Supplementary Information-2

Copies of ${ }^{\mathbf{1}} \mathbf{H}$-NMR, ${ }^{13} \mathbf{C}$-NMR spectra and chiral HPLC chromatograms

Stereoselective Synthesis of 4-Substituted-Cyclic Sulfamidate-5Carboxylates By Asymmetric Transfer Hydrogenation Accompanying Dynamic Kinetic Resolution and Its Use in Concise Stereoselective Synthesis of (-)-epi-Cytoxazone and Taxotere Side-Chain.

Jin-ah Kim, ${ }^{a}$ Yeon Ji Seo, ${ }^{a, b}$ Soyeong Kang, ${ }^{a, b}$ Juae Han ${ }^{a, b}$ and Hyeon-Kyu Lea ${ }^{a, b}$ *
a) Korea Chemical Banl, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, KOREA; b) Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 113 Gwahango, Yuseong, Daejeon 305-333, KOREA.

Tel: +82-42-860-7016; Fax: +82-42-860-7096
e-mail: leehk@krict.re.kr

Table of Contents

1. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra 3
$1-1$. α-Hydroxy- β-keto esters 4
1-2. Cyclic imine-5-carboxylates, 6a-6t 37
1-3. Cyclic sulfamidate-5-carboxylates, 7a-7t 77
1-4. Methyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, N-Boc-7a 117
1-5. Isopropyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, N-Boc-7b 121
1-6. Benzyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, N-Boc-7c 123
1-7. Methyl N-Boc-4-(n-propyl)-cyclic sulfamidate-5-carboxylate, N-Boc-7r 125
1-8. Methyl N-Boc-4-cyclohexyl-cyclic sulfamidate-5-carboxylate, N-Boc-7t 127
1-9. Methyl 3-phenyl-3-(N-Boc-amino)-2-benzoyloxy-propanoate, 8a 129
1-10. Methyl 3-(N-Boc-amino)-2-benzoyloxy-hexanoate, $\mathbf{8 r}$ 131
1-11. Methyl 3-cyclohexyl-3-(N-Boc-amino)-2-benzoyloxy-propanoate, $\mathbf{8 t}$ 133
1-12. Methyl 3-phenyl-3-(N-Boc-amino)-2-hydroxy-propanoate, 9 a 135
1-13. 3-Phenyl-3-(N-Boc-amino)-2-hydroxy-propanoic acid (Taxotere side-chain), 10 137
1-14. N-Boc-4-(4-Methoxy-phenyl)-5-methoxycarbonyl-cyclic sulfamidate, N-Boc-7j 139
1-15. Methyl 3-(4-methoxy-phenyl)-3-(N-Boc-amino)-2-benzoyloxy-propanoate, $\mathbf{8 j}$ 141
1-16. Methyl 3-(4-methoxy-phenyl)-3-(N-Boc-amino)-2-hydroxy-propanoate, $9 \mathbf{j}$ 143
1-17. 3-(4-Methoxy-phenyl)-3-(N-Boc-amino)-propan-1,2-diol, 11 145
1-18. (-)-epi-Cytoxazone, 12 147
2. Chiral HPLC Chromatograms 149
2-1. Cyclic sulfamidate-5-carboxylates, 7a, 7d-7q, 7s 150
2-2. Methyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, (S, S) - N-Boc-7a 152
2-3. Methyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, (R, R) - N-Boc-7a 153
2-4. Isopropyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, (S, S)- N-Boc-7b 154
2-5. Benzyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, (S, S) - N-Boc-7c 155
2-6. Methyl 3-(N-Boc-amino)-2-benzoyloxy-hexanoate, $(2 R, 3 S)-\mathbf{8 r}$ 172
2-7. Methyl 3-cyclohexyl-3-(N-Boc-amino)-2-benzoyloxy-propanoate, (2R,3S)-8t 173

