, 134.2, 133.8, 132.3, 128.3, 81.4, 27.7, 23.5, 15.1. LC-MS (ESI) *m/z*: 385 [M⁺H]. HRMS: *m/z* calcd for C₂₂H₂₈N₂O₄ [M+H]⁺ 385.2127, Found: 385.2120.

Di*tert***-butyl 2-(5-phenylpyrimidin-2-yl)isophthalate (2l):** Following the general procedure with **11** (116.0 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2l** (140.4 mg, 65%) as a gray white solid. M.p. 184-185 °C. IR (KBr, cm⁻¹): 2977, 1717, 1420, 1264, 1140, 762. ¹H NMR (CDCl₃, 500 MHz): δ 9.03 (s, 2H), 8.02 (d, *J* = 8.0 Hz, 2H), 7.69-7.67 (m, 2H), 7.59-7.50 (m, 4H), 1.32 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.1, 165.9, 154.3, 138.7, 134.4, 133.8, 132.5, 132.0, 129.5, 128.9, 128.5, 127.0, 81.7, 27.7. LC-MS (ESI) *m/z*: 433 [M⁺H]. HRMS: *m/z* calcd for C₂₅H₂₈N₂O₄ [M⁺H] 433.2127, Found:

433.2118.

Di*tert***-butyl 2-(pyridin-2-yl)isophthalate (2m):** Following the general procedure with **1m** (77.5 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2m** (116.4 mg, 82%) as a gray white solid. M.p. 111-112 °C. IR (KBr, cm⁻¹): 2979, 1719, 1367, 1289, 1140, 855, 773. ¹H NMR (CDCl₃, 500 MHz): δ 8.65 (d, *J* = 4.5 Hz, 1H), 7.90 (d, *J* = 7.5 Hz, 2H), 7.73 (td, *J* = 7.5, 1.5 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.35-7.28 (m, 2H), 1.24 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.9, 158.6, 148.6, 139.5, 135.4, 134.3, 131.8, 127.9, 124.2, 121.9, 81.5, 27.5. EI-MS *m*/*z* (%): 355 (12) [M⁺], 282 (30), 226 (99), 199 (100), 155 (86). Anal. Calcd. For C₂₁H₂₅NO₄: C, 70.96; H, 7.09; N, 3.94. Found: C, 71.05; H, 7.10; N, 3.71.

Di-*tert***-butyl 2-(1H-pyrazol-1-yl)isophthalate (2n):** Following the general procedure with **1n** (72.0 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2n** (156.5 mg, 91%) as a gray white solid. M.p. 78-79 °C. IR (KBr, cm⁻¹): 2980, 1721, 1368, 1294, 1144, 852, 773, 754. ¹H NMR (CDCl₃, 500 MHz): δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 1.5 Hz, 1H), 7.60 (d, *J* = 2.0 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 1H), 6.47 (t, *J* = 2.0 Hz, 1H), 1.35 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 165.2, 140.1, 137.0, 132.6, 132.3, 132.0, 128.5, 106.4, 82.4, 27.6. EI-MS *m*/*z* (%): 344 (5) [M⁺], 233 (27), 215 (73), 188 (86), 144 (100). Anal. Calcd. For C₁₉H₂₄N₂O₄: C, 66.26; H, 7.02; N, 8.13. Found: C, 66.12; H, 6.81; N, 8.26.

Di*tert***-butyl 1-(pyrimidin-2-yl)-1H-pyrrole-2,5-dicarboxylate (20):** Following the general procedure with **10** (71.5 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 20 (148.4 mg, 86%) as a gray white solid. M.p. 155-156 °C. IR (KBr, cm⁻¹): 2982, 1719, 1572, 1427, 1264, 1145, 975, 833. ¹H NMR (CDCl₃, 500 MHz): δ 8.86 (d, *J* = 5.0 Hz, 2H), 7.43 (t, *J* = 5.0 Hz, 1H), 6.94 (s, 2H), 1.35 (s, 18H). ¹³C NMR (CDCl₃, 125 MHz): δ 159.1, 158.8, 158.1, 129.7, 120.6, 116.3, 81.3, 28.0. EI-MS *m/z* (%): 345 (54) [M⁺], 289 (27), 233 (45), 189 (20), 145 (100). Anal. Calcd. For C₁₈H₂₃N₃O₄: C, 62.59; H, 6.71; N, 12.17. Found: C, 62.49; H, 6.64; N, 12.12.

tert-Butyl 1-(pyrimidin-2-yl)-1H-indole-2-carboxylate (2p): Following the general procedure with 1p (97.5 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 2p (67.9 mg, 46%) as a gray white solid. M.p. 94-95 °C. IR (KBr, cm⁻¹): 2981, 1714, 1566, 1427, 1348, 1159, 847, 753. ¹H NMR (500 MHz, CDCl₃): δ 8.82 (d, *J* = 5.0 Hz, 2H), 8.14 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.70 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.39 (td, *J* = 8.0, 1.0 Hz, 1H), 7.30 (d, *J* = 0.5 Hz, 1H), 7.26 (td, *J* = 7.5, 1.5 Hz, 1H), 7.23 (t, *J* = 5.0 Hz, 1H), 1.50 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 161.2, 158.1, 157.8, 138.3, 132.0, 127.7, 125.9, 122.4, 122.2, 117.9, 113.5, 113.2, 81.6, 28.0. EI-MS *m*/*z* (%): 295 (19) [M⁺], 239 (15), 195 (100), 168 (5), 142 (9). HRMS: *m*/*z* calcd for C₁₇H₁₇N₃O₂ [M⁺] 295.1321, Found: 295.1323.

tert-Butyl 1-(pyrimidin-2-yl)-2-naphthoate (2q): Following the general procedure with 1q (103.0 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 2q (127.0 mg, 83%) as a gray white solid. M.p. 164-166 °C. IR (KBr, cm⁻¹): 2980, 1699, 1556, 1373, 1345, 1303, 1140, 813, 770. ¹H NMR (CDCl₃, 500 MHz): δ 8.94 (d, *J* = 5.0 Hz, 2H), 8.02 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.55-7.52 (m, 1H), 7.45-7.39 (m, 3H), 1.33 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.6, 166.4, 156.9, 138.0, 134.9, 131.3, 129.4, 129.0, 128.0, 127.5, 127.0, 126.4, 125.8, 119.3, 81.3, 27.8. EI-MS *m*/*z* (%): 306 (22) [M⁺], 233 (25), 205 (100), 152 (17), 57 (25). HRMS: *m*/*z* calcd for C₁₉H₁₈N₂O₂ [M⁺] 306.1368, Found: 306.1372.

tert-Butyl 2-(1-methyl-1H-benzo[d]imidazol-2-yl)benzoate (2r): Following the general procedure with 1r (104.0 mg, 0.5 mmol), $[RuCl_2(p-cymene)]_2$ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 2r (69.3 mg, 45%) as a gray white solid. M.p. 117-118 °C. IR (KBr, cm⁻¹): 2975, 1707, 1467, 1305, 1126, 847, 770, 754. ¹H NMR (CDCl₃, 500 MHz): δ 8.11-8.09 (m, 1H), 7.83 (dd, *J* = 6.5, 1.5 Hz, 1H), 7.67-7.60 (m, 2H), 7.54 (dd, *J* = 7.0, 2.0 Hz, 1H), 7.40-7.31 (m, 3H), 3.59 (s, 3H), 1.16 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 165.5, 153.7, 135.5, 133.3, 131.6, 131.2, 130.7, 130.5, 129.9, 122.6, 122.1, 119.8, 109.2, 81.5, 30.4, 27.5. EI-MS *m*/z (%): 308 (28) [M⁺], 235 (16), 207 (100), 195 (10), 122 (11). Anal. Calcd. For

C₁₉H₂₀N₂O₂: C, 74.00; H, 6.54; N, 9.08. Found: C, 73.84; H, 6.45; N, 8.81.

tert-Butyl benzo[h]quinoline-10-carboxylate (2s): Following the general procedure with 1s (89.5 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **2s** (69.8 mg, 50%) as a gray white solid. M.p. 132-133 °C. IR (KBr, cm⁻¹): 2970, 1712, 1301, 1148, 1111, 838, 752. ¹H NMR (CDCl₃, 500 MHz): δ 8.93 (dd, *J* = 4.5, 2.0 Hz, 1H), 8.18 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.95 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.83 (d, *J* = 9.0 Hz, 1H), 7.73-7.70 (m, 2H), 7.76 (dd, *J* = 7.0, 1.5 Hz, 1H), 7.54 (dd, *J* = 8.0, 4.5 Hz, 1H), 1.77 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 171.0, 147.3, 145.3, 135.4, 134.1, 134.0, 128.8, 127.8, 127.4, 127.3, 126.8, 126.1, 125.9, 121.9, 81.4, 28.3. EI-MS *m*/*z* (%): 279 (26) [M⁺], 229 (41), 214 (100), 194 (60), 179 (93). HRMS: *m*/*z* calcd for C₁₈H₁₇NO₂ [M⁺] 279.1259, Found: 279.1256.

(*E*)-Di-*tert*-butyl 2-(((4-methoxyphenyl)imino)methyl)isophthalate (4a): Following the general procedure with **3a** (105.5 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded **4a** (199.3 mg, 97%) as a gray white solid. M.p. 103-105 °C. IR (KBr, cm⁻¹): 2977, 1701, 1504, 1248, 1143, 1033, 834, 743. ¹H NMR (*d*₆-DMSO, 500 MHz): δ 8.98 (s, 1H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.64 (t, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 9.0 Hz, 2H), 7.00 (d, *J* = 9.0 Hz, 2H), 3.78 (s, 3H), 1.42 (s, 18H); ¹³C NMR (*d*₆-DMSO, 125 MHz): δ 166.3, 158.5, 158.1, 144.2, 136.9, 134.1, 132.3, 129.8, 122.8, 114.8, 82.2, 55.7, 28.1. EI-MS *m*/*z* (%): 411 (12) [M⁺], 355 (13), 299 (100), 193 (58), 177 (57). Anal. Calcd. For C₂₄H₂₉NO₅: C, 70.05; H, 7.10; N, 3.40. Found: C, 70.02; H, 7.09; N, 3.39.

(*E*)-Di-*tert*-butyl 2-(((4-methoxyphenyl)imino)methyl)-5-methylisophthalate (4b): Following the general procedure with 3b (112.5 mg, 0.5 mmol), $[RuCl_2(p-cymene)]_2$ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 4b (191.3 mg, 90%) as a gray white solid. M.p. 110-111 °C. IR (KBr, cm⁻¹): 2979, 1708, 1628, 1503, 1272, 1158, 1032, 846, 827, 752. ¹H NMR (CDCl₃, 500 MHz): δ 9.03 (s, 1H), 7.72 (s, 2H), 7.29 (d, *J* = 9.0 Hz, 2H), 6.93 (d, *J* = 9.0 Hz, 2H), 3.84 (s, 3H), 2.45 (s, 3H), 1.49 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.5, 158.8, 158.1, 144.8, 138.9, 135.0, 134.0, 132.7, 122.4, 114.2, 82.0, 55.4, 28.1, 21.0. EI-MS *m/z* (%): 425 (15)

[M⁺], 369 (15), 313 (100), 296 (20), 225 (15). Anal. Calcd. For C₂₅H₃₁NO₅: C, 70.57; H, 7.34; N, 3.16. Found: C, 70.67; H, 7.30; N, 3.16.

