Visible light-Induced Intermolecular Addition Reactions

between Alkyl-Bromocarboxylates and Enamines

Bei Hu,^{*a*} Haixia Chen,^{*b*} Yan Liu,^{*b*} Wuheng Dong,^{*a*} Kai Ren,^{*a*} Xiaomin Xie,^{*a*} Hao Xu^{*b*} and Zhaoguo Zhang^{*a}

 ^aSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
^bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, China. zhaoguo@sjtu.edu.cn

Contents

1. General Information	
2. Preparation of substrate	
3. A general procedure for Ru(bpy) ₃ Cl ₂ -catalyzed reaction between enan	nines and alkyl
bromocarboxylates under visible light	S4
4. The control experiment of the reaction conducted in the different temp	erature without
visible light and the experiment of turn on and off the light	S4
5. Spectral data for substrates and products	S5
6. Reference	S14
7. The NOE experiment of N-(1-phenylprop-1-en-1-yl)piperidine (11)	
8. NMR spectra of the products	S16

1. General Information

Unless otherwise noted, all reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques. Materials were purchased from commercial suppliers and used without further purification. Anhydrous DMF, CH₃CN, DMSO, DCM were freshly distilled from calcium hydride, Anhydrous PhMe was freshly distilled from Sodium. ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz spectrometer. The chemical shifts for ¹H NMR were recorded in ppm downfield from tetramethylsilane (TMS) with the solvent resonance as the internal standard. The chemical shifts for ¹³C NMR were recorded in ppm downfield using the central peak of deuterochloroform (77.00 ppm) as the internal standard. Coupling constants (*J*) are reported in Hz and refer to apparent peak multiplications. Analytical GC was performed on an Agilent 7890A with FID detector. HRMS were performed under ESI ionization technique on a Waters Micromass Q-TOF Premier Mass Spectrometer. Flash column chromatography was performed on silica gel (300-400 mesh).

2. Preparation of substrates

2.1 Representative procedure for the preparation of enamines. (1a-11)¹

To a solution of acetophenone (10.0 g, 86.0 mmol) and piperidine (42.5 g, 516.0 mmol) in anhydrous hexane (200 mL), was added TiCl₄ (17.8 g, 86.0 mmol) over 30 min at 0 °C. The reaction mixture was stirred at room temperature for 24 h and filtered. The filtrate was evaporated under vacuum to give colorless oil, which was distilled under reduced pressure (1 mmHg, 99 °C) to give N-(1-styryl)piperidine (**1b**) as a pale yellow liquid (12.0 g, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.45 (m, 2H), 7.33–7.28 (m, 3H), 4.24 (s, 1H), 4.15 (s, 1H), 2.82–2.79 (m, 4H), 1.62–1.53 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 140.3, 128.0, 127.7, 127.7, 90.1, 50.5, 26.0, 24.5.

2.2 A General procedure for the preparation of cinnamyl 2-bromopropanoate.⁷

To a mixture of 5.9 g (80.0 mmol) of propionic acid and 4.3 g (16.0 mmol) of tribromophosphine in a 50 ml three-necked flask, bromine (25.6 g, 160.1 mmol) was added dropwise at 80 $^{\circ}$ C over 30 min. After the addition is complete, the solution was heated over a

period of 3 hours. The excess bromine and hydrogen bromide are removed under reduced pressure. To a solution of 4.0 g (30.0 mmol) of cinnamyl alcohol, 0.4 g (3.0 mmol) of DMAP and 4.8 g (60.0 mmol) of pyridine in 30 mL DCM was cooled at 0 °C. The α -bromopropanoyl bromide was added dropwise slowly at such a rate to maintain the internal temperature blow 20 °C for 30 min. After completion, the reaction was quenched with H₂O (30 mL) and extracted with DCM (3×30 mL). The combined organic extracts were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by silica-gel column chromatography to give cinnamyl 2-bromopropanoate as pale yellow oil (5.7 g, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.24 (m, 5H), 6.71 (d, *J* = 16.0 Hz, 1H), 6.29 (dt, *J* = 15.6, 6.4 Hz, 1H), 4.83 (dd, *J* = 6.0, 0.8 Hz, 2H), 4.42 (q, *J* = 6.8 Hz, 1H), 1.86 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 135.9, 134.8, 128.5, 128.1, 126.6, 122.1, 66.3, 40.0, 21.6.

