Supplementary Information-1

Stereoselective Synthesis of 4-Substituted-Cyclic Sulfamidate-5Carboxylates By Asymmetric Transfer Hydrogenation Accompanying Dynamic Kinetic Resolution and Its Use in Concise Stereoselective Synthesis of (-)-epi-Cytoxazone and Taxotere Side-Chain.

Jin-ah Kim, ${ }^{a}$ Yeon Ji Seo, ${ }^{a, b}$ Soyeong Kang, ${ }^{a, b}$ Juae Han ${ }^{a, b}$ and Hyeon-Kyu Lee ${ }^{a, b *}$

a) Korea Chemical Banl, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, KOREA; b) Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 113 Gwahango, Yuseong, Daejeon 305-333, KOREA.

$$
\begin{aligned}
& \text { Tel: +82-42-860-7016; Fax: +82-42-860-7096 } \\
& \text { e-mail: leehk@krict.re.kr }
\end{aligned}
$$

Table of Contents

General 3

1. Optimization of the ATH-DKR reaction of 6 4
1-1. Table S1. Optimization of ATH-DKR reaction of $\mathbf{6 a}$ with various catalysts 4
1-2. Table S2. Optimization of ATH-DKR reaction of $\mathbf{6 a}$ in various solvents 6
2. General procedure for the synthesis of α-hydroxy- β-keto esters from $\boldsymbol{\beta}$-keto-ester 5
3. General procedure for the synthesis of cyclic imine 6 from α-hydroxy- β-keto-ester 11
4. General procedure for the ATH-DKR reaction of 4,5-disubstituted cyclic imine 6 to 7 16
5. Scheme S1. Assignment of absolute stereochemistry of 7a via converting 7a to the known 8a- 23
5-1. Synthesis of (S,S)-N-Boc-7a 24
5-2. 2-Azido-3-tert-butoxycarbonylamino-3-phenyl-propionic acid methyl ester, (2R,3S)-8a 24
6. Scheme S2. Evaluation of ee's of 7r and 7t 25
6-1. Synthesis of N-Boc-7r and N-Boc-7t 26
6-2. Synthesis of $\mathbf{8 r}$ and $\mathbf{8 t}$ 26
7. Scheme S3. Synthesis of Taxotere side chain, (2R,3S)-10 27
$7-1$. Synthesis of $(4 S, 5 S)-N-B o c-7 a$ 28
7-2. Synthesis of $(4 R, 5 R)-N$-Boc-7a 28
7-3. Synthesis of $(2 R, 3 S)-\mathbf{8 a}$ 28
7-4. Synthesis of $(2 R, 3 S)-9 \mathbf{a}$ 29
7-5. Synthesis of $(2 R, 3 S)-10$, Toxotere side chain 30
8. Scheme S4. Synthesis of (-)-epi-Cytoxazone, (2R,3S)-12 30
8-1. Synthesis of $(4 S, 5 S)-N-B o c-7 \mathbf{j}$ 30
8-2. Synthesis of $(2 R, 3 S)-\mathbf{8 j}$ 31
$8-3$. Synthesis of $(2 R, 3 S)-\mathbf{9 j}$ 31
8-4. Synthesis of $(2 R, 3 S)-11$ 32
8-5. Synthesis of (2R,3S)-12, (-)-epi-Cytoxazone 32
9. X-ray crystallography analysis data of $(S, S)-7 \mathrm{j}$ 33

General

All commercial reagents were used as obtained commercially unless otherwise noted. Reactions were performed using oven dried glassware under an atmosphere of nitrogen. Dichloromethane (DCM), ether, THF were dried and purified using a solvent purification system. Flash column chromatography was carried out on Fuji Chromatorex silica gel (38-75 $\mu \mathrm{m}$). Analytical thin layer chromatography (TLC) was performed on Merck silica gel $60 \mathrm{~F}_{254}$ plates. Preparative thin layer chromatography (PLC) was performed on Merck silica gel 60 $\mathrm{F}_{254} 2 \mathrm{~mm}$ plates. Visualization of the developed chromatogram was accomplished with UV light and by staining with ethanolic phosphomolybdic acid (PMA) solution or ninhydrin solution followed by heating.

Nuclear magnetic resonance (NMR) spectra were recorded using Bruker 500 MHz NMR instrument (${ }^{1} \mathrm{H}$ NMR at 500 MHz and ${ }^{13} \mathrm{C}$ NMR at 125 MHz) or Bruker 300 MHz NMR instrument $\left({ }^{1} \mathrm{H}\right.$ NMR at 300 MHz and ${ }^{13} \mathrm{C}$ NMR at 75 MHz$) .{ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), integration, coupling constants (Hz). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). High performance liquid chromatography (HPLC) was carried out on a Young Lin HPLC system (7725i Injector, SDV 30 Plus Solvent Degassor \& Valve Module (Helium Sparging), SP930D Solvent Delivery Pump, UV 730D Absorbance Detector) equipped with a Chiralpak IB or Chiralpak AD-H column or an Aglient 1100 Series HPLC equipped with Chiralpak IB or Chiralpak IC column. Specific rotations were measured on a Rudolph Autopol IV (Automatic polarimeter). High-resolution mass spectra and elemental analysis were obtained from the Korea Research Institute of Chemical Technology (EI) or Korea Basic Science Institute (ESI). HR-MS were measured with electron impact (EI) ionization via double focusing mass analyzer (magnetic and electric fields) or electrospray ionization (ESI) via time of flight (TOF) analyzer.

The formic acid/triethylamine mixtures (molar ratio $=5 / 2$ or 1:1) are commercially available. $(R, R)-\mathbf{1 a}{ }^{1}$ and $(R, R)-\mathbf{1 b}^{2}$ were prepared according to the literature procedures. Chiral catalysts, $(R, R)-\mathbf{1 c},(R, R)-\mathbf{1 d}$, and $(R, R)-\mathbf{1 e}$ are commercially available.

[^0]
1. Optimization of the ATH-DKR reaction of 6

1-1. Optimization of ATH-DKR reaction of 6a with various catalysts

Table S1. Optimization of chiral catalysts 1a-e in ATH-DKR of $\mathbf{6 a}{ }^{\text {a }}$

Entry	Cat.1	Convn (\%)	dr (syn:anti)	ee(\%)	config $^{\mathrm{d}}$
1	$(R, R) \mathbf{- 1 a}$	>99	$>25: 1^{\mathrm{c}}$	98	S, S
2	$(R, R) \mathbf{- 1 b}$	>99	$>25: 1^{\mathrm{c}}$	30	S, S
3	$(R, R) \mathbf{- 1 c}$	13	-	95	S, S
4	$(R, R)-\mathbf{1 d}$	6	-	-	-
5	$(R, R)-\mathbf{1 e}$	17	-	83	S, S

$(R, R)-1 \mathbf{a}: \mathrm{M}=\mathrm{Rh} \quad(R, R)-\mathbf{1 c}: \mathrm{R}=p$-Tolyl $\quad(R, R)-\mathbf{1 e}: \mathrm{R}=p$-Tolyl $(R, R)-\mathbf{1 b}: \mathrm{M}=\mathrm{Ir} \quad(R, R)-1 \mathrm{~d}: \mathrm{R}=\mathrm{F}_{5} \mathrm{Ph}$
${ }^{\mathrm{a}}$ Reaction conditions: $\mathbf{6 a}(0.5 \mathrm{mmol})$, cat- $\mathbf{1}(0.5 \mathrm{~mol} \%), \mathrm{HCO}_{2} \mathrm{H} / \mathrm{Et}_{3} \mathrm{~N}(5: 2,0.5 \mathrm{ml})$, EtOAc (5 mL), rt. ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude products. ${ }^{\text {c }}$ Only 4,5 -cis products were detected in ${ }^{1} \mathrm{H}$ NMR of crude products. ${ }^{\mathrm{d}}$ Determined by chiral HPLC. ${ }^{\mathrm{e}}$ See, Scheme S1 below

1-2. Optimization of ATH-DKR reaction of $\mathbf{6 a}$ in various solvents

Table S2. Optimization of solvent effect in ATH-DKR of $\mathbf{3}^{\text {a }}$

	$\xrightarrow[\begin{array}{c}(R, R)-\mathbf{1 a ~}(0.5 \mathrm{~mol} \%) \\ \mathrm{HCO} 2 \mathrm{H} / \mathrm{Et} \mathrm{I}_{3} \mathrm{~N}(5: 2), 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}\end{array}]{\text { holvent }}$		
Entry	Solvent	Convn (\%) ${ }^{\text {b }}$	ee (\%) ${ }^{\text {c }}$
1	EtOAc	>99	98.1
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	>99	98.9
3	$\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$	>99	98.1
4	CHCl_{3}	>99	84.1
5	Toluene	>99	85.1
6	DMF	>99	88.1
7	MeOH	>99	97.1
8	THF	96	90.9
9	2-Propanol	>99	96.8

${ }^{\mathrm{a}}$ Reaction conditions: $\mathbf{6 a}(0.5 \mathrm{mmol}),(R, R)-\mathbf{1 a}(0.5 \mathrm{~mol} \%), \mathrm{HCO}_{2} \mathrm{H} / \mathrm{Et}_{3} \mathrm{~N}(5: 2,0.5 \mathrm{ml})$, in 5.0 mL of solvent at rt . ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude products. ${ }^{c}$ Determined by chiral HPLC of the crude products.

