Electronic Supplementary Information

for

Doubly N-confused isophlorin: Synthesis, structure and

copper coordination

Jiaying Yan, Makoto Takakusaki, Yufeng Yang, Shigeki Mori, Bao Zhang, Yaqing Feng,^{*} Masatoshi Ishida and Hiroyuki Furuta^{*}

Table of Contents

Experimental general	S2
Preparation of 2, 3, 4-Cu	S2–S3
Fig. S1: HPLC charts for 2, 3, 4-Cu	S4
Fig. S2–S10 : ¹ H, ¹⁹ F, ¹³ C-NMR spectra of 2 , 3 , 4-Cu	S5–S9
Fig. S11: ¹ H NMR spectral changes of 2 upon addition of D ₂ O	S9
Fig. S12–S13: ¹ H- ¹ H COSY spectra of 2, 4-Cu in CDCl ₃	S10
Fig. S14: UV/vis absorption spectrum of 4-Cu in CH ₂ Cl ₂	S11
Fig. S15: CV and DPV of 2, 3, 4-Cu in CH ₂ Cl ₂	S11
X-ray details:	S12
Table S1: Crystal data and structure analysis results for 2, 3, 4-Cu	S13
Fig. S16–S17: X-ray crystal structures of 2, 3	S14
Fig. S18–S19: Selected bond lengths (Å) and C-N-C angles (deg) of 2, 3, 4-Cu	S15
Calculation details:	S16
Fig. S20: Optimized structures of 2 and 3 obtained by DFT calculations	S17
Table S2: HOMA values calculated for 2, 3, 4-Cu	S17
Fig. S21: NICS values (ppm) of 2, 3, 4-Cu	S18
Fig. S22: MO diagrams of 2, 3, 4-Cu	S18
Fig. S23: TD-DFT calculations for 2, 3, 4-Cu	S19
Cartesian coordinates for the optimized structures for 2, 3, 4-Cu	S20-S28

Experimental general

Commercially available solvents and reagents were used without further purification unless otherwise mentioned. Preparative separation was performed by silica gel column chromatography (KANTO Silica Gel 60 N, spherical, neutral, 63–210 µm). Analytical thin-layer chromatography (TLC) was performed on Merck silica gel 60 pre-coated aluminum sheets. ¹H-NMR (300 or 600 MHz), ¹⁹F-NMR (564 MHz) and ¹³C-NMR (150 MHz) spectra were recorded on a JEOL JNM-AL 300 FT-NMR spectrometer and Bruker Avance III HD600SB spectrometer. Chemical shifts (δ) are reported in ppm relative to residual solvent and internal standard signals (CDCl₃: 7.26 ppm and CD₂Cl₂: 5.32 ppm for ¹H and 53.8 ppm for ¹³C). Trifluoroacetic acid (0.02% in CDCl₃) was used as external reference for ¹⁹F ($\delta = -76.5$ ppm). UV-vis-NIR spectra were measured on a Shimadzu UV-3150PC spectrometer. Fluorescence spectra were recorded on Horiba Fluorolog photospectrometer in a 10 mm quartz fluorescence cuvette. High resolution mass (HRMS) spectra were obtained in fast atom bombardment (FAB) mode with 3-nitrobenzyl alcohol (NBA) as a matrix on a JEOL LMS-HX-110 spectrometer. Cyclic voltammetric (CV) and differential pulse voltammetric (DPV) studies were carried out on a CH Instrument Model 620B (ALS) with electrochemical system utilizing the three-electrode configuration consisting of a glassy carbon (working electrode), platinum wire (counter electrode) and Ag/AgCl (reference electrode) in dichloromethane with *n*-tetrabutylammonium hexafluorophosphate (TBAPF₆) as a supporting electrolyte. High performance liquid chromatography (HPLC) was performed on a Shimadzu LC-20AB equipped with a YMC R-ODS-5 column (4.6 × 250 mm) and an SPD-M10A photodiode array detector.

Preparation of 2, 3 and 4-Cu

2,12-Phenylthio-5,10,15,20-tetrakis(pentafluorophenyl)-3,13-diaza-21,23-dicarba-isophlorin, 2:

Compound $\mathbf{1}^{[1]}$ (20.0 mg, 20.6 µmol) was dissolved in a mixture of CH₂Cl₂ (5 mL) and benzenethiol (10.5 mL, 103 µmol) and stirred for 1 h at room temperature. The solution color changed from dark red to yellow. After removing the solvent *in vacuo*, the residue was purified by silica gel column chromatography with hexane/CH₂Cl₂ (1:1) as eluent. Recrystallization from hexane/CH₂Cl₂ yielded 2.70 mg of compound **2** as yellow crystals;

Yield: 11 %, $R_f = 0.15$ (hexane/CH₂Cl₂ = 1:1). ¹H NMR (600 MHz, CD₂Cl₂, ppm): $\delta = 9.15$ (s, 2H, inner NH), 8.29 (d, J = 2.6 Hz, 2H, inner CH), 8.14 (s, 2H, outer NH), 7.20–7.15 (m, 4H, Ph-H), 7.12–7.07 (m, 2H, Ph-H), 6.74–6.70 (m, 4H, Ph-H), 6.32 (d, J = 5.5 Hz, 2H, β -H), 6.27 (d, J = 5.5 Hz, 2H, β -H); ¹³C NMR (150 MHz, CD₂Cl₂, ppm): $\delta = 146.61$, 146.60, 145.54, 145.47, 145.38, 140.17, 139.01, 137.51, 137.35, 135.58, 130.28, 129.26, 129.20, 127.75, 126.13, 125.07, 118.97, 117.84, 113.91, 112.16, 94.66, 87.97; ¹⁹F NMR (564 MHz, CD₂Cl₂, ppm): $\delta = -139.35 \sim -139.65$ (m, 4F, *o*-Ph-F), $-139.65 \sim -139.95$ (m, 4F, *o*-Ph-F), $-155.15 \sim -155.80$ (m, 2F, *p*-Ph-F), $-157.25 \sim -157.90$ (m, 2F, *p*-Ph-F), $-161.70 \sim -162.55$ (m, 4F, *m*-Ph-F), $-163.55 \sim -164.40$ (m, 4F, *m*-Ph-F); HRMS (FAB): calcd for C₅₆H₁₉F₂₀N₄S₂ [M]⁺, 1192.0810; found 1192.0807 with errors of 0.3 ppm; UV-Vis (CH₂Cl₂): λ_{max} [nm] (ε , 10⁴ M⁻¹cm⁻¹) = 438.7 (11.6).