2.3 A General procedure for the preparation of allyl 2-bromo-2-phenylacetate.⁷

To a mixture of 17.7 g (130.0 mmol) of phenylacetic acid and 7.0 g (26.0 mmol) of tribromophosphine in a 100 mL three-necked flask, the bromine (41.6 g, 260.0 mmol) was added dropwise at 100 °C over 30 min. After the addition is complete, the solution was heated over a period of 4 hours. The excess bromine and hydrogen bromide are removed under reduced pressure. To a solution of 7.6 g (130.0 mmol) of allyl alcohol and 13.8 g (136.5 mmol) of Et₃N in 30 mL DCM was cooled at 0 °C. The solution of 2-bromo-2-phenylacetyl bromide in 20 mL was added dropwise slowly at such a rate to maintain the internal temperature blow 20 °C for 30 min. After 1h, the reaction was quenched with H₂O (50 mL) and extracted with DCM (3×50 mL). The combined organic extracts were dried over Na₂SO₄ and the solvent was removed under reduced pressure to give colorless oil, which was distilled under reduced pressure (2 mmHg, 100 °C) to give allyl 2-bromo-2-phenylacetate as a colorless oil (17.5 g, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.53 (m, 2H), 7.38–7.34 (m, 3H), 5.95–5.85 (m, 1H), 5.38 (s, 1H), 5.32 (dq, *J* = 17.2, 1.6 Hz, 1H), 5.25 (dq, *J* = 10.4, 1.2 Hz, 1H), 4.69–4.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 135.6, 131.0, 129.2, 128.7, 128.6, 118.9, 66.7, 46.5.

3. A general procedure for Ru(bpy)₃Cl₂-catalyzed reaction between enamines and alkyl

bromocarboxylates under visible light

A dried Schlenk tube equipped with a stirrer bar which was evacuated and backfilled with nitrogen was added alkyl bromocarboxylate (1.0 mmol, 181.0 mg), K_2CO_3 (0.5 mmol, 69 mg), $Ru(bpy)_3Cl_2$ (0.01 mmol, 7.48 mg), Et_3N (0.2 mmol, 20.4 mg), 4-methoxypyridine (0.2 mmol, 218.2 mg) and enamine (0.5 mmol). Then 2 mL of DMF was added into the reaction tube via a syringe. The reaction mixture was degassed by the freeze-pump-thaw method and then irradiated with a 23W fluorescent household light bulb (distance app. 5 cm) for 24 h. After the completion of the reaction, it was quenched by water and extracted with ethyl acetate (3 x 15 mL). The organic layers were combined and the pure product was obtained by flash column chromatography on silica gel.

4. The control experiment of the reaction conducted in the different temperature in the

dark.^a

5. Spectral data for substrates and products

5.1. Spectral data for substrates

N-(1-phenylvinyl)morpholine¹

Pale yellow liquid, 86% yield (1 mmHg, 120 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.45 (m, 2H), 7.33–7.31(m, 3H), 4.33 (s, 1H), 4.19 (s, 1H), 3.78–3.76 (m, 4H), 2.84–2.82 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 139.0, 128.1, 128.0, 127.7, 91.0, 66.8, 49.7.

N-(1-phenylvinyl)piperidine²

Pale yellow liquid, 82% yield (1 mmHg, 99 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.45 (m, 2H), 7.33–7.28 (m, 3H), 4.24 (s, 1H), 4.15 (s, 1H), 2.82–2.79 (m, 4H), 1.62–1.53 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 140.3, 128.0, 127.7, 127.7, 90.1, 50.5, 26.0, 24.5.