${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra

(${ }^{〔}$ IOOJ 'zHWOOS) \succ WN H ${ }_{\tau}$

HO-оqлeэ-4d- $\forall \Gamma$ 기 -3.6755

(1) $=0$ \qquad
-193.7614
170.8891
$\mathbf{R}^{169.1351}$
$<\quad 158.5515$

$\ll 1$| 158.4762 |
| :--- |
| 158.5515 |

-60.4822
$\underset{53.0724}{53.7824}$

- 21.0158

(£)
\qquad
-3.9660
-3.7276

7.8738
-7.8600
$=$7.4582 -7.4431 -7.4023 -7.3872 7.3721

-193.8153

- 169.0981
-53.0466

(£วロכ 'zHW00૬) yWN H

 7.2583

mand

-171.4620
-163.7952

- 148.2172
$<_{130.4883}^{130.4999}$
-123.7567

8.0604
-7.9779
-7.9624
-7.6204
$\quad 7.4748$

(IכOכ'zHWOOS)YWN HI
\qquad
\qquad

8.0770

-8.0601 | 7.2479 |
| :--- |
| $=6.9752$ |
| $=6.9583$ |

（ ${ }^{\varepsilon}$ Iつのכ ${ }^{\prime}$ ZHW00s）yWN H ${ }_{\tau}$
8.2348
$<\quad 8.1229$
-7.1346
عOLO－HO－оques－コーナ－$\forall \Gamma$ 人

-196.4880
-196.4880
عOLO oques $\square^{-} \forall \Gamma M$
167.3251
$\mathbf{1} \begin{array}{r}167.2653 \\ 165.2758\end{array}$
-165.2758

عolo oques $\exists \nabla \forall 广 ン$
＿
\qquad
-53.9374
-53.8142
53.5591
電

τ
oəs
$000000 \varepsilon 0 \cdot 0$
$00000000 \cdot 2$

 \qquad T－วet tha uru G
7oeds OT•Iz

<7.7760

\qquad

膤

8.1823

$<$| 8.1664 |
| ---: |
| $\mathbf{8}$ |
| $<$ |
| |
| 7.8278 |
| 7.8118 |

\square
p!!os-dn-HO-NO-ゅ- $\forall \mathrm{Cl}$
-4.0925
-3.9840
-3.98
-3.7602

-192.9496
-168.6754

—36.2366
$=132.5915$
129.8500

 ${ }^{13} \mathrm{CNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 136.3516
$/ \begin{array}{r}135.0399 \\ 134.9676 \\ 134.6841 \\ 130.1221 \\ 130.0596 \\ 129.9641 \\ 129.8562 \\ 129.7789 \\ 129.6941 \\ 129.3367\end{array}$

$\begin{array}{r}53.5935 \\ -53.1561 \\ \hline\end{array}$

-

8Lレレ-HO-4deu- $\forall \Gamma$ Y

-181.8468
-169.1197
-149.7677
-148.5320
$\mathrm{HO}^{-} \mathrm{n}^{-}$9Z9021 ${ }^{-}$入SY

- 53.3471

$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	4 -3 0 0 0	$\begin{aligned} & \text { u } \\ & \text { 岕 } \\ & \stackrel{-}{\circ} \end{aligned}$		

KSY_prop_OH
-168.9539

-53.1975
-40.5937
-16.9981
-13.5645

p!! osm-ho-ojoko- Pry 2

-212.0739

 ${ }^{\mathrm{CDCl} 3}$

20110209
15.28
\qquad

(غ) (zHW0OS)yWN Ht
\qquad
HJA OBn cinnamate_imine

 - 171.7407 -162.6764

udd 0.0	10 1	0.1	¢.1	$\begin{array}{r}0.7 \\ \hline\end{array}$	$\begin{array}{r}\mathrm{C} \\ .1 \\ \hline\end{array}$	0.8 .	¢ ¢ ¢	O 0	S't	0.9 .1	¢	09	S'9		9.1	$\begin{aligned} & 08 \\ & \hline \end{aligned}$	98	06	96 .1	O\%1
			$\left\|\begin{array}{l} \bullet \\ \stackrel{\rightharpoonup}{\infty} \\ \infty \\ \infty \end{array}\right\|$									$\|\stackrel{\rightharpoonup}{8}\|$								
															$1 \mid$					

әu!u! ${ }^{-}$ngl $\forall \mathrm{CH}$

7.2566

 -172.3399
-161.6010 -136.0079
-130.2733
-129.3861
-126.5544
$-$

- 27.4910
86.2380
$\mathbf{8 4 . 8 5 9 5}$
$\mathbf{7 7 . 3 1 2 8}$
$\mathbf{7 7 . 0 5 8 1}$
76.8033

\qquad
-2.6906

KSY 120508 3Me_ -6.1730

\qquad | -7.3799 |
| ---: |
| -7.3538 |
| -7.2599 |

widd

$-3.8 .09$?