(*E*)-Di-*tert*-butyl 5-methoxy-2-(((4-methoxyphenyl)imino)methyl)isophthalate (4c): Following the general procedure with 3c (120.5 mg, 0.5 mmol), $[RuCl_2(p-cymene)]_2$ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 4c (211.7 mg, 96%) as a gray white solid. M.p. 111-112 °C. IR (KBr, cm⁻¹): 2978, 1713, 1604, 1505, 1342, 1108, 847, 835. ¹H NMR (CDCl₃, 500 MHz): δ 8.99 (s, 1H), 7.41 (s, 2H), 7.29-7.27 (m, 2H), 6.95-6.92 (m, 2H), 3.91 (s, 3H), 3.85 (s, 3H), 1.49 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.2, 159.5, 158.3, 158.1, 135.6, 129.7, 122.3, 117.5, 114.2, 82.2, 55.7, 55.4, 28.1, 28.0. EI-MS *m*/*z* (%): 441 (25) [M⁺], 385 (12), 329 (100), 241 (21), 207 (18). HRMS: *m*/*z* calcd for C₂₅H₃₁NO₆ [M⁺] 441.2151, Found: 441.2154.

(*E*)-Di-*tert*-butyl 5-chloro-2-(((4-methoxyphenyl)imino)methyl)isophthalate (4d): Following the general procedure with 3d (122.8 mg, 0.5 mmol), $[RuCl_2(p-cymene)]_2$ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 4d (204.9 mg, 92%) as a gray white solid. M.p. 100-101 °C. IR (KBr, cm⁻¹): 2979, 1711, 1503, 1242, 1158, 900, 825. ¹H NMR (CDCl₃, 500 MHz): δ 9.01 (s, 1H), 7.89 (s, 2H), 7.29 (d, *J* = 9.0 Hz, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 3.85 (s, 3H), 1.50 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 165.0, 158.4, 157.7, 136.3, 135.5, 134.7, 132.1, 122.4, 114.2, 82.8, 55.4, 28.0. EI-MS *m/z*: 447 (6) [M⁺ (³⁷Cl)], 445 (10) [M⁺ (³⁵Cl)], 389 (11), 333 (100), 316 (24). HRMS: *m/z* calcd for C₂₄H₂₈CINO₅ [M⁺] 445.1651, Found: 445.1652.

(*E*)-Di-*tert*-butyl 5-fluoro-2-(((4-methoxyphenyl)imino)methyl)isophthalate (4e): Following the general procedure with 3e (114.5 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 4e (205.9 mg, 96%) as a gray white solid. M.p. 132-133 °C. IR (KBr, cm⁻¹): 2978, 1705, 1505, 1249, 1151, 832, 753. ¹H NMR (CDCl₃, 500 MHz): δ 9.02 (s, 1H), 7.63 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 6.95 (d, *J* = 9.0 Hz, 2H), 3.85 (s, 3H), 1.50 (s, 18H); ¹⁹F NMR (CDCl₃, 470 MHz): -110.9 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 165.0 (d, ⁴*J*_{C-F} = 2.1 Hz), 161.8 (d, ¹*J*_{C-F} = 250.0 Hz), 158.3, 158.0, 144.4, 136.2 (d, ³*J*_{C-F} = 7.1 Hz), 134.1 (d, ⁴*J*_{C-F} = 2.8 Hz), 122.4, 119.3 (d, ²*J*_{C-F} = 23.2 Hz), 114.8, 82.7, 55.4, 28.0. EI-MS *m/z*

(%): 429 (12) $[M^+]$, 373 (14), 317 (100), 300 (17), 195 (8). Anal. Calcd. For $C_{24}H_{28}FNO_5$: C, 67.12; H, 6.57; N, 3.26. Found: C, 67.04; H, 6.53; N, 3.31.

(*E*)-Di-*tert*-butyl 2-(((4-methoxyphenyl)imino)methyl)-4-methylisophthalate (4f): Following the general procedure with 3f (112.5 mg, 0.5 mmol), $[RuCl_2(p-cymene)]_2$ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 4f (74.4 mg, 35%) as a gray white solid. M.p. 95-96 °C. IR (KBr, cm⁻¹): 2975, 1729, 1701, 1503, 1244, 1150, 831. ¹H NMR (CDCl₃, 500 MHz): δ 8.97 (s, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 9.0 Hz, 1H), 7.26-7.24 (m, 2H), 6.94-6.92 (m, 2H), 3.84 (s, 3H), 2.46 (s, 3H), 1.50 (s, 9H), 1.48 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.8, 165.6, 158.3, 158.2, 144.6, 139.6, 135.7, 135.2, 131.2, 130.6, 130.2, 122.4, 114.2, 82.3, 81.9, 55.4, 28.3, 28.1, 19.9. EI-MS *m*/*z* (%): 425 (5) [M⁺], 369 (20), 313 (100), 296 (17). Anal. Calcd. For C₂₅H₃₁NO₅: C, 70.57; H, 7.34; N, 3.29. Found: C, 70.23; H, 6.98; N, 3.40.

(*E*)-Di-*tert*-butyl 4-fluoro-2-(((4-methoxyphenyl)imino)methyl)isophthalate (4g): Following the general procedure with 3g (114.5 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 4g (190.9 mg, 89%) as a gray white solid. M.p. 94-95 °C. IR (KBr, cm⁻¹): 2982, 1732, 1704, 1504, 1246, 1160, 851, 833. ¹H NMR (CDCl₃, 500 MHz): δ 8.99 (s, 1H), 7.98 (dd, *J* = 8.5, 5.5 Hz, 1H), 7.28-7.24 (m, 2H), 7.19 (t, *J* = 8.5 Hz, 1H), 6.95-6.92 (m, 2H), 3.85 (s, 3H), 1.52 (s, 9H), 1.51 (s, 9H); ¹⁹F NMR (CDCl₃, 470 MHz): -109.7 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 164.6, 163.7, 161.5 (¹*J*_{C-F} = 254.9 Hz), 158.5, 156.5, 144.2, 138.1 (d, ⁴*J*_{C-F} = 3.8 Hz), 133.1 (d, ³*J*_{C-F} = 9.3 Hz), 128.7 (d, ⁴*J*_{C-F} = 3.3 Hz), 124.5 (d, ²*J*_{C-F} = 18.2 Hz), 122.4, 116.6 (d, ²*J*_{C-F} = 22.2 Hz), 114.2, 83.1, 82.4, 55.4, 28.1. EI-MS *m*/*z* (%): 429 (7) [M⁺], 373 (12), 317 (100), 300 (13), 122 (15). HRMS: *m*/*z* calcd for C₂₄H₂₈FNO₅ [M⁺] 429.1952, Found: 429.1950.

(*E*)-Di-*tert*-butyl 2-((phenylimino)methyl)isophthalate (4h): Following the general procedure with 3h (90.5 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 4h (154.3 mg, 81%) as a gray white solid. M.p. 77-79 °C. IR (KBr, cm⁻¹): 2976, 1717, 1369, 1271, 1148, 847, 754. ¹H NMR (CDCl₃, 500 MHz): δ 9.09 (s, 1H), 7.97

(d, J = 8.0 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.43-7.40 (m, 2H), 7.34-7.32 (m, 2H), 7.27-7.23 (m, 1H), 1.51 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.0, 161.5, 151.6, 138.1, 133.9, 132.4, 129.0, 128.7, 125.9, 121.0, 82.2, 28.1. EI-MS m/z (%): 381 (1) [M⁺], 233 (36), 193 (99), 177 (97), 57 (100). HRMS: m/z calcd for C₂₃H₂₇NO₄ [M⁺] 381.1940, Found: 381.1939.

COOBu-t

(*E*)-Di-*tert*-butyl 2-((p-tolylimino)methyl)isophthalate (4i): Following the general procedure with 3i (97.5 mg, 0.5 mmol), [RuCl₂(*p*-cymene)]₂ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 4i (160.0 mg, 81%) as a gray white solid. M.p. 106-107 °C. IR (KBr, cm⁻¹): 2976, 2931, 1721, 1369, 1271, 1170, 848, 744. ¹H NMR (*d*₆-DMSO, 500 MHz): δ 9.08 (s, 1H), 7.95 (d, *J* = 8.0 Hz, 2H), 7.50 (t, *J* = 8.0 Hz, 1H), 7.23-7.20 (m, 4H), 2.39 (s, 3H), 1.50 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.1, 160.5, 135.7, 134.0, 133.4, 132.3, 129.7, 129.6, 128.6, 121.0, 82.1, 28.1, 21.0. EI-MS *m*/*z* (%): 395 (1) [M⁺], 339 (18), 283 (100), 266 (18), 195 (12). Anal. Calcd. For C₂₄H₂₉NO₄: C, 72.89; H, 7.39; N, 3.54. Found: C, 72.65; H, 7.31; N, 3.36.

(*E*)-Di-*tert*-butyl 2-(((4-chlorophenyl)imino)methyl)isophthalate (4j): Following the general procedure with 3j (107.8 mg, 0.5 mmol), $[RuCl_2(p-cymene)]_2$ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 10/1) afforded 4j (151.7 mg, 73%) as a gray white solid. M.p. 138-139 °C. IR (KBr, cm⁻¹): 2976, 1718, 1272, 1149, 830. ¹H NMR (*d*₆-DMSO, 500 MHz): δ 9.06 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 2H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 9.0 Hz, 2H), 1.51 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 165.9, 162.2, 150.3, 138.1, 133.8, 132.5, 131.4, 129.1, 128.8, 122.3, 82.2, 28.1. EI-MS *m/z*: 417 (2) [M⁺ (³⁷Cl)], 415 (6) [M⁺ (³⁵Cl)], 359 (9), 303 (100), 286 (23). HRMS: *m/z* calcd for C₂₃H₂₆ClNO₄ [M⁺] 415.1550, Found: 415.1552.

(*E*)-1-*tert*-Butyl 3-methyl 2-(((4-methoxyphenyl)imino)methyl)isophthalate (4k): Following the general procedure with 3k (134.5 mg, 0.5 mmol), $[RuCl_2(p-cymene)]_2$ (7.7 mg, 0.0125 mmol), 1-AdCOOH (27.0 mg, 0.15 mmol), K₂CO₃ (172.5 mg, 1.25 mmol), Boc₂O (272.5 mg, 1.25 mmol) and toluene (1.25 mL). After reaction was over, purification by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) afforded 4k (131.4 mg, 81%) as a yellow solid. M.p. 97-98 °C. IR (KBr, cm⁻¹): 2971, 1723, 1504, 1305, 1251, 1144, 1033, 976, 835, 748. ¹H NMR (CDCl₃, 500 MHz): δ 9.12 (s, 1H), 8.00 (d, *J* = 8.0 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.31 (d, *J* = 8.5 Hz, 2H), 6.96-6.93 (m, 2H), 3.87 (s, 3H), 3.85 (s, 3H), 1.52 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.6,

165.9, 158.7, 158.3, 138.4, 134.0, 133.0, 132.4, 131.8, 128.7, 122.3, 114.3, 82.2, 55.4, 52.5, 28.1. EI-MS m/z (%): 369 (9) [M⁺], 313 (86), 298 (100), 282 (49), 254 (60). HRMS: m/z calcd for $C_{21}H_{24}NO_5$ [M⁺H] 370.1654, Found: 370.1647.