N-(1-phenylvinyl)pyrrolidine³

Pale yellow liquid, 88% yield (1 mmHg, 96 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.41 (m, 2H), 7.36–7.31 (m, 3H), 3.89 (s, 1H), 3.85 (s, 1H), 3.04–3.00 (m, 4H), 1.91–1.88 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 140.5, 127.7, 127.7, 127.4, 84.2, 49.1, 24.9.

N,N-diethyl-1-phenylethenamine

Pale yellow liquid, 85% yield (1 mmHg, 60–61 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.41 (m, 2H), 7.33–7.28 (m, 3H), 4.15 (s, 1H), 4.06 (s, 1H), 2.99 (q, *J* = 7.2 Hz, 4H), 1.03 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 141.0, 128.5, 128.2, 127.9, 127.9, 127.6, 90.1, 43.1, 11.6.

N-(1-(p-tolyl)vinyl)piperidine⁵

Pale yellow liquid, 79% yield (0.1 mmHg, 78 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.34 (m, 2H), 7.14–7.12 (m, 2H), 4.21 (s, 1H), 4.10 (s, 1H), 2.81–2.78 (m, 4H), 2.35 (s, 3H), 1.64–1.58 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 137.5, 137.4, 128.7, 127.6, 89.5, 50.5,6.0, 24.5, 21.1.

N-(1-(4-fluorophenyl)vinyl)piperidine

Pale yellow liquid, 83% yield (1 mmHg, 125 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.40 (m, 2H), 7.03–6.97 (m, 2H), 4.20 (s, 1H), 4.13 (s, 1H), 2.76–2.79 (m, 4H), 1.64–1.52 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 161.3, 157.0, 136.2, 129.2, 129.1, 114.9, 114.7, 90.3,

50.5, 26.0, 24.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.23. HRMS-ESI (m/z): Calculated for C₁₃H₁₆FN (M + H)⁺: 206.1345, Found: 206.1330.

N-(1-(4-chlorophenyl)vinyl)piperidine⁵

Pale yellow liquid, 75% yield (0.06 mmHg, 80–83 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.40 (m, 2H), 7.32–7.28 (m, 2H), 4.25 (s, 1H), 4.17 (s, 1H), 2.81–2.78 (m, 4H), 1.66–1.57 (m, 6H). ¹³C NMR (100 MHz, CDCl3) δ 156.9, 138.8, 133.4, 128.9, 128.2, 90.8, 50.5, 25.9, 24.4.

N-(1-(4-(trifluoromethyl)phenyl)vinyl)piperidine

Pale yellow liquid, 79% yield (1 mmHg, 128 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 4H), 4.30 (s, 1H), 4.23 (s, 1H), 2.79–2.77 (m, *J* = 5.6 Hz, 4H), 1.65–1.52 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 144.0, 130.1, 130.0, 129.7, 129.6, 129.4, 129.3, 127.9, 125.59, 125.0, 122.8, 91.9, 50.5, 25.9, 24.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.86. HRMS-ESI (m/z): Calculated for C₁₄H₁₆F₃N (M + H)⁺: 256.1313, Found: 256.1301.

N-(1-(4-methoxyphenyl)vinyl)piperidine⁵

Pale yellow liquid, 72% yield (0.1 mmHg, 92–94 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.26 (m, 2H), 6.87–6.83 (m, 2H), 4.18 (s, 1H), 4.08 (s, 1H), 3.81 (s, 3H), 2.81–2.78 (m, 4H), 1.63–1.54 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 157.6, 132.7, 128.7, 113.36, 89.0, 77.3, 77.0, 76.7, 55.2, 50.5, 26.0, 24.6.

N-(1-(o-tolyl)vinyl)piperidine

Pale yellow liquid, 83% yield (1 mmHg, 125 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.11 (m, 4H), 4.13 (s, 1H), 3.83 (s, 1H), 2.79–2.77 (m, 4H), 2.35 (s, 3H), 1.56–1.52 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 140.2, 136.4, 129.8, 129.6, 127.3, 125.2, 87.6, 48.8, 25.8, 24.5, 19.8. HRMS-ESI (m/z): Calculated for C₁₄H₁₉N (M + H)⁺: 202.1596, Found: 202.1656.

