Supporting Information

Gold-Catalyzed 1,2-Iminonitronations of Electron-deficient Alkynes with Nitrosoarenes to Afford α -Imidoyl Nitrones

RahulKumar Rajmani Singh and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC

E-mail: rsliu@mx.nthu.edu.tw

Contents:

(I) Representative Synthetic Procedures	2
(II) Standard procedures for catalytic operations	3
(III) Spectral data for key compounds	-4
(IV) X-ray crystallographic data of compound 3j	-14
(V) X-ray crystallographic data of compound 5a	25
(VI) ¹ H NMR and ¹³ C NMR Spectra	-33

(I) Experimental Procedure for the synthesis of ethyl propiolate:

(a) General Information

Unless otherwise noted, all the reactions for the preparation of the substrates were performed in oven-dried glassware under nitrogen atmosphere with freshly distilled solvents. The catalytic reactions were performed in dry solvent. DCE was distilled from CaH₂ under nitrogen. THF was distilled from Na metal under nitrogen. All other commercial reagents were used without further purification, unless otherwise indicated. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 MHz, Varian 500 MHz, 600 MHz and 700 MHz Spectrometers using chloroform-d as the internal standards. Ethyl propiolate were prepared according to the literature procedures ^[s1].

Reference:

- [S1] H. Gao, J. Zhang, *Chem. Eur. J.*, 2012, **18**, 2777.
- [S2] (a) S.T. Gadge, B. M. Bhanage, Synlett, 2013, 24, 981. (b) J. G. Kim, D. H. Kang, D.O. Jang, Synlett, 2008, 3, 443.
- [S3] A. Duschek, S. F. Kirsch, Chem. Eur. J. 2009, 15, 10713

(b) Representative Synthetic Procedures:

(1) Synthesis of 1-tosyl-1H-indole-3-carbaldehyde.

Sodium hydride (35 mmol) was added at 0 °C to a solution of indole-3-carbaldehyde (5 g, 35 mmol) in anhydrous THF (100 mL) under an argon atmosphere. The resulting mixture was stirred 30 min at 0 °C, to this solution was added THF solution (20 mL) of sulfonyl chloride (35 mmol) at room temperature. The resulting mixture was refluxed for 1 h, cooled, poured into water (100 mL). The organic layer was extracted with DCM, washed with brine, dried over MgSO₄, and concentrated. The crude product was chromatographed through a silica gel column to afford 1-tosyl-1H-indole-3-carbaldehyde (6.69 g, 22 mmol, 65 %) as brownish solid.

(1) Synthesis of ethyl 3-(1-tosyl-1H-indol-3-yl) propiolate (1j).

To a dichloromethane solution (DCM, 20 ml) of carbon tetrabromide (9.88 g, 29.3 mmol) was added a DCM solution (20 ml) of triphenylphosphine (8.5 g, 32.5 mmol) slowly at 0 °C; the resulting mixture was stirred for 10 min at 0 °C, to this solution was added a DCM (30 mL) solution of compound 1-tosyl-1H-indole-3-carbaldehyde (4.00 g, 13.30 mmol). The resulting solution was stirred for 1 hour at room temperature before quenching with water. The organic layer was extracted with DCM, washed with brine, dried over MgSO₄, and concentrated. The crude product was chromatographed on a silica column to afford 3-(2,2- dibromovinyl)-1-tosyl-1H-indole (5.0 g, 11 mmol, 83 %) as a white solid.

To a THF solution of 3-(2,2-dibromovinyl)-1-tosyl-1H-indole (2.0 g, 20.14 mmol) was added *n*-BuLi (5.0 mL, 2.5 M in hexane, 11.0 mmol) drop wise at -78 °C for 30 min and allow to stir for 1 hour at -78 °C. To this solution was added a THF (5 mL) solution of ethyl chloroformate (0.57 g, 5.3 mmol). The resulting solution was stirred at -78 °C for 2 hours and monitored by TLC. After completion of reaction it was quenched by saturated solution of NH4Cl at room temperature. The aqueous layer was separated and extracted with (3 x 20 mL) of ether. The organic layer is washed with water (50 ml), brine (50 mL), dried over MgSO₄, and concentrated. The crude product was chromatographed on a silica column to afford **1j** (1.10 g, 3.0 mmol, 69 %) as white solid.

(II) Standard Catalytic Procedure for Gold-catalyzed 1,2-iminonitronation reactions:

A reaction tube was charged with $P(t-Bu)_2(o-biphenyl)AuCl(I)$ (15.1 mg, 0.029 mmol) and Silver(I) Bis(trifluoromethanesulfonyl)imide (11.0 mg, 0.029 mmol), and to this mixture was added dry Dichloroethane (DCE) (1.0 mL). The resulting solution was stirred at room temperature for 5 min. To this solution was added a Dichloroethane (DCE) solution (2 mL) of compound **1a** (100 mg, 0.57 mmol) and Nitrosobenzene (141 mg, 1.3 mmol). The mixture was kept stirring at 25 °C for 6 h before it was filtered over a short silica bed. The solvent was concentrated, and the crude product was chromatographed through a silica gel column to afford compound **3a** as yellow oil (101 mg, 0.27 mmol, 77 %) together with α,β -dioxo ester **4** (13%) and diazene oxide **4'** (0.14 equiv) in minor proportion . (III) Spectral data :

Spectral data for ethyl 3-(o-tolyl)propiolate (1e).

Light yellow liquid ; ¹H NMR (600 MHz, CDCl₃): δ 7.52 (d, J = 7.7 Hz, 1 H), 7.31 (t, J = 7.6 Hz, 1 H), 7.21 (d, J = 7.7 Hz, 1 H), 7.16 (t, J = 7.6 Hz, 1 H), 4.27 (q, J = 7.1 Hz, 2 H), 2.47 (s, 3H) 1.34 (t, J = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): 154.2, 142.2, 133.3, 130.5, 129.7, 125.7, 119.5, 85.1, 84.4, 61.9, 20.5, 14.1 ; HRMS: calcd. for C₁₂H₁₂O₂ : 188.0837; Found: 188.0833.

Spectral data for ethyl 3-(benzo[b]thiophen-3-yl) propiolate (1h).

Dark Brown liquid ; ¹H NMR (600 MHz, CDCl₃): δ 7.99~7.97 (m, 1 H), 7.90 (s, 1 H), 7.83 (t, *J* = 8.0 Hz, 1 H), 7.46 ~ 7.44 (m, 1 H), 7.21 (t, *J* = 7.8 Hz, 1 H), 4.31 (q, *J* = 7.1 Hz, 2 H), 1.36 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): 154.0, 138.7, 138.5, 135.6, 125.5, 125.2, 122.9, 122.6, 114.9, 83.4, 79.9, 62.0, 14.0; HRMS: calcd. for C₁₃H₁₀O₂S : 230.0402; Found: 230.0397.

Spectral data for ethyl 3-(benzofuran-2-yl) propiolate (1i).

Yellow liquid ; ¹H NMR (600 MHz, CDCl₃): δ 7.57 (d, *J* = 7.8 Hz, 1 H), 7.44 (d, *J* = 8.3 Hz, 1 H), 7.37 (t, *J* = 7.2 Hz, 1 H), 7.26 ~ 7.22 (m, 2 H), 4.29 (q, *J* = 7.1 Hz, 2 H), 1.33 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): 155.5, 153.2, 135.7, 127.1, 123.7, 121.8, 116.9, 111.5, 86.3, 76.0, 62.3, 13.9; HRMS: calcd. for C₁₃H₁₀O₃: 214.0630; Found: 214.0626.

Spectral data for ethyl 3-(1-tosyl-1H-indol-3-yl) propiolate (1j).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.96 ~ 7.94 (m, 2 H), 7.76 (dd, *J* = 6.7, 1.8 Hz, 2 H), 7.68 ~ 7.66 (m, 1 H), 7.37 ~ 7.34 (m, 1 H), 7.31 ~ 7.28 (m, 1 H), 7.23 (d, *J* = 8.1 Hz, 2 H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.33 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 153.9, 145.8, 134.5, 134.0, 132.6, 130.1, 130.0, 127.0, 125.9, 124.2, 120.6, 113.6, 101.6, 85.1, 78.4, 62.0, 21.5, 14.0, (one carbon merged with others); HRMS: calcd. for C₂₀H₁₇NO₄S: 367.0878; Found: 367.0879.

Spectral data for (*E*)-ethyl 4-methyl-5-phenylpent-4-en-2-ynoate (1k).

Pale Yellow liquid ; ¹H NMR (600 MHz, CDCl₃): δ 7.36 ~ 7.33 (m, 3 H), 7.28 ~ 7.26 (m, 2 H), 7.08 (s, 1 H), 4.24 (q, *J* = 7.1 Hz, 2H), 2.01 (s, 3 H), 1.31 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 153.9, 141.6, 135.5, 129.0, 128.3, 128.1, 116.6, 89.8, 79.3, 61.7, 18.1, 13.9; HRMS: calcd. for C₁₄H₁₄O₂: 214.0994; Found: 214.0992.

Spectral data for (E)-N-((E)-1-ethoxy-1-oxo-3-phenyl-3-(phenylimino) propan-2-ylidene) aniline oxide (3a)

Pale Yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (dd, *J* = 7.2, 1.7 Hz, 2 H), 7.52 ~ 7.45 (m, 3 H), 7.42 (d, *J* = 7.3 Hz, 1 H), 7.38 ~ 7.30 (m, 4 H), 7.15 (t, J = 7.5 Hz, 1 H), 7.08~7.05 (m, 4 H),

3.89 (q, J = 7.12 Hz, 2 H), 0.94 (t, J = 7.2 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 159.3, 159.7, 150.4, 147.5, 137.6, 135.4, 131.4, 130.3, 128.9, 128.8, 128.7, 127.3, 125.2, 122.7, 118.5, 61.9, 13.6; ESI-MS: calcd. for C₂₃H₂₀N₂O₃: 372.1474; Found: 372.1472.