2. General procedure for the synthesis of α-hydroxy- β-keto esters from β-keto-ester

[Method A]

$4-4-1 .^{3}$
To a mixture of β-keto-ester (1.0 eq.) and potassium carbonate ($1.25 \mathrm{eq}$.) in acetonitrile cooled in a water ice-bath, was added dropwise with stirring a solution of tosyl azide (1.25 eq) in acetonitrile. The reaction mixture was stirred at room temperature. The disappearance of

[^1]ester was monitored by TLC. Potassium carbonate was filtered off and the filterate was evaporated in vacuo to afford a residue which was purified by silica-gel chromatography to give the diazo compund.

Step-2 ${ }^{4}$

A solution of the diazo compound (1.0 eq) and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(0.03 \mathrm{eq})$ in THF- $\mathrm{H}_{2} \mathrm{O}$ (2:1 ratio) was refluxed overnight and allowed to cool to room temperature. The mixture was concentrated in vacuo and the aqueous residue was extracted with EtOAc (x3). The combined organic layers were washed with water and brine, dried over anhydrous MgSO_{4}, filtered, and evaporated to dryness. The residue was purified by silica-gel chromatography to give the α hydroxy β-ketocarbonates.
[Method B]

Step-1
To a solution of $\mathbf{1}(4 \mathrm{~g}, 21.7 \mathrm{mmol})$ and $\mathrm{PhI}(\mathrm{OAc})_{2}(7 \mathrm{~g}, 21.7 \mathrm{mmol})$ in dichloromethane (50 $\mathrm{mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.4 \mathrm{~mL}, 10.85 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 20 min and then quenched by NaHCO_{3}. The layers were separated and the aqueous layer was extracted with dichloromethane(x3). The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, and evaporated. The residue was purified by silica-gel chromatography (Hexane/EtOAc=5:1) to give 2 ($4.96 \mathrm{~g}, 94.4 \%$ yield).

Step-2

[^2]A solution of $2(1.3 \mathrm{~g}, 5.4 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$ was added dropwise to a solution of $\mathrm{KCN}(175 \mathrm{mg}, 2.7 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . After removal of the solvent, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then washed with brine. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated. The residue was purified by silica-gel chromatography (Hexane/EtOAc, 5:1) to give $\mathbf{3}$ (0.815 g , 75.4% yield).
$\left[\right.$ Method C] ${ }^{5}$

To a suspension of β-keto-ester in $\mathrm{H}_{2} \mathrm{O}$ was added PIFA (2.0 eq) portionwise for 10 minutes. The reaction mixture was stirred at room temperature until TLC indicated the total consumption of the β-keto-ester. Then the reaction mixture was treated with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and extracted with EtOAc (x3). The combined organic layers were washed with water and brine, dried over anhydrous MgSO_{4}, filtered, and concentrated. The residue was purified by silica-gel chromatography to give the α-hydroxy- β-keto ester.

3-Phenyl-2-hydroxy-3-oxo-propionic acid methyl ester ${ }^{6}$ [Method A]

yield: 89.3% (1.9 g as a yellow oil); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.04-8.05 (m, 2H), 7.59-7.62 (m, 1H), 7.45-7.48 (m, 2H), 5.60 (s, 1H), 4.42-4.49 (brs, 1 H), 3.68 (s, 3H).; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.8$, 169.1, 134.7, 133.0, 129.5, 128.9, 74.3, 53.1.; HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$ 194.0579, found 194.0542 .

3-(2-Tolyl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method C]

The ptoduct was unstable in silica-gel chloromatography and used next
 step without further purification. HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$

[^3]
3-(3-Tolyl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method B]

yield: 82.1% (683.5 mg as a pale yellow oil); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right) \delta 7.86-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.39(\mathrm{t}, 1 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{brs}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.8,169.1,138.8,135.6,133.0$, 129.8, 128.7, 126.7, 74.3, 53.3, 21.3.; HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ 208.0736, found 208.0732 .

3-(4-Tolyl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method C]

yield: 84.8% (84.8 mg as a yellow oil); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 5.59(\mathrm{~s}$, $1 \mathrm{H}), 4.33-4.37(\mathrm{brs}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.1, 169.2, 146.1, 130.4, 129.6, 129.6, 74.2, 53.0, 21.9.; HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ 208.0736, found 208.0733.

3-(3-Chloro-phenyl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method B]
yield: 41.7% (0.11 g as a yellow oil); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 1 \mathrm{H})$, $5.57(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.7$, 168.8, 135.3, 134.6, 134.6, 130.2, 129.4, 127.6, 74.5, 53.3.; HRMS (EI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{4}$ 228.0189, found 228.0177.

3-(4-Chloro-phenyl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method A]

yield: 35.7% (0.24 g as a yellow oil); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)
 $\delta 8.02$ (d, 2H, $J=8.3 \mathrm{~Hz}), 7.48(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 5.56(\mathrm{~s}, 1 \mathrm{H})$, 4.21 (brs, 1H), 3.73 (s, 3 H).; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.6$, 168.9, 141.4, 131.3, 130.9, 129.3, 74.4, 53.2.; HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{4} 228.0189$, found 228.0183.

3-(4-Methoxy-phenyl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method A]

yield: 78% (5.6 g as a yellow oil); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.07 (d, 2H, $J=8.5 \mathrm{~Hz}$), 6.97 (d, 2H, $J=8.5 \mathrm{~Hz}$), 5.55 (d, 1H, $J=$ $5.6 \mathrm{~Hz}), 4.35(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.7,169.3,164.9,132.0,125.7,114.2$, 74.1, 55.6, 53.0.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5} 224.0685$, found 224.0673.

3-(4-Fluoro-phenyl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method C] yield: $66 \%\left(0.66 \mathrm{~g}\right.$ as a pale yellow oil); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.13(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.5,167.3,166.3\left(\mathrm{q}, J_{C F}=248.7 \mathrm{~Hz}\right), 133.1(\mathrm{~d}$, $\left.J_{C F}=10.0 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{C F}=3.4 \mathrm{~Hz}\right), 115.8\left(\mathrm{~d}, J_{C F}=21.7 \mathrm{~Hz}\right), 85.3,53.9 . ; \mathrm{HRMS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FO}_{4} 212.0485$, found 212.0456.

3-(4-Trifluoromethyl-phenyl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method A]

 yield: $61 \%\left(0.77 \mathrm{~g}\right.$ as a pale yellow oil); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.78(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 5.65$ $(\mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.2,168.9$, $135.4\left(\mathrm{q}, J_{C F}=32.6 \mathrm{~Hz}\right), 130.5,129.8,125.9,125.5\left(\mathrm{q}, J_{C F}=271.2\right.$ Hz), 74.7, 53.3.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4}$ 262.0453, found 262.0441.

3-(4-Cyano-phenyl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method A]

yield: $49.6 \% ~\left(0.93 \mathrm{~g}\right.$ as a yellow solid), $\mathrm{mp}=100.4-102.6{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$
 NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.82(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.17(\mathrm{brs}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.9,168.7,136.2,132.6,129.9$, 117.7, 117.6, 74.7, 53.4.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{4}$ 219.0532, found 219.0528.

3-(4-Methoxycarbonyl-phenyl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method A] yield: 42% (0.71 g as a pale yellow oil); ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta$ 8.06-8.11 (m, 4H), $5.60(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, 3H).; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.6, 168.9, 165.9,
136.4, 135.0, 129.9, 129.3, 74.6, 53.2, 52.6.; HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6}$ 252.0634, found 252.0632.

3-(Naphthalen-2-yl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method A]

yield: $59 \%\left(1.64 \mathrm{~g}\right.$ as a yellow oil).; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.03(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$, $7.90-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.61(\mathrm{t}, 1 \mathrm{H}, J=7.4$ $\mathrm{Hz}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{brs}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.6,169.2$, 136.3, 132.3, 132.2, 130.3, 130.0, 129.5, 128.8, 127.9, 127.2, 124.2, 74.4, 53.1.; HRMS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} 244.0736$, found 244.0729.

3-(Furan-2-yl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method B]

yield: $69.3 \% ~\left(0.95 \mathrm{~g}\right.$ as a yellow oil); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
 7.71-7.72 (m, 1H), $7.49(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 6.62-6.63(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}$, $1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 4.01(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 3.78(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.8,169.1,149.8,148.5,121.4,113.1,74.3,53.3 . ;$ HRMS (EI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{5}$ 184.0372, found 184.0353.

3-(Thiophen-2-yl)-2-hydroxy-3-oxo-propionic acid methyl ester [Method B]

yield: $75.4 \% ~\left(0.81 \mathrm{~g}\right.$ as a brown oil); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
 $8.01(\mathrm{~d}, 1 \mathrm{H}, ~, J=3.6 \mathrm{~Hz}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}), 7.19(\mathrm{t}, 1 \mathrm{H}, J=4.4$ $\mathrm{Hz}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{brs}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 186.1,169.2,139.4,136.4,135.3,128.7,75.1 .53 .3 . ;$ HRMS (EI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}$ 200.0143, found 200.0139.