N-(1-phenylprop-1-en-1-yl)piperidine⁶

Pale yellow liquid, 80% yield (1 mmHg, 95–97 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.33 (m, 3H), 7.29–7.26 (m, 2H), 4.67 (q, *J* = 6.8 Hz, 1H), 2.68–2.66 (m, 4H), 1.59–1.49 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 138.6, 129.7, 127.8, 127.1, 99.1, 50.6, 26.2, 24.6, 13.9. HRMS-ESI (m/z): Calculated for C₁₄H₁₉N (M + H)⁺: 202.1596, Found: 202.1664. **N-(3,4-dihydronaphthalen-1-yl)piperidine**⁶

Pale yellow liquid, 70% yield (0.7 mmHg, 120–125 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 7.2 Hz, 1H), 7.22–7.17 (m, 1H), 7.14–7.12 (m, 2H), 5.24 (t, *J* = 4.8 Hz, 1H), 2.76 (s, 4H), 2.69–2.65 (m, 2H), 2.26–2.18 (m, 2H), 1.71 (dd, *J* = 11.6, 6.0 Hz, 4H), 1.57 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 138.0, 132.9, 127.5, 126.5, 126.0, 123.4, 106.7, 52.0, 28.7, 26.3, 24.7, 22.5. HRMS-ESI (m/z): Calculated for C₁₅H₁₉N (M + H)⁺: 214.1596, Found: 214.1628.

cinnamyl 2-bromopropanoate⁷

Pale yellow oil, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.24 (m, 5H), 6.71 (d, J = 16.0 Hz, 1H), 6.29 (dt, J = 15.6, 6.4 Hz, 1H), 4.83 (dd, J = 6.0, 0.8 Hz, 2H), 4.42 (q, J = 6.8 Hz, 1H), 1.86 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 135.9, 134.8, 128.5, 128.1, 126.6, 122.1, 66.3, 40.0, 21.6.

allyl 2-bromo-2-phenylacetate

Colorless oil, 53% yield (2 mmHg, 100 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.53 (m, 2H), 7.38–7.34 (m, 3H), 5.95–5.85 (m, 1H), 5.38 (s, 1H), 5.32 (dq, *J* = 17.2, 1.6 Hz, 1H), 5.25 (dq, *J* = 10.4, 1.2 Hz, 1H), 4.69–4.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 135.6, 131.0, 129.2, 128.7, 128.6, 118.9, 66.7, 46.5.

5.2. Spectral data for products

ethyl 2-methyl-4-oxo-4-phenylbutanoate⁸

Yellow liquid, 94% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.00–7.92 (m, 2H), 7.59–7.53 (m, 1H), 7.51–7.41 (m, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.48 (dd, *J* = 17.6, 8.0 Hz, 1H), 3.16–3.06 (m, 1H), 3.00 (dd, *J* = 17.6, 5.6 Hz, 1H), 1.29–1.22 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 175.9, 136.7, 133.1, 128.5, 127.9, 60.5, 41.9, 35.0, 17.2, 14.1.

ethyl 2-methyl-4-oxo-4-(p-tolyl)butanoate

Yellow liquid, 92% yield, ¹H NMR (400 MHz, CDCl₃) & 7.94-7.79 (m, 2H), 7.26-7.24 (m,

2H), 4.14 (q, J = 7.2 Hz, 2H), 3.44 (dd, J = 17.6, 8.0 Hz, 1H), 3.15–3.05 (m, 1H), 2.98 (dd, J = 17.6, 5.6 Hz, 1H), 2.40 (s, 3H), 1.28–1.22 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 175.7, 143.7, 134.1, 129.0, 127.9, 60.3, 41.6, 34.9, 21.4, 17.1, 14.0. HRMS-ESI (m/z): Calculated for C₁₄H₁₈O₃ (M + H)⁺: 235.1334, Found: 235.1337.