4. Further Transformation of 4a

Di-*tert***-butyl 2-formylisophthalate (5):** A solution of **4a** (205.5 mg, 0.5mmol) in 2.5 mL THF was added 1M HCl (2.5 ml) slowly at 0 °C. 30 min later, the reaction mixture was extracted with EtOAc (2×15 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated to get crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20/1) to give **5** (150.2 mg, 98%) as a colorless oil. IR (KBr, cm⁻¹): 2979, 2934, 1917, 1369, 1301, 1147, 847.9, 751.9. ¹H NMR (CDCl₃, 500 MHz): δ 10.68 (s, 1H), 8.05 (d, *J* = 8.0 Hz, 2H), 7.53 (t, *J* = 8.0 Hz, 1H), 1.58 (s, 18H); ¹³C NMR (CDCl₃, 125 MHz): δ 194.4, 164.8, 142.4, 133.4, 131.6, 129.3, 83.2, 28.0. ESI-MS *m*/*z* (%): 307 [M⁺H]. HRMS (ESI): *m*/*z* calcd for C₁₇H₂₃O₅ [M⁺H] 307.1545, Found: 307.1554.

tert-Butyl 3-hydroxy-1-oxo-1,3-dihydroisobenzofuran-4-carboxylate (6): A solution of 4a (205.5 mg, 0.5mmol) in 2.5 mL THF was added 1M HCl (2.5 mL) slowly at 25 °C. 3 h later, the reaction mixture was extracted with EtOAc (2×15 mL). The organic layer was dried over anhydrous sodium sulphate and concentrated to get crude product, which was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to give **6** (107.5 mg, 86%) as a white solid. M.p. 134-135 °C. IR (KBr, cm⁻¹): 3391, 2985, 174, 1328, 1145, 1098, 887, 804, 749. ¹H NMR (CDCl₃, 500 MHz): δ 8.24 (dd, *J* = 7.5, 1.0 Hz, 1H), 8.06 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.70 (t, *J* = 7.0 Hz, 1H), 6.96 (d, *J* = 1.0 Hz, 1H), 4.68 (d, *J* = 1.0 Hz, 1H), 1.65 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.9, 164.2, 147.5, 135.7, 131.0, 129.3, 128.3, 127.6, 97.3, 83.5, 28.1. MS *m/z* (%): 250 (2) [M⁺], 195 (36), 177 (100), 150 (24). Anal. Calcd. For C₁₃H₁₄O₅: C, 62.39; H, 5.64. Found: C, 62.10; H, 5.50.

tert-Butyl 2-(4-methoxyphenyl)-1-oxoisoindoline-4-carboxylate (7): A solution of 4a (205.5 mg, 0.5 mmol) and ZnCl_2 (68.0 mg, 0.5 mmol) in 5 mL MeOH was added NaBH₃CN slowly at 25 °C. After stirring for 3 h, the reaction mixture was extracted with EtOAc (2×15 mL). The organic layer was dried over anhydrous sodium sulphate and concentrated to get crude product, which was

purified by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) to give **7** (161.1 mg, 95%) as a white solid. M.p. 153-154 °C. IR (KBr, cm⁻¹): 2991, 2973, 1715, 1681, 1512, 1252, 1156, 822, 744. ¹H NMR (CDCl₃, 500 MHz): δ 8.20 (dd, J = 8.0, 1.0 Hz, 1H), 8.10 (dd, J = 7.5, 1.0 Hz, 1H), 7.83-7.79 (m, 2H), 7.60 (t, J = 7.5 Hz, 1H), 7.00-6.98 (m, 2H), 5.14 (s, 2H), 3.85 (s, 3H), 1.67 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.2, 164.5, 156.7, 141.6, 134.5, 133.2, 132.4, 128.5, 127.9, 126.9, 121.3, 114.3, 82.2, 55.5, 52.7, 28.3. EI-MS m/z (%): 339 (36) [M⁺], 283 (72), 267 (36), 57 (100). HRMS: m/z calcd for C₂₀H₂₁NO₄ [M⁺] 339.1471, Found: 339.1474.

5. X-Ray crystal structure for compound 2n

Crystallographic data for **2n**: $C_{19}H_{24}N_2O_4$, M = 344.40, orthorhombic, P21 21 21 (No. 19), a = 8.088(5) Å, b = 12.766 (5) Å, c = 19.413 (5) Å, V = 2004.4(16) Å³, Z = 4, Crystal size: 0.24 × 0.22 × 0.17 mm, T = 295 K, $\rho_{calcd} = 1.141$ g·cm⁻³, R₁ = 0.0427 (I>4 σ (I)), wR₂ = 0.1248 (all data), GOF = 1.022, reflections collected/unique: 4532 / 3254 (Rint = 0.0277), Data: 3254, restraints: 0, parameters: 227. CCDC 995322 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

6. Synthesis and Characterization for 8

[RuCl₂(*p*-cymene)]₂ (61.2 mg, 0.1 mmol), **3a** (42.2 mg, 0.2 mmol), KOAc (40 mg, 0.4 mmol) and methanol (5 mL) were introduced in a dried Schlenck tube under argon, equipped with magnetic stirring bar and the mixture was stirred at ambient temperature for 20 h. The solvent was then evaporated under vacuum and the given crude was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to give complex **8** (161.1 mg, 95%) as a red solid. M.p. 201-202 °C. IR (KBr, cm⁻¹): 2968, 1603, 1583, 1201, 1037, 833. ¹H NMR (CDCl₃, 500 MHz): δ 8.17 (d, *J* = 7.0 Hz, 1H), 8.06 (s, 1H), 7.71 (dt, *J* = 10.0, 2.5 Hz, 2H), 7.51 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.16 (td, *J* = 7.5, 1.5 Hz, 1H), 6.99 (td, *J* = 7.5, 1.5 Hz, 1H), 6.92 (dt, *J* = 9.0, 2.0 Hz, 2H), 5.46 (dd, *J* = 6.0, 0.5 Hz, 1H), 5.21 (d, *J* = 6.0 Hz, 1H), 4.87 (dd, *J* = 6.0, 0.5 Hz, 1H), 4.83 (d, *J* = 5.5 Hz, 1H), 3.87 (s, 3H), 2.39-2.34 (m, 1H), 2.05 (s, 3H), 0.97 (d, *J* = 7.0 Hz, 1H), 0.84 (d, *J* =

7.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 188.8, 171.2, 158.8, 148.4, 146.0, 139.1, 130.1, 129.5, 123.4, 122.5, 122.4, 113.7, 102.1, 100.4, 92.4, 89.3, 82.9, 82.5, 55.5, 30.8, 22.9, 21.5, 18.8. EI-MS *m*/*z* (%): 210 (100) [M-RuCl-*p*-cymene]⁺, 196 (37), 167 (22), 119 (42). HRMS: *m*/*z* calcd for C₂₄H₂₆NO¹⁰²Ru [M-Cl]⁺ 446.1058, Found: 446.1062.

References:

- 1. X. Hong, H. Wang, G. Qian, Q. Tan and B. Xu, J. Org. Chem., 2014, 79, 3228.
- 2. B. Song, X. Zheng, J. Mo and B. Xu, Adv. Synth. Catal., 2010, 352, 329.
- 3. S. Xu, X. Huang, X. Hong and B. Xu, Org. Lett., 2012, 14, 4614.
- Y.-L. Rao, H. Amarne, L. D. Chen, M. L. Brown, N. J. Mosey and S. Wang, J. Am. Chem. Soc., 2013, 135, 3407.
- 5. R.-G. Han, Y. Wang, Y.-Y. Li and P.-F. Xu, Adv. Synth. Catal., 2008, 350, 1474.
- 6. P. M. Truong, M. D. Mandler, P. Y. Zavalij and M. P. Doyle, Org. Lett., 2013, 15, 3278.
- I. Ojima, I. Habus, M. Zhao, M. Zucco, Y. H. Park, C. M. Sun and T. Brigaud, *Tetrahedron*, 1992, 48, 6985.
- 8. X. Xu, J. Zhou, L. Yang and W. Hu, Chem. Commun., 2008, 6564.
- 9. F. Nador, Y. Moglie, A. Ciolino, A. Pierini, V. Dorn, M. Yus, F. Alonso and G. Radivoy, *Tetrahedron Lett.*, 2012, **53**, 3156.
- 10. R. Liebl and R. Handte, Liebigs Ann. Chem., 1985, 1093.

ppm

0C13	CO R R R R R R R R R R R R R R R R R R R	usec dB MHz	usec dB MHz HZ HZ
SBR-0-1 C13CPD CI	XB20081022 11 20081022 10.14 20081022 10.14 5 mm PATX0 19F 5 pm PATX0 19F 295930 128 128 30030.029 0.458222 1.0912410 16.650 6.000 0.03000000 1.89999998 1.89999998	CHANNEL fl ==== 13C 9.50 -0.50 125.7703643	CHANNEL f2 ==== waltz16 1H 80.00 2.00 16.50 500.132005 500.1327774 125.7577774 n0 0 0.00 1.40
	NAME EXPNO PROCNO Date Time INSTRUM PROBHD PULPROG PULPROG SOLVENT SOLVENT SOLVENT NS SOLVENT NS SWH FIDRES AQ DS DS DS DI D1 d11 d11 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D	======================================	EEEEEE CPDPRG2 NUC2 PCPD2 PL12 PL13 PL13 SF02 SF02 SF02 SF02 SF02 SF02 SF02 SF02

S26

SBR-SM-2-0 C13CPD CDCl3 xB20081013 2 20081013 13.31 20081013 13.31 2 20081013 13.31 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CHANNEL f1 ======== 13C 9.50 usec -0.50 dB 125.7703643 MHz	CHANNEL f2 ======== waltz16 1H 80.00 usec 2.00 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 125.7577762 MHz 125.7577762 MHz 0 0 0.00 Hz 0 1.40	L L L L L L L L L L L L L L L L L L L
NAME EXPNO PROCNO Date INSTRUM PROBHD PULPROG TD PULPROG TD SOLVENT NS SWH FIDRES SWH FIDRES SWH FIDRES DM C M D M D D D D D D D D D D D D D D	====== NUC1 P1 PL1 SF01	CPDPRG2 CPDPRG2 NUC2 PL2 PL12 PL13 PL13 SF02 SF02 SF02 SF02 SF02 SF02 SF02 SF02	- 0
65.12	_		50 –
			- 4
			- 09
			- 8
			- 100
06.811			120
05'821 05'62T 66'7ET 9T'T7T 9T'T7T			140
0E.721			160
₽6·₽9I —			- 180
			200