Spectral data ethyl 2,3-dioxo-3-phenylpropanoate (4)

Yellow liquid; (1:2 mixture of ketone and hydrate) *Ketone* : ¹H NMR (600 MHz, CDCl₃): δ 7.97 (dd, *J* = 7.2, 1.2 Hz, 2 H), 7.70 ~ 7.67 (m, 1 H), 7.54 ~ 7.52 (m, 2 H), 4.41 (q, *J* = 7.2 Hz, 2 H), 1.37 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (175 MHz, CDCl₃): δ 190.2, 183.7, 160.5, 135.5, 131.5, 130.0, 129.1, 63.3, 13.9; *Hydrate*: ¹H NMR (600 MHz, CDCl₃): δ 8.05 (dd, *J* = 8.9, 0.6 Hz, 2 H), 7.62 ~ 7.59 (m, 1 H), 7.47 ~ 7.44 (m, 2 H), 4.19 (q, *J* = 7.2 Hz, 2 H), 1.06 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 191.5, 169.9, 134.7, 131.3, 130.1, 128.8, 91.5, 63.2, 13.6; HRMS: calcd. for C₁₁H₁₂O₅: 224.0685; Found: 224.0685.

The spectral data are in agreement with the values reported previously in the literature.^[S3]

Spectral data for (*E*)-*N*-((*E*)-1-ethoxy-1-oxo-3-(phenylimino)-3-(p-tolyl) propan-2-ylidene) aniline oxide (3b)

Light Yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.80 (dd, J = 6.5, 1.7 Hz, 2 H), 7.40 (t, J = 6.5 Hz, 1 H), 7.37 ~ 7.27(m, 6 H), 7.14 (t, J = 6.3 Hz, 1 H), 7.07 ~ 7.05(m, 4 H), 3.94 (q, J = 7.1 Hz, 2 H), 2.41 (s, 3 H), 0.94 (t, J = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 159.4, 158.5, 150.6, 147.6, 141.9, 137.8, 132.7, 130.3, 129.6, 128.9, 128.7, 127.3, 125.0, 122.7, 118.6, 61.9, 21.5, 13.6; HRMS: calcd. for C₂₄H₂₂N₂O₃: 386.1630; Found: 386.1628.

Spectral data for (*E*)-*N*-((*E*)-1-ethoxy-3-(4-methoxyphenyl)-1-oxo-3-(phenylimino) propan-2-ylidene) aniline oxide (3c).

Yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (dd, J = 6.9, 2.0 Hz, 2 H), 7.43 ~ 7.29 (m, 5 H), 7.13 (t, J = 7.4 Hz, 1 H), 7.05 (dd, J = 8.3, 1.2 Hz, 4 H), 6.97 (dd, J = 6.9, 2.0 Hz, 2 H), 3.89 (q, J = 6.9 Hz, 2 H), 3.86 (s, 3 H), 0.95 (t, J = 7.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 162.3, 159.5, 157.8, 150.6, 147.6, 137.8, 130.3, 129.1, 128.9, 128.7, 128.1, 124.9, 122.7, 118.6, 114.3, 61.9, 55.4, 13.7; HRMS: calcd. for C₂₄H₂₂N₂O₄: 402.1580; Found: 402.1581.

Spectral data for (E)-N-((E)-1-(4-chlorophenyl)-3-ethoxy-3-oxo-1-(phenylimino) propan-2-ylidene) aniline oxide (3d).

Pale Yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.85 (d, J = 8.5 Hz, 2 H), 7.45 ~ 7.42 (m, 3 H), 7.37 (t, J = 8.1 Hz, 2 H), 7.33 (t, J = 7.6 Hz, 2 H), 7.16 (t, J = 7.4 Hz, 1 H), 7.08(d, J = 9.3 Hz, 2H), 7.04 (d, J = 8.4 Hz, 2 H), 3.88 (q, J = 7.1 Hz, 2 H), 0.94 (t, J = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 159.1, 157.6, 150.1, 147.3, 137.5, 137.1, 133.8, 130.5, 129.2, 129.0, 128.8, 128.6, 125.4, 122.6, 118.4, 62.0, 13.6; HRMS: calcd. for C₂₃H₁₉ClN₂O₃: 406.1084; Found: 406.1070.

Spectral data for ((E)-N-((E)-1-ethoxy-1-oxo-3-(phenylimino)-3-(4-(trifluoromethyl) phenyl) propan-2-ylidene) aniline oxide (3e).

Yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.55 (d, J = 7.8 Hz, 1 H), 7.41 ~ 7.38 (m, 1 H), 7.34 ~ 7.29 (m, 6 H), 7.26 ~ 7.23 (m, 1 H), 7.16 ~ 7.13 (m, 1 H), 7.09 ~ 7.06 (m, 4 H), 3.84 (q, J =

7.2 Hz, 2 H), 2.67 (s, 3H), 0.92 (t, J = 7.2 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 159.8, 159.7, 150.4, 147.5, 138.9, 138.7, 135.7, 131.6, 130.4, 130.0, 128.9, 128.7, 128.0, 125.7, 125.3, 122.7, 118.7, 61.9, 20.2, 13.5; HRMS: calcd. for C₂₄H₂₂F₃N₂O₃: 386.1630, Found: 386.1623.

Spectral data for (E)-N-((Z)-1-ethoxy-1-oxo-3-(phenylimino)-3-(thiophen-2-yl) propan-2-ylidene) aniline oxide (3f).

Brownish liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (dd, J = 5.0, 1.0 Hz, 1 H), 7.45 ~ 7.39 (m, 3 H), 7.37 (s, 1 H), 7.35 ~ 7.29 (m, 2 H), 7.16 (t, J = 8.5 Hz, 1 H), 7.10 ~ 7.07 (m, 5 H), 3.92 (q, J = 7.0 Hz, 2 H), 0.96 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 159.1, 152.8, 149.7, 147.6, 141.2, 136.8, 130.7, 130.4, 129.1, 129.0, 128.7, 127.7, 125.4, 122.6, 118.9, 62.0, 13.6; HRMS: calcd. for C₂₁H₁₈N₂O₃S: 378.1038; Found: 378.1028

Spectral data for (*E*)-*N*-((*E*)-1-ethoxy-3-(furan-3-yl)-1-oxo-3-(phenylimino) propan-2-ylidene) aniline oxide (3g).

Light Yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.84 (s, 1 H), 7.49 (t, *J* = 1.5 Hz, 1 H), 7.43 ~ 7.40 (m, 1 H), 7.37 ~ 7.34 (m, 2 H), 7.32 ~ 7.29 (m, 2 H), 7.15 ~ 7.12 (m, 1 H), 7.06 ~ 7.04 (m, 4 H), 6.93 (dd, *J* = 3.2, 0.8 Hz, 1 H), 3.92 (q, *J* = 7.1 Hz, 2 H), 0.96 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 159.2, 152.0, 150.1, 147.6, 144.3, 144.2, 130.5, 129.2, 129.0, 128.7, 125.3, 124.7, 122.6, 118.7, 108.8, 62.0, 13.6; ESI-MS: calcd. for C₂₁H₁₈N₂O₄: 362.1267; Found: 362.1265.

Spectral data for (*E*)-*N*-((*E*)-1-(benzo[b]thiophen-3-yl)-3-ethoxy-3-oxo-1-(phenylimino) propan-2-ylidene) aniline oxide (3h).

Brownish liquid; ¹H NMR (600 MHz, CDCl₃): δ 8.98 (d, J = 8.2 Hz, 1 H), 7.89 ~ 7.87 (m, 2 H), 7.50 ~ 7.41 (m, 3 H), 7.38 ~ 7.35 (m, 4 H), 7.19 ~ 7.14 (m, 3 H), 7.06 (d, J = 7.9 Hz, 2 H), 3.93 (q, J = 7.1 Hz, 2 H), 0.94 (t, J = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 159.5, 154.1, 150.3, 147.6, 140.5, 137.7, 136.7, 132.3, 131.9, 130.4, 129.0, 128.7, 125.9, 125.4, 125.3, 125.1, 122.6, 122.3, 118.5, 62.0, 13.6; HRMS: calcd. for C₂₅H₂₀N₂O₃S: 428.1195; Found: 428.1186.

Spectral data for (E)-N-((Z)-1-(benzofuran-2-yl)-3-ethoxy-3-oxo-1-(phenylimino) propan-2-ylidene) aniline oxide (3i).

Light yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.65 (d, *J* = 7.8 Hz, 1 H), 7.57 (d, *J* = 8.3 Hz, 1 H), 7.45 (t, *J* = 6.5 Hz, 1 H), 7.41 ~ 7.38 (m, 3 H), 7.34 (t, *J* = 7.5 Hz, 3 H), 7.27 (t, *J* = 7.5 Hz, 1 H), 7.19 ~ 7.17 (m, 3 H), 7.13 (d, *J* = 7.4 Hz, 2 H), 3.92 (q, *J* = 7.0 Hz, 2 H), 0.95 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 159.1, 155.7, 151.5, 149.8, 149.7, 147.7, 135.7, 130.6, 129.0, 128.7, 127.8, 126.8, 125.8, 123.6, 122.7, 122.3, 118.9, 112.1, 110.4, 62.0, 13.6; HRMS: calcd. for C₂₅H₂₀N₂O₄: 412.1423; Found: 412.1433.

Spectral data for (E)-N-((E)-1-ethoxy-1-oxo-3-(phenylimino)-3-(1-tosyl-1H-indol-3-yl) propan-2-ylidene) aniline oxide (3j).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 8.49 (d, J = 7.7 Hz, 1 H), 7.95 ~ 7.92 (m, 2 H), 7.78 (d, J = 8.4 Hz, 2 H), 7.45 ~ 7.34 (m, 4 H), 7.33 ~ 7.31 (m, 3 H), 7.23 (d, J = 8.5 Hz, 2 H), 7.16 (t, J = 7.4 Hz, 1 H), 7.11 ~ 7.07 (m, 4 H), 3.87 (q, J = 7.1 Hz, 2 H), 2.33 (s, 3 H), 0.94 (t, J = 6.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 159.3, 153.1, 150.4, 147.6, 145.5, 137.1, 135.5, 134.6, 130.4, 130.1, 129.1, 128.9, 128.7, 128.1, 127.0, 125.7, 125.2, 124.4, 123.6, 122.6, 119.1, 118.6, 113.2, 62.0, 21.5, 13.7; HRMS: calcd. for C₃₂H₂₇N₃O₅S: 565.1671; Found: 565.1674.