ethyl 4-(4-fluorophenyl)-2-methyl-4-oxobutanoate

Yellow liquid, 92% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.04–7.95 (m, 2H), 7.17–7.09 (m, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.45 (dd, *J* = 17.6, 8.0 Hz, 1H), 3.16–3.06 (m, 1H), 2.96 (dd, *J* = 17.6, 5.6 Hz, 1H), 1.26 (dd, *J* = 14.4, 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 175.8, 166.9, 164.4, 133.1, 130.6, 130.5, 115.7, 115.5, 60.5, 41.7, 35.0, 17.2, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.57. HRMS-ESI (m/z): Calculated for C₁₃H₁₅FO₃ (M + Na)⁺: 261.0903, Found: 261.0707.

ethyl 4-(4-chlorophenyl)-2-methyl-4-oxobutanoate9

Yellow liquid, 91% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.96–7.88 (m, 2H), 7.47–7.40 (m, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.45 (dd, *J* = 17.6, 8.0 Hz, 1H), 3.15–3.06 (m, 1H), 2.95 (dd, *J* = 17.6, 5.2 Hz, 1H), 1.30–1.22 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 175.7, 139.5, 134.9, 129.3, 128.8, 60.5, 41.7, 34.9, 17.2, 14.0.

ethyl 2-methyl-4-oxo-4-(4-(trifluoromethyl)phenyl)butanoate

Yellow liquid, 78% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.2 Hz, 2H), 7.73 (d, *J*=8.4 Hz, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.51 (dd, *J* = 17.6, 8.0 Hz, 1H), 3.18–3.09 (m, 1H), 2.99 (dd, *J* = 17.6, 5.2 Hz, 1H), 1.31–1.23 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 175.6, 139.3, 134.5, 134.2, 128.3, 125.6, 125.5, 124.9, 122.2, 60.6, 42.1, 35.0, 17.2, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.55. HRMS-ESI (m/z): Calculated for C₁₄H₁₅F₃O₃ (M + H)⁺: 289.1052, Found: 289.1064.

ethyl 4-(4-methoxyphenyl)-2-methyl-4-oxobutanoate¹⁰

¹H NMR (400 MHz, CDCl₃) δ 7.97–7.93 (m, 2H), 6.95–6.91 (m, 2H), 4.15 (q, *J* = 6.8 Hz, 2H), 3.87 (s, 3H), 3.43 (dd, *J* = 17.2, 8.0 Hz, 1H), 3.15–3.06 (m, 1H), 2.97 (dd, *J* = 17.2, 5.6 Hz, 1H), 1.29–1.22 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 176.0, 163.4, 130.2, 129.7, 113.6, 60.4, 55.3, 41.4, 35.0, 17.2, 14.0.

ethyl 2-methyl-4-oxo-4-(o-tolyl)butanoate

Yellow liquid, 97% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.68 (dd, *J*=7.6, 1.2 Hz, 1H), 7.36 (td, *J* = 7.2, 1.2 Hz, 1H), 7.28–7.21 (m, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.40 (dd, *J* = 17.6, 8.0 Hz, 1H), 3.14–3.05 (m, 1H), 2.91 (dd, *J* = 17.6, 5.6 Hz, 1H), 2.48 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 175.8, 138.0, 137.6, 131.8, 131.2, 128.4, 125.6, 60.5, 44.7, 35.2, 21.2, 17.2, 14.1. HRMS-ESI (m/z): Calculated for C₁₄H₁₈O₃ (M + Na)⁺: 257.1154, Found: 257.1155.

ethyl 2,3-dimethyl-4-oxo-4-phenylbutanoate⁸

Yellow liquid, 66% yield, dr = 11:1 ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.92 (m, 2H), 7.60–7.53 (m, 1H), 7.51–7.42 (m, 2H), 4.15–3.96 (m, 2H), 3.80–3.72 (m, 1H), 3.02–2.89 (m, 1H), 1.29–1.12 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 203.4, 175.7, 136.0, 132.9, 128.6, 128.3, 60.5, 43.0, 41.7, 14.5, 14.1, 14.0.