2,12-Phenylthio-5,10,15,20-tetrakis(pentafluorophenyl)-3,13-diaza-21,23-dicarbaporphyrin, *trans*-N₂CP-(SC₆H₅)₂, 3:

 Al_2O_3 (37 mg, 360 µmol) was added to a CH_2Cl_2 solution (5 mL) of 2 (4.30 mg, 3.61 µmol), and

the mixture was stirred for 3 h at room temperature. After removing the solvent *in vacuo*, silica gel column chromatography (CH₂Cl₂ as eluent) was performed to separate the yellow fraction. After evaporation, the residue was recrystallized from hexane/CH₂Cl₂ to give 4.30 mg of the species **3** as yellow crystals;

Yield: ~100%, $R_f = 0.44$ (CH₂Cl₂). ¹H NMR (600 MHz, CD₂Cl₂, ppm): $\delta = 8.52$ (d, J = 4.6 Hz, 2H, β-H), 8.36 (d, J = 4.6 Hz, 2H, β-H), 7.67–7.63 (m, 4H, Ph-H), 7.45–7.37 (m, 6H, Ph-H), -2.69 (br, 2H, inner NH), -4.05 (s, 2H, inner CH); ¹³C NMR (150 MHz, CD₂Cl₂, ppm): $\delta = 167.13$, 151.12, 147.66, 146.91, 145.98, 145.27, 144.56, 142.86, 141.23, 139.78, 139.21, 138.49, 136.98, 135.18, 135.02, 129.64, 129.52, 129.02, 126.52, 126.42, 113.86, 105.44; ¹⁹F NMR (564 MHz, CD₂Cl₂): $\delta = -138.33$ (d, J = 5.6 Hz, 4F, *o*-Ph-F), -138.72 (d, J = 5.6 Hz, 4F, *o*-Ph-F), -155.13 (t, J = 22.6 Hz, 2F, *p*-Ph-F), -154.52 (t, ³ $J_{FF} = 22.6$ Hz, 2F, *p*-Ph-F), -163.70 ~ -163.95 (m, 4F, *m*-Ph-F), -163.81 (t, ³ $J_{FF} = 5.6$, 22.6 Hz, 4F, *m*-Ph-F); HRMS (FAB): calcd for C₅₆H₁₉F₂₀N₄S₂ [M+H]⁺, 1191.0732, found 1191.0747 with errors of 1.3 ppm; UV-Vis (CH₂Cl₂): $\lambda_{max}[nm]$ (ε , 10⁴ M⁻¹cm⁻¹) = 395.5 (3.4), 482 (13.6), 578 (0.91), 627 (0.66), 813 (0.50).

2,12-Phenylthio-5,10,15,20-tetrakis(pentafluorophenyl)-3,13-diaza-21,23-dicarbaporphyrinato copper (III), 4-Cu:

To a mixture CH₂Cl₂/MeOH solution (5 mL, 4:1 (v/v)) of porphyrin (**2**) (1.91 mg, 1.60 μ mol), Cu(OAc)₂ (1.45 mg, 8.0 μ mol) was added under aerobic condition. The resulting solution was stirred at room temperature for 30 min. The solution color changed from yellow to green. After removing the solvent *in vacuo*, the residue was purified by silica gel column chromatography with hexane/CH₂Cl₂ (1:1) as eluent, Recrystallization from hexane/CH₂Cl₂ afforded 1.98 mg of **4-Cu** as green crystals;

Yield 99%, $R_f = 0.24$ (hexane: CH₂Cl₂ =1:1). ¹H NMR (600 MHz, CD₂Cl₂, ppm): $\delta = 8.96$ (br s, 1H, outer NH), 8.26 (d, J = 5.4 Hz, 2H, β-H), 8.20 (d, J = 5.4 Hz, 2H, β-H), 7.92–7.85 (m, 2H, Ph-H), 7.82–7.70 (m, 5H, Ph-H), 7.55–7.43 (m, 3 H, Ph-H); ¹³C NMR (150 MHz, CD₂Cl₂, ppm): $\delta = 179.49$, 173.28, 158.97, 152.95, 149.48, 147.84, 147.05, 146.44, 145.42, 144.94, 144.79, 143.68, 142.34, 141.12, 140.00, 138.51, 138.03, 137.11, 136.07, 135.33, 133.79, 132.58, 132.17, 131.72, 130.46, 130.25, 129.58, 129.41, 128.90, 128.59, 128.27, 126.37, 125.94, 124.44, 121.07, 114.02, 111.65, 108.45, 106.05, 101.55; ¹⁹F NMR (564 MHz, CD₂Cl₂, ppm): $\delta = -136.85 \sim -137.05$ (dd, J = 5.6 Hz, 2F, *o*-Ph-F), $-137.85 \sim -138.05$ (dd, J = 5.6 Hz, 2F, *o*-Ph-F), -151.42 (t, J = 22.6 Hz, 1F, *p*-Ph-F), -151.65 (t, J = 22.6 Hz, 1F, *p*-Ph-F), -153.18 (t, J = 22.6 Hz, 1F, *p*-Ph-F), $-160.85 \sim -161.05$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-162.10 \sim -162.30$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-160.85 \sim -161.05$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-162.10 \sim -162.30$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-164.55 \sim -164.80$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-162.10 \sim -162.30$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-164.55 \sim -164.80$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-162.10 \sim -162.30$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-164.55 \sim -164.80$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-162.10 \sim -162.30$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-164.55 \sim -164.80$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-162.10 \sim -162.30$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-164.55 \sim -164.80$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-162.10 \sim -162.20$) (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F), $-164.55 \sim -164.80$ (dt, J = 5.6, 22.6 Hz, 2F, *m*-Ph-F); HRMS (FAB): calcd for C₅₆H₁₅CuF₂₀N₄S₂, 1249.9715; found 1249.9694 with errors of 1.7 ppm; UV-Vis (CH₂Cl₂): λ_{max} [nm] (ε , 10^4 M⁻¹cm⁻¹) = 357 (7.9), 469 (4.5), 509 (2.0), 611 (5.7), 722 (0.9), 794 (1.5).

[1] H. Maeda, A. Osuka and H. Furuta, H. J. Am. Chem. Soc. 2003, 125, 15690.

Fig. S1. HPLC charts of (a) 2, (b) 3 and (c) 4-Cu with a YMC R-ODS-5 column ($4.6 \times 250 \text{ mm}$) using CH₃CN. Constant flow rate was 0.5 mL/min.

Fig. S2. ¹H NMR spectrum of 2 in CD_2Cl_2 . Asterisks indicate the peaks of residual solvents and impurities.

Fig. S3. ¹⁹F NMR spectrum of **2** in CD_2Cl_2 .

Fig. S4. ¹³C NMR spectrum of **2** in CD_2Cl_2 .

Fig. S5. ¹H NMR spectrum of 3 in CD_2Cl_2 . Asterisks indicate the peaks of residual solvents and impurities.

Fig. S7. ¹³C NMR spectrum of **3** in CD_2Cl_2 .

Fig. S8. ¹H NMR spectrum of **4-Cu** in CD₂Cl₂. Asterisk indicates the residual solvent peak.

Fig. S9. ¹⁹F NMR spectrum of **4-Cu** in CD_2Cl_2 .

Fig. S10. ¹³C NMR spectrum of 4-Cu in CD₂Cl₂.