Spectral data for (*E*)-*N*-((*3E*,*4E*)-1-ethoxy-4-methyl-1-oxo-5-phenyl-3-(phenylimino) pent-4-en-2-ylidene) aniline oxide (3k)

Yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.42 ~ 7.38 (m, 5 H), 7.34 ~ 7.29 (m, 5 H), 7.12 (t, J = 7.1 Hz, 1 H), 7.04 (s, 1 H), 7.10 (dd, J = 8.5, 1.0 Hz, 2 H), 6.93 (d, J = 7.4 Hz, 2 H), 3.96 (q, J = 7.1 Hz, 2 H), 2.37 (s, 3 H), 1.01 (t, J = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 161.5, 159.6, 150.7, 147.7, 137.8, 136.4, 135.9, 135.7, 130.2, 129.7, 128.9, 128.6, 128.3, 127.9, 124.7, 122.6, 118.1, 61.9, 14.4, 13.7; HRMS: calcd. for C₂₆H₂₄N₂O₃: 412.1787; Found: 412.1777.

Spectral data for (*E*)-*N*-((*E*)-1-cyclohexyl-3-ethoxy-3-oxo-1-(phenylimino) propan-2-ylidene) aniline oxide (3l)

Yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.39 ~ 7.37 (m, 2 H), 7.35 ~ 7.33 (m, 1 H), 7.24 ~ 7.21 (m, 2 H), 7.19 ~ 7.17 (m, 2 H), 6.92 ~ 6.91 (m, 2 H), 6.89 ~ 6.87 (m, 1 H), 3.96 (q, *J* = 7.1 Hz, 2 H), 2.27 (t, *J* = 6.4 Hz, 2H), 2.18 (t, *J* = 6.2 Hz, 2H), 1.75 ~ 1.71 (m, 3 H), 1.65 ~ 1.61 (m, 4 H), 0.88 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 161.7, 143.9, 139.8, 137.3, 128.8, 128.4, 127.8, 127.3, 120.4, 118.3, 111.6, 58.9, 23.3, 23.2, 23.1, 22.7, 13.8; HRMS: calcd. For C₂₃H₂₆N₂O₃: 378.1943; Found: 378.1938.

Spectral data for (E)-N-((E)-1-cyclopropyl-3-ethoxy-3-oxo-1-(phenylimino) propan-2-ylidene) aniline oxide (3m).

Light Yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.41 ~ 7.38 (m, 1 H), 7.34 (t, *J* = 7.4 Hz, 2 H); 7.24 ~ 7.22 (m, 2 H), 7.07 ~ 7.03 (m, 3 H), 6.88 (d, *J* = 7.4 Hz, 2 H), 3.84 (q, *J* = 7.1 Hz, 2 H), 2.03 ~ 2.00 (m, 1 H), 1.23 ~ 1.20 (m, 2 H), 1.06 ~ 1.04 (m, 2 H), 0.99 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 164.7, 159.1, 150.1, 147.5, 138.3, 130.3, 128.9, 128.6, 124.8, 122.9, 118.9, 61.8, 17.3, 13.3, 9.5; HRMS: calcd. for C₂₀H₂₀N₂O₃: 336.1474; Found: 336.1474.

Spectral data for (E)-N-((E)-1-((3,5-dimethylphenyl)imino)-3-ethoxy-3-oxo-1-phenyl mpropan-2-ylidene)-3,5-dimethylaniline oxide (5b).

Pale Yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.90 ~ 7.89 (m, 2 H), 7.48 ~ 7.46 (m, 3 H), 7.04 (m, 1 H), 6.80 (s , 1 H), 6.70 (t, *J* = 0.7 Hz, 4 H), 3.89 (q, *J* = 6.8 Hz, 2H), 2.30 (d, *J* = 5.6 Hz, 12 H) 0.96 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 159.3, 158.4, 150.4, 147.7, 138.9, 138.2, 137.4, 135.6, 131.8, 131.2, 128.8, 127.4, 126.8, 120.3, 116.4, 61.7, 21.3, 21.1, 13.7; ESI-MS: calcd. for C₂₇H₂₈N₂O₃: 428.2100; Found: 428.2094.

Spectral data for (E)-4-(tert-butyl)-N-((E)-1-((4-(tert-butyl)phenyl)imino)-3-ethoxy-3-oxo-1-phenylpropan-2-ylidene) aniline oxide (5c).

Yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.88 (dd, J = 7.9, 1.6 Hz, 2 H), 7.49 ~ 7.44 (m, 3 H), 7.35 ~ 7.31 (m, 4 H), 7.00 ~ 6.97 (m, 4 H), 3.88 (q, J = 7.1 Hz, 2H), 1.29 (s, 9 H), 1.28 (s, 9 H), 0.89 (t, J = 7.1 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): 159.7, 158.8, 154.0, 148.1, 147.9, 145.3, 137.5, 135.6, 131.2, 128.4, 127.4, 125.8, 125.5, 122.4, 118.3, 61.8, 34.9, 34.4, 31.4, 13.1, 13.6; ESI-MS: calcd. for C₃₁H₃₆N₂O₃: 484.2726; Found: 484.2732.

Spectral data for (*E*)-*N*-((*E*)-1-ethoxy-3-((4-methoxyphenyl)imino)-1-oxo-3-phenylpropan-2-ylidene)-4-methoxyaniline oxide (5d).

Light Yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, J = 7.2, 2.1 Hz, 2 H), 7.46 ~ 7.44 (m, 3 H), 7.16 (dd, J = 8.0, 0.9 Hz, 2 H), 7.02 (dd, J = 7.9, 0.9 Hz, 2 H), 6.87 ~ 6.83 (m, 4 H), 3.88 (q, J = 7.1 Hz, 2H), 3.80 (s, 3 H), 3.77 (s, 3 H), 0.94 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 159.8, 158.7, 157.6, 143.8, 140.7, 137.3, 135.8, 131.1, 128.8, 127.3, 124.4, 120.2, 114.0, 113.9, 61.9, 55.6, 55.4, 13.7; ESI-MS: calcd. for C₂₅H₂₄N₂O₅: 432.1685; Found: 432.1687.

Spectral data for (E)-4-bromo-N-((E)-1-((4-bromophenyl)imino)-3-ethoxy-3-oxo-1-phenylpropan-2-ylidene) aniline oxide (5e).

Brown liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.85 (dd, J = 8.3, 1.4 Hz, 2 H), 7.54 ~ 7.50 (m, 3 H), 7.48 ~ 7.45 (m, 2 H), 7.43 (dd, J = 6.6, 2.1 Hz, 2 H), 6.95 (dd, J = 6.7, 2.0 Hz, 2 H), 6.92 (dd, J = 6.7, 2.0 Hz, 2 H), 3.94 (q, J = 7.1 Hz, 2 H), 0.98 (t, J = 7.1 Hz, 3 H) ¹³C NMR (150 MHz, CDCl₃): δ 159.1, 158.9, 149.3, 146.2, 137.6, 135.0, 132.3, 131.8, 129.0, 127.4, 124.7, 124.3, 120.3, 118.4, 62.3, 13.7 (one carbon merged with others); ESI-MS: calcd. for C₂₃H₁₈Br₂N₂O₃: 527.9684; Found: 527.9687.

Spectral data for (E)-4-chloro-N-((E)-1-((4-chlorophenyl)imino)-3-ethoxy-3-oxo-1-phenylpropan-2-ylidene) aniline oxide (5f).

Yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (dd, J = 8.1, 1.2 Hz, 2 H), 7.52 ~ 7.45 (m, 3 H), 7.37 (d, J = 8.6 Hz, 2 H), 7.29 (d, J = 8.5 Hz, 2 H), 7.04 (d, J = 8.8 Hz, 2 H), 6.99 (d, J = 8.5 Hz, 2 H), 3.94 (q, J = 7.1 Hz, 2 H), 0.97 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 159.0, 158.9, 148.8, 145.6, 137.6, 136.6, 134.9, 131.8, 130.6, 129.3, 128.9, 128.8, 127.3, 124.0, 119.9, 62.3, 13.7; ESI-MS: calcd. for C₂₃H₁₈Cl₂N₂O₃: 440.0694; Found: 440.0690.

Spectral data for (N, N'E, N, N'E)-N, N'-(1, 4-diethoxy-1, 4-dioxobutane-2, 3-diylidene) bis (aniline oxide) (6a).

Yellow solid; ¹H NMR (600 MHz, CDCl₃): δ 7.50 ~ 7.42 (m, 10 H), 4.10 (q, *J* = 7.1 Hz, 4 H), 1.01 (t, *J* = 7.1 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 160.0, 147.5, 135.3, 131.1, 129.1, 123.5, 62.4, 13.6; HRMS: calcd. for C₂₀H₂₀Cl₂N₂O₆: 384.1321; Found: 384.1359.

:

Table 1. Crystal data and structure refinement for mo_130802lt_0m.