6. 1534
-5.2996 -3.828

- 3.828 ?

O
8.1167
$\times 8.0999$
-7.1780
$-\quad 7.1611$
7.1611
-6.8253
- 6.8253

-55.5696
-53.5128 $\left[\begin{array}{r}29.4033 \\ 29.2493 \\ 29.0954 \\ 28.9415 \\ 28.7875 \\ 28.6335 \\ 28.4792\end{array}\right.$

\qquad
\qquad
\qquad

1/ cham

\qquad
元
LHK_4_F imine
170.5331
-169.3633
-165.8990
-163.5325
$<{ }_{133.3571}^{133.4899}$
$<{ }_{122.7635}^{122.8053}$
-117.4815
${ }^{117.1840}$

8.2378
$\quad 8.2217$
$\mathbf{8}$
$\mathbf{7} .8724$
$\mathbf{7 . 8 5 6 3}$

-6.2355	¿

udd

-

- 170.5461
-153.0176
$\left.\begin{array}{r}137.4866 \\ \text { 137.2209 } \\ 136.9561 \\ 130.7286 \\ 129.4449 \\ \hline 126.5680 \\ 126.5412 \\ 126.5140 \\ 126.4824 \\ 124.0640 \\ 121.8922\end{array}\right)$
-54.6042

8.2082
-8.1925
-7.8806
-7.8650

8.2135
-8.1974
-8.1442
-6.2268
-3.9717
$-\quad 3.8066$

T - 163.8833

-54.5317
-0.1343

-5.9735

-163.4275
-159.7571
-151.1044
-143.2709 - 124.8902
- 114.5852

-179.8823
-18.9401
- 13.5539
-0.1308

[3.1319
3.1075
3.0921
-3.0774
3.0721
$\mathbf{3} .0774$
-3.0705
3.0614
$\left[\begin{array}{r}3.0614 \\ -3.0495 \\ 3.9732\end{array}\right.$
بnd-əu!!u!-oques-oıd- $\forall \Gamma$ Y
-2.9732

-54.3200
$=-52.9023$
- 38.0348
-33.0900
$=-31.3252$

$\mathrm{HN}^{-}{ }^{-}!!^{-} \forall \mathrm{CH}$

วəs 00000000. y L'G6Z วəรก 009.99 $81 L$ 2 H	
\%H29	
	oudnnd
pads	wnyls
	$\stackrel{\text { auld }}{\text { aured }}$
1	onooud
y'uso'vri	$\xrightarrow{\text { OHWM }}$

$\underset{ }{\text { und }}$

 -165.2315

$$
\mathrm{ugO}^{-} \forall \Gamma \mathrm{H}
$$

- 61.4577 \square

-163.9834

132.5875
129.5786
129.0615
127.0084
7

כ'zHWOOS)yWN J\&
כ'zHWOOS) yWN Jes - 165.6963

(६|כロכ'zHW00§)yWN Hi

\title{

}
(un
0 H

(2)
\qquad
\qquad

 5.3933
-5.3797
5.2685
5.2525
-5.2383
5.1455
5.1306

-3.8124
-3.4465

wida

 -165.1537

－ 52.8438
䉕

-7.9043
-7.8894
$-\quad 7.7828$
7.7828
-7.7676
5.8012
5.7868
-5.7132
-5.6989
oqлeo-no-t- $\forall r y$
3.447
2.9158

uL-(S'S)

8.0829
$<\quad 8.0672$

166.1796
\sim
\sim 165.2668
$-$

-29.7030
$\underset{\sim}{<} 14.1844$
-14.1192
$--0.0064$

$m e^{-} n^{-} \lambda S \lambda$

 \qquad

(£)
-165.4997 (:
-57.6530
$-\quad 53.0069$

-166.8911

-57.6533

- 53.1764
32.3071
$\mathbf{3 0 . 8 2 1}$
$\mathbf{2 9 . 7 1 4 2}$
- 0.0042

\(\underset{\substack{\sim
\sim}}{\sim} \underset{-}{\sim} \underset{\sim}{\Delta}\)