ethyl 2-(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)propanoate⁸

Yellow liquid, 33% yield, dr = 3:1 ¹H NMR (400 MHz, CDCl₃) for major δ 8.02 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.47 (td, *J* = 11.2, 1.2 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 7.6 Hz, 1H), 4.23–4.16 (m, 2H), 3.22–2.98 (m, 4H), 2.21–2.15 (m, 1H), 1.99–1.88 (m, 1H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.17 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 176.0, 143.9, 133.3, 132.3, 128.6, 127.4, 126.6, 60.5, 50.2, 38.7, 29.4, 25.2, 14.2, 13.1.

methyl 2-methyl-4-oxo-4-phenylbutanoate¹¹

Yellow liquid, 90% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.98–7.95 (m, 2H), 7.59–7.53 (m, 1H), 7.51–7.41 (m, 2H), 3.70 (s, 3H), 3.51–3.44 (m, 1H), 3.14 (qd, *J* = 7.2, 1.6 Hz, 1H), 3.02 (dd, *J* = 17.6, 5.6 Hz, 1H), 1.29–1.27 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 176.3, 136.5, 133.0, 128.5, 127.9, 51.8, 41.9, 34.8, 17.2.

isopropyl 2,2-dimethyl-4-oxo-4-phenylbutanoate

Yellow liquid, 78% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.03–8.00 (m, 2H), 7.60–7.55 (m, 1H), 7.51–7.45 (m, 2H), 4.36–4.28 (m, 1H), 4.13–4.04 (m, 4H), 2.83 (dd, *J* = 16.4, 7.2 Hz, 2H), 2.51 (dd, *J* = 16.4, 6.8 Hz, 2H), 1.19 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 201.0, 171.4, 135.8, 133.2, 128.7, 128.5, 60.8, 38.7, 36.0, 29.7, 14.0. HRMS-ESI (m/z): Calculated for C₁₅H₂₀O₃ (M + H)⁺: 249.1491, Found: 249.1482.

ethyl 2,2-dimethyl-4-oxo-4-phenylbutanoate¹²

Yellow liquid, 62% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.92 (m, 2H), 7.57–7.53 (m, 1H), 7.47–7.43 (m, 2H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.28 (s, 2H), 1.32 (s, 6H), 1.20 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 177.2, 137.0, 132.9, 128.5, 127.8, 60.4, 48.4, 40.0, 29.6, 25.7, 14.0.

ethyl 4-oxo-4-phenylbutanoate¹³

Yellow liquid, 66% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.92 (m, 2H), 7.59–7.52 (m, 1H), 7.50–7.42 (m, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.31 (t, *J* = 6.4 Hz, 2H), 2.75 (t, *J* = 6.4 Hz, 2H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 172.7, 136.5, 128.5, 127.9, 60.5, 33.3, 28.2, 14.0.

cinnamyl 2-methyl-4-oxo-4-phenylbutanoate

Yellow liquid, 68% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.98–7.96 (m, 2H), 7.58–7.24 (m, 9H), 6.65 (d, *J* = 16.0 Hz, 1H), 6.27 (dt, *J* = 15.6, 6.4 Hz, 1H), 4.76 (dt, *J* = 6.4 Hz, 1.6, 2H), 3.51 (dd, *J* = 17.6, 8.0 Hz, 1H), 3.22–3.16 (m, 1H), 3.05 (dd, *J* = 17.6, 5.6 Hz, 1H), 1.32 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 175.6, 136.5, 136.2, 133.8, 133.1, 128.5, 128.5, 127.9, 127.9, 126.5, 123.1, 65.1, 41.8, 35.0, 17.3. HRMS-ESI (m/z): Calculated for C₂₀H₂₀O₃ (M + H)⁺: 309.1491, Found: 309.1481.

allyl 4-oxo-2,4-diphenylbutanoate¹⁴

Yellow liquid, 77% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.98 (m, 2H), 7.60–7.26 (m, 8H), 5.92–5.78 (m, 1H), 5.24–5.14 (m, 2H), 4.67–4.55 (m, 2H), 4.33 (dd, *J* = 10.4, 4.4 Hz, 1H), 3.96 (dd, *J* = 18.0, 10.4 Hz, 1H), 3.29 (dd, *J* = 18.0, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.5, 173.0, 138.2, 136.3, 133.3, 131.9, 128.8, 128.5, 128.0, 127.8, 127.5, 117.8, 65.5, 46.4, 42.7.