Identification code	mo_130802lt_0m	
Empirical formula	C32 H27 N3 O5 S	
Formula weight	565.63	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 10.1408(17) Å	α= 103.814(4)°.
	b = 10.8111(18) Å	$\beta = 92.891(4)^{\circ}$.
	c = 13.136(2) Å	$\gamma = 95.161(4)^{\circ}$.
Volume	1389.0(4) Å ³	
Z	2	
Density (calculated)	1.352 Mg/m^3	
Absorption coefficient	0.164 mm ⁻¹	
F(000)	592	
Crystal size	0.25 x 0.20 x 0.20 mm ³	
Theta range for data collection	1.60 to 26.53°.	
Index ranges	-12<=h<=12, -13<=k<=13, -7<	=l<=16

Reflections collected	19602
Independent reflections	5725 [R(int) = 0.0530]
Completeness to theta = 26.53°	98.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9486 and 0.7194
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5725 / 0 / 372
Goodness-of-fit on F ²	1.042
Final R indices [I>2sigma(I)]	R1 = 0.0574, wR2 = 0.1466
R indices (all data)	R1 = 0.0776, wR2 = 0.1619
Largest diff. peak and hole	0.663 and -0.712 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for mo_130802lt_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
S(1)	6325(1)	8107(1)	8617(1)	20(1)
O(1)	7810(2)	9853(2)	4683(1)	28(1)
O(2)	6047(2)	6199(2)	3127(2)	38(1)
O(3)	7165(2)	5558(2)	4386(2)	41(1)
O(4)	6568(2)	9238(2)	9444(1)	25(1)
O(5)	5128(2)	7862(2)	7945(1)	24(1)
N(1)	7539(2)	8141(2)	7802(2)	21(1)
N(2)	7146(2)	8769(2)	4274(2)	22(1)
N(3)	9854(2)	7565(2)	4827(2)	29(1)
C(1)	6991(3)	3605(3)	10485(2)	37(1)
C(2)	6823(2)	4718(2)	10003(2)	27(1)
C(3)	6344(2)	4534(2)	8958(2)	29(1)
C(4)	6200(2)	5567(2)	8518(2)	24(1)
C(5)	6554(2)	6788(2)	9138(2)	21(1)
C(6)	7338(2)	7935(2)	6721(2)	21(1)
C(7)	8534(2)	7981(2)	6288(2)	21(1)
C(8)	8713(2)	7763(2)	5175(2)	23(1)
C(9)	7497(2)	7694(2)	4452(2)	22(1)
C(10)	5982(2)	8826(2)	3588(2)	22(1)

C(11)	4732(2)	8715(2)	3949(2)	28(1)
C(12)	3644(2)	8790(2)	3290(2)	30(1)
C(13)	3825(2)	8988(2)	2303(2)	27(1)
C(14)	7028(2)	7002(2)	10181(2)	26(1)
C(15)	7153(2)	5962(3)	10608(2)	29(1)
C(16)	8916(2)	8323(2)	8079(2)	20(1)
C(17)	9559(2)	8233(2)	7149(2)	21(1)
C(18)	10949(2)	8396(2)	7197(2)	24(1)
C(19)	11638(2)	8628(2)	8172(2)	26(1)
C(20)	10974(2)	8710(2)	9087(2)	25(1)
C(21)	9596(2)	8566(2)	9062(2)	22(1)
C(22)	6191(2)	9039(2)	2618(2)	25(1)
C(23)	5096(2)	9118(2)	1965(2)	27(1)
C(24)	6613(4)	4246(3)	3895(3)	58(1)
C(25)	6827(4)	3458(3)	4627(3)	52(1)
C(26)	9997(2)	7361(3)	3730(2)	32(1)
C(27)	9942(2)	8354(3)	3229(2)	32(1)
C(28)	10145(2)	8137(3)	2164(2)	38(1)
C(29)	10408(3)	6954(3)	1605(2)	43(1)
C(30)	10472(3)	5968(3)	2108(2)	46(1)
C(31)	10279(3)	6165(3)	3172(2)	40(1)
C(32)	6808(2)	6433(2)	3894(2)	26(1)

Table 3. Bond lengths [Å] and angles [°] for $mo_130802lt_0m$.

S(1)-O(4)	1.4213(17)
S(1)-O(5)	1.4301(16)
S(1)-N(1)	1.676(2)
S(1)-C(5)	1.751(2)
O(1)-N(2)	1.279(2)
O(2)-C(32)	1.200(3)
O(3)-C(32)	1.331(3)
O(3)-C(24)	1.457(3)
N(1)-C(6)	1.384(3)

N(1)-C(16)	1.410(3)
N(2)-C(9)	1.315(3)
N(2)-C(10)	1.463(3)
N(3)-C(8)	1.282(3)
N(3)-C(26)	1.422(3)
C(1)-C(2)	1.506(3)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(15)	1.391(4)
C(2)-C(3)	1.394(4)
C(3)-C(4)	1.390(3)
C(3)-H(3A)	0.9500
C(4)-C(5)	1.380(3)
C(4)-H(4)	0.9500
C(5)-C(14)	1.387(3)
C(6)-C(7)	1.367(3)
C(6)-H(6)	0.9500
C(7)-C(8)	1.448(3)
C(7)-C(17)	1.455(3)
C(8)-C(9)	1.504(3)
C(9)-C(32)	1.478(3)
C(10)-C(22)	1.370(3)
C(10)-C(11)	1.381(3)
C(11)-C(12)	1.388(3)
C(11)-H(11)	0.9500
C(12)-C(13)	1.382(4)
C(12)-H(12)	0.9500
C(13)-C(23)	1.390(4)
C(13)-H(13)	0.9500
C(14)-C(15)	1.384(3)
C(14)-H(14)	0.9500
C(15)-H(15)	0.9500
C(16)-C(21)	1.389(3)
C(16)-C(17)	1.400(3)
C(17)-C(18)	1.401(3)

C(18)-C(19)	1.384(3)
C(18)-H(18)	0.9500
C(19)-C(20)	1.395(3)
C(19)-H(19)	0.9500
C(20)-C(21)	1.391(3)
C(20)-H(20)	0.9500
C(21)-H(21)	0.9500
C(22)-C(23)	1.390(3)
C(22)-H(22)	0.9500
C(23)-H(23)	0.9500
C(24)-C(25)	1.450(4)
C(24)-H(24A)	0.9900
C(24)-H(24B)	0.9900
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
C(26)-C(31)	1.388(4)
C(26)-C(27)	1.391(4)
C(27)-C(28)	1.391(4)
C(27)-H(27)	0.9500
C(28)-C(29)	1.371(4)
C(28)-H(28)	0.9500
C(29)-C(30)	1.386(4)
C(29)-H(29)	0.9500
C(30)-C(31)	1.389(4)
C(30)-H(30)	0.9500
C(31)-H(31)	0.9500
O(4)-S(1)-O(5)	120.74(10)
O(4)-S(1)-N(1)	107.13(10)
O(5)-S(1)-N(1)	104.38(10)
O(4)-S(1)-C(5)	108.48(11)
O(5)-S(1)-C(5)	110.20(10)
N(1)-S(1)-C(5)	104.65(10)
C(32)-O(3)-C(24)	115.2(2)
C(6)-N(1)-C(16)	108.62(18)

C(6)-N(1)-S(1)	124.69(16)
C(16)-N(1)-S(1)	126.64(15)
O(1)-N(2)-C(9)	122.3(2)
O(1)-N(2)-C(10)	114.60(18)
C(9)-N(2)-C(10)	123.13(19)
C(8)-N(3)-C(26)	119.2(2)
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(15)-C(2)-C(3)	118.9(2)
C(15)-C(2)-C(1)	119.6(2)
C(3)-C(2)-C(1)	121.5(2)
C(4)-C(3)-C(2)	121.1(2)
C(4)-C(3)-H(3A)	119.4
C(2)-C(3)-H(3A)	119.4
C(5)-C(4)-C(3)	118.5(2)
C(5)-C(4)-H(4)	120.8
C(3)-C(4)-H(4)	120.8
C(4)-C(5)-C(14)	121.8(2)
C(4)-C(5)-S(1)	119.32(17)
C(14)-C(5)-S(1)	118.83(19)
C(7)-C(6)-N(1)	109.9(2)
C(7)-C(6)-H(6)	125.1
N(1)-C(6)-H(6)	125.1
C(6)-C(7)-C(8)	125.4(2)
C(6)-C(7)-C(17)	107.0(2)
C(8)-C(7)-C(17)	127.6(2)
N(3)-C(8)-C(7)	120.7(2)
N(3)-C(8)-C(9)	122.0(2)
C(7)-C(8)-C(9)	117.2(2)
N(2)-C(9)-C(32)	122.0(2)
N(2)-C(9)-C(8)	118.0(2)
C(32)-C(9)-C(8)	119.7(2)

C(22)-C(10)-C(11)	122.7(2)
C(22)-C(10)-N(2)	117.8(2)
C(11)-C(10)-N(2)	119.5(2)
C(10)-C(11)-C(12)	118.4(2)
C(10)-C(11)-H(11)	120.8
C(12)-C(11)-H(11)	120.8
C(13)-C(12)-C(11)	120.1(2)
C(13)-C(12)-H(12)	119.9
C(11)-C(12)-H(12)	119.9
C(12)-C(13)-C(23)	120.3(2)
C(12)-C(13)-H(13)	119.8
C(23)-C(13)-H(13)	119.8
C(15)-C(14)-C(5)	119.0(2)
C(15)-C(14)-H(14)	120.5
C(5)-C(14)-H(14)	120.5
C(14)-C(15)-C(2)	120.8(2)
C(14)-C(15)-H(15)	119.6
C(2)-C(15)-H(15)	119.6
C(21)-C(16)-C(17)	122.9(2)
C(21)-C(16)-N(1)	129.8(2)
C(17)-C(16)-N(1)	107.29(19)
C(16)-C(17)-C(18)	119.4(2)
C(16)-C(17)-C(7)	107.25(19)
C(18)-C(17)-C(7)	133.3(2)
C(19)-C(18)-C(17)	118.2(2)
C(19)-C(18)-H(18)	120.9
C(17)-C(18)-H(18)	120.9
C(18)-C(19)-C(20)	121.3(2)
C(18)-C(19)-H(19)	119.3
C(20)-C(19)-H(19)	119.3
C(21)-C(20)-C(19)	121.7(2)
C(21)-C(20)-H(20)	119.2
C(19)-C(20)-H(20)	119.2
C(16)-C(21)-C(20)	116.5(2)
C(16)-C(21)-H(21)	121.8
C(20)-C(21)-H(21)	121.8