2-Hydroxy-3-oxo-hexanoic acid methyl ester [Method A]

yield: 80.1% (1.36 g as a coloress oil); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
 $4.77(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{brs}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.78(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.69$ $(\mathrm{m}, 2 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.4$, 169.0, 76.7, 53.2, 40.6, 17.0, 13.6.; HRMS (EI): m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4} 160.0736$, found 160.0728

2-Hydroxy-3-oxo-5-phenyl-pentanoic acid methyl ester [Method A]

yield: 51.8% (1.14 g as a pale yellow oil); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.26-7.30 (m, 2H), 7.16-7.22 (m, 3H), 4.76(s, 1H), 3.853.89 (brs, 1 H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.05-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.90-3.00(\mathrm{~m}, 3 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.7,168.7,140.2,128.6,128.3$, 126.4, 77.9, 53.2, 40.4, 29.3.; HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ 222.0892, found 222.0888.

3-Cyclohexyl-2-hydroxy-3-oxo-propionic acid methyl ester ${ }^{7}$ [Method A]

yield: 78.2% (2.18 g as a pale yellow oil); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

46.5, 29.0, 28.6, 25.7.; HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$ 200.1049, found 200.1040.

3. General procedure for the synthesis of cyclic imine 6 from α-hydroxy- β-keto-ester. ${ }^{8,9}$

To the solution of 3-phenyl-2-hydroxy-3-oxo-propionic acid methyl ester ($1.85 \mathrm{~g}, 9.53 \mathrm{mmol}$) in DMA (N, N-dimethyl acetamide, 18 mL) was added sulfamoyl chloride $(2.2 \mathrm{~g}, 19 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 1.5 h and diluted with EtOAc $(30 \mathrm{~mL})$. The reaction mixture washed with brine and the organic layer was dried over anhydrous MgSO_{4} and the solvent was evaporated under reduced pressure. The residue was re-dissolved in toluene (15 mL) and catalytic amount of PTSA (p-toluenesulfonic acid) was added. The reaction mixture was heated for 1 h at $110^{\circ} \mathrm{C}$ and cooled to room temperature. The solvent was removed and the reaction mixture was diluted with EtOAc (30 mL) and

[^4]washed brine. The organic layers were dried over anhydrous MgSO_{4} and the solvent was evaporated under reduced pressure. The residue was recrystallized from EtOAc/Hexane, to give the desired imine, as white crystals $\mathbf{6 a}$.

Methyl 2,2-dioxo-4-phenyl-5H-1,2,3-oxathiazole-5-carboxylate, 6a

yield: 74.8% (1.81 g as a white solid), $\mathrm{mp}=149.5-151.5{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.77(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $7.58(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) δ 171.7, 163.5, 136.3, 130.3, 129.6, 126.3, 83.7, 54.4.; HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{5} \mathrm{~S} 255.0201$, found 255.0233.

Isopropyl 2,2-dioxo-4-phenyl-5H-1,2,3-oxathiazole-5-carboxylate, 6b

Yield: $53 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08$ (d, $2 \mathrm{H}, J=7.8$), 7.77-
 7.72 (t, 1H, $J=7.4$), 7.62-7.55 (t, 2H, $J=7.8$), 6.13 (s, 1H), 5.05 (m, $1 \mathrm{H}), 1.18(\mathrm{~d}, 6 \mathrm{H}, J=6.21) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,162.3$, 136.1, 130.3, 129.4, 126.5, 84.1, 72.6, 21.3, 21. 2; HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}$ 283.0514, found 283.0503.

Benzyl 2,2-dioxo-4-phenyl-5H-1,2,3-oxathiazole-5-carboxylate, $6 \mathbf{c}$

Yield: $66 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, 2 \mathrm{H}, J=7.4), 7.70(\mathrm{t}$,
 $1 \mathrm{H}, J=7.5$), $7.49(\mathrm{t}, 2 \mathrm{H}, J=7.8), 7.31-7.18(\mathrm{~m}, 6 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.23$ (q, 2H, $J=12.1$).; ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,162.7,136.1$, 133.6, 130.3, 129.5, 128.9, 128.7, 128.4, 126.3, 83.8, 69.3.; HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S} 331.0514$, found 331.0519.

\boldsymbol{t}-Butyl 2,2-dioxo-4-phenyl-5H-1,2,3-oxathiazole-5-carboxylate, 6d

Yield: $48 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, 2 \mathrm{H}, J=7.5$), $7.73(\mathrm{t}$,
 $1 \mathrm{H}, J=7.5), 7.57(\mathrm{t}, 2 \mathrm{H}, J=7.7), 6.06(\mathrm{~s}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,161.6,136.0,130.3,129.4,126.6,86.2$, 84.9, 27.5.; HRMS (EI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$ 297.0671, found 297.0680.

Methyl 4-(2-tolyl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, 6e

yield: $53.3 \% ~\left(0.93 \mathrm{~g}\right.$ as a white solid), $\mathrm{mp}=106.1-107.4^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR
 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.57(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$, 7.37-7.43 (m, 2H), $6.24(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,163.4,142.8,134.8,133.1,130.9,126.5$, 125.2, 84.6, 54.2, 22.9.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}$ 269.0358 , found 269.0354 .

Methyl 4-(3-tolyl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, 6 f

yield: 71.4% (498.2 mg as a white solid), $\mathrm{mp}=128.3-129.1^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$
 NMR (300 MHz, CDCl_{3}) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ $7.53(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,163.7,139.9,137.3,130.8,129.5,127.6$, 126.4, 83.8, 54.5, 21.4.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}$ 269.0358, found 269.0364.

Methyl 4-(4-tolyl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, 6g

yield: 53% (670 mg as a white solid), $\mathrm{mp}=147.7-148.3^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $6.16(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.5, 163.8, 148.2, 130.5, 130.5, 123.8, 83.7, 54.4, 22.2.; HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S} 269.0358$, found 269.0355 .

Methyl 4-(3-chloro-phenyl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, $\mathbf{6 h}$

 yield: 50.7% (176 mg as a white solid), $\mathrm{mp}=149.0-150.5^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.70-$ $7.72(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,163.3,136.2,136.1,130.9,130.2$, 128.5, 128.1, 83.6, 54.7.; HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNO}_{5} \mathrm{~S}$ 288.9812, found 288.9818 .

Methyl 4-(4-chloro-phenyl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, $\mathbf{6 i}$
yield: 68% (650 mg as a white solid), $\mathrm{mp}=140.4-142.8^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR
 $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.57(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$, $6.15(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,163.5$, 143.3, 131.7, 130.2, 124.8, 83.6, 54.6.; HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNO}_{5} \mathrm{~S} 288.9812$, found 288.9817.

Methyl 4-(4-methoxy-phenyl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, $\mathbf{6 j}$
 285.0308. yield: $63 \%\left(0.5 \mathrm{~g}\right.$ as a white solid), $\mathrm{mp}=160.8-163.1^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=8.5$ $\mathrm{Hz}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.2,172.2,166.2,164.0,133.0,119.0,115.0,83.9,55.6$, 53.5.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{6} \mathrm{~S}$ 285.0307, found Methyl 4-(4-fluoro-phenyl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, $\mathbf{6 k}$
 yield: 69% (750 mg as a white solid), $\mathrm{mp}=130.6-133.5^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.15-8.18 (m, 2H), 7.29-7.32 (m, 2H), 6.18 (s, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,167.6\left(\mathrm{~d}, J_{C F}=\right.$ 259.8 Hz), 163.5, $133.4\left(\mathrm{~d}, J_{C F}=9.9 \mathrm{~Hz}\right), 122.8\left(\mathrm{~d}, J_{C F}=3.1 \mathrm{~Hz}\right), 117.3$ (d, $J_{C F}=22.3 \mathrm{~Hz}$), 83.6, 54.6.; HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{FNO}_{5} \mathrm{~S}$ 273.0107, found 273.0107.

Methyl 4-(4- trifluoromethyl-phenyl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, 61
 yield: $44 \%\left(0.37 \mathrm{~g}\right.$ as a white solid), $\mathrm{mp}=191.1-196.6^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.86(\mathrm{~d}, 2 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5$, $163.0,137.1\left(\mathrm{q}, J_{C F}=33.2 \mathrm{~Hz}\right), 130.7,129.4,126.5,123.0\left(\mathrm{q}, J_{C F}=\right.$ 271.4 Hz), 83.6, 54.6.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}$ 323.0075, found 323.0077.

Methyl 4-(4-cyano-phenyl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, 6m

yield: $77.5 \% ~\left(0.62 \mathrm{~g}\right.$ as a white solid), $\mathrm{mp}=166.1-169.4^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.87(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $6.21(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3$, 162.9, 133.0, 130.7, 130.0, 119.2, 117.0, 83.5, 54.7.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ 280.0154, found 280.0140.

Methyl 4-(4-methoxycarbonyl-phenyl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, $6 n$

found 313.0246 .
yield: $60.4 \% ~\left(1.13 \mathrm{~g}\right.$ as a brown solid), $\mathrm{mp}=118.2-123{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 8.14(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.2 \mathrm{~Hz}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,165.4,163.1,136.5,130.4,130.3,129.8$, 83.7, 54.5, 52.9.; HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{7} \mathrm{~S} 313.0256$,

Methyl 4-(naphthalen-2-yl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, 60 yield: 59% (1.1 g as a white solid), $\mathrm{mp}=151.5-155.7^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.01(\mathrm{t}$, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.65-7.75(\mathrm{~m}, 2 \mathrm{H}), 6.35(\mathrm{~s}$, 1 H), 3.83 ($\mathrm{s}, 3 \mathrm{H}$).; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,163.9$, $136.9,133.5,132.4,130.6,130.1,129.9,128.3,128.0,124.6,123.9$, 83.9, 54.5.; HRMS (EI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S} 305.0358$, found 305.0356.