ω
oे
N
on

-1.2379

عเ80-כา d-30gn-4d-S'S-rᄉS
7.3942
7.3863
7.3827
7.3726
7.3676
7.3595
7.3539
ع180-כา d-oogn-4d-s's-rגS
5.5080
5.4953
5.4558
5.4432
5.2836

\qquad 133.4484
-129.6226
-128.8305
127.3470

-163.0061
-147.7023

- 62.7622
-52.7990
-27.8238
-0.0026

5.4731
5.4522
5.4432
5.4216
4.7614
4.7405
4.7196

0.9470
0.9261
0.9073
0.8864

- 162.2545

133.6820
129.7197
128.8738
128.0273

-0.1333

- 27.9527
21.2864
$<$

0. 2333

ง०g $^{-}$ug ${ }^{-} \forall \mathrm{rH}$
0.0314

-162.4680
-147.6987
133.6354
133.3036
129.6253
128.9239
128.8465
128.8204
128.6954
127.5070

1.7708
-1.7522
1.7522
-1.7471
$\left[\begin{array}{r}1.7225 \\ -16973\end{array}\right.$
$\left[\begin{array}{r}1.6973 \\ -1.6656\end{array}\right.$
/ $/ \begin{aligned} & 1.6656 \\ & 1.6489\end{aligned}$
$\begin{array}{r}1.6391 \\ \hdashline-1.5543 \\ \hline-1.5047\end{array}$
7 $\begin{array}{r}1.5543 \\ -1.5047 \\ -1.4314\end{array}$
1. $\left[\begin{array}{l}-1.4064 \\ -1.3804 \\ 1.3547\end{array}\right.$
 \qquad
-148.4483

 85.9833
-59.1924

- 53.2532
31.8956
$=29.7050$
-27.8765
-18.1601
-13.9067

 \square
-163.9262

 -168.2904 -154.9584

154.9584
$\left[\begin{array}{l}137.9747 \\ 133.6024 \\ 129.9599 \\ 129.9246 \\ 129.9064 \\ 129.8673 \\ 129.8325 \\ 129.8140 \\ 128.9232 \\ 128.7169 \\ 128.5213 \\ 128.3309 \\ 127.9924 \\ 127.2163 \\ 126.4954\end{array}\right.$

- 31.5997
- 22.6659
- 14.1383

$\begin{array}{r}-52.4724 \\ \hline\end{array}$
-34.3789
-28.2632
- 19.2255
- 13.7186

und ${ }^{-}$ตรเ- ${ }^{-}$ไา

- 55.9821
-52.4598
39.7633
$-\begin{array}{r}29.7420 \\ 29.5785 \\ 28.2726 \\ 26.0569 \\ 25.8613\end{array}$
$--0.0031$

(E|つO) ZHWOOS$)$ YWN HI .3924
.3806
.3687
.3655
.3320
.3262
.3210
.3147
.3082
7.3035
7.2976
.2867

-1.4455

mand

-173.9086
\qquad

-141.2682	
$\begin{array}{r} 128.4331 \\ < \\ 127.3467 \\ 127.2848 \end{array}$	$\underset{i}{\lambda}$
$\begin{array}{r} -78.6217 \\ -74.1784 \end{array}$	

\qquad 40.4649
40.2982
40.2203
40.1308
39.9644
39.7970
39.6305
39.4631
28.6332

 - 125.3759

nd-zgO-sog-N-oqueo-əNO- $-\forall C\rangle$
\qquad
-3.7678
-1.5788
$-\quad 1.4272$

Whand

-159.2319

 3.8265
$-\quad-\quad 3.7997$

 - 173.4628 $\begin{array}{r}-159.1074 \\ -155.1362 \\ \hline\end{array}$ -131.2518
\qquad
-55.28664
-53.0399 -131.2518 -131.2518 -131.2518

 -131.2518 -131.2518

(ย)วのכ'zHW00૬)yWN Hi

-4.8535
-4.6196

3.7551
3.7336
3.4578

-1.4054

159.0996
$=156.8596$

$<\begin{array}{r}55.4769 \\ 5.3133\end{array}$
-0.0040

$<{ }_{159.9671}^{160.1476}$
?