C(10)-C(22)-C(23)	118.5(2)
C(10)-C(22)-H(22)	120.7
C(23)-C(22)-H(22)	120.7
C(13)-C(23)-C(22)	119.9(2)
C(13)-C(23)-H(23)	120.0
C(22)-C(23)-H(23)	120.0
C(25)-C(24)-O(3)	108.8(3)
C(25)-C(24)-H(24A)	109.9
O(3)-C(24)-H(24A)	109.9
C(25)-C(24)-H(24B)	109.9
O(3)-C(24)-H(24B)	109.9
H(24A)-C(24)-H(24B)	108.3
C(24)-C(25)-H(25A)	109.5
C(24)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(24)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(31)-C(26)-C(27)	119.9(2)
C(31)-C(26)-N(3)	118.8(2)
C(27)-C(26)-N(3)	121.2(2)
C(26)-C(27)-C(28)	119.8(3)
C(26)-C(27)-H(27)	120.1
C(28)-C(27)-H(27)	120.1
C(29)-C(28)-C(27)	120.5(3)
C(29)-C(28)-H(28)	119.7
C(27)-C(28)-H(28)	119.7
C(28)-C(29)-C(30)	119.6(3)
C(28)-C(29)-H(29)	120.2
C(30)-C(29)-H(29)	120.2
C(29)-C(30)-C(31)	120.8(3)
C(29)-C(30)-H(30)	119.6
C(31)-C(30)-H(30)	119.6
C(26)-C(31)-C(30)	119.3(3)
C(26)-C(31)-H(31)	120.3
C(30)-C(31)-H(31)	120.3

O(2)-C(32)-O(3)	124.0(2)
O(2)-C(32)-C(9)	127.3(2)
O(3)-C(32)-C(9)	108.7(2)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for mo_130802lt_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U^{12}
S (1)	14(1)	25(1)	22(1)	6(1)	-1(1)	2(1)
O(1)	23(1)	25(1)	32(1)	5(1)	-2(1)	-5(1)
O(2)	40(1)	32(1)	38(1)	5(1)	-16(1)	-3(1)
O(3)	60(1)	28(1)	34(1)	10(1)	-17(1)	-3(1)
O(4)	21(1)	27(1)	26(1)	5(1)	0(1)	4(1)
O(5)	11(1)	32(1)	29(1)	10(1)	-4(1)	1(1)
N(1)	14(1)	28(1)	22(1)	7(1)	-2(1)	1(1)
N(2)	18(1)	27(1)	22(1)	6(1)	1(1)	-1(1)
N(3)	20(1)	40(1)	26(1)	7(1)	1(1)	3(1)
C(1)	28(1)	44(2)	47(2)	25(1)	8(1)	9(1)
C(2)	13(1)	38(1)	36(1)	18(1)	8(1)	7(1)
C(3)	22(1)	28(1)	36(1)	7(1)	2(1)	4(1)
C(4)	18(1)	28(1)	27(1)	7(1)	-1(1)	3(1)
C(5)	13(1)	29(1)	22(1)	9(1)	2(1)	3(1)
C(6)	17(1)	26(1)	20(1)	6(1)	-1(1)	1(1)
C(7)	16(1)	24(1)	23(1)	7(1)	-3(1)	2(1)
C(8)	19(1)	24(1)	24(1)	6(1)	-2(1)	0(1)
C(9)	18(1)	29(1)	19(1)	8(1)	2(1)	0(1)
C(10)	16(1)	22(1)	26(1)	6(1)	-2(1)	0(1)
C(11)	20(1)	37(1)	28(1)	10(1)	5(1)	0(1)
C(12)	14(1)	34(1)	40(2)	5(1)	1(1)	1(1)
C(13)	20(1)	26(1)	37(1)	9(1)	-3(1)	4(1)
C(14)	20(1)	34(1)	24(1)	8(1)	1(1)	1(1)
C(15)	20(1)	44(2)	27(1)	17(1)	2(1)	4(1)
C(16)	13(1)	22(1)	26(1)	8(1)	-3(1)	2(1)

C(17)	17(1)	21(1)	24(1)	6(1)	-4(1)	1(1)
C(18)	18(1)	29(1)	28(1)	9(1)	1(1)	4(1)
C(19)	14(1)	32(1)	34(1)	12(1)	-3(1)	2(1)
C(20)	19(1)	28(1)	28(1)	7(1)	-8(1)	2(1)
C(21)	18(1)	25(1)	22(1)	7(1)	-3(1)	2(1)
C(22)	20(1)	27(1)	29(1)	8(1)	4(1)	4(1)
C(23)	28(1)	27(1)	28(1)	9(1)	-1(1)	6(1)
C(24)	88(3)	29(2)	52(2)	9(1)	-26(2)	-9(2)
C(25)	68(2)	36(2)	53(2)	13(2)	16(2)	2(2)
C(26)	12(1)	52(2)	28(1)	6(1)	1(1)	1(1)
C(27)	15(1)	52(2)	29(1)	12(1)	0(1)	2(1)
C(28)	15(1)	67(2)	32(1)	16(1)	0(1)	-1(1)
C(29)	22(1)	79(2)	27(1)	11(2)	2(1)	2(1)
C(30)	30(2)	63(2)	37(2)	-4(1)	4(1)	10(1)
C(31)	29(2)	54(2)	35(2)	10(1)	3(1)	10(1)
C(32)	24(1)	29(1)	24(1)	9(1)	0(1)	0(1)

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å^2x\ 10\ ^3) for mo_130802lt_0m.

	X	у	Z	U(eq)
H(1A)	7937	3570	10654	55
H(1B)	6626	2807	9985	55
H(1C)	6521	3714	11128	55
H(3A)	6112	3688	8540	35
H(4)	5866	5437	7808	29
H(6)	6496	7784	6338	25
H(11)	4619	8590	4632	34
H(12)	2773	8705	3517	36
H(13)	3078	9036	1853	33
H(14)	7263	7850	10596	31
H(15)	7468	6100	11324	34
H(18)	11406	8349	6577	29

H(19)	12581	8735	8219	32
H(20)	11478	8868	9743	30
H(21)	9143	8629	9686	26
H(22)	7065	9130	2398	30
H(23)	5216	9261	1288	32
H(24A)	5651	4220	3709	70
H(24B)	7052	3918	3243	70
H(25A)	7778	3517	4831	78
H(25B)	6499	2565	4292	78
H(25C)	6348	3758	5254	78
H(27)	9766	9178	3612	38
H(28)	10101	8814	1821	45
H(29)	10546	6811	878	51
H(30)	10650	5147	1720	55
H(31)	10339	5489	3514	48

Table 7. Crystal data and structure refinement for mo_140816_0m_a.			
Identification code	mo_140816_0m_a		
Empirical formula	C20 H20 N2 O6		
Formula weight	384.38		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 11.8424(8) Å	$\alpha = 90^{\circ}$.	
	b = 10.9091(8) Å	$\beta = 105.318(2)^{\circ}.$	
	c = 16.0091(11) Å	$\gamma = 90^{\circ}.$	
Volume	1994.7(2) Å ³		
Z	4		
Density (calculated)	1.280 Mg/m^3		
Absorption coefficient	0.096 mm ⁻¹		
F(000)	808		
Crystal size	0.20 x 0.18 x 0.08 mm ³		
Theta range for data collection	1.783 to 26.402°.		
Index ranges	-14<=h<=14, -13<=k<=13, -19	0<=1<=20	
Reflections collected	15944		
Independent reflections	4076 [R(int) = 0.0463]		
Completeness to theta = 25.242°	99.8 %		

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9485 and 0.8871
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4076 / 0 / 255
Goodness-of-fit on F ²	1.030
Final R indices [I>2sigma(I)]	R1 = 0.0480, wR2 = 0.1198
R indices (all data)	R1 = 0.0857, wR2 = 0.1396
Extinction coefficient	n/a
Largest diff. peak and hole	0.344 and -0.230 e.Å ⁻³

Table 8. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for mo_140816_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
C(1)	3015(2)	2787(2)	5043(1)	45(1)
C(2)	3945(2)	1858(2)	5368(1)	47(1)
C(3)	5994(2)	1491(2)	5839(2)	74(1)
C(4)	7053(2)	2127(4)	5833(3)	141(2)
C(5)	1915(2)	2409(2)	4467(1)	45(1)
C(6)	813(2)	2783(2)	4674(1)	53(1)
C(7)	-1169(2)	3356(3)	4099(2)	96(1)
C(8)	-2045(3)	3187(4)	3297(3)	150(2)
C(9)	4019(2)	4375(2)	6037(1)	45(1)
C(10)	4181(2)	3793(2)	6818(1)	58(1)
C(11)	5035(2)	4229(3)	7516(2)	72(1)
C(12)	5707(2)	5224(3)	7422(2)	74(1)
C(13)	5510(2)	5813(2)	6640(2)	67(1)
C(14)	4650(2)	5401(2)	5937(1)	53(1)
C(15)	916(2)	1043(2)	3308(1)	46(1)
C(16)	570(2)	1209(2)	2428(1)	56(1)
C(17)	-416(2)	612(2)	1954(2)	70(1)
C(18)	-1014(2)	-149(3)	2356(2)	79(1)
C(19)	-648(2)	-337(2)	3230(2)	79(1)
C(20)	335(2)	262(2)	3722(2)	60(1)
N(1)	3117(1)	3946(2)	5294(1)	47(1)

N(2)	1943(1)	1694(2)	3806(1)	45(1)
O(1)	2893(1)	1489(2)	3592(1)	61(1)
O(2)	754(2)	2861(2)	5406(1)	83(1)
O(3)	-34(1)	3030(1)	3975(1)	59(1)
O(4)	2372(1)	4752(1)	4916(1)	67(1)
O(5)	3713(1)	832(1)	5532(1)	64(1)
O(6)	5008(1)	2291(1)	5430(1)	55(1)

Table 9. Bond lengths [Å] and angles [°] for mo_140816_0m_a.