Fig. S11. ¹H NMR spectral changes of 2 (in $CDCl_3$) upon addition of D_2O . Asterisk indicates the residual solvent peaks.

Fig. S12. ¹H-¹H COSY spectrum of **2** in CDCl₃.

Fig. S13. ¹H-¹H COSY spectrum of 4-Cu in CDCl₃.

Fig. S14. UV/vis absorption spectrum of 4-Cu in CH_2Cl_2 .

Fig. S15. Cyclic voltammograms (solid line) and differential pulse voltammograms (dashed line) of (a) **2**, (b) **3** and (c) **4-Cu** in the CH₂Cl₂ solution containing 0.1 M *n*-Bu₄NPF₆ as the supporting electrolyte. All potentials were calibrated by a Fc/Fc^+ redox couple. Scan rate; 0.1 Vs⁻¹. The arrow indicates the direction of cyclic voltammetry measurements.

X-ray Crystallography

X-ray single crystal measurements for **2**, **3** and **4-Cu** were carried out on a Rigaku RAXIS RAPID and Saturn 724 diffractometers. The structures were solved by the direct method (SIR2004)^[2] and refined anisotropically for non-hydrogen atoms by full-matrix least-squares procedures (SHELXL-97).^[3] The positional parameters and thermal parameters of non-hydrogen atoms were refined anisotropically on F^2 by the full-matrix least-squares method. Hydrogen atoms were placed at calculated positions and refined riding on their corresponding carbon atoms. All calculations except for refinement were performed by using CrystalStructure^[4] software package of the Rigaku Corporation.

For mean deviation (m.d.) calculations, 24 atoms of the core macrocycle are selected to define the mean plane for all derivatives.

- [2] M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna (2005)
- [3] G. M. Sheldrick, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.
- [4] CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku Corporation (2000–2010). Tokyo 196-8666, Japan.

	2	3	4-Cu
Formula	$C_{56}H_{20}F_{20}N_4S_2\bullet H_2O$	$C_{56}H_{18}F_{20}N_4S_2$	$C_{56}H_{15}CuF_{20}N_4S_2$ •2 CH_2Cl_2
Formula Weight	1210.90	1190.86	1421.26
Crystal system	monoclinic	monoclinic	orthorhombic
<i>T</i> (K)	123	100	100
Space group	$P2_1/n$	P21/c	Pbca
<i>a</i> (Å)	17.201(6)	11.9072(2)	31.3073(6)
<i>b</i> (Å)	15.424(4)	25.4953(5)	21.1481(4)
<i>c</i> (Å)	19.135(7)	24.1650(4)	16.0579(3)
α (deg)	90	90	90
β (deg)	111.208(5)	99.372(7)	90
γ (deg)	90	90	90
$V(\text{\AA}^3)$	4733(3)	7238.0(3)	10631.8(3)
Ζ	4	6	8
$D_{\text{calc }(\text{g cm}^{-3})}$	1.699	1.639	1.776
Crystal size (mm)	0.15 x 0.06 x 0.02	0.22 x 0.10 x 0.08	0.24 x 0.20 x 0.13
$2\theta_{\min}, 2\theta_{\max}$ (deg)	2.7, 55.1	6.9, 136.5	7.0, 136.5
No. of reflns measd	10844	13196	9730
(unique)			
No. of rflns measd	5376	10735	8498
$(I > 2\sigma(I))$			
No. of parameters	854	1208	860
Goodness-of-fit	1.073	1.031	1.057
R_1	0.0820	0.0432	0.0665
w R_2 (all data)	0.2284	0.1138	0.1965
$\Delta (\epsilon \dot{A}^{-3})$	0.498, -0.493	0.379, -0.318	0.844, -1.631
Diffractometer	Saturn 724	R-AXIS RAPID	R-AXIS RAPID
CCDC number	1008503	1008504	1008505

Table S1. Crystal data and structure analysis results for 2, 3 and 4-Cu

Fig. S16. X-ray crystal structure of **2** with a hydrogen-bonded water molecule. The thermal ellipsoids are scaled at the 50% probability level.

Fig. S17. X-ray crystal structure of another geometry of 3 found in the packing lattice. Pentafluorophenyl groups are omitted for clarity in the side view (bottom). The thermal ellipsoids are scaled at the 50% probability level. The structure was labeled as 3(2) to differentiate the text one, 3(1).

Fig. S18. Selected bond lengths (Å) of 2, 3 and 4-Cu.

Fig. S19. Selected C-N-C angles (deg) of 2, 3 and 4-Cu.

Calculations details

Theoretical calculations were performed with the *Gaussian09*^[5] program suite using a supercomputer.^[6] All calculations were carried out using the density functional theory (DFT) method with Becke's three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional (B3LYP) employing the 6-31G(d,p) basis set for C, H, N, F atoms and LANL2DZ basis for Cu atom (denoted as 6-31LAN for **4-Cu**).^[6] The NICS^[7] value was obtained with gauge independent atomic orbital (GIAO) method based on the optimized geometries. To simulate the ground-state absorption spectra, the time-dependent (TD) DFT calculation was employed with B3LYP/6-31G(d,p) level.

[5] Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.

[6] (a) A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098. (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B* 1988, **37**, 785.

[7] P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. v. E. Hommes, *J. Am. Chem. Soc.* 1996, **118**, 6317.

Fig. S20. Top view (left) and side view (right) of the optimized structures of (a) **2** and (b) **3** obtained by DFT (B3LYP/6-31G**) calculations.

Table S2. HOMA values calculated based on the x-ray structures and optimized structures^[8]

		X-ray structures			timized structu	ures
	EN	GEO	HOMA	EN	GEO	HOMA
2	0.170503	0.669012	0.160485	0.244994	0.44076	0.314246
3(1)	0.057982	0.092285	0.849732	0.153984	0.080676	0.765341
3(2)	0.080431	0.069235	0.850334			
4-Cu	0.023257	0.154799	0.821944	0.062803	0.221665	0.715532

HOMA =
$$1 - \frac{\alpha}{n} \sum \left[\mathbf{R}_{opt} - \mathbf{R}_i \right]^2$$

= $1 - \alpha \left(\mathbf{R}_{opt} - \mathbf{R}_{av} \right)^2 - \frac{\alpha}{n} \sum \left[\mathbf{R}_{av} - \mathbf{R}_i \right]^2$
= $1 - \mathbf{EN} - \mathbf{GEO}$

[8] T. M. Crygowski and M. Cyrański, Tetrahedron 1996, 52, 1713 and 10255.

Fig. S21. NICS values (ppm) for **2**, **3** and **4-Cu** obtained by GIAO-B3LYP/6-31(d,p) (2, **3**) and GIAO-B3LYP/6-31G(d,p)/LANL2DZ (**4-Cu**) calculations. ($R = SC_6H_5$)

Fig. S22. MO diagrams of 2, 3 and 4-Cu obtained from the calculations at the B3LYP/6-31G(d,p) (2, 3) and B3LYP/6-31G(d,p)/LanL2DZ (4-Cu) levels, respectively.