Methyl 4-(furan-2-yl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, 6p

 yield: 18% (0.14 g as a ivory solid), $\mathrm{mp}=130.6-133.5{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.86-7.87 (m, 1H), 7.67-7.68 (m, 1H), 6.75-6.77 (m, 1H), $5.97(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4,159.8$, 151.1, 143.3, 124.9, 114.6, 82.6, 54.5.; HRMS (EI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{6} \mathrm{~S} 244.9994$, found 244.9997.

Methyl 4-(thiophen-2-yl)-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, 6q

yield: 88.7% (0.51 g as a ivory solid), $\mathrm{mp}=106.2-110.2{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-8.08(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.31(\mathrm{~m}$, $1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7$, 163.9, 139.1, 138.0, 130.2, 129.8, 83.3, 54.6.; HRMS (EI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{5} \mathrm{~S}_{2} 260.9766$, found 260.9765 .

Methyl 4-propyl-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, $6 \mathbf{r}$
 yield: $63.8 \% ~\left(2.79 \mathrm{~g}\right.$ as a yellow oil); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.56$ (s, 1H), 3.91 (s, 3H), 2.65-2.75 (m, 2H), 1.79-1.87 (m, 2H), 1.04 (t, 3H, J $=7.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.9,162.8,85.1,54.4,33.2$, 18.9, 13.9.; HRMS (EI): m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}$ 221.0358, found 221.0365 .

Methyl 4-phenethyl-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, 6s

 yield: 45% (0.63 g as a ivory solid), $\mathrm{mp}=83-87.1^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.05-$ $3.13(\mathrm{~m}, 4 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.6,162.4,138.7$, 129.0, 128.4, 127.0, 85.2, 54.3, 33.1, 31.3.; HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}$ 283.0514, found 283.0516.

Methyl 4-cyclohexyl-5H-1,2,3-oxathiazole-5-carboxylate 2,2-dioxide, $6 \mathbf{t}$
 yield: 79.4% (2.26 g as a pale yellow oil); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.37-2.06(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.0,162.9,83.9,54.2,40.0,30.8,29.1$, 25.7, 25.3, 24.9.; HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$ 261.0671, found 261.0683 .

4. General procedure for the ATH-DKR reaction of 4,5-disubstituted cyclic imine 6 to 7

To the solution of $\mathbf{6 a}(255 \mathrm{mg}, 1.0 \mathrm{mmol})$ in EtOA (10 mL) was added added (R, R) $\mathrm{Cp} * \mathrm{RhCl}(\mathrm{TsDPEN})$ (1a) catalyst ($3.2 \mathrm{mg}, 0.5 \mathrm{~mol} \%$), and then added slowly an azeotroic mixtrure of $\mathrm{HCO}_{2} \mathrm{H} / \mathrm{Et}_{3} \mathrm{~N}$ (molar ratio $=5: 2,1.0 \mathrm{~mL}$) via a syringe. The reaction mixture was stirred for 0.5 h at room temperature and diluted with EtOAc. The reaction mixture was washed with water and brine. The organic layer was dried over anhydrous MgSO_{4} and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (Hexane/EtOAc, 2:1) to give a white solid ($234 \mathrm{mg}, 91.6 \%$).

Methyl (4S,5S)-4-phenyl-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7a

yield: 91.6% (234 mg as a white solid), $\mathrm{mp}=101.9-104.7^{\circ} \mathrm{C}, 97 \% \mathrm{ee}$:
 Chiralpak IB, 20% ethanol $/ \mathrm{n}$-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm} t_{\mathrm{R}}($ major $)=$ $10.7 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+102.9\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 2 \mathrm{H}), 5.39$ $(\mathrm{d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{brs}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,132.0,129.8,129.1,126.6,81.8,61.4,52.7 . ;$ HRMS (EI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S} 257.0358$, found 257.0340.

Methyl ($4 R, 5 R$)-4-phenyl-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (R, R)-7a

yield: $94 \% ~\left(24 \mathrm{mg}\right.$ as a white solid), $\mathrm{mp}=103.2-105.4^{\circ} \mathrm{C}, 98.1 \%$ ee: Chiralpak IB, 20% ethanol $/ \mathrm{n}$-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm} t_{\mathrm{R}}($ major $)=$ $9.9 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=-101.7\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.31(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~d}, 1 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 5.28(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.02(\mathrm{brs}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 165.6,131.9,129.9,129.2,126.5,81.6,61.4,52.7 . ;$ HRMS (EI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}$ 257.0358, found 257.0343.

Isopropyl (4S,5S)-4-phenyl-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7b

yield: $85 \% ;[\alpha]_{\mathrm{D}}{ }^{23}=+76.8\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.39-7.34(\mathrm{~m}, 5 \mathrm{H}), 5.33(\mathrm{~m}, 3 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.72(\mathrm{~s}$, $3 \mathrm{H}){ }^{13}{ }^{1} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,132.2,129.7,129.1,126.9$, 81.6, 70.8, 61.5, 21.4, 20.8; HRMS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$ 285.0671, found 285.0664 .

Benzyl (4S,5S)-4-phenyl-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7c

yield: $87 \% ;[\alpha]_{\mathrm{D}}{ }^{21}=+71.5\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 $\delta 7.39-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H} . J=6.8), 5.44(\mathrm{~d}, 1 \mathrm{H}, J=6.7), 5.33(\mathrm{~d}$, $1 \mathrm{H}, J=6.9), 4.93(\mathrm{~d}, 1 \mathrm{H}, J=12.0), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=12.0) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,133.7,131.9,129.8,129.2,128.8,128.7$, 128.6, 126.7, 81.8, 68.1, 61.5; HRMS (EI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$ 333.0671, found 333.0662 .
\boldsymbol{t}-Butyl (4S,5S)-4-phenyl-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7d yield: 87%; 99.9% ee (Chiralpak AD-H, 5% isopropanol/hexanes, 1.0
 $\mathrm{mL} / \mathrm{min}, 215 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=32.27 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=36.25 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}$ $=+89.3\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.33(\mathrm{~m}$, $5 \mathrm{H}), 5.27(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0$, 132.6, 129.6, 129.1, 127.0, 84.5, 81.7, 61.5, 27.4; HRMS (EI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$ 299.0827, found 299.0838.

Methyl (4S,5S)-4-(o-tolyl)-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7e
yield: $95.1 \% ~\left(25.7 \mathrm{mg}\right.$ as a white solid), $\mathrm{mp}=119.8-120.4^{\circ} \mathrm{C}, 92.1 \%$
 ee: Chiralpak AD-H, 20\% isopropanol/n-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$ $t_{\mathrm{R}}($ major $)=8.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=10.1 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+91.3$ (c 0.15 , $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, 1 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 5.52(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.36(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.31(\mathrm{~s}$, $3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,136.1,131.2,129.7,129.6,126.8$, 124.2, 80.6, 57.8, 52.5, 19.4.; HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}$ 271.0514, found 271.0510. yield: $99.3 \% ~\left(31.4 \mathrm{mg}\right.$ as a white solid), $\mathrm{mp}=97.1-99.4^{\circ} \mathrm{C}, 98.7 \%$
 ee: Chiralpak AD-H, 10% isopropanol $/ \mathrm{n}$-hexane, $1.3 \mathrm{ml} / \mathrm{min}, 215$ $\mathrm{nm} t_{\mathrm{R}}($ major $)=15.9 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=17.0 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{29}=+54.2(\mathrm{c}$ $0.3, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.33(\mathrm{~m}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.10-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~d}, 1 \mathrm{H}, J=6.7$ Hz), $5.28(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 5.19(\mathrm{brs}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 165.9,139.3,131.8,130.7,129.2,127.2,123.6,81.9,61.5,52.7,21.5 . ;$ HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}$ 271.0514, found 271.0507.

Methyl (4S,5S)-4-(p-tolyl)-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7g

yield: 98.6% (50.8 mg as a white solid), $\mathrm{mp}=103.8-105.8^{\circ} \mathrm{C}, 99.2 \%$ ee: Chiralpak AD-H, 20% isopropanol $/ \mathrm{n}$-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$ $t_{\mathrm{R}}($ major $)=10.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+93.0$ (c 0.3 , CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.22(\mathrm{~m}, 4 \mathrm{H}), 5.35(\mathrm{~d}, 1 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 5.25(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 5.20(\mathrm{brs}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.36$ (s, 3H).; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,140.1,130.0,128.9,126.5,81.9,61.4,52.8$, 21.3.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}$ 271.0514, found 271.0515.

Methyl (4S,5S)-4-(3-chloro-phenyl)-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7h

yield: 99.6% (36.1 mg as a white solid), $\mathrm{mp}=79.6-80.8^{\circ} \mathrm{C}, 96.7 \%$ ee: Chiralpak AD-H, 10% isopropanol $/ \mathrm{n}$-hexane, $1.2 \mathrm{ml} / \mathrm{min}, 215$ $\mathrm{nm} t_{\mathrm{R}}($ minor $)=13.8 \mathrm{~min}, t_{\mathrm{R}}($ major $)=15.0 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{29}=+69.4(\mathrm{c}$ $0.3, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.40(\mathrm{~m}, 3 \mathrm{H})$, $7.24-7.25(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.25-5.26(\mathrm{~m}, 2 \mathrm{H}), 3.47$ (s, 3H).; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,135.3,134.4,130.6,130.2,127.2,124.9,81.4$, 60.9, 53.0.; HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNO}_{5} \mathrm{~S} 290.9968$, found 290.9957.