Chiral HPLC Chromatograms

Chiral HPLC Chromatograms of ATH-DKR products
Sample name: (S, S)-7a

- Analysis condition: Chiralpak IB, $20 \% \mathrm{EtOH} / \mathrm{n}$-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	10.7000	550.3260		FF	40.0000
2	12.8667	36285.7819			1.4940
합계		36836.1094		114.0000	98.5060

-Sample name: $(R, R)-7 \mathbf{a}$

- Analysis condition: Chiralpak IB, 20\% EtOH/n-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	9.8500	22019.3878	FF	109.0000	99.0959
2	13.7000	200.8943	FF	42.0000	0.9041
합계		22220.2832			

$e e=98 \%$
-Sample name: (S, S) - N-Boc-7a
Analysis condition: Chiralpak AD-H, $10 \% \mathrm{iPrOH} / \mathrm{n}-h e x a n e, 1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- ResultReport

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	9.2333	347.1643	FF	32.0000	1.0986
2	13.4167	31252.2745	BB	96.0000	98.9014
Total		31599.4395			

[^0]Sample name: (R, R) - N-Boc-7a
Analysis condition: Chiralpak AD-H, $10 \% \mathrm{iPrOH} / \mathrm{n}$-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	9.2833	2362.1962	BB	62.0000	98.8747
2	13.8333	26.8841	FF	43.0000	1.1253
Total		2389.0803			

-Sample name: (S, S) - N-Boc-7b
Analysis condition: Chiralpak AD-H, $10 \% \mathrm{iPrOH} / \mathrm{n}$-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	9.7000	351.3224	BB	43.0000	1.0484
2	14.2833	32805.7090	BB	118.0000	97.8995
Total		33510.9453			

-Sample name: (S, S) - N-Boc-7c
Analysis condition: Chiralpak AD-H, $10 \% \mathrm{iPrOH} / \mathrm{n}$-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	18.5667	387.5644	BB	68.0000	1.0268
2	22.1667	37040.3066	BB	168.0000	98.1286
Total		37746.6836			

ee=97.9\%

- Sample name: (S, S)-7d
- Analysis condition: Chiralpak AD-H, 5\% iPrOH/n-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	32.2667	28.7343	BB	42.0000	0.0730
2	36.2500	39153.5218	BB	208.0000	99.4094
Total		39182.2561			

ee $=>99 \%$

- Sample name: ($(, S)$-7e

Analysis condition: Chiralpak AD-H, 20\% $\mathrm{iPrOH} / \mathrm{n}$-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	8.4333	15569.3232	BB	63.0000	96.0666
2	10.1000	637.4800	FF	40.0000	3.9334
Total		16206.8037			

- Sample name: ($(, S)$-7f
- Analysis condition: Chiralpak AD-H, $10 \% \mathrm{iPrOH} / \mathrm{n}$-hexane, $1.3 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	15.9667	196.3357	FF	43.0000	0.6009
2	17.0000	32476.0723	FF	93.0000	99.3991
Total		32672.4082			

- Sample name: $(S, S) \mathbf{- 7} \mathbf{g}$
- Analysis condition: Chiralpak AD-H, 20\% iPrOH/n-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- ResultReport

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	10.1167	4504.8323	FF	67.0000	99.5876
2	12.4833	18.6563	FF	27.0000	0.4124
Total		4523.4888			