Fig. S23. TD-DFT (B3LYP/6-31G**) calculations for (a) 2, (b) 3 and (c) 4-Cu along with the experimental spectra in CH_2Cl_2 .

Cartesian coordinates for optimized structures for 2, 3 and 4-Cu

^	

Stoichiometry	C56H20F20N4S	52		
Framework group	C1[X(C56H20	F20N4S	2)]	
Deg. of freedom	300			
Full point group		C1	NOp	1
Largest Abelian su	lbgroup	C1	NOp	1
Largest concise Al	oelian subgroup	C1	NOp	1
	Stand	ard orie	ntation:	

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	7	0	3.686406	-1.476711	0.083910
2	6	0	4.042154	-0.149283	0.126794
3	6	0	2.971282	0.589638	-0.396520
4	6	0	1.960289	-0.366161	-0.743921
5	6	0	2.417042	-1.643826	-0.416542
6	6	0	-1.522792	-4.192877	0.266981
7	6	0	-0.232968	-4.449406	-0.057389
8	6	0	0.470595	-3.186919	-0.225098
9	7	0	-0.495070	-2.209493	-0.056277
10	6	0	-1.736726	-2.753906	0.265087
11	6	0	1.814557	-2.971710	-0.429162
12	7	0	-3.686373	1.476699	-0.083989
13	6	0	-4.042117	0.149270	-0.126891
14	6	0	-2.971262	-0.589653	0.396456
15	6	0	-1.960267	0.366143	0.743861
16	6	0	-2.417018	1.643810	0.416488
17	6	0	-2.895122	-2.052904	0.492369
18	6	0	1.522833	4.192863	-0.266939
19	6	0	0.233013	4.449396	0.057443

20	6	0	-0.470577	3.186912	0.225072
21	7	0	0.495078	2.209480	0.056220
22	6	0	1.736740	2.753890	-0.265122
23	6	0	2.895132	2.052891	-0.492420
24	6	0	-1.814543	2.971701	0.429129
25	16	0	5.615889	0.308858	0.783411
26	6	0	5.342389	0.208270	2.572206
27	16	0	-5.615842	-0.308869	-0.783534
28	6	0	-4.132996	-2.807006	0.819465
29	6	0	-5.342336	-0.208207	-2.572324
30	6	0	-2.739792	4.129931	0.547607
31	6	0	4.133000	2.807006	-0.819494
32	6	0	2.739788	-4.129960	-0.547573
33	6	0	-4.580090	-1.178272	-3.234684
34	6	0	-4.409991	-1.096719	-4.616576
35	6	0	-5.011934	-0.065827	-5.341993
36	6	0	-5.951883	0.821117	-3.297700
37	6	0	-4.820648	-2.565471	2.017342
38	6	0	-6.000895	-3.225542	2.343965
39	6	0	-6.527902	-4.170729	1.466669
40	6	0	-5.871747	-4.439015	0.268535
41	6	0	-4.697412	-3.758893	-0.037899
42	6	0	2.903390	-5.089434	0.462937
43	6	0	3.783192	-6.162651	0.336372
44	6	0	4.554889	-6.289755	-0.815165
45	6	0	4.434455	-5.346505	-1.834213
46	6	0	3.538137	-4.291819	-1.692210
47	6	0	-3.538027	4.291780	1.692327
48	6	0	-4.434368	5.346435	1.834411
49	6	0	-4.554955	6.289660	0.815358
50	6	0	-3.783391	6.162555	-0.336267
51	6	0	-2.903561	5.089370	-0.462910
52	6	0	4.697331	3.758974	0.037834
53	6	0	5.871659	4.439117	-0.268578
54	6	0	6.527893	4.170772	-1.466655
55	6	0	6.000967	3.225510	-2.343920
56	6	0	4.820722	2.565423	-2.017321
57	6	0	4.580229	1.178416	3.234544
58	6	0	4.410139	1.096919	4.616441
59	6	0	5.012006	0.066001	5.341883
60	6	0	5.787950	-0.887735	4.682826
61	6	0	5.951863	-0.821080	3.297607
62	9	0	-4.337651	-1.675095	2.894809
63	9	0	-6.620008	-2.975485	3.503414

64	9	0	-7.654803	-4.818343	1.775181
65	9	0	-6.379753	-5.335675	-0.585761
66	9	0	-4.124646	-4.017611	-1.229558
67	9	0	-2.204087	4.994496	-1.604373
68	9	0	-3.905992	7.057079	-1.323818
69	9	0	-5.406800	7.309486	0.942934
70	9	0	-5.167834	5.470034	2.945560
71	9	0	-3.440165	3.413298	2.697606
72	9	0	4.337803	1.674976	-2.894760
73	9	0	4.124470	4.017767	1.229432
74	9	0	6.379581	5.335855	0.585685
75	9	0	7.654790	4.818404	-1.775146
76	9	0	6.620152	2.975397	-3.503318
77	9	0	5.406705	-7.309614	-0.942668
78	9	0	2.203743	-4.994581	1.604294
79	9	0	3.905630	-7.057214	1.323907
80	9	0	3.440420	-3.413312	-2.697481
81	9	0	5.168040	-5.470112	-2.945282
82	6	0	-5.787962	0.887826	-4.682916
83	1	0	4.251811	-2.213493	0.477514
84	1	0	1.070398	-0.156507	-1.322420
85	1	0	-2.287024	-4.920754	0.492397
86	1	0	0.226959	-5.420884	-0.155797
87	1	0	-0.311140	-1.222912	-0.096565
88	1	0	-4.251773	2.213485	-0.477592
89	1	0	-1.070383	0.156488	1.322371
90	1	0	2.287082	4.920737	-0.492306
91	1	0	-0.226891	5.420878	0.155908
92	1	0	0.311136	1.222900	0.096484
93	1	0	-6.553951	1.561389	-2.779885
94	1	0	-6.263023	1.687660	-5.243345
95	1	0	-4.881190	-0.010592	-6.418577
96	1	0	-3.815419	-1.847455	-5.128795
97	1	0	-4.136998	-1.993951	-2.674056
98	1	0	4.137200	1.994117	2.673898
99	1	0	3.815637	1.847722	5.128643
100	1	0	4.881272	0.010809	6.418470
101	1	0	6.262948	-1.687593	5.243274
102	1	0	6.553863	-1.561417	2.779807

3	

Stoichiometry	C56H18F20N4S	32		
Framework group	C1[X(C56H18	F20N4S	[2)]	
Deg. of freedom	294			
Full point group		C1	NOp	1
Largest Abelian su	lbgroup	C1	NOp	1
Largest concise Al	oelian subgroup	C1	NOp	1
	~ .			