Methyl (4S,5S)-4-(4-chloro-phenyl)-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7i

yield: 92.1% (28.3 mg as a white solid), $\mathrm{mp}=123.2-125.8^{\circ} \mathrm{C}, 97.3 \%$ ee: Chiralpak AD-H, 20% isopropanol $/ \mathrm{n}$-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$ $t_{\mathrm{R}}($ minor $)=9.3 \mathrm{~min}, t_{\mathrm{R}}($ major $)=14.1 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{29}=+69.9$ (c 0.3 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.28$ $(\mathrm{d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 5.39(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.25(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $5.14(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.46(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,136.2,130.9$, 129.6, 128.2, 81.3, 61.0, 53.0.; HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNO}_{5} \mathrm{~S} 290.9968$, found 290.9943.

Methyl (4S,5S)-4-(4-methoxy-phenyl)-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7j

yield: 99.2% (28.5 mg as a white solid), $\mathrm{mp}=120.8-123.7^{\circ} \mathrm{C}, 100 \%$ ee: Chiralpak AD-H, 20% isopropanol/n-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215$ $\mathrm{nm} t_{\mathrm{R}}($ major $)=14.0 \mathrm{~min}$, racemic: $t_{\mathrm{R}}($ minor $)=18.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=$ $+91.6\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.1 \mathrm{~Hz}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 5.33(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.22(\mathrm{~d}$, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,160.8$, 128.1, 123.9, 114.7, 81.8, 61.2, 55.5, 52.9.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{6} \mathrm{~S}$ 287.0464, found 287.0466 .

Methyl (4S,5S)-4-(4-fluoro-phenyl)-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7k

yield: 96.1% (45 mg as a white solid), $\mathrm{mp}=142.5-146.4^{\circ} \mathrm{C}, 97.3 \%$ ee:
Chiralpak IA, 20% ethanol $/ \mathrm{n}$-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm} t_{\mathrm{R}}($ minor $)=$ $12.5 \mathrm{~min}, t_{\mathrm{R}}($ major $)=16.2 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{29}=+78.3\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.38$ $(\mathrm{d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 5.22-5.28(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165,6,163.5\left(\mathrm{~d}, J_{C F}=248.8 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, J_{C F}=8.5 \mathrm{~Hz}\right), 128.4,116.5\left(\mathrm{~d}, J_{C F}\right.$ $=22.1 \mathrm{~Hz}$), 81.6, 61.0, 53.0.; HRMS (EI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNO}_{5} \mathrm{~S}$ 275.0264, found 275.0234.

Methyl (4S,5S)-4-(4-trifluoromethyl-phenyl)-1,2,3-oxathiazolidine-5-carboxylate 2,2-

 dioxide, (S, S)-71
yield: 87.5% (28 mg as a white solid), $\mathrm{mp}=146.2-150.6^{\circ} \mathrm{C}, 98.5 \%$ ee: Chiralpak IA, 20% ethanol $/ \mathrm{n}$-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$ $t_{\mathrm{R}}($ minor $)=6.5 \mathrm{~min}, t_{\mathrm{R}}($ major $)=10.83 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+33.6(\mathrm{c} 0.5$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz})$, $7.50(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.45(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 5.36(\mathrm{~d}, 1 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 3.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,136.4,132.0(\mathrm{q}, J=32.9 \mathrm{~Hz})$, 127.3, 126.1, 123.5 (q, $J_{C F}=270.5 \mathrm{~Hz}$), 81.1, 60.9, 52.8.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}$ 325.0232, found 325.0232.

Methyl (4S,5S)-4-(4-cyano-phenyl)-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide,

 (S,S)-7myield: 95% (26.5 mg as a white solid), $\mathrm{mp}=162.7-167^{\circ} \mathrm{C}, 96.3 \%$ ee:

Chiralpak IA, 30% ethanol $/ \mathrm{n}$-hexane, $1.3 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm} t_{\mathrm{R}}($ minor $)=$ $9.2 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=13.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+22.7(\mathrm{c} 0.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 7.90(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.78(\mathrm{~d}, 2 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 5.80(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.71(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.45(\mathrm{~s}$, 3H), 2.92 (brs, 1H).; ${ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}) $\delta 165.8,141.0,133.3,129.5,119.0$, 113.8, 81.9, 61.5, 52.8.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ 282.0310, found 282.0304.

Methyl (4S,5S)-4-(4-methoxycarbonyl-phenyl)-1,2,3-oxathiazolidine-5-carboxylate 2,2dioxide, $(S, S)-7 \mathrm{n}$

yield: 92% (29 mg as a white solid), $\mathrm{mp}=145.6-147.1^{\circ} \mathrm{C}$, 96.7% ee: Chiralpak IA, 20% ethanol/n-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$ $t_{\mathrm{R}}($ minor $)=12.0 \mathrm{~min}, t_{\mathrm{R}}($ major $)=14.0 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+57.4(\mathrm{c} 0.6$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}$), 7.44 (d, 2H, $J=7.9 \mathrm{~Hz}$), 5.51-5.61 (brs, 1H), 5.45 (d, 1H, $J=6.8$ $\mathrm{Hz}), 5.37(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 166.2, 165.3, 137.1, 131.5, 130.3, 126.8, 81.2, 61.0, 52.8, 52.4.; HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{7} \mathrm{~S} 315.0413$, found 315.0411.

Methyl (4S,5S)-4-(naphthalen-2-yl)-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7o

yield: 90.8% (27 mg as a white solid), $\mathrm{mp}=134.9-137.4^{\circ} \mathrm{C}, 96.7 \%$ ee: Chiralpak AD-H, 20% isopropanol $/ \mathrm{n}$-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215$ $\mathrm{nm} t_{\mathrm{R}}($ major $)=11.5 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+94.1(\mathrm{c}$ $0.4, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.90(\mathrm{~m}, 4 \mathrm{H})$, $7.53-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~s}$, $3 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,133.5,132.9,129.2,128.2,127.8,127.3,127.1$, 126.4, 123.3, 81.7, 61.6, 52.7.; HRMS (EI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S} 307.0514$, found 307.0513.

Methyl (4S,5S)-4-(furan-2-yl)-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7p
yield: 91.6% (22 mg as a white solid), $\mathrm{mp}=97.9-110.2^{\circ} \mathrm{C}, 94.9 \%$ ee:
 Chiralpak IA, 30% ethanol $/ \mathrm{n}$-hexane, $1.3 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm} t_{\mathrm{R}}($ major $)=$ $8.7 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.3 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{28}=+95.8\left(\mathrm{c} 0.3, \mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CHCl}_{3}$) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.43-6.53(\mathrm{~m}, 2 \mathrm{H}), 5.29-5.32(\mathrm{~m}, 1 \mathrm{H})$, 5.22-5.23 (m, 1H), 5.16-5.18 (m, 1H), $3.65(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, CDCl_{3}) $\delta 166.1,144.3,143.8,111.5,111.4,80.8,55.8,53.5 . ;$ HRMS (EI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{6} \mathrm{~S} 247.0151$, found 247.0155.

Methyl (4S,5S)-4-(thiophen-2-yl)-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)7q
 yield: 93.8% (38.3 mg as a white solid), $\mathrm{mp}=96-97{ }^{\circ} \mathrm{C}, 98.7 \%$ ee:
 Chiralpak IA, 20% ethanol $/ \mathrm{n}$-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm} t_{\mathrm{R}}($ minor $)=$ $12.5 \mathrm{~min}, t_{\mathrm{R}}($ major $)=14.2 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{29}=+70.6\left(\mathrm{c} 0.3, \mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CHCl}_{3}$) $\delta 7.37-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.05(\mathrm{~m}, 1 \mathrm{H})$, $5.49(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}), 5.35(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{~s}$, $3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,133.5,127.6,127.4,127.2,81.7,57.7,53.0 . ;$ HRMS (EI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{5} \mathrm{~S}_{2}$ 262.9922, found 262.9918.

yield: 69% (98.5 mg as a coloress oil); $[\alpha]_{\mathrm{D}}{ }^{29}=+52.5\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.06(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}$), 4.48 (brs, 1 H), 4.13 (brs, 1 H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.61(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$.; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,82.3,58.5,53.2,30.8,19.8,13.7 . ;$ HRMS (EI): m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}$ 223.0514, found 223.0537.

Methyl (4S,5S)-4-phenethyl-1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7s

 yield: 53.5% (14 mg as a ivory solid), $\mathrm{mp}=90.6-92.3^{\circ} \mathrm{C}, 76.1 \%$ ee: Chiralpak IA, 20% ethanol $/ \mathrm{n}$-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm} t_{\mathrm{R}}$ (minor) $=6.0 \mathrm{~min}, t_{\mathrm{R}}($ major $)=8.0 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+41.3\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 1 \mathrm{H})$, 7.20 (d, 2H, $J=7.4 \mathrm{~Hz}), 5.08$ (d, 1H, $J=6.1 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.2 \mathrm{~Hz}), 4.12-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.81(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.97(\mathrm{~m}$, $2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,139.2,128.9,128.4,126.8,82.0,57.7,53.2,32.3$, 30.5.; HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$ 285.0671, found 285.0666.