6. Reference

- 1 W. J. Zhao, M. Yan, D. Huang and S. J. Ji, Tetrahedron, 2005, 61, 5585.
- 2 J. Paleček, O. Paleta, Synthesis, 2004, 4, 521.
- 3 K. Blau, L. Burgemeister, J. Grasnick, V. Voerckel, *Journal füer Praktische Chemie* (*Leipzig*), 1991, **333**, 455.
- 4 F. Ando, K. Ohashi, J. Koketsu, Bull. Chem. Soc. Jpn., 1976, 49, 727.
- 5 M. K. Meilahn, B. Cox, M. E. Munk, J. Org. Chem., 1975, 40, 819.
- 6 R. F. Parcell, F. P. Hauck Jr, J. Org. Chem., 1963, 28, 3468.
- 7 J. Ishihara, Y. Watanabe, N. Koyama, Y. Nishino, K. Takahashi, S. Hatakeyama, *Tetrahedron*, 2011, **67**, 3659.
- 7 N. Fujisawa, A. Hosomi, K. Miura, H. Saito, D. Wang, Org. Lett., 2001, 3, 2591.
- 8 C. G. Daniliuc, F. Glorius, N. E. Wurz, Chem. Eur. J., 2012, 18, 16297.

- 9 T. Fujimura, S. Aoki, E. Nakamura, J. Org. Chem., 1991, 56, 2809.
- 10 E. A. Jo, C. H. Jun, Eur. J. Org. Chem., 2006, 11, 2504.
- 11 S. A. Barnett, Y. D. Cai, B. P. Roberts, D. A. Tocher, Org. Biomol. Chem., 2004, 2, 2517.
- 12 L. H. P. Meijer, U. K. Pandit, Tetrahedron, 1985, 41, 467.
- 13 G. N. Gururaja, I. N. N. Namboothiri, S. M. Mobin, Eur. J. Org. Chem., 2011, 11, 2048.

7. The NOE experiment of N-(1-phenylprop-1-en-1-yl)piperidine (11)

8. NMR spectra of the products

N-(1-phenylvinyl)morpholine (1a)

2222222222222	28882	\$ \$ 6
4444444466666	177	00 00 00
	44	000

N-(1-phenylvinyl)piperidine (1b)

N-(1-phenylvinyl)pyrrolidine (1c)

7,433 7,415 7,415 7,413 7,419 7,409 7,359 7,336 7,333 7,333 7,333 7,333 7,333 7,333 7,333 7,333 7,333 7,333 7,333 7,332 7,327 7,332, -3.889-3.853-3.853-3.057-3.055-

1c ¹H NMR (400 MHz, CDCl₃)

N,N-diethyl-1-phenylethenamine (1d)

N-(1-(p-tolyl)vinyl)piperidine (1e)

369 364 349 344 137 136 116	211	808 796 352	635 608 596 581
	44		

1e ¹H NMR (400 MHz, CDCl₃)

1e ¹³C NMR (100 MHz, CDCl₃)

N-(1-(4-fluorophenyl)vinyl)piperidine (1f)

1f

¹H NMR (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 -220

N-(1-(4-chlorophenyl)vinyl)piperidine (1g)

2.00-6.17H .02 4.18-1.0 7.5 9.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 -156.896~138.750 ~133.416 ~128.897 ~128.198 -90.767 77.316 77.000 76.682 -50.496 25.937 CI 1g ¹³C NMR (100 MHz, CDCl₃)

N-(1-(4-(trifluoromethyl)phenyl)vinyl)piperidine (1h)

F₃C ¹⁹F NMR (376 MHz, CDCl₃)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -110 -120

--62.855

N-(1-(4-methoxyphenyl)vinyl)piperidine (1i)