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	7	0	4.120151	0.616036	0.007894	
2	6	0	4.118568	-0.685131	-0.020082	
3	6	0	2.763277	-1.259372	0.243220	
4	6	0	1.975984	-0.108609	0.473672	
5	6	0	2.810112	1.019131	0.306400	
6	6	0	-0.539484	4.380377	0.193629	
7	6	0	0.821671	4.325150	0.365459	
8	6	0	1.232158	2.956830	0.293041	
9	7	0	0.076623	2.231687	0.099123	
10	6	0	-1.033221	3.046157	0.020595	
11	6	0	2.527135	2.405741	0.335072	
12	7	0	-4.120072	-0.616036	-0.007875	
13	6	0	-4.118482	0.685132	0.020079	
14	6	0	-2.763159	1.259351	-0.243069	
15	6	0	-1.975830	0.108585	-0.473385	
16	6	0	-2.810008	-1.019143	-0.306260	
17	6	0	-2.364921	2.613858	-0.133670	
18	6	0	0.539570	-4.380381	-0.193498	
19	6	0	-0.821581	-4.325165	-0.365362	
20	6	0	-1.232083	-2.956854	-0.292895	
21	7	0	-0.076549	-2.231698	-0.099013	

22	6	0	1.033299	-3.046160	-0.020456
23	6	0	2.365005	-2.613875	0.133821
24	6	0	-2.527057	-2.405757	-0.334933
25	16	0	5.582020	-1.616436	-0.368650
26	6	0	6.842817	-0.352847	-0.569437
27	16	0	-5.581965	1.616480	0.368375
28	6	0	-3.388253	3.702289	-0.139244
29	6	0	-6.842826	0.352931	0.568975
30	6	0	-3.686908	-3.337775	-0.311533
31	6	0	3.388291	-3.702348	0.139423
32	6	0	3.686958	3.337789	0.311616
33	6	0	-7.609533	0.381456	1.737787
34	6	0	-8.671754	-0.512261	1.891834
35	6	0	-8.955332	-1.441398	0.891723
36	6	0	-7.133580	-0.568960	-0.444108
37	6	0	-4.047659	4.061703	-1.320197
38	6	0	-4.994593	5.080501	-1.354173
39	6	0	-5.301745	5.770445	-0.183432
40	6	0	-4.657300	5.442826	1.007502
41	6	0	-3.712432	4.420931	1.016709
42	6	0	3.873580	4.271323	-0.715976
43	6	0	4.987693	5.104928	-0.770636
44	6	0	5.970737	5.004078	0.209128
45	6	0	5.820652	4.081468	1.240643
46	6	0	4.693664	3.269412	1.283938
47	6	0	-4.693502	-3.269441	-1.283976
48	6	0	-5.820534	-4.081438	-1.240737
49	6	0	-5.970780	-5.003950	-0.209158
50	6	0	-4.987859	-5.104751	0.770734
51	6	0	-3.873700	-4.271204	0.716128
52	6	0	3.712516	-4.420954	-1.016540
53	6	0	4.657319	-5.442908	-1.007307
54	6	0	5.301641	-5.770634	0.183665
55	6	0	4.994425	-5.080743	1.354419
56	6	0	4.047561	-4.061880	1.320417
57	6	0	7.609345	-0.381312	-1.738367
58	6	0	8.671521	0.512435	-1.892543
59	6	0	8.955230	1.441541	-0.892439
60	6	0	8.181572	1.471175	0.271327
61	6	0	7.133706	0.569008	0.443637
62	9	0	-3.773543	3.415786	-2.459679
63	9	0	-5.605450	5.403589	-2.498235
64	9	0	-6.206900	6.750182	-0.204010
65	9	0	-4.950415	6.107949	2.130096

66	9	0	-3.114301	4.124550	2.177980
67	9	0	-2.976222	-4.375769	1.708052
68	9	0	-5.127703	-5.982540	1.770998
69	9	0	-7.050929	-5.787154	-0.161522
70	9	0	-6.773866	-3.967295	-2.177051
71	9	0	-4.595987	-2.400580	-2.298428
72	9	0	3.773382	-3.416015	2.459912
73	9	0	3.114499	-4.124479	-2.177845
74	9	0	4.950488	-6.107991	-2.129912
75	9	0	6.206731	-6.750430	0.204268
76	9	0	5.605157	-5.403938	2.498517
77	9	0	7.050841	5.787341	0.161440
78	9	0	2.975944	4.375972	-1.707748
79	9	0	5.127370	5.982829	-1.770827
80	9	0	4.596312	2.400439	2.298310
81	9	0	6.774094	3.967291	2.176842
82	6	0	-8.181492	-1.471095	-0.271921
83	1	0	1.001706	-0.096674	0.941783
84	1	0	-1.153079	5.268161	0.185906
85	1	0	1.486152	5.157560	0.540606
86	1	0	0.061119	1.238731	-0.036416
87	1	0	-1.001475	0.096647	-0.941346
88	1	0	1.153174	-5.268159	-0.185781
89	1	0	-1.486050	-5.157576	-0.540541
90	1	0	-0.061065	-1.238739	0.036505
91	1	0	-6.530615	-0.597104	-1.343703
92	1	0	-8.387456	-2.200613	-1.049130
93	1	0	-9.775458	-2.142108	1.016814
94	1	0	-9.267113	-0.486155	2.799598
95	1	0	-7.374508	1.094153	2.521849
96	1	0	7.374222	-1.093996	-2.522412
97	1	0	9.266747	0.486375	-2.800395
98	1	0	9.775321	2.142274	-1.017632
99	1	0	8.387640	2.200667	1.048532
100	1	0	6.530882	0.597099	1.343330

4-Cu

Stoichiometry	C56H15CuF20N	V4S2		
Framework group	C1[X(C56H15	CuF20N	[4S2)]	
Deg. of freedom	288			
Full point group		C1	NOp	1
Largest Abelian su	C1	NOp	1	
Largest concise Abelian subgroup		C1	NOp	1

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	7	0	-4.143209	-0.523157	-0.080341	
2	6	0	-4.162485	0.815137	-0.135029	
3	6	0	-2.799251	1.259079	-0.184331	
4	6	0	-1.962374	0.105499	-0.156549	
5	6	0	-2.818228	-0.986844	-0.060290	
6	6	0	0.512030	-4.231307	0.006024	
7	6	0	-0.840784	-4.179442	0.080029	
8	6	0	-1.216245	-2.792784	0.055329	
9	7	0	-0.073898	-1.994572	0.013549	
10	6	0	0.993526	-2.876601	-0.035908	
11	6	0	-2.533963	-2.354379	0.046500	
12	7	0	4.189253	0.596828	0.042038	
13	6	0	4.168553	-0.696252	-0.041377	
14	6	0	2.770272	-1.228203	-0.108940	
15	6	0	1.946357	-0.089637	-0.117903	
16	6	0	2.838552	1.000731	0.003146	
17	6	0	2.353577	-2.557242	-0.093489	
18	6	0	-0.499866	4.246209	-0.236269	
19	6	0	0.850093	4.181240	-0.134613	
20	6	0	1.203063	2.792689	-0.017042	
21	7	0	0.072168	2.008341	-0.033187	