Methyl (4S,5S)-4-cyclohexyl -1,2,3-oxathiazolidine-5-carboxylate 2,2-dioxide, (S,S)-7t
 yield: $66.7 \%\left(179 \mathrm{mg}\right.$ as a coloress oil); $[\alpha]_{\mathrm{D}}{ }^{30}=+41.4\left(\mathrm{c} 0.68, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.09(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}), 4.60(\mathrm{bs}, 1 \mathrm{H})$, 3.87(s, 3H), $3.84(\mathrm{~m}, 1 \mathrm{H}), 1.02-1.88(\mathrm{~m}, 11 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.4,82.5,63.9,53.1,37.8,30.7,29.3,25.7,25.2,25.1 . ;$ HRMS (EI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$ 263.0827, found 263.0848.

5. Assignment of absolute stereochemistry of 7a via converting to the known 8a

In order to determine the absolute stereochemistry of the ATH-DKR product, 7a was converted to the known 2-azido-3-(Boc-amino)-3-phenyl propionic acid methyl ester 8a and it was compared with the stereochemically defined 8a which was derived from Sharpless asymmetric amino hydroxylation reaction. ${ }^{10}$ The spectroscopic data and specific rotation data of synthetic 8a were full agreement with those of the known $((2 R, 3 S)-8 \mathbf{a})$ in the

[^5]literature. Additionally, the absolute stereochemistry of $\mathbf{7 j}$ was unambiguously assigned by using single-crystal X-ray crystallographic analysis (deposited, CCDC-1007235).

Scheme S1.

Reaction conditions: (a) (Boc) $)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, cat. DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$; (b) i. NaN_{3}, DMF, $60^{\circ} \mathrm{C}, 6$ h; ii. $1 \mathrm{NHCl}, \mathrm{Et}_{2} \mathrm{O}, 12 \mathrm{~h}, \mathrm{rt}, 92 \%$.

5-1. Synthesis of (S,S)-N-Boc-7a

To a stirred mixture of $(S, S)-7 \mathbf{a}(0.23 \mathrm{~g}, 0.92 \mathrm{mmol})$ and triethylamine $(0.15 \mathrm{~mL}, 1.1 \mathrm{mmol})$ in dichloromethane (2.5 mL) was added successively di-tert-butyl dicarbonate $(0.4 \mathrm{~g}, 1.83$ mmol) and DMAP (catalytic amount). The reaction mixture was stirred at room temperature for 40 min . The reaction mixture was diluted with diethyl ether (20 mL) and washed successively with 1 N HCl , saturated aqueous NaHCO_{3} solution and brine. The organic layer was dried over anhydrous MgSO_{4}, filtered and evaporated under reduced pressure. The residue was purified by column chromatography (Hexane/EtOAc=3:1) to give $0.33 \mathrm{~g}(99.7 \%$ yield) of (S, S)-N-Boc-7a.

N-Boc-7a $\quad{ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.39(\mathrm{~m}, 5 \mathrm{H}), 5.50(\mathrm{~d}, 1 \mathrm{H}, J=6.35$
$\mathrm{Hz}), 5.45(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1$, 147.8, 133.6, 129.8, 129.0, 127.5, 86.4, 62.9, 52.9, 28.0,; HRMS (EI): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{7} \mathrm{~S} 357.0882$, found 357.0887.

5-2. 2-Azido-3-tert-butoxycarbonylamino-3-phenyl-propionic acid methyl ester, (2R,3S)8a
$\mathrm{NaN}_{3}(22.3 \mathrm{mg}, 0.343 \mathrm{~mol}, 5.0$ equiv) was added in a single portion to a solution of $(S, S)-\mathrm{N}-$ Boc-7a ($24.5 \mathrm{mg}, 68.6 \mathrm{mmol}, 1.0$ equiv) in DMF (2 ml) at $25^{\circ} \mathrm{C}$. The resulting mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred for 6 h . Upon completion, the reaction mixture was cooled to rt and the contents were diluted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$, treated with $1 N$ aqueous $\mathrm{HCl}(3 \mathrm{~mL})$, and allowed to stir for an additional 12 h at $25^{\circ} \mathrm{C}$. Once this operation was complete, the reaction mixture was poured into saturated NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were then washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The resultant light yellow solid was purified by flash column chromatography (silica gel, EtOAc/hexanes, 5:1).

The spectroscopic and specific rotation data of synthetic 8a were full agreement with those of the known $((2 R, 3 S)-8 a)$ in the literature. ${ }^{11}$
Lit. ${ }^{11} \mathrm{mp} 133-134^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+16.5^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.25-$ $7.50(\mathrm{~m}, 5 \mathrm{H}), 5.34(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 168.62,154.78,138.27,128.71,128.09,126.51,80.21,66.71,55.18,52.95,28.19$.

6. Evaluation of ee's of 7r and 7t by convertion to ring-opened derivatives

Because of difficults in chiral separation of $\mathbf{7 r}$ and $\mathbf{7 t}$ themselves in various chiral columns and conditions, $7 \mathbf{r}$ and $7 \mathbf{t}$ were converted to the corresponding ring opened derivatives $8 \mathbf{r}$ and $8 \mathbf{t}$ and ee values were indirectly determined with these compounds.

Scheme S2.

[^6]

Reaction conditions: (a) (Boc$)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, cat. DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) i. $\mathrm{PhCO}_{2} \mathrm{NH}_{4}, \mathrm{DMF}, 55^{\circ} \mathrm{C}$, 12 h; ii. $1 \mathrm{~N} \mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 6$ h, rt.

6-1. Synthesis of N-Boc-7r and N-Boc-7t

6-1-1. N-Boc-7t

To a stirred mixture of $(S, S)-7 \mathbf{t}(16.4 \mathrm{mg}, 0.062 \mathrm{mmol})$ and triethylamine $(0.01 \mathrm{~mL}, 0.072$ $\mathrm{mmol})$ in dichloromethane (1 mL) at $0{ }^{\circ} \mathrm{C}$ was added successively di-tert-butyl dicarbonate ($27.2 \mathrm{mg}, 0.125 \mathrm{mmol}$) and DMAP (catalytic amount). The reaction mixture was stirred at room temperature for 2 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed successively with 1 N HCl , saturated NaHCO_{3} solution and brine. The organic layer was dried over anhydrous MgSO_{4}, and evaporated. The residue was purified by column chromatography (Hexane/EtOAc=10:1) to give 20 mg (87% yield) of (S, S)-N-Boc-7t.

Yield: $87 \%(20 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{30}=-15.01\left(\mathrm{c} 0.92, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz ,

$\left.\mathrm{CDCl}_{3}\right) \delta 5.30(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.83$ $(\mathrm{m}, 6 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 1.08-1.26(\mathrm{~m}, 5 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.1, 149.1, 85.9, 77.2, 63.8, 53.2, 40.1, 30.7, 27.8, 27.0, 26.3, 25.9, 25.6.; HRMS (EI): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{~S} 363.1352$, found 363.1364.

6-1-2. N-Boc-7r

Yield: $97 \%(270 \mathrm{mg}) ;[\alpha]_{\mathrm{D}}{ }^{29}=-26.77\left(\mathrm{c} 1.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300

N-Boc-7r $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.28(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $1.62-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.95(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,148.4,86.0,77.0,59.2$, 53.3, 31.9, 27.9, 18.1, 13.9.; HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{7} \mathrm{~S}$ 323.1039, found 323.1014.

6-2. Synthesis of 8r and 8t

6-2-1. (2R,3S)-8t

Ammonium benzoate ($65.24 \mathrm{mg}, 0.47 \mathrm{mmol}$) was added to a solution of ($4 \mathrm{~S}, 5 \mathrm{~S}$) - N - Boc-7t $(85.2 \mathrm{mg}, 0.23 \mathrm{mmol})$ in dry DMF (10 mL). The solution was heated to $60{ }^{\circ} \mathrm{C}$ under inert atmosphere $\left(\mathrm{N}_{2}\right)$ and stirred for 14 h at that temperature. The solvent was evaporated under reduced pressure and the residue was re-dissolved in dichloromethane (10 mL) and 1 N HCl 10 mL) was added. The reaction mixture was stirred at room temperature for 6 h before the pH was adjusted to 8 with saturated aquous NaHCO_{3} solution. The layers were separated and the aqueous layer was extracted three times with dichloromethane. The combined organic layers were washed with water and brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica-gel (Hexane/EtOAc, 4:1) to give 66 mg of $\mathbf{8 t}$.
yield: $70.8 \% ~(66 \mathrm{mg}$); $47 \% \mathrm{ee}, \mathrm{dr}=31: 1 . ;$ Chiralpak IC, 10%
 isopropanol/n-hexane, $0.7 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm} t_{\mathrm{R}}($ minor $)=8.35 \mathrm{~min}$, t_{R} (major) $=9.55 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=-35.44\left(\mathrm{c} 0.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H})$, $5.44(\mathrm{~d}, J=2.25 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.75$ $(\mathrm{s}, 3 \mathrm{H}), 1.61-1.92(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.06-1.15(\mathrm{~m}, 5 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 169.2, 165.7, 155.5, 133.6, 129.9, 129.2, 128.5, 79.6, 72.4, 56.0, 52.5, 39.8, 29.7, 29.6, 28.3, 26.0, 25.9.; HRMS (EI): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{6} 405.2151$, found 405.2158.