HXH-3-133 C13CPD CDC13	XB20120926 7 1 20120926 14.31 5 mm PATXO 19F 255330 255330	CDCl3 256 4 30030.029 Hz 0.458222 Hz 1.0912410 sec 16.650 usec 6.00 usec 297.7 K 2.0000000 sec 0.0300000 sec 1.8999998 sec	<pre>= CHANNEL f1 ======== 13C 9.50 usec -0.50 dB 125.7703643 MHz</pre>	<pre>= CHANNEL f2 ======== waltz16 1H 80.00 usec 1.00 dB 16.31 dB 16.31 dB 16.50 dB 16.50 dB 32768 MHz 125.7577761 MHz EM 125.7577761 MHz EM 1.40</pre>	≨ ⊑
	NAME EXPNO PROCNO Date_ Time INSTRUM PULPROG TD	SOLVENT NS DS SWH FIDRES AQ RG DW DE DT d11 DELTA TD0	======= NUC1 P1 PL1 SF01	CPDPRG2 CPDPRG2 PLL2 PLL3 PLL3 PLL3 SF02 SF113 SF113 SF02 SF113 SF02 SF02 SF02 SF02 SF02 SF02 SF02 SF02	udd - 0
68.4I					50
					0 40
79.63					80
					100
72.411 95.811					120
£6.921					140
22.721 264.53 264.53					160
		P P			180
		EtO			200

bpm

0

2

4

g

1

SBR-0-6 9Fdeft CDCl3	XB20081024 13 20081024 9.47 5 mn PATXO 19F 5 mn PATXO 19F 3 131072 16 16 16 10040.000 Hz 0.762939 Hz 0.762939 Hz 0.762939 Hz 0.762939 Hz 0.762930 Hz 0.762930 Hz 0.762930 Hz 0.762930 Hz 0.762930 Hz 0.762930 Hz 10000000 sec 5.000 usec 6.00 usec 5.000 usec 5.000 usec 5.000 usec 1.0000000 sec	 CHANNEL f1 ===== 19F 19-30 usec 4.00 dB 470.5453180 MHz 65536 65536 65536 0 00 0.00 Hz 0.00 Hz 1.00 	mdd
16	PROBHD PROBHD PROBHD PULPROBHD PULPROBHD PULPROBHD PULPROB PUL	PLUC NUC1 PL1 C1 SSB SSB PC BB PC BB PC BB PC PC PC PC PC PC PC PC PC PC PC PC PC	-180
			-160
007:014			 -140
-110.203 110.203 110.203			-120
-110.245 -110.250 -110.250			-100
			-80
			 -60
	~		-40
	je z z		-20
	Ľ		0

	mdd	- 0 - 0	- 4	- 09	- 8	- 10	120	140	160	- 180	500
1.40		مرد به مرد از این مرد مرد مرد از این مرد	المراجع المراجع معامل المراجع ال	المراجعة عاملية والمراجع المراجع المراج معاوم معاد مراجع المراجع	a start of the sta			n a star a star part of the second star a	alitate particular and the second	no transferra (n. 1997) 1997 - Angelander (n. 1997) 1997 - Angelander (n. 1997)	n an
CHANNEL f2 ======= waltz16 1H 80.00 usec 2.00 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 32768 MHz 32768 MHz 125.7577748 MHz EM 1.00 Hz	EFFERE CPDPRG2 NUC2 PCPD2 PL12 PL13 SF02 SF02 SF02 SF02 SF02 SF02 SF02 SF02										
CHANNEL f1 ======= 13C 9.50 usec -0.50 dB 125.7703643 MHz	====== NUC1 PL1 SF01										
65536 CDC13 128 30030.029 Hz 0.458222 Hz 1.0912410 sec 16.650 usec 6.650 usec 265.1 K 22.0000000 sec 1.8999998 sec	TD SOLVENT NS SOLVENT DS SWH FIDRES AQ AQ DW DE DT D1 d11 DELTA TD0						_			Je Z	E E
XB20081024 14 14 20081024 9.55 9.55 spect 5 mm PATXO 19F 55336 65536 65536 128	NAME EXENO PROCNO Date Time INSTRUM PROBHD PULPROG TD SOLVENT NS					ΤΤ_			ST 9T 9T 9T		
SBR-0-6 C13CPD CDCl3						00.011	24.911 21.611 25.051	88.651 98.551	88.771 88.651 88.651 88.651 88.651		

SBR-O-5PROTON CDC13NAMEXB20081029EXPNO21PROCNO21PROCNO21PROCNO21PROCNO21Date20081029Time15.51INSTRUM5 mm PATXO 19FPULPROG20081029Time15.51INSTRUM5 mm PATXO 19FPULPROG20081029SOLVENT5 mm PATXO 19FPULPROG20081029SOLVENT5 mm PATXO 19FPULPROG2003102SOLVENT5 mm PATXO 19FPULPROG20330.578HZ10330.578PULPROG2556PULPROG3.1720407SC3.1720407SC3.1720407PL11.0000000PL2293.8R1.0000000PL11.0000000SC200.133085PL2500.1330133PL3500.1330133PL500.1330133PC0.00PC1.00

281 · L 261 · L 202 · L 297 · L 297

E	_ dd - 0	50	- 4	- 09	- 8	100	120	140	160	- 180	200
<u>.</u>	العام العام العام المحالية ال محالية المحالية المحال	المراجع المراجع مراجع المراجع ال	والعالم الكريم المراجع من من عن المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع والمحاط المراجع	ener han eine eine sterreiten	an a	والمراجع والمحال المراجع المراجع المراجع المحالية المراجع المحالية المحالية المحالية المحالية المحالية المحالية	المركب المركب والمركب المركب المرك والمركب المركب المرك	المراجع المراجع والمراجع المراجع	add pick for the action of the first sector for the first sector of the first sector of the first sector of the	المراجع والمراجع المراجع المراجع المراجع والمراجع و والمراجع والمراجع وال	العام الجارية التركيم المحالم ا المحالم المحالم
CHANNEL IZ ===================================	CFDFRG2 CFDFRG2 PL12 PL12 PL13 PL13 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2										
9.50 usec -0.50 dB 125.7703643 MHz	P1 PL1 SF01										
CHANNEL 61											
<pre>20081029 17.17 17.17 17.17 17.17 5 mm PATXO 19F 65536 65536 CDC13 127 127 20030.029 Hz 0.458222 Hz 1.0912410 sec 161.3 161.3 161.3 166.0 usec 6.00 usec 6.00 usec 0.03000000 sec 1.89999998 sec 1.89999998 sec 1.89999998 sec 1.89999998 sec 1.89999998 sec 1.80999998 sec 1.800000 1.800000 1.80999998 sec 1.800000 1.80000 1.800000 1.800000 1.800 1.800000 1.800 1.</pre>	Jate Jate INSTRUM PROBHD PULPROG TD SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT DS AQ AQ DS AQ DE TD A1 DE TD DE TD DE TD DE TD DE TD DE TD DE TD DE TD TD TD TD TD TD TD TD TD TD TD TD TD									₹ Z Z Z	C
SBR-0-5 C13CPD CDC13 XB20081029 24 1	NAME EXPNO PROCNO				-		07.611 - 40	9T.7ET 9T.7ET	20.631		

0C13	HZ HZ Sec	usec usec K sec	===== dB MHz MHz HZ
ZXJ-0-7 PROTON CI	XB20090109 51 20090109 11.20 spect 5 mm PATX0 19F 2930 65536 65536 65536 10330.578 2 2 3.1720407	48.400 48.400 6.00 293.3 1.0000000	CHANNEL fl ==== 15.66 2.00 500.1330885 2.00 32768 500.1300130 0.00 0.00 0.00
	NAME EXPNO PROCNO Date INSTRUM PROBHD PULPROG SOLVENT SSLVENT NS SWH FIDRES SWH	RG DW TE TD 10	===== P1 PL1 PL1 SSI SSI SSI SSB WDW WDW GB GB PC

- 0

 $\overline{}$

- N

- 4

₹

ZXJ-0-7 19Fdeft CDCl3

AE XB20090109 NO 52 DCNO 52 TRUM 520090109 E 11.22 TRUM spect PROG 131072 PROG 131072 CDCI3 131072 131072 CDCI3 11	===== CHANNEL f1 ======= 1 19F 19.30 usec 470.5453180 MHz 65536 470.5923770 MHz 0 0 1.00 1.00 1.00
TDDRESSONS CAPACITY C	PL1 PL1 CLB SSB CB CB CB CB CB CB CB CB CB CB CB CB CB

617.23--

bbm -180 -160 -140 -120 -100 -80 - 09 -40 -20 - 0

MNNLL 16 1H 80.00 Usec 2.00 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 125.7577890 MHz ZXJ-0-7 C13CPD CDC13 9.50 usec -0.50 dB 125.7703643 MHz 295.0 K 2.00000000 sec 0.03000000 sec 1.89999998 sec 16.650 usec 6.00 usec 30030.029 Hz 0.458222 Hz 1.0912410 sec ======= CHANNEL f1 ======== ====== CHANNEL f2 ======= ΗZ 1 20090109 13.48 3Pect spect 29P930 29P930 29P930 29P3030 29P330 20713 1024 0.00 0.00 1.40 XB20090109 55 11413C оц ഹ bpm NAME EXPNO PROCNO Date Time INSTRUM PROBHD PULPROG NUC1 Р1 РL1 SF01 0 20 4 09 80 28.911 100 120.89 S0 521 173 02 175 571 175 571 175 571 575 571 120 -125 66 -128.42 -132.30 -132.42 -132.42 -132.42 -132.30 -164.3 140 160 180 1g 200 Ъ.

ZXJ-1-373 19Fdeft CDCl3	JAME XB20091013 TRPNO 1 PROCNO 1 PROCNO 20091013 Time 11.39 WSTRUM spect PROBHD 5mm PATXO 19F PROBHD 71.02 SCLVENT 16 A 4 OD 0.05539 Hz OD 0.05539 Hz OD 0.00 Usec C 1.00 T 1.0000000 sec UC1 1.01 UC1 1.00 SFO1 470.5453180 MHz MD 0 B 0.00 Hz 0 0 0 0 0.00 Hz	
	ZMFDHFFFWZDWF4KDDHDH ∥ZFFWWW>WJ0F	_
		- <mark>1</mark> 180
		- <mark>1</mark> - 1
		– 140 – 140
-113.129 -113.109		-120
770.811- 880.811- 860.811-		- 100
		- 09
		- 40
	z ÷	-20
	ш́ >>>	- 0

mdd	- 0	5 –	- 4	- 99	- 8	- <mark>100</mark>	120	140	160	180	200
يعدوا والمراقعا والمراجعة والمعرد	والناكيب بالمراقعة والمراجع المراجع	للمصادلية أبأيا يالمانهم والمقادمة	معاطيا والمحاطية والمحاطية	Licks we have been by the	ti qati bi ^l ateri (tenta da <mark>a</mark> ti bilan da	وماندات المحالي المجالة إسابانا فالعاوفة	and the second secon	معنو والمراجع المحاطية والمحاطية والمحاطية والمحاطية والمحاطية والمحاطية والمحاطية والمحاطية والمحاطية والمحاط	ւլելեր երերություն։ Դերեների հետերերություն։	u in this piece the state of the	ներեներին ու եներին են եներություններություն
CHANNEL f2 ======= waltz16 1H 80.00 usec 2.00 dB 16.50 dB 16.50 dB 16.50 dB 32768 MHz 125.7577745 MHz EM 1.00 Hz 1.40	CPDPRG2 CPDPRG2 PCPD2 PL12 PL12 PL12 PL13 SF02 SF13 SF13 SF02 SF SF SF SF SF SF SF SF SF SF SF SF SF										
13C 9.50 usec -0.50 dB 125.7703643 MHz	NUCL P1 PL1 SF01										
CHANNET F1	+ 										
16.650 usec 6.00 usec 296.4 K 2.00000000 sec 0.03000000 sec 1.89999998 sec	DE DE D1 DELTA										É é
4 30030.029 Hz 0.458222 Hz 1.0912410 sec 143.7	DS SWH FIDRES AQ RG									ĺ	u
5 mm PATXO 19F 29P930 65536 CDC13 128	INSTRUM PROBHD PULPROG TD SOLVENT NS										
 20091013 15.45	PROCNO Date_ Time_							r r	~ <u></u>		
XB20091013	NAME					STT-		07130 07130 071- 0770 071-	LST Z9T E9T E9T	Ð9T-∕	
ZXJ-1-370 C13CPD CDC13						20°.	69 98 99 98	71. 52. ₽0.	£7. 7£. 2₽.	25.	