22	6	0	-1.001254	2.898416	-0.171203
23	6	0	-2.350420	2.595682	-0.227570
24	6	0	2.534262	2.350191	0.059513
25	16	0	-5.664635	1.731793	-0.084230
26	6	0	-6.881663	0.429853	0.175283
27	16	0	5.640282	-1.670749	-0.090818
28	6	0	3.322170	-3.693378	-0.131428
29	6	0	6.956702	-0.457354	0.046931
30	6	0	3.641889	3.337605	0.171201
31	6	0	-3.316594	3.726954	-0.348334
32	6	0	-3.657984	-3.327291	0.147660
33	6	0	7.927917	-0.674513	1.030305
34	6	0	9.027159	0.182251	1.121258
35	6	0	9.146080	1.262683	0.247188
36	6	0	7.080576	0.617166	-0.842737
37	6	0	3.828439	-4.171433	-1.344100
38	6	0	4.722949	-5.236872	-1.398601
39	6	0	5.127762	-5.852495	-0.216299
40	6	0	4.634030	-5.405100	1.007429
41	6	0	3.739536	-4.338827	1.036507
42	6	0	-3.937115	-4.258050	-0.862963
43	6	0	-5.002547	-5.151629	-0.772990
44	6	0	-5.842047	-5.116721	0.338610
45	6	0	-5.603085	-4.195116	1.354611
46	6	0	-4.521425	-3.324334	1.252597
47	6	0	4.627381	3.449880	-0.816082
48	6	0	5.702817	4.322435	-0.687422
49	6	0	5.811954	5.124725	0.445333
50	6	0	4.842255	5.046409	1.441195
51	6	0	3.780259	4.156928	1.296630
52	6	0	-3.859153	4.085970	-1.587127
53	6	0	-4.752642	5.145533	-1.719901
54	6	0	-5.120858	5.876880	-0.592443
55	6	0	-4.594292	5.547447	0.655129
56	6	0	-3.701450	4.484315	0.763592
57	6	0	-7.827007	0.187000	-0.829021
58	6	0	-8.823078	-0.770017	-0.623447
59	6	0	-8.862626	-1.497359	0.567163
60	6	0	-7.913820	-1.259855	1.565853
61	6	0	-6.932664	-0.284550	1.382820
62	9	0	3.458659	-3.596022	-2.494683
63	9	0	5.192207	-5.673686	-2.572381
64	9	0	5.983752	-6.876411	-0.255825
65	9	0	5.019183	-6.003409	2.140607