6-2-2. (2R,3S)-8r

yield: $72.3 \% ~(220 \mathrm{mg}) ; 91 \% \mathrm{ee}, \mathrm{dr}=100: 0$.; Chiralpak IC, 10% isopropanol $/ \mathrm{n}$-hexane, $0.7 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm} t_{\mathrm{R}}$ (minor) $=9.27 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=11.15 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{29}=-70.5\left(\mathrm{c} 0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.07$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.77(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$, 1.36-1.48 (m, 2H), 0.93-0.97 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13}{ }^{3} \mathrm{CNR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.8$, 165.7, 155.3, 133.6, 129.9, 129.1, 128.5, 79.7, 74.2, 52.5, 51.1, 34.4, 28.3, 19.2, 13.7.; HRMS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{6} 365.1838$, found 365.1856.

7. Synthesis of Taxotere side chain, (2R,3S)-10

Scheme S3.

7-1. Synthesis of (4S,5S)-N-Boc-7a

To a stirred mixture of $(S, S)-7 \mathbf{a}(0.23 \mathrm{~g}, 0.92 \mathrm{mmol})$ and triethylamine $(0.15 \mathrm{~mL}, 1.1 \mathrm{mmol})$ in dichloromethane $(2.5 \mathrm{~mL})$ was added successively di-tert-butyl dicarbonate $(0.4 \mathrm{~g}, 1.83$ mmol) and DMAP (cat) and the mixture was stirred at room temperature for 40 min . It was then diluted with diethyl ether (20 mL) and washed successively with $1 \mathrm{~N} \mathrm{HCl}, \mathrm{NaHCO}_{3}$ and brine. The organic layer was dried over anhydrous MgSO_{4}, and evaporated under reduced pressure. The residue was purified by column chromatography on silicagel (Hexane/EtOAc $=$ 3:1) to give 0.33 g (99.7% yield) of ($4 \mathrm{~S}, 5 \mathrm{~S}$)-N-Boc-7a.

yield: $99.7 \% ~\left(0.33 \mathrm{~g}\right.$ as a white solid), $\mathrm{mp}=126.3-130.2^{\circ} \mathrm{C}, 97.8 \%$ ee:
Chiralpak AD-H, 10% isopropanol/n-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$ $t_{\mathrm{R}}($ minor $)=9.2 \mathrm{~min}, t_{\mathrm{R}}($ major $)=13.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-14.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.39(\mathrm{~m}, 5 \mathrm{H}), 5.50(\mathrm{~d}, 1 \mathrm{H}, J=6.35$
$\mathrm{Hz}), 5.45(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (75
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1,147.8,133.6,129.8,129.0,127.5,86.4,62.9,52.9,28.0$,; HRMS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{7} \mathrm{~S} 357.0882$, found 357.0887.

7-2. Synthesis of (4R,5R)-N-Boc-7a

yield: 94.2% (109 mg as a white solid), $\mathrm{mp}=127.2-129.4^{\circ} \mathrm{C}, 98.1 \%$ ee:
 Chiralpak AD-H, 10% isopropanol/n-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$ $t_{\mathrm{R}}($ major $)=9.3 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=13.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+12.3\left(\right.$ c $\left.1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.38(\mathrm{~m}, 5 \mathrm{H}), 5.49(\mathrm{~d}, 1 \mathrm{H}, J=6.35$ $\mathrm{Hz}), 5.44(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.0,147.7,133.4,129.6,128.8,127.3,86.2,62.8,52.8,27.8$.

7-3. Synthesis of (2R,3S)-8a

Ammonium benzoate $(0.16 \mathrm{~g}, 1.17 \mathrm{mmol})$ was added to a solution of $(4 S, 5 S)-\mathrm{N}-\boldsymbol{B o c}-\mathbf{7 a}(0.21$ $\mathrm{g}, 0.58 \mathrm{mmol})$ in dry DMF $(2 \mathrm{~mL})$. The solution was heated to $60^{\circ} \mathrm{C}$ and stirred for 12 h at that temperature. The solvent was evaporated under reduced pressure and the residue was redissolved in dichloromethane (3 mL) and $1 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 6 h before the pH was adjusted to 8 with saturated aquous NaHCO_{3} solution. The layers were separated and the aqueous layer was extracted three times with dichloromethane. The combined organic layers were washed with water and brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica-gel (Hexane/EtOAc, 3:1) to give ($2 R, 3 S$)-8a ($0.23 \mathrm{~g}, 82.1 \%$ yield).

yield: $82.1 \%\left(0.23 \mathrm{~g}\right.$ as a colorless oil), ; $[\alpha]_{\mathrm{D}}^{22}=+11.49\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$, (lit. $\left.{ }^{12}[\alpha]_{\mathrm{D}}{ }^{21}=-9.1\left(\mathrm{c} 0.86, \mathrm{CHCl}_{3}\right)\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.96-7.98 (m, 2H), 7.55-7.58 (m, 1H), 7.41-7.45 (m, 2H), 7.31-7.37 (m, $4 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.23-$ 1.29 (brs, 1H).; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,165.5,155.0,138.0,133.6,130.0$, $129.9,129.8,128.9,128.7,128.5,128.0,127.2,126.5,80.3,75.3,54.9,52.7,31.6,28.3,22.7$, 14.1.; HRMS (EI): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{6} 399.1682$, found 399.1690.

7-4. Synthesis of (2R,3S)-9a

KCN ($14 \mathrm{mg}, 0.22 \mathrm{mmol}$) was added to a stirred solution of $(2 R, 3 S)-\mathbf{8 a}(0.17 \mathrm{~g}, 0.44 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$. The resulting mixture was stirred at $65^{\circ} \mathrm{C}$ for 2 h . After removal of the solvent, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then washed with brine. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica-gel (Hexane/EtOAc, $3: 1)$ to give $(2 R, 3 S)-9 \mathbf{a}(0.11 \mathrm{~g}, 84.5 \%$ yield $)$.

yield: $84.5 \%\left(0.11 \mathrm{~g}\right.$ as a white solid), $\mathrm{mp}=113.2-116.2^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-5.49$ (c 1.0, CHCl_{3}), (lit. ${ }^{13}[\alpha]_{\mathrm{D}}{ }^{23}=-6.7\left(\mathrm{c} 0.85, \mathrm{CHCl}_{3}\right)$); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.33(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz})$,

[^7]$5.24(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,155.1,139.1,128.6,127.8,126.7,80.0,73.5,56.1,28.3$; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na} 318.1317$, found 318.1313.

7-5. Synthesis of (2R,3S)-10, Toxotere side chain

To a solution of compound $(2 R, 3 S)-9$ a ($100 \mathrm{mg}, 0.34 \mathrm{mmol}$) in methanol (2 mL) and THF (2 mL) was added $1 \mathrm{~N} \mathrm{NaOH}(1 \mathrm{~mL})$. After being stirred at room temperature for 0.5 h , the solution was concentrated and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The aqueous solution was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The remaining aqueous layer was acidified to $\mathrm{pH} 3 \sim 4$ with 1 N HCl and extracted with ethyl acetate ($6 \times 10 \mathrm{~mL}$). The combined ethyl acetate fractions were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The resulting residue was washed with $\mathrm{H}_{2} \mathrm{O}$ and collected via filtration affording (2R,3S)-10 (83.5 $\mathrm{mg}, 88 \%)$.

yield: 88% (83.5 mg as a white solid), $\mathrm{mp}=122.5-123.9^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=$ $+26.58(\mathrm{c} 1.0, \mathrm{MeOH}),\left(\right.$ lit. ${ }^{14} \mathrm{mp}=123.7-124.9^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}=+24.9$ (c 1.0, $\mathrm{MeOH})$) ; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.27-7.31$ (m, 4H), 7.20-7.23 $(\mathrm{m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 4.91-4.94(\mathrm{dd}, 1 \mathrm{H}, J=3.5,9.4 \mathrm{~Hz})$, $4.17(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.21-1.22(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO$\left.d_{6}\right) \delta 173.9,155.4,141.3,128.4,127.3,127.3,78.6,74.2,57.3,28.6 . ;$ HRMS (ESI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na} 304.1161$, found 304.1159.

8. Synthesis of (-)-epi-Cytoxazone, (2R,3S)-12

Scheme S4.

[^8]
8-1. Synthesis of (4S,5S)-N-Boc-7j

The $(4 S, 5 S)-N-B o c-7 \mathbf{j}$ was prepared by using the procedure for the synthesis of $(4 S, 5 S)-N-$ Boc-7a as depicted in 7-1.

yield: 94.2% (109 mg as a white oil), $[\alpha]_{\mathrm{D}}{ }^{22}=-17.4$ (c 1.07, CHCl 3);
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.88(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 5.48(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 5.41(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1$, 160.4, 147.7, 128.8, 125.4, 114.2, 86.1, 62.4, 55.3, 52.8, 27.8.; HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{8} \mathrm{~S} 387.0988$, found 387.0991.

8-2. Synthesis of (2R,3S)-8j

The $(2 R, 3 S)-\mathbf{8 j}$ was prepared by using the procedure for the synthesis of $(2 R, 3 S)-\mathbf{8 a}$ as depicted in 7-3.
yield: 100% (96.6 mg as a colorless oil), $[\alpha]_{\mathrm{D}}{ }^{20}=+20.4$ (c 1.0,

 $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.58$ (t, 1H, $J=7.5 \mathrm{~Hz}), 7.45(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$, 6.86 (d, 2H, J = 8.2Hz), 5.44-5.47 (m, 3H), 3.77 (s, 6H), 1.43 (s, 9H).; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2$, 133.6, 129.9, 128.5, 127.7, 114.1, 55.3, 52.7, 28.3.; HRMS (EI): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{7} 429.1788$, found 429.1781 .