C(1)-N(1)	1.322(2)
C(1)-C(5)	1.443(3)
C(1)-C(2)	1.486(3)
C(2)-O(5)	1.199(2)
C(2)-O(6)	1.323(2)
C(3)-C(4)	1.435(4)
C(3)-O(6)	1.466(2)
C(3)-H(3A)	0.9700
C(3)-H(3B)	0.9700
C(4)-H(4A)	0.9600
C(4)-H(4B)	0.9600
C(4)-H(4C)	0.9600
C(5)-N(2)	1.322(2)
C(5)-C(6)	1.487(3)
C(6)-O(2)	1.196(2)
C(6)-O(3)	1.318(3)
C(7)-C(8)	1.433(4)
C(7)-O(3)	1.453(3)
C(7)-H(7A)	0.9700
C(7)-H(7B)	0.9700
C(8)-H(8A)	0.9600
C(8)-H(8B)	0.9600
C(8)-H(8C)	0.9600
C(9)-C(10)	1.370(3)
C(9)-C(14)	1.378(3)

C(9)-N(1)	1.451(2)
C(10)-C(11)	1.379(3)
C(10)-H(10)	0.9300
C(11)-C(12)	1.378(4)
C(11)-H(11)	0.9300
C(12)-C(13)	1.372(4)
C(12)-H(12)	0.9300
C(13)-C(14)	1.378(3)
C(13)-H(13)	0.9300
C(14)-H(14)	0.9300
C(15)-C(20)	1.371(3)
C(15)-C(16)	1.372(3)
C(15)-N(2)	1.452(2)
C(16)-C(17)	1.377(3)
C(16)-H(16)	0.9300
C(17)-C(18)	1.358(4)
C(17)-H(17)	0.9300
C(18)-C(19)	1.366(4)
C(18)-H(18)	0.9300
C(19)-C(20)	1.385(3)
C(19)-H(19)	0.9300
C(20)-H(20)	0.9300
N(1)-O(4)	1.280(2)
N(2)-O(1)	1.2787(19)
N(1)-C(1)-C(5)	117.57(17)
N(1)-C(1)-C(2)	123.07(17)
C(5)-C(1)-C(2)	119.25(17)
O(5)-C(2)-O(6)	125.83(19)
O(5)-C(2)-C(1)	121.48(19)
O(6)-C(2)-C(1)	112.69(17)
C(4)-C(3)-O(6)	107.7(2)
C(4)-C(3)-H(3A)	110.2
O(6)-C(3)-H(3A)	110.2
C(4)-C(3)-H(3B)	110.2
O(6)-C(3)-H(3B)	110.2
H(3A)-C(3)-H(3B)	108.5

C(3)-C(4)-H(4A)	109.5
C(3)-C(4)-H(4B)	109.5
H(4A)-C(4)-H(4B)	109.5
C(3)-C(4)-H(4C)	109.5
H(4A)-C(4)-H(4C)	109.5
H(4B)-C(4)-H(4C)	109.5
N(2)-C(5)-C(1)	118.09(16)
N(2)-C(5)-C(6)	123.38(17)
C(1)-C(5)-C(6)	118.44(17)
O(2)-C(6)-O(3)	126.1(2)
O(2)-C(6)-C(5)	121.4(2)
O(3)-C(6)-C(5)	112.52(17)
C(8)-C(7)-O(3)	108.8(2)
C(8)-C(7)-H(7A)	109.9
O(3)-C(7)-H(7A)	109.9
C(8)-C(7)-H(7B)	109.9
O(3)-C(7)-H(7B)	109.9
H(7A)-C(7)-H(7B)	108.3
C(7)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(10)-C(9)-C(14)	122.2(2)
C(10)-C(9)-N(1)	119.62(18)
C(14)-C(9)-N(1)	118.09(18)
C(9)-C(10)-C(11)	118.4(2)
C(9)-C(10)-H(10)	120.8
C(11)-C(10)-H(10)	120.8
C(12)-C(11)-C(10)	120.2(2)
C(12)-C(11)-H(11)	119.9
C(10)-C(11)-H(11)	119.9
C(13)-C(12)-C(11)	120.4(2)
C(13)-C(12)-H(12)	119.8
C(11)-C(12)-H(12)	119.8

C(12)-C(13)-C(14)	120.2(2)
C(12)-C(13)-H(13)	119.9
C(14)-C(13)-H(13)	119.9
C(13)-C(14)-C(9)	118.5(2)
C(13)-C(14)-H(14)	120.8
C(9)-C(14)-H(14)	120.8
C(20)-C(15)-C(16)	121.8(2)
C(20)-C(15)-N(2)	119.57(18)
C(16)-C(15)-N(2)	118.63(18)
C(15)-C(16)-C(17)	118.9(2)
C(15)-C(16)-H(16)	120.6
C(17)-C(16)-H(16)	120.6
C(18)-C(17)-C(16)	120.0(2)
C(18)-C(17)-H(17)	120.0
C(16)-C(17)-H(17)	120.0
C(17)-C(18)-C(19)	120.9(2)
C(17)-C(18)-H(18)	119.6
C(19)-C(18)-H(18)	119.6
C(18)-C(19)-C(20)	120.2(2)
C(18)-C(19)-H(19)	119.9
C(20)-C(19)-H(19)	119.9
C(15)-C(20)-C(19)	118.2(2)
C(15)-C(20)-H(20)	120.9
C(19)-C(20)-H(20)	120.9
O(4)-N(1)-C(1)	121.12(16)
O(4)-N(1)-C(9)	115.62(15)
C(1)-N(1)-C(9)	123.14(16)
O(1)-N(2)-C(5)	121.83(16)
O(1)-N(2)-C(15)	115.85(15)
C(5)-N(2)-C(15)	122.25(16)
C(6)-O(3)-C(7)	117.25(19)
C(2)-O(6)-C(3)	116.84(17)

Symmetry transformations used to generate equivalent atoms:

Table 10. Anisotropic displacement parameters (Å²x 10³) for mo_140816_0m_a. The anisotropic

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	50(1)	45(1)	38(1)	-4(1)	9(1)	4(1)
C(2)	55(1)	44(1)	38(1)	-6(1)	5(1)	3(1)
C(3)	58(1)	64(2)	88(2)	-1(1)	3(1)	22(1)
C(4)	57(2)	143(3)	216(4)	73(3)	24(2)	24(2)
C(5)	47(1)	48(1)	38(1)	-3(1)	9(1)	3(1)
C(6)	54(1)	58(1)	48(1)	-7(1)	16(1)	1(1)
C(7)	51(1)	135(3)	103(2)	-27(2)	23(2)	25(2)
C(8)	55(2)	213(5)	169(4)	-87(4)	5(2)	25(2)
C(9)	52(1)	43(1)	41(1)	-9(1)	11(1)	6(1)
C(10)	71(1)	58(1)	45(1)	-2(1)	14(1)	-6(1)
C(11)	88(2)	84(2)	40(1)	-4(1)	9(1)	-6(2)
C(12)	71(2)	90(2)	56(2)	-26(1)	10(1)	-10(1)
C(13)	71(2)	65(2)	68(2)	-22(1)	26(1)	-15(1)
C(14)	64(1)	49(1)	49(1)	-6(1)	20(1)	2(1)
C(15)	46(1)	45(1)	44(1)	-6(1)	8(1)	4(1)
C(16)	61(1)	59(1)	44(1)	-5(1)	9(1)	-3(1)
C(17)	70(2)	78(2)	54(1)	-14(1)	0(1)	-1(1)
C(18)	67(2)	79(2)	83(2)	-29(2)	6(1)	-18(1)
C(19)	82(2)	66(2)	92(2)	-9(2)	31(2)	-25(1)
C(20)	68(1)	55(1)	54(1)	2(1)	14(1)	-5(1)
N(1)	50(1)	46(1)	42(1)	-1(1)	6(1)	9(1)
N(2)	43(1)	52(1)	39(1)	-4(1)	9(1)	3(1)
O(1)	48(1)	80(1)	57(1)	-17(1)	18(1)	4(1)
O(2)	79(1)	124(2)	51(1)	-9(1)	28(1)	11(1)
O(3)	47(1)	74(1)	57(1)	-8(1)	13(1)	14(1)
O(4)	68(1)	54(1)	67(1)	-3(1)	-1(1)	22(1)
O(5)	73(1)	46(1)	63(1)	6(1)	3(1)	-1(1)
O(6)	50(1)	47(1)	65(1)	1(1)	8(1)	10(1)

displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Table 11. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for mo_140816_0m_a.

	Х	У	Z	U(eq)
H(3A)	5983	1304	6429	88
H(3B)	5943	728	5520	88
H(4A)	7092	2235	5247	212
H(4B)	7716	1656	6147	212
H(4C)	7061	2913	6104	212
H(7A)	-1342	2843	4544	115
H(7B)	-1162	4204	4282	115
H(8A)	-1823	3627	2845	225
H(8B)	-2782	3491	3353	225
H(8C)	-2115	2331	3156	225
H(10)	3726	3120	6876	70
H(11)	5158	3850	8053	87
H(12)	6298	5497	7891	88
H(13)	5958	6493	6583	80
H(14)	4499	5806	5408	64
H(16)	995	1716	2155	67
H(17)	-674	729	1359	84
H(18)	-1682	-546	2033	95
H(19)	-1060	-869	3495	94
H(20)	594	138	4317	71