 HXH-4-33 PROTON CDCl3 PROTON CDCl3 EXPNO PROCNO
 HXH-4-33 PROTON CDCl3 6

 NAME
 XB20121112 6
 6

 EXPNO PROCNO
 20121112 10.28
 10.28

 INSTRUM PULPROG
 0.157632 Hz 65536
 161.3

 SWH
 10330.578 Hz 6500 Usec
 161.3

 DB
 3.1720407 sec
 161.3

 DD
 3.1720407 sec
 160.0

 DD
 10130000 sec
 161.3

 DD
 1.0000000 sec
 1

 PL1
 1.000000 sec
 1

 PL1
 13.772 Usec

 PL1
 13.376 MHz

 SF
 500.1300126 MHz

 WDW
 0.00 Hz

 SSB
 0.00 Hz

bpm

0

2

	0	5 0	- 4	- 09	- 8	- 100	120	140	160	- 180	200	
Ŧ	and a state of the contract of	ما به المحافظ المحافظ منابع المحافظ ال	العام العام العام المحمد ال والمحمد المحمد المحم والمحمد المحمد المحم	العاملين الدور معاولته والمعادر المعادر المعادر المعادر المعادر المعادر المعادر المعادر المعادر المعادر المعاد المعادر المعادر	en sele a la contra de la contra Este de la contra de	an full a calla (la profession) Personal pelana managera (la profession)	al da al contenente estadores planas de la contenente de la contenente estadores de la contenente de la contene Al contenente de la contene Al contenente de la contene	anta a su a	an an an a' an a' an a' an an an a' an	e se di sense e tra de la nue se se di la sur de la Se se de la sur de la	ين المراجع الم محمد المراجع الم	
ANNEL f2 ======= waltz16 1H 80.00 usec 1.00 dB 16.31 dB 16.31 dB 16.50 dB 16.50 dB 16.50 dB 15.7577890 MHz 125.7577890 MHz 125.7577890 MHz 125.7577890 MHz 125.7577890 MHz	CHI CPDPRG2 CPDPRG2 CPD2	п О Z Ф Ф Ф Ф 0 0 0 Z 0 Ч D Ф								:		
ANNEL fl ====== 13C 9.50 usec -0.50 dB 125.7703643 MHz	====== CHU TUC1 21 21 5F01	ш <u>х</u> ф ф Ю								=	-	
<pre>10.36 10.36 spect mm PATXO 19F</pre>	The INSTRUM SCLVENT SCLVENT SCLVENT SCLVENT SC SCLVENT SC SC SC SC SC SC SC SC SC SC SC SC SC	н н а а н о Z о о г 4 а о о н о о о н								z z	ō	
HXH-4-33 C13CPD CDCl; xB20121112 20121112 10.36 spect	AME IXPNO RXPNO PROCNO Ad te .1 me .NSTRUM	д № Ф О Ю н			_		55.51 ₽2.921 25.32 98.621 25.86	77.051 18.451 78.951	S£.721 — 26.721 —			

	0 bbm	20	40	- 09	80	100	120	140	160	180	200	
2.000 dB 2.000 dB 16.50 dB 16.50 dB 16.50 dB 32768 32768 125.7577783 MHz EM 1.25.7577783 MHz 1.00 Hz 1.40	PLCFU2 PLL12 SF0233 SF0333 SF0233 SF0233 SF0333 SF0	-										
CHANNEL f2 ======= waltz16 1H 80.00 usec	======= (CPDPRG2 NUC2 PCPD2											
CHANNEL fl ====== 13C 9.50 usec -0.50 dB 125.7703643 MHz	======= 0 NUC1 P1 PL1 SF01								_			
4 30030.029 Hz 0.458222 Hz 1.0912410 sec 203.2 16.650 usec 6.00 usec 294.8 K 2.0000000 sec 1.8999998 sec	DS SWH FIDRES AQ RG RG RG RG DM DE D1 d11 DELTA TD0										Ţ.	
XB20090104 25 25 25 20090104 13.42 spect spect 5 mm PATXO 19F 5536 65536 CDCl3 128	NAME EXPNO PROCNO Date Time Trime PULPROG FD SOLVENT NS					_			\rightarrow			
ZXJ-0-26 C13CPD CDC13						₽Q°₽TT_	-128.40 -128.40 -128.67 -128.67	<pre></pre>				

		20	40	- 09	80	100	120	140	- 160	
CHANNEL f2 ======= waltz16 11 80.00 usec 1.00 dB 16.31 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 125.7577742 MHz 125.7577742 MHz EM 125.7577742 MHz 125.7577742 MHz	CPDPRG2 CPDPRG2 NUC2 PLC2 PL12 PL12 PL12 PL13 SF02 SF13 SF13 SF13 SF SF13 SF SF13 SF SF SF SF SF SF SF SF SF SF SF SF SF	ـــــــــــــــــــــــــــــــــــــ			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					and the second secon
CHANNEL fl ======= 13C 9.50 usec -0.50 dB 125.7703643 MHz	====== NUC1 P1 PL1 SF01									
20121025 19.41 spect 5 mm PATXO 19F 29P930 65536 65536 65536 65536 65536 65536 65536 65536 65536 4 4 30030.029 Hz 1.0912410 sec 1.0912410 sec 297.6 K 2.0000000 sec 0.03000000 sec 1.8999998 sec	DALCENO TAINE TIME PROBHD PULDFROG TD SOLVENT NS SWH FIDRES AQ RG PS DS TE DI DELTA TD0 TD0 TD0 TD0 TD0 TD0 TD0 TD0 TD0 TD0									¥
WH-1-48 C13CPD CDC13 xb20121025	NAME EXPNO	80.21 ₽2.52					27.821 ₽0.821	29:081 98:481 89:781	89.251	

		NAME EXPNO PROCNO	XB20120927 4 1
		Date	20120927 11.31
		INSTRUN PROBHD	M spect 5 mm PATXO 19F
		TD SOLVENI SOLVENI	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		DN DN SWH FUDRFS	120 30030.029 Hz 0.458222 Hz
		AQ	1.0912410 sec
ť,		DW DE	16.650 useo 6.00 useo 297.1 K
		D1 d11 DELTA TD0	2.0000000 sec 0.03000000 sec 1.8999998 sec 1
		====== NUC1 P1 PL1 SF01	== CHANNEL fl ======= 13C 9.50 use 125.7703643 MHz
		==== CPDFRG2 NUC2 PUDD2	== CHANNEL f2 ======= 2 waltz16 80 00 use
		PL2 PL12 PL13	1.00 dB 16.31 dB 16.50 dB
		SFO2 ST SF	500.1320005 MHz 32768 125.7577746 MHz
			EM 1.00 Hz
ու որիցները։ Ու ուսը համանակությունը որոշորը մեր որուցեները։ Հայկերը	ید به از مراجع میشود. به از معامله در از اور از معامله معامله معامله مارد. معامله معامله	ներ 1.4.1.1.1.1.4444, դեմիկիդեն, ունեների երանդերի իկերությունը։ 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	1.40

0

DC13	HZ HZ Sec KK Sec MHZ MHZ HZ HZ	
XSG-FT PROTON C	XB20120223 7 7 20120223 17.42 spect 5 mm PATXO 19F 55336 65536 65536 65536 65536 65330 10330.578 3.1720407 3.1770407 3.1770407 48400 6.000 6.000 6.000 6.000 6.000 6.000 6.000 500.1330885 500.1330885 500.1330885 500.1330885 500.1330885 500.1330885 0.000	1.00
	NAME EXPNO PROCNO PROCNO Date INSTRUM PROBHD PULPROG TTD SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT TTD SSC TTD TD TD TD TD TD TD TD TD TD SSE SSB SSB SSB SSB SSB SSB SSB SSB SSB	PC

8.629

XSG-FT C C13CPD CDC13	<pre>xb20120224 5 5 5 10.29 10.29 10.29 10.29 10.29 20120224 10.29 5 mm PATX0 19F 5 mm PATX0 19F 65536 65536 65536 65536 65536 65536 128 30030.029 Hz 0.458222 Hz 1.0912410 sec 1.0912410 sec 6.00 usec 6.00 usec 1.89999998 sec 1.89999998 sec</pre>	== CHANNEL fl ======== 13C 9.50 usec -0.50 dB 125.7703643 MHz	<pre>== CHANNEL f2 ===================================</pre>	L
	NAME EXPNO EXPNO Date Time INSTRUN PULPROC PUL	====== NUC1 PL1 SF01	CPDPRGS CPDPRGS PCPD2 PL12 PL12 PL13 PL13 PL13 PL13 PL13 S102 S102 S102 S102 S12 CD2 CD2 CD2 CD2 CD2 CD2 CD2 CD2 CPDPRGS PL13 CPDPRGS CPDPRGS	- 0
				5 0
				- 40
				- 09
				80 -
₽0.2II				100
LO.QLT				120
TZ.OCT				140
756.821				160
				180
				200

PROCNO	XB20110402	
Time	20110402 16.49 16.49 spect	
PROBHD 5 PULPROG TD SOLVENT NS DS	mm PATXO 19F 2930 65536 65536 CDC13 22	
SWH FIDRES AQ RG	10330.578 0.157632 3.1720407 181	Hz Hz sec
DE DE DI DO DI	48.400 6.00 293.7 1.00000000 1	usec K sec
====== C NUC1 P1	HANNEL fl ==== 1H 15.60	nsec
PL1 SF01 SI	2.00 500.1330885 32768	dB MHz
NDW SSB DDB DDB DDB DDB DDB DDB DDB DDB DDB	6710051.006 00.0 00.0	ин z Н z

ppm

0

- ณ

0

0

ŀ

XSG-1-314 C13CPD CDC13	XB20120221 4 1 20120221 17.50 5 mm PATX0 19F SPECt 5 mm PATX0 19F 205536 CDC13 128 30030.029 Hz 0.458222 Hz 1.0912410 sec 16.00 usec 6.00 usec 6.00 usec 0.03000000 sec 1.8999998 sec	<pre>= CHANNEL f1 ======== 13C 9.50 usec -0.50 dB 125.7703643 MHz</pre>	<pre>cHANNEL f2 ======== waltz16 1H 80.00 usec 2.00 dB 16.77 dB 16.77 dB 16.77 dB 16.77 dB 16.77 dB 16.77 dB 16.77 dB 16.77 dB 10.00 Hz 0 0.00 Hz 1.40</pre>
	NAME EXPNO PROCNO Date_ Time INSTRUM PULPROG PULPROG PULPROG SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT DS SOLVENT SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT DS SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVE	======= NUC1 PL1 PL1 SF01	CPDPRG2 CPDPRG2 PL2 PL12 PL13 PL13 PL13 SF02 SF02 SF02 SSB CD8 CB CB CB CB CB CC CB CB
66°90T.			
25.221			
123.71 123.71 125.88 131.39	 		
LL'LST			
TT.821			
	dt		

mdd	5 – 5	- 4	- 09	- 8	100	120	140	- 1	- 180	500
CHANNEL f2 ====== waltz16 1H 80.00 usec 16.31 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 125.7577890 MHz EM 125.7577890 MHz 125.7577890 MHz 125.7577890 MHz 125.7577890 MHz	====== CPDPRG2 NUC2 PL12 PL12 PL13 SF02 SF SF02 SF SSB C1B SSB C1B CB FC PC									
CHANNEL fl ======= 13C 9.50 usec -0.50 dB 125.7703643 MHz	====== NUC1 PL1 SF01			_						
30030.029 Hz 0.458222 Hz 1.0912410 sec 16.650 usec 6.00 usec 296.8 K 2.0000000 sec 1.8999998 sec	SWH FIDRES AQ AQ AQ AQ AQ AQ AQ A1 DL DL TD0 TD0					-		OMe	3a N	
HXH-5-30-1 C13CPD CDC13 XB20130318 7 7 11.10 spect 5 mm PATXO 19F 5536 65536 65536 CDC13 11.10	NAME EXPNO PROCNO Date_ Time INSTRUM PULPROG TD SOLVENT NS SOLVENT DS					94.411 28.521 28.521 28.521 29.521 20	88.44I 88.44I 80.IEI 	ZE.82I ₽₽.82I >		
HXH-5-30-1 C13CPD CDC13			22.			4.4J 2.23 6.63	88.4 44.3	₽₽.8 2£.8		