6790 2.876711 4.094755 2.282627 68 90 4.941860 5.814382 2.533197 69 90 6.839459 5.969277 0.572970 70 90 6.635959 4.395439 -1.648652 71 90 4.555300 2.713244 -1.932822 72 90 -3.214249 4.188440 1.974076 73 90 -3.524201 3.399236 -2.686459 74 90 -5.255530 5.466547 -2.916545 75 90 -5.975758 6.894848 0.707691 76 90 -4.948903 6.251741 1.734634 77 90 -6.875021 -5.956558 0.425093 78 90 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -1.530216 -5.008252 0.136025 86 10 -1.142398 5.127029 -0.356835 87 10 8.245635 2.330217 -1.400052 90 10 9.99442 1.935711 0.326226 91 10 7.820962 -1.504592 1.721682 93 10<	66	9	0	3.278351	-3.931341	2.225953	
6890 4.941860 5.814382 2.533197 69 90 6.839459 5.969277 0.572970 70 90 6.635959 4.395439 -1.648652 71 90 4.555300 2.713244 -1.932822 72 90 -3.214249 4.188440 1.974076 73 90 -3.524201 3.399236 -2.686459 74 90 -5.25530 5.466547 -2.916545 75 90 -5.975758 6.894848 -0.707691 76 90 -4.948903 6.251741 1.734634 77 90 -6.875021 -5.95658 0.425093 78 90 -3.173048 -4.307531 -1.959812 79 90 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.14637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -1.530216 -5.008252 0.136025 86 10 1.140272 -5.108695 -0.016109 85 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 8.245635 2.330217 -1.400052 90 1 <td< td=""><td>67</td><td>9</td><td>0</td><td>2.876711</td><td>4.094755</td><td>2.286267</td><td></td></td<>	67	9	0	2.876711	4.094755	2.286267	
6990 6.839459 5.969277 0.572970 7090 6.635959 4.395439 -1.648652 7190 4.555300 2.713244 -1.932822 7290 -3.214249 4.188440 1.974076 7390 -3.524201 3.399236 -2.686459 7490 -5.255530 5.466547 -2.916545 7590 -5.975758 6.894848 -0.707691 7690 -4.948903 6.251741 1.734634 7790 -6.875021 -5.956558 0.425093 7890 -3.173048 -4.307531 -1.959812 7990 -5.237476 -6.026419 -1.755126 8090 -4.328197 -2.449457 2.252973 8190 -6.414637 -4.146349 $2.0.728752$ 8310 -1.530216 -5.008252 0.16109 8510 -1.530216 -5.008252 0.136025 8610 -1.530216 -5.008252 0.136025 8710 1.58761 4.995247 -0.159298 8810 6.320408 0.793784 -1.593141 8910 8.245635 2.330217 -1.400052 9010 9.994942 1.935711 0.326226 9110 7.79998 0.7423	68	9	0	4.941860	5.814382	2.533197	
7090 6.635959 4.395439 -1.648652 71 90 4.555300 2.713244 -1.932822 72 90 -3.214249 4.188440 1.974076 73 90 -3.524201 3.399236 -2.686459 74 90 -5.255530 5.466547 -2.916545 75 90 -5.975758 6.894848 -0.707691 76 90 -4.948903 6.251741 1.734634 77 90 -6.875021 -5.956558 0.425093 78 90 -3.173048 -4.307531 -1.959812 79 90 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -1.530216 -5.008252 0.16109 85 10 -1.530216 -5.008252 0.16025 86 10 -1.12398 5.127029 -0.356835 87 10 8.245635 2.330217 -1.400052 90 10 9.994942 1.935711 0.326226 91 10 7.820962 -1.504592 1.721682 93 10 -7.79998 0.742326 -1.760171 94 1<	69	9	0	6.839459	5.969277	0.572970	
7190 4.555300 2.713244 -1.932822 72 90 -3.214249 4.188440 1.974076 73 90 -3.524201 3.399236 -2.686459 74 90 -5.25530 5.466547 -2.916545 75 90 -5.975758 6.894848 -0.707691 76 90 -4.948903 6.251741 1.734634 77 90 -6.875021 -5.956558 0.425093 78 90 -3.173048 -4.307531 -1.959812 79 90 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -1.530216 -5.008252 0.136025 84 10 1.140272 -5.108695 -0.016109 85 10 -1.530216 -5.008252 0.136025 86 10 -1.12398 5.127029 -0.356835 87 10 8.245635 2.330217 -1.400052 90 10 9.994422 1.935711 0.326226 91 10 9.780657 0.009202 1.884143 92 10 7.779988 0.742326 -1.760171 94 1	70	9	0	6.635959	4.395439	-1.648652	
7290 -3.214249 4.188440 1.974076 73 90 -3.524201 3.399236 -2.686459 74 90 -5.25530 5.466547 -2.916545 75 90 -5.975758 6.894848 -0.707691 76 90 -4.948903 6.251741 1.734634 77 90 -6.875021 -5.956558 0.425093 78 90 -3.173048 -4.307531 -1.959812 79 90 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -1.530216 -5.008252 0.136025 86 10 -1.12398 5.127029 -0.356835 87 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 9.994942 1.935711 0.326226 91 10 9.780657 0.009202 1.884143 92 10 -7.779998 0.742326 -1.760171 94 10 -9.631149 -2.249246 0.718605 96 10 -7.934846 -1.832153 2.487588 97 1 <td>71</td> <td>9</td> <td>0</td> <td>4.555300</td> <td>2.713244</td> <td>-1.932822</td> <td></td>	71	9	0	4.555300	2.713244	-1.932822	
7390 -3.524201 3.399236 -2.686459 74 90 -5.25530 5.466547 -2.916545 75 90 -5.975758 6.894848 -0.707691 76 90 -4.948903 6.251741 1.734634 77 90 -6.875021 -5.956558 0.425093 78 90 -3.173048 -4.307531 -1.959812 79 90 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -1.530216 -5.008252 0.136025 86 10 -1.12398 5.127029 -0.356835 87 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 8.245635 2.330217 -1.400052 90 10 9.994942 1.935711 0.326226 91 10 7.779998 0.742326 -1.760171 94 10 -9.631149 -2.249246 0.718605 96 10 -7.934846 -1.832153 2.487588 97 10 -6.204495 -0.088157 2.163285 98 29 </td <td>72</td> <td>9</td> <td>0</td> <td>-3.214249</td> <td>4.188440</td> <td>1.974076</td> <td></td>	72	9	0	-3.214249	4.188440	1.974076	
7490 -5.255530 5.466547 -2.916545 75 90 -5.975758 6.894848 -0.707691 76 90 -4.948903 6.251741 1.734634 77 90 -6.875021 -5.956558 0.425093 78 90 -3.173048 -4.307531 -1.959812 79 90 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -4.970013 -1.101741 -0.050046 84 10 1.140272 -5.108695 -0.016109 85 10 -1.530216 -5.008252 0.136025 86 10 -1.12398 5.127029 -0.356835 87 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 9.780657 0.009202 1.884143 92 10 7.820962 -1.504592 1.721682 93 10 -7.934846 -1.832153 2.487588 97 10 -6.204495 -0.088157 2.163285 98 290 -0.004022 0.004368 -0.091809	73	9	0	-3.524201	3.399236	-2.686459	
7590 -5.975758 6.894848 -0.707691 76 90 -4.948903 6.251741 1.734634 77 90 -6.875021 -5.956558 0.425093 78 90 -3.173048 -4.307531 -1.959812 79 90 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -4.970013 -1.101741 -0.050046 84 10 1.140272 -5.108695 -0.016109 85 10 -1.530216 -5.008252 0.136025 86 10 -1.12398 5.127029 -0.356835 87 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 8.245635 2.330217 -1.400052 90 10 9.780657 0.009202 1.884143 92 10 7.820962 -1.504592 1.721682 93 10 -7.934846 -1.832153 2.487588 97 10 -6.204495 -0.088157 2.163285 98 290 -0.004022 0.004368 -0.091809	74	9	0	-5.255530	5.466547	-2.916545	
7690 -4.948903 6.251741 1.734634 77 90 -6.875021 -5.956558 0.425093 78 90 -3.173048 4.307531 -1.959812 79 90 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -4.970013 -1.101741 -0.050046 84 10 1.140272 -5.108695 -0.016109 85 10 -1.530216 -5.008252 0.136025 86 10 -1.12398 5.127029 -0.356835 87 10 8.245635 2.330217 -1.400052 90 10 9.994942 1.935711 0.326226 91 10 9.780657 0.009202 1.884143 92 10 7.779998 0.742326 -1.760171 94 10 -9.559218 -0.953317 -1.400186 95 10 -7.934846 -1.832153 2.487588 97 10 -6.204495 -0.088157 2.163285 98 290 -0.004022 0.004368 -0.091809	75	9	0	-5.975758	6.894848	-0.707691	
