Table of Contents

Table S1. Crystal data, data-collection and refinement parameters for the crystals of (a) TETROL·3methylcyclohexanone 1·4 and (b) TETROL·4-methylcyclohexanone 1·5.

Table S2. Host-guest interactions (hydrogen bonds, (guest)C-H··· π and (guest)C-H···C_{ar} interactions). Serial numbers refer to the labelled interactions in the figures.

Table S3. Comparative crystal structural and theoretical [G3(MP2) composite method] bond lengths, distances, torsion angles and angles for equatorial 2-methylcyclohexanone 3eq, axial 3-methylcyclohexanones 4ax, and axial 4-methylcyclohexanone 5ax.

Figure S1. Isolated cavities that accommodate the guest molecules in the crystals of (a) TETROL·3-methylcyclohexanone (1·4), (b) TETROL·4-methylcyclohexanone (1·5).

Figure S2. Stereoview illustrating the C-H··· π bonds (1-3) and short H···C_{ar} contacts (4-6) that stabilize the axial conformer of the minor guest component ((S)-enantiomer of 3-methylcyclohexanone) in the crystal of 1·4.

Figure S3. Stereoview illustrating the C-H··· π bonds (1-2) and short H···C_{ar} contacts (3-6) that stabilize the axial conformer of 4-methylcyclohexanone in the crystal of 1.5.

Table S1. Crystal data, data-collection and refinement parameters for the crystals of (a) TETROL·3methylcyclohexanone 1·4 and (b) TETROL·4-methylcyclohexanone 1·5.

(a) Crystal Data and Details of the Structure Determination for Compoun

Crystal Data	
Formula	C ₂₈ H ₂₆ O ₄ , C ₇ H ₁₂ O
Formula Weight	538.65
Crystal System	Monoclinic
Space group	P2 ₁ (No. 4)
a, b, c [Å]	12.4493(6), 8.2368(4), 13.9466(7)
α, β, γ [°]	90, 95.843(2), 90
V [Å ³]	1422.69(12)
Z	2
D _{calc} [g/cm ³]	1.257
μ(MoKα) [mm ⁻¹]	0.083
F(000)	576
Crystal Size [mm]	0.19 x 0.47 x 0.53
Data-collection	
Temperature (K)	200(2)
Radiation [Å]	ΜοΚα, 0.71073
θ _{min, max} [°]	2.1, 28.3
Dataset	-16: 16 ; -10: 11 ; -18: 18
Tot., Uniq. Data, R(int)	26618, 6823, 0.014
Observed data $[I > 2.0 \sigma(I)]$	6031
Refinement	
N _{ref} , N _{par}	6823, 399
R, wR2, S	0.0459, 0.1354, 1.04
W	$1/[\sigma^2 (F_o^2)+(0.0759P)^2+0.2752P], P=(F_o^2+2F_c^2)/3$
Max. and Av. Shift/Error	0.00, 0.00
Min. and Max. Resd. Dens. [e/Å ³]	-0.27, 0.28

(b) Crystal Data and Details of the Structure Determination for Compound 1.5

Crystal Data	
Formula	C ₂₈ H ₂₆ O ₄ , C ₇ H ₁₂ O
Formula Weight	538.65
Crystal System	Triclinic
Space group	P1 (No. 1)
a, b, c [Å]	8.181(2), 9.952(3), 10.163(3)
α, β, γ [°]	79.296(6), 68.813(5), 65.825(5)
V [Å ³]	703.2(3)
Z	1
D _{calc} [g/cm ³]	1.272
μ(MoKα) [mm ⁻¹]	0.084
F(000)	288
Crystal Size [mm]	0.09 x 0.20 x 0.32
Data-collection	
Temperature (K)	173(2)
Radiation [Å]	ΜοΚα, 0.71073
θ _{min, max} [°]	2.2, 27.1
Dataset	-10: 10 ; -12: 12 ; -13: 13
Tot., Uniq. Data, R(int)	9415, 9403, 0.000
Observed data $[I > 2.0 \sigma(I)]$	5729
Refinement	
N _{ref} , N _{par}	9403, 366
R, wR2, S	0.0515, 0.1338, 0.945
w	$1/[\sigma^2 (F_o^2) + (0.0540P)^2]$, $P = (F_o^2 + 2F_c^2)/3$
Max. and Av. Shift/Error	0.00, 0.00
Min. and Max. Resd. Dens. [e/Å ³]	-0.25, 0.26

Table S2. Host-guest interactions (hydrogen bonds, (guest)C-H… π and (guest)C-H…C_{ar} interactions). Serial numbers refer to the labelled interactions in the supporting figures.