HXH-5-30-3 19Fdeft CDCI3 D:\\ deng 13

HXH-3-F 19Fdeft CDCl3 D:\\ deng 21

C C C C C C C C C C C C C C C C C C C	usec db MHz Hz Hz
XB20130409 2 2 20130409 1 20130409 5 mm PATX0 19F 131072 131072 131072 131072 131072 6.000 0.6554150 0.6554150 0.6554150 0.6554150 1.0000000 1.00000001 1.00000001 0.765939 0.656133 1.00000001 1.000000001 0.765939 0.7655939 0.7655939 0.7655939 0.7559555 0.7559555 0.7559555 0.7559555 0.7559555 0.7559555 0.7559555 0.7559555 0.7559555 0.7559555 0.755955555 0.7559555555 0.75595555555555555555555555555555555555	CHANNEL f1 ==== 19F 19.30 4.00 4.00 4.00 4.00 5453180 6.5536 4.70.5923770 0 0 0 0 1.00
NAME EXPNO PROCNO Date Time FULFROG FULFROG FULFROG TD SOLVENT NS SWH FIDRES AQ RG RG PD N DI TE D1 D1 TD	BERNAL NUCI P1 PL1 SF01 SF01 SF0 SSB SSB SSB CB GB CB

-115.685 -112.682 -112.685 -112.635 -112.635

HXH-5-33-1 C13CPD CDC13	XB20130321 5 20130321 7.14 7.14 7.14 7.14 5 mm PATX0 19F 5536 5536 5536 5536 5536 5536 5536 553	CHANNEL fl ======== 13C 9.50 usec -0.50 dB 125.7703643 MHz	CHANNEL f2 ======= waltz16 1H 80.00 usec 1.00 dB 16.31 dB 16.50 dB 500.1320005 MHz 125.7577890 MHz n0 0 0 0.00 Hz 1.40	
	NAME EXPNO PROCNO Date Time INSTRUM PULPROG PULPROG PULPROG SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT DS SOLVENT SOLVENT DS SOLVENT S	======= NUC1 P1 PL1 SF01	CPDPRG2 CPDPRG2 PCPD2 PL12 PL13 PL13 PL13 SF02 SF13 SF02 SF02 SF02 SF02 SF02 SF02 SF02 SF02	udd - 0
				20
				- 4 0
				= 09
				100
120.91 125.99 128.821				120
129.19 131.45 136.21				140
160.44				160
		F		180
		M		500

H-PH-CL OTON CDCl3	20130409 7 20130409 13.40 spect ATX0 19F 25336 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 197 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	48.400 usec 6.00 usec 296.3 K 0000000 sec 1	L fl ======== 1H 13.72 usec 13.00 dB .130885 MHz 32768 .130000 MHz n0 0.00 1.00 1.00
HX PR	NAME XB EXPNO PROCNO Date Time INSTRUM PROBHD 5 mm P PULPROG SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT SOLVENT SOLVENT NS SOLVENT SOLVENT NS SOLVENT SOLVENT NS SOLVENT SOLVENT NS SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT NS SOLVENT S	DE DE D1 T10 T1.	====== CHANNE NUC1 P1 P1 F1 F1 SF01 ST SF01 ST S500 WDW WDW SSB SSB C0 SC SSB SSB SSB SSB SSB SSB SSB SSB SSB

mdd

0

	- 0	50	- 4	- 09	- 8	100	120	140	160	180	500
	n na statistica na statisti		n de la constante de							ndra se da se a	n a construction of the second se
HANNEL f2 ======= waltz16 1H 80.00 usec 1.00 dB 16.50 dB 16.50 dB 16.50 MHz 32768 125.7577890 MHz 125.7577890 MHz 1.00 Hz 1.00 Hz 1.40	====== C CPDPRG2 NUC2 PCPD2 PL12 PL13 PL13 SF122 SF113 SF13										
HANNEL fl ======= 13C 9.50 usec -0.50 dB 125.7703643 MHz	====== C NUC1 P1 PL1 SF01										
20130409 13.49 spect spect spect 529930 65536 65536 65536 65536 65536 128 30030.029 Hz 0.458222 Hz 1.0912410 sec 12.001000 sec 16.600 usec 16.600 usec 1.89999998 sec 1.89999998 sec	PROCINO Date Time INSTRUM PROBHD SOLVENT SOLVENT NS SOLVENT NS SWH SOLVENT NS SWH SOLVENT NS SOLVENT DS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT TD SOLVENT TD SOLVENT TD SOLVENT TD SOLVENT TD SOLVENT TD SOLVENT TD SOLVENT TD SOLVENT TD SOLVENT TD SOLVENT SOLVENT TD SOLVENT SOLVENT TD SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT TD SOLVENT TD SOLVENT SOLVENT TD SOLVENT SOLVENT TD SOLVENT TD SOLVENT TD SOLVENT TD SOLVENT SOLVENT TD SOLVENT TD SOLVENT SOLVENT TD SOLVENT SOLVENT TD SOLVENT SOLVENT SOLVENT TD SOLVENT SOLV							<u>_</u>	 		
HXH-PH-CL C13CPD CDC13 XB20130409	NAME						~122.23 ~128.85 ~128.92 ~129.26	~ ~	₽7.0∂1-		

HXH-5-67-2 C13CPD CDC15	XB20130408 15 20130408 12.34 12.34 12.34 spect 5 mm PATX0 19F 29Pg30 29Pg30 29F536 CDC13 128 30030.029 Hz	1.0912410 sec 1.0912410 sec 16.650 usec 6.00 usec 296.9 K 2.0000000 sec 1.89999998 sec 1.89999998 sec	CHANNEL f1 ======== 13C 9.50 usec -0.50 dB 125.7703643 MHz	CHANNEL f2 ======= waltz16 1H 80.00 usec 1.00 dB 16.31 dB 16.50 dB 500.1320005 MHz 125.7577890 MHz EM 125.7577890 MHz 125.7577890 MHz 1.00 Hz	
	NAME EXPNO PROCNO Date Time INSTRUM PROBHD PULPROG TD SOLVENT NS SOLVENT	AQ AQ RG DW DE D1 D11 DELTA TD0	======= NUC1 P1 PL1 SF01	EFREE CPDFRG2 NUC2 PLL2 PL12 PL13 FL13 SFO2 SFO2 SFO2 SFD3 SFO2 SFD3 SFD3 SFO2 SFD3 SFO2 SFD3 SFO2 SFD3 SFO2 SFD3 SFO2 SFD3 SFO3 SFO3 SFO3 SFO3 SFO3 SFO3 SFO3 SFO	udd
£7.72-					20
					- 60 40
55.18-					100 80
-119.13 -128.44 -132.43 -133.70 -133.12					140 120
∠ɛ.9st- 9t.99t- t∳.7ðt-		t t			0 160
		COOBU-			200 18

HXH-151-5 19Fdeft CDC13 D:\\ deng 49

						HZ	ΗZ	sec		usec	usec	Х	Sec			usec	dB	MHZ		ZHM		HZ		
XB20140414 14 1	20140414 11.07	5 mm PATXO 19F	131072	CDC13	16	100000.000	0.762939	0.6554150	322.5	000.9	6.00	295.9	1.00000000	CHANNEL, fl ====	19F	19.30	4.00	470.5453180	65536 170 F002270	4/0.5222.014	0	0.00	0	1.00
NAME EXPNO PROCNO	Date_ Time	INSTRUM PROBHD	PULPROG TD	SOLVENT	DS	SWH	FIDRES	AQ	RG	DW	DE	TE	D1 TD0		NUC1	Pl	PL1	SF01	SI	SF MDF4	SSB	LB	GB	PC

105.111-885.111-595.111-

HXH-151-5 C13CPD CDC13	XB20140414 27 27 27 20140415 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3	1.89999998 sec CHANNEL f1 ========= 1.3C 9.50 usec -0.50 dB 125.7703643 MHz	CHANNEL f2 ===================================	
	NAME EXPNO PROCNO Date_ Time FINTRUM PROBHD PULPROG TD SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT AQ PULPROG TD SOLVENT TD COLVENT COLVEN	DELTA TD0 NUC1 P1 PL1 SF01	CPDPRG2 CPDPRG2 NUC2 PCPD2 PL12 PL13 SF02 SF13 SF02 SF02 SF02 SF02 SF02 SF02 SF02 SF02	udd - 0
07.72-				20
				60 40
£2.28-				- 80
-110.25 -110.34 -110.52 -136.42	\geq			120
-132 00 -132.90 -120.42 -162.70 -164.84				160 140
98'†9T- SS'99T-	COOBU-COOBU-COOBU-COOBU-COOBU-	2e		200 180

HXM-5-133 C13CPD CDC13	XB20130523 21 21 21 20130523 17.15 spect spect spect 65536 cDC13 128 65536 cDC13 128 30030.029 Hz 0.458222 Hz 1.0912410 sec 6.00 usec 26.0 usec 216.650 usec 0.03000000 sec 0.03000000 sec 0.03000000 sec	1 CHANNEL fl ======= 13C 9.50 usec -0.50 dB 125.7703643 MHz	CHANNEL f2 ======= waltz16 1H 80.00 usec 1.00 dB 16.05 dB 16.05 dB 16.50 dB 16.50 dB 16.50 dB 15.7577890 MHz 125.7577890 MHz 0 0 0 0 0 0 0 0 0 0	mdd 0
	NAME EXPNO PROCNO Date_ Time_ Tustrum Probhd PULPROG TD SOLVENT NS SOLVENT NS SWH FIDRES AQ SWH FIDRES AQ DW DM D1 d11 D1 D1	TD0 ===== NUC1 PL1 PL1 SF01	==== CPDPRG2 PCPD2 PL12 PL13 PL13 SF02 SF113 SF02 ST SF02 SF SF SF SF SF SF SF SF SF SF SF SF SF	
69.	LZ			
				40
				60
τε.	82			- 08
				100
₽£.6	ττ			120
2.14 6.59 7.42				140
54.3	ST			
07.9	9T 9T			16(
	coobu-t N Coobu-t Sf			180
	Ū			200