7790 -6.875021 -5.956558 0.425093 78 90 -3.173048 -4.307531 -1.959812 79 90 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -4.970013 -1.101741 -0.050046 84 10 1.140272 -5.108695 -0.016109 85 10 -1.530216 -5.008252 0.136025 86 10 -1.12398 5.127029 -0.356835 87 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 9.994942 1.935711 0.326226 91 10 9.780657 0.009202 1.884143 92 10 -7.779998 0.742326 -1.760171 94 10 -9.559218 -0.953317 -1.400186 95 10 -7.934846 -1.832153 2.487588 97 10 -6.204495 -0.088157 2.163285 98 290 -0.004022 0.004368 -0.091809	76	9	0	-4.948903	6.251741	1.734634	
7890 -3.173048 -4.307531 -1.959812 79 90 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -4.970013 -1.101741 -0.050046 84 10 1.140272 -5.108695 -0.016109 85 10 -1.530216 -5.008252 0.136025 86 10 -1.530216 -5.008252 0.136025 86 10 -1.530216 -5.008252 0.136025 86 10 -1.530216 -5.008252 0.136025 87 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 8.245635 2.330217 -1.400052 90 10 9.780657 0.009202 1.884143 92 10 -7.779998 0.742326 -1.760171 94 10 -9.559218 -0.953317 -1.400186 95 10 -9.631149 -2.249246 0.718605 96 10 -7.934846 -1.832153 2.487588 97 10 -6.204495 -0.088157 2.163285 98 <t< td=""><td>77</td><td>9</td><td>0</td><td>-6.875021</td><td>-5.956558</td><td>0.425093</td><td></td></t<>	77	9	0	-6.875021	-5.956558	0.425093	
7990 -5.237476 -6.026419 -1.755126 80 90 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -4.970013 -1.101741 -0.050046 84 10 1.140272 -5.108695 -0.016109 85 10 -1.530216 -5.008252 0.136025 86 10 -1.530216 -5.008252 0.136025 86 10 -1.530216 -5.008252 0.136025 87 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 8.245635 2.330217 -1.400052 90 10 9.994942 1.935711 0.326226 91 10 9.780657 0.009202 1.884143 92 10 -7.779998 0.742326 -1.760171 94 10 -9.559218 -0.953317 -1.400186 95 10 -7.934846 -1.832153 2.487588 97 10 -6.204495 -0.088157 2.163285 98 290 -0.004022 0.004368 -0.091809	78	9	0	-3.173048	-4.307531	-1.959812	
8090 -4.328197 -2.449457 2.252973 81 90 -6.414637 -4.146349 2.419007 82 60 8.169263 1.480452 -0.728752 83 10 -4.970013 -1.101741 -0.050046 84 10 1.140272 -5.108695 -0.016109 85 10 -1.530216 -5.008252 0.136025 86 10 -1.12398 5.127029 -0.356835 87 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 8.245635 2.330217 -1.400052 90 10 9.780657 0.009202 1.884143 92 10 7.820962 -1.504592 1.721682 93 10 -7.779998 0.742326 -1.760171 94 10 -9.559218 -0.953317 -1.400186 95 10 -7.934846 -1.832153 2.487588 97 10 -6.204495 -0.088157 2.163285 98 290 -0.004022 0.004368 -0.091809	79	9	0	-5.237476	-6.026419	-1.755126	
8190-6.414637-4.1463492.419007 82 60 8.169263 1.480452 -0.728752 83 10-4.970013-1.101741-0.050046 84 10 1.140272 -5.108695-0.016109 85 10-1.530216-5.0082520.136025 86 10-1.112398 5.127029 -0.356835 87 101.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 8.245635 2.330217 -1.400052 90 109.994942 1.935711 0.326226 91 109.780657 0.009202 1.884143 92 107.779998 0.742326 -1.760171 94 10-9.559218-0.953317-1.400186 95 10-7.934846-1.8321532.487588 97 10-6.204495-0.0881572.163285 98 290-0.0040220.004368-0.091809	80	9	0	-4.328197	-2.449457	2.252973	
8260 8.169263 1.480452 -0.728752 83 10 -4.970013 -1.101741 -0.050046 84 10 1.140272 -5.108695 -0.016109 85 10 -1.530216 -5.008252 0.136025 86 10 -1.112398 5.127029 -0.356835 87 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 8.245635 2.330217 -1.400052 90 10 9.994942 1.935711 0.326226 91 10 9.780657 0.009202 1.884143 92 10 -7.779998 0.742326 -1.760171 94 10 -9.631149 -2.249246 0.718605 96 10 -7.934846 -1.832153 2.487588 97 10 -6.204495 -0.088157 2.163285 98 290 -0.004022 0.004368 -0.091809	81	9	0	-6.414637	-4.146349	2.419007	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82	6	0	8.169263	1.480452	-0.728752	
8410 1.140272 -5.108695 -0.016109 85 10 -1.530216 -5.008252 0.136025 86 10 -1.112398 5.127029 -0.356835 87 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 8.245635 2.330217 -1.400052 90 10 9.994942 1.935711 0.326226 91 10 9.780657 0.009202 1.884143 92 10 7.820962 -1.504592 1.721682 93 10 -7.779998 0.742326 -1.760171 94 10 -9.631149 -2.249246 0.718605 96 10 -7.934846 -1.832153 2.487588 97 10 -6.204495 -0.088157 2.163285 98 290 -0.004022 0.004368 -0.091809	83	1	0	-4.970013	-1.101741	-0.050046	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	1	0	1.140272	-5.108695	-0.016109	
8610 -1.112398 5.127029 -0.356835 87 10 1.558761 4.995247 -0.159298 88 10 6.320408 0.793784 -1.593141 89 10 8.245635 2.330217 -1.400052 90 10 9.994942 1.935711 0.326226 91 10 9.780657 0.009202 1.884143 92 10 7.820962 -1.504592 1.721682 93 10 -7.779998 0.742326 -1.760171 94 10 -9.559218 -0.953317 -1.400186 95 10 -7.934846 -1.832153 2.487588 97 10 -6.204495 -0.088157 2.163285 98 290 -0.004022 0.004368 -0.091809	85	1	0	-1.530216	-5.008252	0.136025	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86	1	0	-1.112398	5.127029	-0.356835	
88106.3204080.793784-1.59314189108.2456352.330217-1.40005290109.9949421.9357110.32622691109.7806570.0092021.88414392107.820962-1.5045921.7216829310-7.7799980.742326-1.7601719410-9.559218-0.953317-1.4001869510-9.631149-2.2492460.7186059610-7.934846-1.8321532.4875889710-6.204495-0.0881572.16328598290-0.0040220.004368-0.091809	87	1	0	1.558761	4.995247	-0.159298	
89108.2456352.330217-1.40005290109.9949421.9357110.32622691109.7806570.0092021.88414392107.820962-1.5045921.7216829310-7.7799980.742326-1.7601719410-9.559218-0.953317-1.4001869510-7.934846-1.8321532.4875889610-6.204495-0.0881572.16328598290-0.0040220.004368-0.091809	88	1	0	6.320408	0.793784	-1.593141	
90109.9949421.9357110.32622691109.7806570.0092021.88414392107.820962-1.5045921.7216829310-7.7799980.742326-1.7601719410-9.559218-0.953317-1.4001869510-9.631149-2.2492460.7186059610-7.934846-1.8321532.4875889710-6.204495-0.0881572.16328598290-0.0040220.004368-0.091809	89	1	0	8.245635	2.330217	-1.400052	
91109.7806570.0092021.88414392107.820962-1.5045921.7216829310-7.7799980.742326-1.7601719410-9.559218-0.953317-1.4001869510-9.631149-2.2492460.7186059610-7.934846-1.8321532.4875889710-6.204495-0.0881572.16328598290-0.0040220.004368-0.091809	90	1	0	9.994942	1.935711	0.326226	
92107.820962-1.5045921.7216829310-7.7799980.742326-1.7601719410-9.559218-0.953317-1.4001869510-9.631149-2.2492460.7186059610-7.934846-1.8321532.4875889710-6.204495-0.0881572.16328598290-0.0040220.004368-0.091809	91	1	0	9.780657	0.009202	1.884143	
9310-7.7799980.742326-1.7601719410-9.559218-0.953317-1.4001869510-9.631149-2.2492460.7186059610-7.934846-1.8321532.4875889710-6.204495-0.0881572.16328598290-0.0040220.004368-0.091809	92	1	0	7.820962	-1.504592	1.721682	
9410-9.559218-0.953317-1.4001869510-9.631149-2.2492460.7186059610-7.934846-1.8321532.4875889710-6.204495-0.0881572.16328598290-0.0040220.004368-0.091809	93	1	0	-7.779998	0.742326	-1.760171	
9510-9.631149-2.2492460.7186059610-7.934846-1.8321532.4875889710-6.204495-0.0881572.16328598290-0.0040220.004368-0.091809	94	1	0	-9.559218	-0.953317	-1.400186	
9610-7.934846-1.8321532.4875889710-6.204495-0.0881572.16328598290-0.0040220.004368-0.091809	95	1	0	-9.631149	-2.249246	0.718605	
9710-6.204495-0.0881572.16328598290-0.0040220.004368-0.091809	96	1	0	-7.934846	-1.832153	2.487588	
98 29 0 -0.004022 0.004368 -0.091809	97	1	0	-6.204495	-0.088157	2.163285	
	98	29	0	-0.004022	0.004368	-0.091809	