Compound **1-4:** Host- (R)-enantiomer

D-H···A	D-H /Å	H…A	D…A	D-H…A (°)
O16-H16…O39A	0.84	1.91	2.621(2)	141
1. C35A-H35A…Cg(C27-C32) ^a	1.00	2.87	3.789(3)	153
2. C38A-H38C…Cg(C1-C6) ^a	0.99	2.75	3.584(6)	142
3. C37A-H37C…Cg(C7-C12) ^b	0.99	2.83	3.732(3)	151
4. C40A-H40E…C25 ^a	0.98	2.76	3.731(3)	171

Compound 1-4: Host- (S)-enantiomer

D-H···A	D-H /Å	Н…А	D…A	D-H…A (°)
O16-H16···O39B	0.84	2.36	3.125(8)	152
1. C38B-H38A…Cg(C1-C6) ^b	0.99	2.49	3.31(1)	140
2. C38B-H38B…Cg(C7-C12) ^b	0.99	2.91	3.84(2)	156
3. C40B-H40B…Cg(C27-C32) ^a	0.98	3.08	3.87(2)	139
4. C36B-H36A…C30ª	0.99	2.90	3.84(1)	159
5. C40B-H40A…C25ª	0.98	2.98	3.60(1)	122
6. C37B-H37A…C2 ^b	0.99	2.86	3.41(1)	116

Compound 1.5: Host-guest

D-n···A D-n /A n···A D···A D-n·	А()
O16-H16…O39 0.84 1.94 2.713(4) 15	2
1. C34-H34B···Cg(C7-C12) ^c 0.99 2.66 3.607 15	Э
2. C38-H38B···Cg(C27-C32) ^d 0.99 2.96 3.747 13	7
3a. C38-H38A···C5 0.99 3.00 3.917(6) 15	4
3b. C38-H38A···C6 0.99 2.99 3.955(6) 16	4
4. C40-H40C···C23 ^d 0.98 2.90 3.829(6) 15	8
5. C40-H40B···C4 ^c 0.98 2.93 3.764(6) 14	4

Symmetry code: ^a 1-x, ½+y, 1-z; ^b 1-x, ½+y, 2-z; ^c-1+x, y, 1+z; ^d x, -1+y, z

Figure S1. Isolated cavities that accommodate guest molecules in the crystals of (a) TETROL·3-methylcyclohexanone (1·4), (b) TETROL·4-methylcyclohexanone (1·5).

Voids mapped using contact surfaces with program Mercury CSD 3.3 (Build RC5), 2013, with a 1.5 Å probe radius and a grid spacing of 0.5 Å.

Figure S2: Stereoview illustrating the C-H··· π bonds (1-3) and short H···C_{ar} contacts (4-6) that stabilize the axial conformer of the minor guest component ((S)-enantiomer of 3-methylcyclohexanone) in the crystal of 1·4.

Figure S3: Stereoview illustrating the C-H··· π bonds (1-2) and short H···C_{ar} contacts (3-6) that stabilize the axial conformer of 4-methylcyclohexanone in the crystal of 1.5.

Table S3. Comparative crystal structural and theoretical [G3(MP2) composite method] bond lengths, distances, torsion angles and angles for equatorial 2-methylcyclohexanone 3eq, axial 3-methylcyclohexanones 4ax, and axial 4-methylcyclohexanone 5ax.