Current Da NAME EXPNO PROCNO	ata Parameters RKS-1-147 2 1		mqq		154.005	138.678	125.498 125.202 122.887 122.593 114.978		83.405 79.977 71.207 76.996 76.783	62.063			
F2 - Acqui Date_ Time INSTRUM PROBHD 5 PULPROG TD SOLVENT NS DS SOLVENT NS DS SWH FIDRES	isition Parameters 20130729 15.29 spect 5 mm QNP 1H/1 zgpg 32768 CDC13 39 0 45045.047 Hz 1.374666 Hz												
AQ 0.363748 sec RG 2048 DW 11.100 usec DE 6.50 usec TE 300.9 K D1 3.5000000 sec d11 0.0300000 sec DELTA 3.4000010 sec MCREST 0.0000000 sec MCKEXT 0.01500000 sec	0.3637748 sec 2048 11.100 usec 6.50 usec 300.9 K 3.5000000 sec 0.03000000 sec 0.0000000 sec 0.01500000 sec								O OEt	· .			
====== (NUC1 P1 PL1 SF01	CHANNEL f1 ====== 13C 4.80 usec 0.00 dB 150.5849425 MHz					1		s 1h					
CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SF02	CHANNEL f2 ====== waltz16 1H 92.00 usec 120.00 dB 9.00 dB 14.00 dB 598.8029940 MHz						l.l			*****			
F2 - Proce SI SF WDW SSB LB GB PC	essing parameters 65536 150.5683965 MHz EM 0 3.00 Hz 0 0.50	,											
1D NMR plo CX CY F1P F1 F2P	ot parameters 20.00 cm 4.00 cm 200.000 ppm 30113.68 Hz												
F2 PPMCM HZCM	0.000 Hz 10.00000 ppm/cm 1505.68384 Hz/cm		ppm	180	160	140	120	100	80	60	40	20	 38
mqq

ppm

				-
a				
Current Dat	a Parameters			
NAME	RKS-1-164			
EXPNO	1			
PROCNO	1			
F2 - Acquis	ition Paramet	ters		
Date	20130806			
Time	21.42			
TNOTIN	spect			
DDODUD E	mm OND 11/1			
PULPROG	29			
TD	32/68			
SOLVENT	CDC13			
NS	16			
DS	0			
SWH	8382.229	Hz		
FIDRES	0.255805	Hz		
AQ	1.9546613	sec		
RG	32			
DW	59,650	usec		
DE	6.50	11560		
TE	298 3	K		
10	2 0000000	500		
MODECE	2.000000000	Sec		
MONDY	0.00000000	sec		
MCWRK	0.01200000	sec		
====== CH	ANNEL II ===:			
NUC1	1H			
P1	10.00	usec		
PL1	0.00	dB		
SF01	598.8026946	MHz		
F2 - Proces	sing paramete	ers		
SI	32768			
SF	598.8000292	MHz		
WDW	EM			
SSB	0			
LB	1 00	H7		
CB	1.00			
DC	1 00			
PC .	1.00			
10 100 -1-6				
ID NMR PLOC	parameters			
CX	20.00	cm		
СҮ	10.00	cm		
F1P	10.000	ppm		
F1	5988.00	Hz		
F2P	-0.500	ppm		
F2	-299.40	Hz		
PPMCM	0.52500	ppm/cm		
HZCM	314.37003	Hz/cm		
		-,	-	_
				[a]
				egı
				nt(
				9

OEt ő

1i

 $\frac{1.0000}{1.0310}$

2.1713

 $ppm \qquad 8 \qquad 6 \qquad 4 \qquad 2 \qquad 0_{20}$ 0₃₉

.1244 m

Current Da NAME EXPNO PROCNO	ta Parameters RKS-1-164 2 1	mcq	155,512 	135.724 127.122 126.694 123.713 116.929 111.531	86.339 77.212 76.787 76.054	62.300		13.926
F2 - Acqui Date_ Time INSTRUM PROBHD 5 FULPROG TD SOLVENT NS SWH FIDRES AQ RG RG DW DE TE D1 d11 DELTA MCWBK	sition Parameters 20130806 21.45 spect mm QNP 1H/1 2gpg 32768 CDC13 55 0 45045.047 Hz 1.374666 Hz 0.3637748 sec 2048 11.100 usec 6.50 usec 299.4 K 3.5000000 sec 0.0300000 sec 0.01500000 sec			OEt 0 Ii				
====== (NUC1 P1 PL1 SF01	CHANNEL f1 ======= 13C 4.80 usec 0.00 dB 150.5849425 MHz							
=== ===== (CHANNEL f2 =======							
CPDPRG2	waltz16							
NUC2 PCPD2	1H 92 00 NEEC							
PL2	120.00 dB							
PL12	9.00 dB							
PL13	14.00 dB							
5102	570.0027740 MIL			I				
F2 - Proce	essing parameters			.				
SI	65536 150 5693093 MHz							
WDW	150.5085555 Mil2 EM							
SSB	0							
LB	3.00 Hz							
GB	0 50							
rt.	0.50	1						
1D NMR plo	ot parameters				, ,			
CX	20.00 cm							
UY F1P	4.00 cm 200.000 mm		11					
F1	30113.68 Hz	استفادهم والديان وواستقربتها كالتاري والمحمد والمراجع		l				
F2P	0.000 ppm							
F2	0.00 Hz	հաստաստես			100 00	الالالالالالالالالالالالالالالالالالال	10	20
HZCM	1505.68408 Hz/cm	ppm 180	160	140 120	T00 80	00	40	20

Current Data Parameters NAME RKS-1-145 EXPNO 1 PROCNO 1	wdd	7, 3986 7, 9449 7, 9449 7, 9449 7, 9449 7, 777 7, 777 7, 775 7, 9449 7, 775 7, 777 7, 775 7, 7945 7, 79459 7, 775 7, 705 7, 705	4.2724	2.32857
F2 - Acquisition Parameters Date_ 20130804 Time 17.22 INSTRUM spect PROBHD 5 mm QNP PULPROG zg TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 8382.229 Hz FIDRES 0.255805 Hz AQ 1.9546613 sec RG 128 DW 59.650 usec DE 6.50 usec TE 302.4 K DI 2.0000000 sec MCREST 0.0000000 sec MCWRK 0.01500000 sec		O O D Et Ts' 1j		2
Emergence CHANNEL fl fl NUC1 1H Pl 10.00 usec PL1 0.00 dB SF01 598.8029940 MHz				
F2 Processing parameters SI 32768 SF 598.8000301 MDW no SSB 0 LB 0.00 GB 0 PC 1.00				
1D NMR plot parameters CX 20.00 cm CY 8.00 cm F1P 10.000 ppm F1 5988.00 Hz				
F2P -0.500 ppm F2 -299.40 Hz PPMCM 0.52500 ppm/cm HZCM 314.37003 Hz/cm .	Integral	2.0858 2.0267 1.0126 1.0114 2.1044	2.1865	3.3450
	ppm	8 6		2 0 35

Current Data Parameters NAME RKS-1-1-106 EXPNO 1 PROCNO 1	шdd	7.35818 7.34480 7.33612 7.33278 7.33249 7.28668 7.28668 7.28288 7.26950 7.26950	4.24987	2.08777 2.08777 1.32398 1.31205 1.30011	
F2 - Acquisition Parameters Date_ 20130612 Time 19.46 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG PULPROG zg TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 8382.229 Hz FIDRES 0.255805 Hz AQ 1.9546613 sec RG 32 DW 59.650 usec DE 6.50 usec TE 299.6 K D1 1.00000000 sec MCREST 0.01500000 sec			O OEt 1k		
====== CHANNEL f1 f1 ====== NUC1 1H P1 10.00 Usec PL1 0.00 dB SF01 598.8026946 MHz					
F2 - Processing parameters SI 32768 SF 598.8000284 MHz WDW no ssB 0 LB 0.00 Hz GB 0 PC 1.00 11 NMR plot parameters					
CX 20.00 cm CY 10.00 cm F1P 10.000 ppm F1 5988.00 Hz		M	J		
F2P -0.500 ppm F2 -299.40 Hz PPMCM 0.52500 ppm/cm HZCM 314.37003 Hz/cm	Integral	<u>3.0652</u> 2.3089 1.0000	2.2360	3.1804	
	ppm	8 6	4	2	0 4

Current Dat NAME EXPNO PROCNO	a Parameters RKS-1-1-106 2 1	mgg	153.991	141.613 135.559 129.069 128.125 128.125		89.800 771.210 76.997	61.758	18.131 13.948
F2 - Acquis Date_ Time INSTRUM PROBHD 5 PULPROG TD SOLVENT NS DS SWH FIDRES	sition Parameters 20130612 19.51 spect nmn QNP 1H/1 zgpg 32768 CDC13 65 0 45045.047 Hz 1.374666 Hz							
AQ RG DW DE TE D1 d11 DELTA MCREST MCWRK	0.3637748 sec 2048 11.100 usec 6.50 usec 300.4 K 3.5000000 sec 0.0300000 sec 0.0000000 sec 0.0000000 sec 0.01500000 sec							OEt
====== C NUC1 P1 PL1 SF01	HANNEL f1 ====== 13C 4.80 usec 0.00 dB 150.5849425 MHz						1k	
CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SFO2	HANNEL f2 ====== waltz16 1H 92.00 usec 120.00 dB 9.00 dB 14.00 dB 598.8029940 MHz							
F2 - Proce SI SF WDW SSB LB GB PC	essing parameters 65536 150.5684034 MHz EM 0 3.00 Hz 0 0.50						1	
1D NMR plo CX CY F1P F1 F2P F2	5t parameters 20.00 cm 5.00 cm 200.000 ppm 30113.68 Hz 0.000 ppm 0.000 ppm		L			<u> </u>		
PPMCM HZCM	10.00000 ppm/cm 1505.68408 Hz/cm	ppm 180	160	140	120	100 80	60 40	20

Current Data Parameters NAME RKS-1-168 EXPNO 1 PROCNO 1	uudd	7.19553 7.19553 7.19553 7.14183 7.14183 7.14183 7.14183 7.131602 7.131602 7.131602 7.131602 7.131602 7.14516 7.14516 7.175694 7.07542 7.07542 7.07543 7.07543 7.07543	3.95918 3.94734 3.9556	2.40769	0.93619	
F2 - Acquisition Parameters Date_ 20130825 Time 21.12 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG PULPROG zg TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 9578.544 FIDRES 0.292314 AQ 1.7105396 RG 32 DW 52.200 DE 6.50 DE 6.50 DE 6.50 DE 6.50 MCREST 0.0000000 MCWRK 0.01500000			t	8		
Picture CHANNEL f1 ======= NUC1 1H H P1 10.00 usec PL1 0.00 dB SF01 598.8041916 MHz F2 - Processing parameters						
SI 32768 SF 598.8000288 MHz WDW no SSB 0 LB 0.00 Hz GB 0 PC 1.00 10 NMR plot parameters CX 20.00 cm			ļ			
CY 6.00 cm F1P 10.000 ppm F1 5988.00 Hz F2P -0.500 ppm			l	_	l	· · · · · · · · · · · · · · · · · · ·
F2 -299.40 Hz PPMCM 0.52500 ppm/cm HZCM 314.37003 Hz/cm+	Integral	2.0000 1.1181 6.1279 4.0733	2.0767	3.2315	3.0696	
	ppm		4	2	*****	0 47