- Sample name: (S, S)-7h
- Analysis condition: Chiralpak AD-H, $10 \% \mathrm{iPrOH} / \mathrm{n}$-hexane, $1.2 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	13.8333	156.0047	FF	40.0000	1.6030
2	15.0333	9576.3127	FF	80.0000	98.3970
Total		9732.3174			

ee=96.7\%

- Sample name: (S, S)-7i
- Analysis condition: Chiralpak AD-H, 10\% EtOH/n-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	9.2667	110.8649	FF	33.0000	1.3545
2	14.0667	8073.8913	FF	85.0000	98.6455
Total		8184.7563			

ee=97.3\%

- Sample name: $(S, S)-7 \mathbf{j}$
- Analysis condition: Chiralpak AD-H, $20 \% \mathrm{iPrOH} / \mathrm{n}$-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Peak \# } & \text { Time[min] } & \text { Area[mV*s] } & \text { BL } & \text { wide[sec] } & \text { Area\% } \\ \hline 1 & 14.0000 & 2420.6589 & & \text { FF } & 72.0000\end{array}\right] 100.0000$
- Sample name: $(S, S)-7 \mathbf{k}$
- Analysis condition: Chiralpak IA, 20\% EtOH/n-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- ResultReport

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	12.5333	402.7184	FF	41.0000	1.3427
2	16.1500	29590.0409	FF	100.0000	98.6573
Total		29992.7598			

ee=97.3\%

- Sample name: (S, S)-71
- Analysis condition: Chiralpak IA, 20\% EtOH/n-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	6.5000	16.5963	FF	24.0000	0.2520
2	10.8333	6569.2955	FF	74.0000	99.7480
Total		6585.8921			

-Sample name: ((S, S)-7m

- Analysis condition: Chiralpak IA, 30\% EtOH/n-hexane, $1.3 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	9.2167	351.4940	FF	46.0000	1.8410
2	13.7667	18740.6826	FF	81.0000	98.1590
Total		19092.1758			

ee=96.3\%
-Sample name: ((S, S)-7n

- Analysis condition: Chiralpak IA, 20\% EtOH/n-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	12.0000	129.7953	FF	41.0000	1.6647
2	13.9833	7666.9291	BB	97.0000	98.3353
Total		7796.7246			

ee=96.7\%

- Sample name: (S, S)-7o
- Analysis condition: Chiralpak AD-H, 20\% iprOH/n-hexane, $1.0 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- ResultReport

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	11.5333	24396.7379	FF	69.0000	98.3557
2	13.7333	407.8611	FF	41.0000	1.6443
Total		24804.5996			

ee=96.7\%
-Sample name: ($(S, S$) -7p

- Analysis condition: Chiralpak IA, 20\% EtOH/n-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	8.6833	1230.3090	FF	60.0000	97.4679
2	14.3333	31.9625	FF	48.0000	2.5321
Total		1262.2714			

-Sample name: $(R, R)-\mathbf{7 p}$

- Analysis condition: Chiralpak IA, 20\% EtOH/n-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- ResultReport

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	8.6167	213.4351	FF	39.0000	2.3101
2	14.2833	9025.6053	BB	99.0000	97.6899
Total		9239.0400			

- Sample name: (S, S)-7q
- Analysis condition: Chiralpak IA, 20\% EtOH/n-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	12.5000	47.0973	FF	36.0000	0.6703
2	14.2167	6979.5146		FF	100.0000

-Sample name: (S, S)-7s

- Analysis condition: Chiralpak IA, 20\% EtOH/n-hexane, $1.5 \mathrm{ml} / \mathrm{min}, 215 \mathrm{~nm}$

- Result Report

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	6.0000	302.5704	FF	25.0000	11.9138
2	7.9500	2237.1001	FF	43.0000	88.0862
Total		2539.6707			

$e e=76.1 \%$

- Sample name: $(2 R, 3 S)-8 \mathbf{r}$
- Analysis condition: Chiralpak IC, 10% iPrOH/n-hexane, $0.7 \mathrm{ml} / \mathrm{min}$, 254nm

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	9.2667	185.5496	BB	38.0000	4.3399
2	11.1500	4089.8949	BB	28.0000	95.6601
Total		4275.4443			

$e e=91.3 \%$

- Sample name: $(2 R, 3 S)-8 \mathbf{t}$

Analysis condition: Chiralpak IC, 10% iPrOH/n-hexane, $0.7 \mathrm{ml} / \mathrm{min}$, 254 nm

Peak \#	Time[min]	Area[mV*s]	BL	wide[sec]	Area\%
1	8.3500	832.8883	BB	46.0000	26.2840
2	9.5500	2335.9153	BB	68.0000	73.7160
Total		3168.8035			

ee=47.4\%

[^0]: ee=98\%