		3eq			4ax			5ax		
		Theor.	Exp.	Theor- Exp	Theor.	Exp.	Theor- Exp	Theor.	Exp.	Theor- Exp
Bond length/Å	O-C1*	1.23	1.25	-0.02	1.23	1.21	0.02	1.23	1.23	-0.01
	Ha-C8				1.09	0.98¶	-			
	Hb-C8				1.10	0.98¶	_			
	Hc-C8				1.09	0.98¶	_			
	Ha-C9							1.09	0.98¶	_
	Hb-C9							1.09	0.98¶	-
	Hc-C9							1.09	0.98¶	_
Distance/Å	C8-C1				3.06	3.04	0.02			
	C8-Pt4				2.91	2.73	0.19			
	C8-O				3.63	3.74	-0.11			
	Ha(C8)-C1				2.73	2.63¶	-			
	Ha(C8)-Pt4§				2.84	2.83¶	-			
	Ha(C8)-O				3.07	3.13 [¶]	-			
	Ha(C8)-H _{ax} (C6)				2.30	2.38¶	-			
	Hb(C8)-H _{ax} (C6)				3.07	2.74 [¶]	-			
	Hc(C8)-H _{ax} (C6)				3.86	3.71¶				
	Ha(C9)-C1							3.35	3.21¶	-
	Ha(C9)-Pt4							3.94	3.78¶	-
	Ha(C9)-O							4.53	4.37¶	-
	C9-C1							3.70	3.62	0.08
	C9-Pt4							4.31	4.23	0.08
	C9-O							4.93	4.84	0.08
	Ha(C9)-H _{ax} (C2)							2.31	2.38¶	-
	Ha(C9)-H _{ax} (C6)							2.31	2.27¶	-
Torsion angle/°	O-C1-C2-C3	-124.0	-127.2	3.2	-122.0	-135.4	13.4	126.7	135.6	-8.9
	C1-C2-C3-C4	-54.1	-55.0	0.9	-55.3	-48.6	-6.6	53.5	53.2	0.2
	C2-C3-C4-C5	57.2	57.6	-0.4	56.7	54.3	2.3	-55.7	-58.1	2.3
	C3-C4-C5-C6	-56.3	-56.0	-0.3	-55.3	-54.8	-0.5	55.7	55.0	0.7
	C4-C5-C6-C1	54.1	52.9	1.2	52.1	46.2	5.9	-53.5	-48.8	-4.7
	C5-C6-C1-C2	-54.7	-53.8	-0.9	-54.0	-42.6	-11.4	51.9	45.4	6.5
	C6-C1-C2-C3	54.0	54.5	-0.6	55.9	44.7	11.2	-51.9	-47.0	-4.9
	C5-C6-C1-O	123.2	127.9	-4.7	123.9	137.5	-13.6	-126.7	-137.2	10.5
	C1-C2-C4-C5	1.4	1.3	0.1	0.0	4.0	-4.0	-2.3	-4.4	2.1
	C2-C3-C5-C6	0.1	1.1	-1.0	1.8	1.3	0.5	0.0	-2.3	2.3
	C3-C4-C6-C1	-1.5	-2.3	0.8	-1.7	-5.8	4.1	2.3	6.6	-4.3
	C7-C2-C3-C4	-178.7	178.2	0.6						
	C7-C2-C1-C6	179.0	-178.6	-0.5						
	Ha-C7-C2-H	-179.6	-177.7	-1.9						
	Hb-C7-C2-C1	178.3	179.8	-1.5						
	Hc-C7-C2-C3	-179.7	-175.6	-4.1						
	C7-C2-C1-O	1.1	-0.2	1.3						
	C8-C3-C2-C1				69.3	74.0	-4.7			
	C8-C3-C4-C5				-66.8	-66.9	0.1			
	На-С8-С3-Н				-175.1	-163.7	-11.5			
	Hb-C8-C3-C2				-178.1	-165.7	-12.4			

			3eq			4ax			5ax	
		Theor.	Exp.	Theor- Exp	Theor.	Exp.	Theor- Exp	Theor.	Exp.	Theor- Exp
	Hc-C8-C3-C4				-174.8	-163.0	-11.8			
	C9-C4-C3-C2							70.0	66.6	3.4
	C9-C4-C5-C6							-70.0	-69.9	-0.2
	На-С9-С4-Н							180.0	-179.3	-0.8
	Hb-C9-C4-C3							177.6	179.0	-1.4
	Hc-C9-C4-C5							-177.6	-177.3	-0.3
Angle/°	C2-C1-C6	115.2	115.7	-0.5	114.5	117.3	-2.8	114.9	116.3	-1.4
	O-C1-Pt2 [†]	178.3	178.5	-0.2	178.3	179.8	-1.6	178.8	177.6	1.2
	C1-Pt2-Pt3 [‡]	129.9	130.1	-0.2	129.8	139.9	-10.1	132.6	137.9	-5.3
	C4-Pt3-Pt2	128.9	128.9	0.1	129.0	131.3	-2.2	130.3	129.6	0.7
		7								

* Atom numbering sequence:

4

[¶] In the crystal structures, H atoms were placed in idealized positions in a riding model [C-H (Å): methylene 0.99, tertiary 1.00, methyl 0.98]. Calculated differences in distances between the theoretical and experimental structures involving H atoms are hence uncertain.