HXH-151-2 19Fdeft CDC13 D:// deng 47

C13 D:// deng 47	XB20140414 10 10 20140414 10.52 Spect Spect Spect 10.52 10.52 10.762939 Hz 0.6554150 sec 5.000 usec 6.00 usec 6.00 usec 1.0000000 sec 1.000000 sec 1.000000 sec 1.00 dB 470.5923770 MHz 0.00 Hz 0.00 Hz 0.00 Hz
19Fdeft CD	NAME EXPNO PROCNO Date Time Time TNSTRUM PROBHD PULPROG TD SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT SS SS SS SS SS SS SS SS SS SS SS SS SS
698 · 29	
	F ₃ C COOBu-t COOBu-t 2g

mdd

-180

-160

-140

-120

-100

- 8 0

-60

-40

-20

- 0

HXH-151-2 C13CPD CDC13 C13CPD C	STRUM Spect OBHD 5 mm PATXO 19F LPROG zgpg30 65536 512 65536 4 4 4 4 30030.029 Hz 512 1.0912410 sec 6.00 usec 6.00 usec 6.00 usec 1.8999998 sec 0 1.8999998 sec	CC1 CHANNEL f1 ======== C1 13C 9.50 used 1 -0.50 dB 01 125.7703643 MHz	DPRG2 CHANNEL f2 ====== C2 waltz16 C2 80.00 use(2 1.00 dB 13 16.05 dB 13 500.1320005 MHz 0 32768 M 125.7577890 MHz B 1.00 Hz 0 0 0 0 0 0	
NAM NAM PROF	PROPERSION NO PR	PL1 SFC	CPD PLI PLI PLI PLI PLI PLI PLI PLI PLI PLI	40 20
82.58				80
25.021 25.021				140 120 100
20.134.78 20.241 20.251 20.251 20.251 20.27 20.24 20.27 20.27	F ₃ C CooBu-t N CooBu-t			200 180 160

HXH-155-3 19Fdeft CDC13 D:// deng 52

	Hz Hz sec	usec usec K sec	usec dB MHz HZ Hz
XB20140414 18 18 20140414 11.26 spect 5 mm PATXO 19F 131072 16 44	100000.000 0.762939 0.6554150 322.5	5.000 6.00 295.9 1.00000000	CHANNEL f1 ==== 19F 19F 19F 19F 470.5453180 65536 470.5923770 00 0
NAME EXPNO PROCNO Date_ INSTRUM PROBHD PULPROG TD SOLVENT NS	SWH FIDRES AQ RG	DW DE TE TD0	NUC1 PL1 PL1 PL1 SF01 SF SSB SSB CGB PC

429	011-~
6TÞ.	011
41S	011
005.	0TT

	udd 0		 09		100	120	140	160	180	200
CHANNEL f2 ======== waltz16 11 80.00 usec 1.00 dB 16.05 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 125.7577890 MHz 125.7577890 MHz EM 125.7577890 MHz 125.7577890 MHz EM	CPDPRG2 CPDPRG2 PLC2 PL12 PL13 PL13 SF02 SF SF02 SF SF SF C SF C SF C SF C SF C SF C SF									
CHANNEL f1 13C 9.50 usec -0.50 dB 125.7703643 MHz	NUC1 P1 P11 SF01									
20140416 11.27 spect spect 5 mm PATXO 19F csppg30 65536 65536 65536 65536 128 128 30030.029 Hz 0.45822 Hz 1.0912410 sec 1.0912410 sec 6.00 usec 6.00 usec 297.2 K 2.0000000 sec 0.03000000 sec 1.89999998 sec	Date_ Time INSTRUM PULPROG TD SOLVENT NS SWH FIDRES AQ RG DS SWH FIDRES DS DS DI d11 DELTA TD0 TD0	<u></u>							OOBu-t	S C
HXH-156-1 C13CPD CDC13 xB20140416 12 1	NAME EXP NO PROCNO	₽8·72		69'I8		1130.05	99.221 99.221 05.921 7136.74	− 120.93 51.74 10.24		

CHANNEL fl ======= 13C 9.50 usec -0.50 dB 125.7703643 MHZ maltz16 14 80.00 usec 1.00 dB 16.05 dB 16.00 HZ 60 11.00 HZ 125.7577890 MHZ EM	0
===== NUC1 PL1 PL1 SF01 SF01 ====== CPDPRG2 NUC2 PL12 PL13 PL13 PL13 SF02 SF13 SF13 SF13 SF02 SF02 SF02 SF02 SF02 SF02 SF02 PL13 PL13 PL13 PL13 PL22 PL13 PL13 PL22 PL22 PL22 PL23 PL23 PL3 PL3 PL3 PL3 PL3 PL3 PL3 PL3 PL3 PL	50
	4.0
	- 09
	100
	120
	140
	160
	180
	200
	E====== CHANNEL f1 ======= CHANNEL f1 ===================================

1.00 Hz 1.40	C C C C C C C C C C C C C C C C C C C	3 0 -	- 4	- 8	- 8	- 100	- 12	140		- 180	5 00 -
<pre>= CHANNEL f2 ======= waltz16</pre>	====== CPDPRG2 PCPD2 PL2 PL12 PL13 SF02 SF02 SF02 SF										
<pre>= CHANNEL f1 ======== 13C 9.50 usec -0.50 dB 125.7703643 MHz</pre>	======= NUC1 P1 PL1 SF01										
0.03000000 sec 1.89999998 sec 1	d11 DELTA TD0										2m
30030.023 Hz 0.458222 Hz 1.0912410 sec 322.5 16.650 usec 6.00 usec 297.4 K	SUH FIDRES AQ AQ DW DE TE TC									t-III	
s mm PATXO 19F zgpg30 65536 CDC13 128	INSTRUM PROBHD PULPROG TD SOLVENT NS										
XB20130409 10 20130409 14 03	NAME EXPNO PROCNO Date Time						$\overline{\langle}$				
HXH-5-72-2 C13CPD CDCl3		65.72			95.18		26.721 124.26 40.121	28.121 84.251 84.251 62.651 62.651	96.991 79.821		

HXH-5-72-3 C13CPD CDC13	XB20130410 22 1 20130410 20.59 5 mm PATX0 19F 5 mm PATX0 19F	295536 65536 65536 512 512 30030.029 Hz 0.458222 Hz 0.458222 Hz	16.650 usec 6.00 usec 6.00 usec 2.0000000 sec 0.03000000 sec 1.89999998 sec	1 = CHANNEL fl ======= 13C 9.50 usec -0.50 dB 125.7703643 MHz	<pre>= CHANNEL f2 ===================================</pre>	125.7577890 MHz 125.7577890 MHz EM 1.00 Hz 1.40	udd
	NAME EXPNO PROCNO Date_ INSTRUM PROBHD	TD TD SOLVENT NS SWH FIDRES	RG DW DE D1 DELTA	TD0 ===== NUC1 P1 PL1 SF01	===== CPDPRG2 NUC2 PCPD2 PL13 PL13 PL13	S S F C Z S S F C Z S S F C Z S S F C Z S S B M D M D M D M D M D M D M D M D M D M	0 - 0
69.72							- 40
							- 09
I₽.28							80
S₽.∂0I							100
128.59 132.03 132.31							120
69.281 70.781 71.041							140
25.23I							160
		COOBu-f	COOBu-t	i			0 180
				-			20

140
200 180 180

S125

HXM-5-138 C13CPD CDC13 XB20130527 31 20130527 17.22 spect spect spect spect cpc13 128	4 30030.029 Hz 0.458222 Hz 1.0912410 sec 456.1 usec 6.00 usec 296.8 K 2.0000000 sec 1.8999998 sec	CHANNEL fl ======= 13C 9.50 usec -0.50 dB 125.7703643 MHz	CHANNEL f2 ======= waltz16 1H 80.00 usec 1.00 dB 16.05 dB 16.05 dB 16.05 dB 16.05 dB 16.05 dB 16.00 Mz 32768 125.7577890 MHz EM 0 1.00 Hz 0 1.40	mdd 0
27.89 NAME EXPNO PROCNO Pate_ INSTRUM PULLPROG TD SOLVENT NS	DS SWH FIDRES AQ AQ DE DT D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1	======= (NUC1 PL1 PL1 SF01	EEEEEEEEC CPDPRG2 PL12 PL12 PL13 PL13 PL13 SF02 ST SF02 SF02 SF02 SF02 SF02 SF02 SF02 SF02	20
				4 0
				80
SE'6IL				100
125.88 125.88 125.66 125.68 125.68 125.06				120
T0.921 40.921				140
26.921				- 9
57.991 29.767 29.767				
	N N OBu-t			180
	2 S			200
				ŧ

	- C	- 50	- 40	- 09	- 80	- 100	120	140	160	- 180	- 500
	الم التي يوني الم التي التي التي التي التي التي التي التي		a standard a		antipation of the second se	د است. ۱۹۹۰ میلید را میلید است. ۱۹۹۰ میلید را بر برای میلید میلید با میلید ۱۹۹۰ میلید را بر برای میلید میلید میلید میلید.	مريد مريد ويريد ويريد ويريد ويريد وير	المحالية المحالية ومنا أجرابها لمحالية المحالية المحالية المحالية والمحالية ومنا أجرابها المحالية ومحالية والم المحالية المحالية ومحالية ومحال	الم	ante de la filo de la construcción de la co	
CHANNEL f2 ======= waltz16 1H 80.00 usec 1.00 dB 16.31 dB 16.31 dB 16.50 dB 16.50 dB 16.50 dB 16.50 dB 115.7577890 MHz EM 125.7577890 MHz EM 0 0 0 0.20	EFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF										
CHANNEL fl ======= 13C 9.50 usec -0.50 dB 125.7703643 MHz	====== NUC1 PL1 PL1 SF01										
20130410 20.26 Spect Spect Spect 5536 65536 65536 65536 65536 65536 65536 65536 4 4 30030.029 Hz 1.0912410 sec 1.0912410 sec 1.0912410 sec 6.00 usec 6.00 usec 1.8999998 sec 1.8999998 sec	Date Time FNOBHD PROBHD PULPROG TD SOLVENT NS SOLVENT NS SWH SWH SWH SWH SWH SWH SWH SWH SOLVENT DS DS DD DELTA TD0 D1 DELTA TD0 TD0 D1 DELTA									Bu-t	2r COO
HXH-5-72-1 C13CPD CDC13 XB20130410	NAME EXPNO	65.72 <i>~</i> - 84.02 <i>~</i>			- 65'I8	6T.601 08.611	1725.18 9.125.62 1750.55 130.28	22.021 82.121 29.121 20.121 20.121 20.121 45.521	₽S.231 		