N-(1-(o-tolyl)vinyl)piperidine (1j)

N-(1-phenylprop-1-en-1-yl)piperidine (1k)

N-(3,4-dihydronaphthalen-1-yl)piperidine (11)

allyl 2-bromo-2-phenylacetate (2r)

7.566 7.551 7.551 7.555 7.555 7.5345 7.5375 7.5375 7.5375 7.5375 7.5375 7.7375 7.7375 7.7375 7.7375 7.7375 7.7357 7.7355 7.5505

0 2r ¹H NMR (400 MHz, CDCl₃)

Br ö

2r ¹³C NMR (100 MHz, CDCl₃)

cinnamyl 2-bromopropanoate (2q)

Br ö

2q ¹H NMR (400 MHz, CDCl₃)

S31

ethyl 2-methyl-4-oxo-4-phenylbutanoate (3b)

ethyl 2-methyl-4-oxo-4-(p-tolyl)butanoate (3e)

398 821 239 251 239 251	71 53 35 35	852 996 864	174 174 174 174 174 174
8.6.6.6	4444	4440004	ddddd
Y Y	S	1	

3e ¹H NMR (400 MHz, CDCl₃)

ethyl 4-(4-fluorophenyl)-2-methyl-4-oxobutanoate (3f)

8.02 8.02 8.00 8.00 7.79 7.79 7.71 7.71 7.71 7.71 7.71 7.71	3.48 3.46
--	--

3f ¹H NMR (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 -220

ethyl 2-methyl-4-oxo-4-(4-(trifluoromethyl)phenyl)butanoate (3h)

F₃C 3h

---63.550

Ö 0 F₃C 30 3h ¹⁹F NMR (376 MHz, CDCI₃)

-1) 0 10 -10 -30 -50 -60 -70 -80 0 -20 -40 -90 -100 -110 -120 -130 -140 -150

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

ethyl 2-methyl-4-oxo-4-(o-tolyl)butanoate (3j)

7,7586 7,7587 7,7587 7,7587 7,75867 7,75867 7,75867 7,75867 7,75867 7,758677 7,7586777777777777777777777777

ethyl 2,3-dimethyl-4-oxo-4-phenylbutanoate (3k)

S41

ethyl 2-(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)propanoate (3l)

8,035 8,015 8,015 8,015 8,015 8,015 8,012 8,012 7,487 7,748 7,748 7,748 7,748 7,7487 7,7497 7,7407 7,	4.226 4.228 4.208 4.190 4.190 4.172	3.054 3.052 3.031 3.017	2203 22155 22153 22155 22155 22155 22155 22155 22155 22155 22155 22155 2215 22155 22
			W F

ö

31 ¹H NMR (400 MHz, CDCI₃)

methyl 2-methyl-4-oxo-4-phenylbutanoate (3m)

isopropyl 2,2-dimethyl-4-oxo-4-phenylbutanoate (3n)

8 027 8 004 8 004 8 005 8 004 8 005 8 004 1 7 551 1 7 552 1 7 55

3n ¹H NMR (400 MHz, CDCl₃)

ethyl 4-oxo-4-phenylbutanoate (3p)

3p

¹H NMR (400 MHz, CDCl₃)

cinnamyl 2-methyl-4-oxo-4-phenylbutanoate (3q)

 $\begin{array}{c} 7.982\\ 7.964\\ 7.964\\ 7.964\\ 7.964\\ 7.318\\ 7.7318\\ 7.7318\\ 7.7318\\ 7.7318\\ 7.7318\\ 6.6275\\ 6.207\\ 6.207\\ 6.207\\ 6.205\\ 6.2$ <1.325<1.307

< → Ph 0 0 **3q** ¹H NMR (400 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 50 40 -10 60 30 20 10 0

allyl 4-oxo-2,4-diphenylbutanoate (3r)

$\begin{array}{c} 7.987\\ 7.787\\ 7.787\\ 7.788\\ 7.77\\ 7.788\\ 7.77\\ 7.788\\ 7.74$