8-3. Synthesis of (2R,3S)-9j

The $(2 R, 3 S)-\mathbf{9} \mathbf{j}$ was prepared by using the procedure for the synthesis of $(2 R, 3 S)-\mathbf{9 a}$ as depicted in 7-4.

yield: 86.3% (63 mg as a white solid), $\mathrm{mp}=127.1-129.2^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=$ $+3.9\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$, (lit. ${ }^{15} \mathrm{mp}=110-112{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-3.8$ (c 0.5, $\left.\mathrm{CHCl}_{3}\right)$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 6.88$ $(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 5.35(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$, 4.43 (brs, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 3.20 (brs, 1H), 1.41 (s, 9H).;

[^9]${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,159.1,155.1,131.3,127.9,114.0,79.9,73.6,55.6$, 55.3, 53.0, 28.3.; HRMS (ESI); m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na} 348.1423$, found 348.1417.

8-4. Synthesis of (2R,3S)-11

The ($2 R, 3 S$) $-9 \mathbf{j}$ ($63 \mathrm{mg}, 0.19 \mathrm{mmol}$) was dissolved in ethanol $\left(2 \mathrm{~mL}\right.$) and cooled to $0^{\circ} \mathrm{C}$. To this was added dropwise $\mathrm{NaBH}_{4}(24 \mathrm{mg}, 0.63 \mathrm{mmol})$ as a solution in ethanol $(1 \mathrm{~mL})$. After the addition was complete the ice bath was removed and the reaction mixture was stirred at room temperature for 4 h before the addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL). The ethanol was evaporated under reduced pressure. The remaining aqueous solution was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$) and the combined organic layers were washed with brine and dried over MgSO_{4}. Solvents were removed under reduced pressure and the residue was purified by silicagel chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (20/1), affording $(2 R, 3 S)-11$ as a white solid ($51.7 \mathrm{mg}, 91.7 \%$).

yield: 91.7% (51.7 mg as a white solid), $\mathrm{mp}=125.7-127.9^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=$ $+36.9\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)$, (lit. $\left.{ }^{16}[\alpha]_{\mathrm{D}}{ }^{23}=-36.1\left(\mathrm{c} \mathrm{1.0}, \mathrm{CHCl}_{3}\right)\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.23(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.86(\mathrm{~d}, 2 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 6.72$ (brs, 1H), 4.62 (brs, 1H), 3.76 (s, 3 H), 3.73 (brs, 1H), 3.43$3.46(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,156.9,128.6,127.9,114.3,114.2,80.4,75.3,63.7,55.3,28.3$. ; HRMS (EI): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{5}$ 297.1576, found 297.1556.

8-5. Synthesis of (2R,3S)-12, (-)-epi-Cytoxazone.

To a stirred solution of $(2 R, 3 S)-11(41 \mathrm{mg}, 0.14 \mathrm{mmol})$ in dry THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added sodium hydride ($20 \mathrm{mg}, 60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, 0.45 mmol) at room temperature, and the reaction mixture was refluxed for 1 h . The reaction mixture was cooled to room temperature and quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, then extracted with ethyl acetate $(2 \times 10 \mathrm{~mL})$. The organic layer was washed with water and brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was purified by column chromatography on silica-gel (Hexane/EtOAc $=2: 1$) to give $(2 R, 3 S)-\mathbf{1 2}$ as a white solid (29 mg, 95.1\%).

[^10]
yield: 95.1% (29 mg as a white solid), $\mathrm{mp}=141-142^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{19}=-28.2$ (c 0.5, MeOH), lit. ${ }^{17}[\alpha]_{D}{ }^{25}=-27.2$ (c 1.1, MeOH), lit. ${ }^{18}[\alpha]_{D}{ }^{28}=-$ 22.8 (c 0.5, MeOH); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-d_{4}$) $\delta 7.36$ (d, 2H, J $=8.2 \mathrm{~Hz}), 7.02(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.81(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 4.38-4.39$ $(\mathrm{m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.76(\mathrm{dd}, 1 \mathrm{H}, J=4.2,12.5$ $\mathrm{Hz})$.; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}-d_{4}$) $\delta 160.1,160.0,132.2,127.2,114.0,85.4,61.1,57.2$, 54.4.; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4} 223.0845$, found 223.0829.

9. X-ray crystallography analysis data of (S,S)-7j

CCDC-1007235 contains the supplementary crystallographic data for $(S, S)-\mathbf{7 j}$. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[^11]
Crystal data and structure refinement for ($(, S, S$)-7j

Identification code	20131022lt_0m
Empirical formula	C11 H13 N O6 S
Formula weight	287.28
Temperature	100(1) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$\mathrm{a}=5.3793(2) \AA \quad \alpha=90^{\circ}$.
	$b=13.1499(5) \AA \quad \beta=90^{\circ}$.
Volume	1231.37(8) \AA^{3}
Z	4
Density (calculated)	$1.550 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.286 \mathrm{~mm}^{-1}$
F(000)	600
Crystal size	$0.25 \times 0.20 \times 0.08 \mathrm{~mm}^{3}$
Theta range for data collection	1.94 to 28.47°
Index ranges	$-7<=\mathrm{h}<=7,-17<=\mathrm{k}<=17,-22<=1<=23$
Reflections collected	34700
Independent reflections	$3107[\mathrm{R}(\mathrm{int})=0.0235]$
Completeness to theta $=28.47^{\circ}$	99.8\%
Absorption correction	Multi-scan
Max. and min. transmission	0.9775 and 0.9319
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3107 / 0 / 172
Goodness-of-fit on F^{2}	1.051
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0253, \mathrm{wR} 2=0.0722$
R indices (all data)	$\mathrm{R} 1=0.0261, \mathrm{wR} 2=0.0732$
Absolute structure parameter	-0.01(6)
Largest diff. peak and hole	0.404 and -0.530 e. \AA^{-3}

[^0]: ${ }^{1}$ Mao, J. M.; Baker, D. C. Org. Lett. 1999, 1, 841.
 ${ }^{2}$ K. Mashima; T. Abe; K. Tani, Chem. Lett. 1998, 1199.

[^1]: ${ }^{3}$ Leost, F.; Chantegrel B.; Deshayes C., Tetrahedron, 1997, 5, 7557.

[^2]: ${ }^{4}$ Sun, C.-Q.; Cheng, P. T. W.; Stevenson, J.; Dejneka, T.; Brown, B.; Wang, T. C.; Robal, J. A.; Poss, M. A., Tetrahedron Lett., 2002, 43, 1161.

[^3]: ${ }^{5}$ Wang, J.; Yuan, Y.; Xiong, R.; Zhang-Negrerie, D.; Du, Y.; Zhano, K. Org. Lett. 2012, 14, 2210.
 ${ }^{6}$ (a) Scholte, Andrew A.; An, M. H.; Snapper, Marc L. Org. Lett. 2006, 8, 4759. (b) Plietker, B. J. Org. Chem. 2004, 69, 8287.

[^4]: ${ }^{7}$ Plietker, B. J. Org. Chem. 2004, 69, 8287.
 ${ }^{8}$ Lee, H.-K.; Kang, S.; Choi, E. B., J. Org. Chem., 2012, 77, 5454.
 ${ }^{9}$ Han, J. A.; Kang, S. Y.; Lee, H-K. Chem. Commun. 2011, 47, 4004.

[^5]: ${ }^{10}$ S.-H. Lee, J. Yoon, S.-H. Chung and Y.-S. Lee, Tetrahedron, 2001, 57, 2139.

[^6]: ${ }^{11}$ S.-H. Lee, J. Yoon, S.-H. Chung and Y.-S. Lee, Tetrahedron, 2001, 57, 2139.

[^7]: ${ }^{12}$ For enantiomeric (2S,3R)-8. Bunnage, M. E.; Davies, S. G.; Goodwi, C. J., J. Chem. Soc., Perkin Trans. 1, 1994, 2385.
 ${ }^{13}$ Harris, L.; Mee, S. P. H.; Furneaux, R. H.; Gainsford, G. J.; Luxenburger, A., J. Org. Chem., 2011, 76, 358.

[^8]: ${ }^{14}$ Shen, X.; Yang, J.; Zhan, H.; Wang, H.; Wu, S.; Chen, Z. Chin. J. Chem. 2013, 31, 31.

[^9]: ${ }^{15}$ For enantiomeric (2S,3R)-9j. Mishra, R. K.; Coates, C. M.; Revell, K. D.; Turos, E., Org. Lett., 2007, 9, 575.

[^10]: ${ }^{16}$ For enantiomeric (2S,3R)-11. Kim, S.-G.; Park, T.-H., Tetrahedron Asymmetry, 2008, 19, 1626.

[^11]: ${ }^{17}$ Matsunaga, S.; Yoshida, T.; Morimoto, H.; Kumagai, N.; Shibasaki, M., J. Am. Chem. Soc., 2004, 126, 8777.
 ${ }^{18}$ Kim, I. S.; Kim, J. D.; Ryu, C. B.; Zee, O. P.; Jung, Y. H., Tetrahedron, 2006, 62, 9349.