HXH-5-32-1 C13CPD DMSC	xb20130322 24	0 20130322 3M 21.09 3D 5 mm PATX0 19F 3G 65536 4T 512 512	30030.029 Hz 30030.029 Hz 0.458222 Hz 1.0912410 sec 287.4 16.650 usec	6.00 usec 297.3 K 2.0000000 sec 0.03000000 sec 1.8999998 sec 1	=== CHANNEL f1 ======== 13C 9.50 usec -0.50 dB 125.7703643 MHz	=== CHANNEL f2 ===================================	125.7577890 MHz EM 1.00 Hz 1.40 1.40	
	NAME EXPNO	Date Date INSTRI PROBHI PULPR(TD SOLVEI NS	DS SWH FIDRES AQ RG DW	DE TE D1 d11 DELTA TD0	====== NUC1 PL1 PL1 SF01	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	SF WDW SSB GGB PC	mdd
TT . 0	7							50 -
	0							- 40
٤۲ . 3	S							- 09
42.25	8 ——							80
								100
48.92 28.22 28.41	τ τ τ							120
44.24 72.92 72.52 72.52								140
TT'85 TS'85 98'99	τ τ τ —							160
			Bu-t	Bu-t			-	180
			COO	4 O				500
								F

HXH-36-1 C13CPD CDC13	XB20130323 6 6 1 20130323 23.41 23.41 23.41 23.41 23.66 236 65536 65536 65536 CDC13 512	0.458222 Hz 1.0912410 Sec 16.650 Usec 6.00 Usec 6.00 Usec 0.0300000 Sec 1.8999998 Sec	CHANNEL fl ======== 13C 9.50 usec -0.50 dB 125.7703643 MHz	CHANNEL f2 ===================================	EM 1.00 Hz 0 1.40	udd
	NAME EXPNO PROCNO Date_ Time FNOBHD PULPROG TD SOLVENT NS	FIDRES AQ DW DB DE TE d11 DELTA TD0	======= NUC1 P1 PL1 SF01	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	N UN C B B C C P C	- 0
01.85 28.10	>					- 5
67.22	>					- 09
82.28						- 8
						- 100
1129.70 22.92 22.92						- 120
99.3E1		a				- 140
75.931 52.931 72.931				_		- 160
		COOBU- COOBU-	4c			- 180
		MeO				200

HXH-5-32-2 19Fdeft CDCl3 D:\\ deng 25

HHZ Rec sec K K Sec Sec	:==== dB MHz HZ Hz
xb20130322 15 15 20130322 13.132 13.132 5 mm PATXO 19F 5 pect 13.1072 13.1072 13.1072 0.762939 0.7629339 0.762939 0.76200000000000000000000000000000000000	CHANNEL f1 ==== 19F 19.30 19.30 470.5453180 470.5923770 n0 0.00 0.00 1.00
NAME EXPNO PROCNO Date_ Time_ INSTRUM PULPROG TD SOLVENT NS SOLVENT AQ SWH FIDRES SWH FIDRES AQ DM D1 TE TE TD	====== NUC1 P1 P1 SF01 SF SF SF SSB SSB SSB SSB SSB SSB SSB SS

bpm

-180

-160

-140

-120

-100

- 08 |

-60

-40

- 2 0

- 0

TS6.011--

HXM-5-112 C13CPD CDC13	XB20130419 17 20130419 14.54 14.54 Speact Speact 5 mm PATX0 19F 5 536 CDC13 128 128 128 30030.029 Hz 0.458222 Hz 1.0912410 sec 6.00 usec 6.00 usec 6.00 usec 1.89999998 sec 1.89999998 sec	<pre>= CHANNEL f1 ======= 13C 9.50 usec -0.50 dB 125.7703643 MHz</pre>	<pre>= CHANNEL f2 ===================================</pre>	ud
	NAME EXPNO EXPNO Date Time Trime PULPROG PULPROG PULPROG TD SOLVENT SOLVENT SOLVENT PULPROG PU SOLVENT PID PRO PID DM DE D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1	======================================	E=== CPDPRG2 NUC2 PLD2 PL12 PL13 PL13 SF02 SF02 SF02 SF02 SF02 SF02 SF02 SF02	- 0
28.23 28.23				5 –
C₽•CC.				- 40
				- 09
82.33 82.33	>			- 8
02 . ₽11				- 100
122.43 130.65 131.21				120
22 981 92.981 99.681 99.441				140
22 891 92.891 79.991 08.791	OMe			- 160
	ooBu-t DoBu-t	14		- 180
	ă j ă			200

bpm

HXH-3-F 19Fdeft CDCl3 D:\\ deng 47

1 20130417 11.03 spect 5 mm PATXO 19F

XB20130417

zg 131072 CDC13

ω

977.	60T-	

XB20130408 23 23 20130409 11.11	spect 5 mm PATXO 19F 29pg30 65536 CDC13 512	4 30030.029 Hz 0.458222 Hz 1.0912410 sec 16 650 used	2.0000000 sec 0.03000000 sec 1.89999998 sec	CHANNEL fl ======= 13C 9.50 usec -0.50 dB 125.7703643 MHz	CHANNEL f2 ====== waltz16 1H 80.00 usec 1.00 dB 16.31 dB 16.31 dB 16.50 dB 500.1320005 MHz 32768	125.7577890 MHz EM 0 1.00 Hz 1.40 1.40	udd
NAME EXPNO PROCNO Date Time	INSTRUM PROBHD PULPROG TD SOLVENT NS	DS SWH FIDRES AQ RG	DE TE D1 d11 DELTA TD0	======================================	====== CPDPRG2 NUC2 PCPD2 PL12 PL12 PL13 SFO2 SI SI SI	SF WDW SSB GB PC	- 0
							0 20
is ——							60 4
28							8
							100
							120
							140
			OMe				160
9		cooBu-f	COOBu-t	4g			180
		U,	Ű,				200
	LILILI 888 50 22 LILILI 888 50 22 EXPNO 23 PROCNO 21 PROCNO 21 PAME XB20130408 1 PAME XB20130408 1 Pate 20130409 11.111	A TATATATATATATATATATATATATATATATATATAT	CODbut	Find the second	$\mathbf{F}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} = $	$\mathbf{F}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} = $	And

○ NAME XB20130424	EXPNO 2 PROCNO 1 Date 20130424 Time 11.13 INSTRUM 5 mm PATXO 19F PULPROG 65536 SOLVENT 0.45536 SOLVENT 128 NS 128 SOLVENT 128 NS 128 SOLVENT 0.458222 HZ PULPRES 0.458222 HZ PULPRES 0.458222 HZ PULPRES 1.0912410 Sec	RG 203.2 DW 16.650 usec DE 6.00 usec TE 296.7 K D1 2.0000000 sec d11 0.03000000 sec DELTA 1.89999998 sec TD0 1	====== CHANNEL f1 ======= NUC1 13C P1 9.50 usec PL1 -0.50 dB SFO1 125.7703643 MHz	====== CHANNEL f2 ======= CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 usec PL12 1.00 dB PL12 16.50 dB PL13 16.50 dB PL13 500.1320005 MHz SF02 500.1320005 MHz SF 125.7577890 MHz MDW SSB SSB 1.00 Hz GB 1.40	20 bpm
					- 40
					- 09
2.28-					80
					100
-1771 -1772 -178					130
-153° -135° 5°851-/ 5°851-/					140
9'TST-					-
S'T9T— 0'99T—		\sim			1 0 – 1
	COOBu-ť	COOBu-t			- 180
					200

HXH-5-64-2 C13CPD CDC13	XB20130408 21 21 20130409 8.18 8.18 8.18 8.18 8.18 512 512 512 512 512 0.458236 512 1.0912410 sec 6.500 usec 6.00 usec 0.0300000 sec 1.8999998 sec 1.8999998 sec	CHANNEL f1 ======== 13C 9.50 usec -0.50 dB 125.7703643 MHz	CHANNEL f2 ======= waltz16 1H 80.00 usec 1.00 dB 16.31 dB 16.50 dB 16.50 dB 32768 MHz 125.7577890 MHz EM 125.7577890 MHz 125.1577890 MHz 125.7577890 MHz 1.00 Hz	
	NAME EXPNO PROCNO Date Time INSTRUM PULPROG PULPROG PULPROG PULPROG PULPROG TD SSULVENT NS SULVENT NS SWH FIDRES AQ FIDRES AQ C FIDRES AQ C C TD C C TD C C TD C C TD C C TD C TD C TD C TD C C TD C TD C TD C TD C TD C TD C TD C TD C TD C TD C TD C TD C C TD C C C C	======================================	E===== CPDPRG2 PCPD2 PL12 PL13 PL13 PL13 PL13 PL13 PL13 PL13 PL13	_ udd
11 . 82-				50 –
				- 4
				- 09
-85,29				80
72.221-			_	20 - 10
-138 80 -158 73 -133 80 -133 80 -138 10 -138 10 -138 10 -138 10 -120 35				140
- 162.256 - 165.92	C			- 160
	cooBu-t CooBu-t 4j			200 180
			1	

S154

HXH-37 C13CPD CDC13	XB20130323 7 7 20130324 0.13 20130324 0.13 0.13 512 512 512 65536 65536 65536 65536 65536 600 usec 6.00 usec 6.00 usec 1.8999998 sec 1.8999998 sec	HANNEL fl ======= 13C 9.50 usec -0.50 dB 125.7703643 MHz	HANNEL f2 ======= waltz16 1H 80.00 usec 1.00 dB 16.31 dB 16.50 dB 16.50 dB 32768 MHz 125.7577890 MHz EM 1.25.7577890 MHz 1.40 1.40	
	NAME EXPNO EXPNO PROCNO Date_ Time INSTRUM PULPROG TD PULPROG TD SOLVENT NS SWH FIDRES AQ SWH FIDRES AQ DS CLVENT DS DS DS DS TE D1 D1 DELTA TD0 TD0 TE TD0 TD0 TE TD0 TD0 TD0 TD0 TD0 TD0 TD0 TD0 TD0 TD0	====== C NUC1 P1 PL1 SF01	CPDPRG2 CPDPRG2 NUC2 PCPD2 PL12 PL13 PL13 PL13 SI SI SI SSB CD2 SSB CD2 SSB CD2 SSB CD2 SSB CD2 SSB CD2 SSB CD2 SSB CD2 SSB	
01.82				20
				40
				- 09
83.58				- 8
££.76				100
85.821 128.34 69.721				120
27.25.09 27.72 24.551				- 140
764.23	, O			
	° (P			- 180
	<i>t</i> -BuOOC			200

HXH C13CPD CDC13	XB20131010 1 20131010 9.24 9.24 9.24 9.24 9.24 9.24 1.20131010 65536 65536 65536 0.458222 Hz 1.0912410 sec 128 16.00 usec 6.00 usec 1.89999998 sec 1.89999998 sec	CHANNEL f1 ======== 13C 9.50 usec -0.50 dB 125.7703643 MHz	CHANNEL f2 ======= waltz16 11 80.00 usec 1.00 dB 16.05 dB 16.05 dB 16.05 dB 16.05 dB 16.50 dB 125.7577890 MHz 125.7577890 MHz EM 125.7577890 MHz 1.00 Hz	
	NAME EXFNO PROCNO Date Time TNSTRUM PROBHD PULPROG SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS PULPROG SOLVENT NS PULPROG DI CI DI d11 DE DI d11 DELTA	REAL STORES	CFDFRG2 CFDFRG2 NUC2 PL12 PL12 PL13 FL13 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2 SFO2	udd 0
- 18.84 - 22.90 - 30.84				
- 22 • 28				
-85'21 -85'28 -85'32 -86'32 -100'48				
-103.11 -173.40 -123.40 -123.20				120
₽Т'021- 8T'621- 90'9₽T- ₽₽'8₽T-				
₽8 . 8∂1-				160
02.171-			and the second se	180
18.881-		ω	भू से बेरा के का का से	илр таки премена пре
				· [