§ Pt4: centroid (O C1). † Pt2: centroid (C2 C6). ‡ Pt3: centroid (C3 C5).

Experimental Section

Synthesis of (+)-(2R,3R)-1,1,4,4-tetraphenylbutane-1,2,3,4-tetraol 1

This compound was synthesized according to a published procedure.¹ This afforded a gum which was crystallized and recrystallized from CH₂Cl₂/hexane/MeOH to afford (+)-(*2R*,*3R*)-1,1,4,4-tetraphenylbutane-1,2,3,4-tetrol **1** as a white solid (45 %), mp 147-149 °C (lit.², mp 150-151 °C); $[\alpha]^{23}_{D}$ +166° (c = 9.32, CH₂Cl₂) {lit.², $[\alpha]^{25}_{D}$ +154° (c = 1.2, CHCl₃)}; v_{max} (solid)/cm⁻¹ 3440 (br, OH), 3294 (br, OH), 3057 (Ar), 3033 (Ar), 1598 (Ar) and 1494 (Ar); δ_{H} (CDCl₃) 3.86 (2H, d, 2CO<u>H</u>), 4.44 (2H, d, 2<u>H</u>COH), 4.72 (2H, s, 2CPh₂O<u>H</u>) and 7.2-7.4 (2OH, m, Ar); δ_{C} (CDCl₃) 72.11 (H<u>C</u>OH), 81.71 (<u>C</u>Ph₂OH), 124.97 (Ar), 126.05 (Ar), 127.15 (Ar), 127.27 (Ar), 128.10 (Ar), 128.37 (Ar), 128.55 (Ar), 130.08 (Ar), 143.85 (quaternary Ar) and 144.16 (quaternary Ar).

Preparation of inclusion complexes

The complexes of **1** with cyclohexanone **2** and the methylcyclohexanones **3-5** were prepared by dissolving **1** in each of the cyclohexanones with heating, followed by slow evaporation of the latter at ambient temperature and pressure. ¹H NMR analysis revealed that each guest compound was included with a 1:1 host-guest ratio.

Single crystal X-ray Diffraction

The structures were determined from X-ray data collected on Bruker diffractometers with the crystals of **1**·**4** and **1**·**5** cooled to 200(2) and 173(2) K respectively. Crystals of **1**·**5** showed persistent non-merohedral twinning, but the correct unit cell and orientation matrix were successfully determined from a twinned crystal using the program CELL_NOW³ The structures were solved by direct methods and refined by full-matrix least-squares.⁴ Non-H atoms refined anisotropically, except for the minor guest component in **1**·**4** where isotropic refinement was employed and the refined U_{iso} values were in the range 0.04-0.07 Å². H atoms were located in difference Fourier syntheses and were subsequently placed in idealized positions in a riding model [C-H (Å): methylene 0.99, tertiary 1.00, methyl 0.98] with U_{iso} values in the range 1.2-1.5 times those of their parent atoms.

Computational studies

Calculations were performed using SPARTAN '10 for Windows [build 1.1.0 (Mar 20 2011)] software, supplied by Wavefunction Inc. Energies of the respective conformers were calculated using the G3(MP2) composite method.⁵

References

- B. Barton, M. R. Caira, E. C. Hosten and C. W. McCleland, Tetrahedron, 2013, 69, 8713. 1
- Z. Shan, X. Hu, Y. Zhou, X. Peng and Z. Li, Helv. Chim. Acta, 2010, 93, 497. 2
- Sheldrick, G. M. (2004). *CELL NOW*. University of Göttingen, Germany. Sheldrick, G.M. *Acta Cryst.* **2008**, *A64*, 112-122. 3
- 4
- 5 L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov and J. A. Pople, J. Chem. Phys., 1998, 109, 7764.