Current Data Parameters NAME RKS-1-162 EXPNO 1 PROCNO 1	шđđ	7.85447 7.854679 7.45679 7.45679 7.45679 7.45679 7.45679 7.334414 7.33455 7.33455 7.33455 7.33152 7.33	3.89995 3.88809 3.87623 3.86436	0.95034
F2 - Acquisition Parameters Date_ 20130806 Time 21.14 INSTRUM spect PROBHD 5 mm QNP PULPROG zg TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 8382.229 FIDRES 0.258805 AQ 1.9546613 DW 59.650 UB 6.50 UB 6.50 UB 6.50 UB 6.50 UB 1.00000000 SEC 0.0000000				
Emergence CHANNEL f1 f1 f1 NUC1 1H f1 f1 <thf1< th=""> f1 <thf1< th=""> f1</thf1<></thf1<>				
F2 - Processing parameters SI 32768 SF 598.8000292 WDW no SSB 0 LB 0.00 GB 0 PC 1.00				
1D NMR plot parameters CX 20.00 cm CY 8.00 cm F1P 10.000 ppm F1 5988.00 Hz		M		
F2P -0.500 ppm F2 -299.40 Hz PPMCM 0.52500 ppm/cm HZCM 314.37003 Hz/cm ,	Integral	2.0166 3.0701 2.1076 1.0000 1.0000 2.0142	2.0474	3.1783
	ppm	8 6	4	2 0 51

Current Data Parameters NAME RKS-1-192 EXPNO 1 PROCNO 1	mqq	7. 49405 7. 49465 7. 49465 7. 49465 7. 49346 7. 493465 7. 35651 7. 36573 7. 365757 7. 3657577 7. 3657577 7. 365757777777777777777777777777777777777	3.8271	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		N N V N S COOEt		7
Example CHANNEL fl fl fl NUC1 1H 1H 10.00 usec PL1 0.00 dB SF01 598.8029940 MHz				
F2 - Processing parameters SI 32768 SF 598.8000287 MDW no SSB 0 LB 0.00 GB 0 PC 1.00		, il. i	1	
1D NMR plot parameters CX 20.00 cm CY 6.00 cm F1P 10.000 ppm F1 5988.00 Hz			<u> </u>	
F2P -0.500 ppm F2 -299.40 Hz PPMCM 0.52500 ppm/cm HZCM 314.37003 Hz/cm,	Integral	$\frac{1.0339}{1.1661}$ $\frac{1.0349}{2.0411}$ $\frac{2.0419}{1.0301}$	2.0346	3.0373
	ppm	8 6	4	2 0 57

Current Da NAME EXPNO PROCNO	ata Parameters RKS-1-192 2 1	udd	159.276 152.011 152.011 150.113 147.573 144.317 144.317 130.478	122.052	108.805	$\bigwedge_{76.786}^{77.210}$. 62.043		13.661	
F2 - Acqui Date_ Time INSTRUM PROBHD S PULPROG TD SOLVENT NS DS SWH FIDRES AQ	lisition Parameters 20130912 16.35 spect 5 mm QNP 1H/1 zgpg 32768 CDC13 410 0 45045.047 Hz 1.374666 Hz 0.3637748 sec	u ang pang mang mang mang mang mang mang mang m						ange verlaget op til generationen stat skillinget vilge		
RG DW DE TE D1 d11 DELTA MCREST MCWRK	2048 11.100 usec 6.50 usec 302.5 K 3.5000000 sec 0.0300000 sec 0.0000000 sec 0.0000000 sec 0.01500000 sec						8			
NUC1 P1 PL1 SF01	CHANNEL f1 ======= 13C 4.80 usec 0.00 dB 150.5849425 MHz		I		I			3g COOEt		
CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SFO2	CHANNEL 12 ======= waltz16 1H 92.00 Usec 120.00 dB 9.00 dB 14.00 dB 598.8029940 MHz	*****						<u> </u>	n ovne a veze	
F2 - Proc SI SF WDW SSB LB GB PC	essing parameters 65536 150.5683821 MHz EM 0 3.00 Hz 0 0.50									
1D NMR pl CX CY F1P F1	ot parameters 20.00 cm 4.00 cm 200.000 ppm 30113.68 Hz	وروابغ والمروان والم								
F2P F2 PPMCM HZCM	0.000 ppm 0.00 Hz 10.00000 ppm/cm 1505.68372 Hz/cm	ppm 180	160 140	120	100	80	60	40	20	58

Current Data Parameters NAME RKS-1-1-108 EXPNO 1 PROCNO 1	udđ	7.42729 7.41544 7.41544 7.41544 7.38262 7.38266 7.382669 7.31469 7.31469 7.31469 7.30291 7.30291 7.20221 7.00435 6.9464 6.9464	3.94624	2.37160	1.02672	
P2 - Acquisition Parameters Date_ 20130610 Time 20.19 INSTRUM spect PROBHD 5 mm QNP PULPROG zg TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 8382.229 Hz FIDRES 0.255805 Hz AQ 1.9546613 sec RG 128 DW 59.650 usec DE 6.50 usec TE 299.6 K D1 1.0000000 sec MCREST 0.01500000 sec		N O N O COOEt 3k		5]		
CHANNEL f1 NUC1 1H PI 10.00 usec PL1 0.00 dB SF01 598.8026946 MHz						
F2 - Processing parameters SI 32768 SF 598.8000269 MHz NDW no SSB 0 LB 0.00 Hz GB 0 PC 1.00 1D NMR plot parameters CX 20.00 cm						
CY 6.00 cm F1P 10.000 ppm F1 5988.00 Hz F2P -0.500 ppm		MUU	J	l	k	
F2 -299.40 Hz PPMCM 0.52500 ppm/cm HZCM 314.37003 Hz/cm,	Integral	5.0663 4.9083 1.0000 2.2741 2.3011	2.0030	3.5336	3.0684	
	bbw	8 6	4	2	*****	••••••• 0 65

Current Dat NAME EXPNO PROCNO	a Parameters RKS-1-157-F 2 1	uưđđ	161.762	143.989 137.275 137.275 137.275 138.411 128.411 128.411 128.411 128.412 120.452 111.611	77.212 77.000 76.788	58.974	23.321 23.246 23.132 23.759 13.837
F2 - Acquis Date_ Time INSTRUM PROBHD 5 PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW TE DL TE D1 d11 DELTA MCREST MCWRK	sition Parameters 20140829 5.09 spect rm QNP 1H/1 2gpg 32768 CDC13 6144 0 45045.047 Hz 1.374666 Hz 0.3637748 sec 2048 11.100 usec 6.50 usec 305.2 K 3.5000000 sec 0.0300000 sec 0.0000000 sec 0.01500000 sec			$ \begin{array}{c} \hline N & \overline{O} \\ \hline N & \overline{V} \\ \hline V & \overline{V} \\ \hline COOEt \\ 3l \end{array} $			
====== C NUC1 P1 PL1 SF01	HANNEL f1 ====== 13C 4.80 usec 0.00 dB 150.5597948 MHz						
CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SFO2	HANNEL f2 ====== waltz16 1H 92.00 usec 120.00 dB 9.00 dB 14.00 dB 598.7029935 MHz				ł		
F2 - Proce SI SF WDW SSB LB GB PC	essing parameters 65536 150.5432335 MHz EM 0 3.00 Hz 0 1.00 ,						
1D NMR pl CX CY F1P F1	ot parameters 20.00 cm 10.00 cm 200.000 ppm 30108.65 Hz						
F2P F2 PPMCM	0.000 ppm 0.00 Hz 10.00000 ppm/cm	ppm 1	80 160	140 120 100	80	60 40	20 68

Current Data Parameters NAME RKS-1-203 EXPNO 1 PROCNO 1	mgg	7.91025 7.90564 7.90564 7.90564 7.90564 7.99506 7.478315 7.478315 7.478316 7.478316 7.47637 7.476316 7.476416 7.476416 7.476416 7	3.90116 3.88930 3.87143 3.86557	2.29704	1.57954	
F2 Acquisition Parameters Date_ 20131006 Time 20.26 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG 2g TD 32768 SOLVENT CDCl3 NS 16 DS 0 SWH 8389.262 FIDRES 0.256020 AQ 1.9530228 DW 59.600 DE 6.50 DE 6.50 TE 304.9 D1 2.0000000 MCREST 0.0000000 MCWRK 0.0150000		Ph Sb COOEt		3		5 10 10 10
Image: CHANNEL fl ======= NUC1 1H P1 10.00 usec PL1 0.00 dB SF01 598.8029940 MHz					I	
F2 Processing.parameters SI 32768 SF 598.8000287 WDW no SSB 0 LB 0.00 GB 0 PC 1.00			1			
1D NMR plot parameters CX 20.00 cm CY 8.00 cm F1P 10.000 ppm F1 5988.00 Hz						
F2P -0.500 ppm F2 -299.40 Hz PPMCM 0.52500 ppm/cm HZCM 314.37003 Hz/cm	Integral	2.055 3.178 4.045	2.176	12.352	3.005	
	ppm	8 6	4	2	*****	0 71

Current Data Parameters NAME RKS-1-187 EXPNO 1 PROCNO 1	udd	7. 85902 7. 85693 7. 84523 7. 84523 7. 84523 7. 53781 7. 53781 7. 53781 7. 53781 7. 44823 7. 44823 7. 44833 7. 448333 7. 4483335 7. 4483335 7. 4483335 7. 448335 7. 448355 7. 4483557 7. 4483557777777777777777777777777777777777		1.54176	0.99247
F2 - Acquisition Parameters Date_ 20130912 Time 14.16 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG PULPROG zg TD 47890 SOLVENT CDC13 NS 16 DS 0 SWH 7183.908 Hz FIDRES 0.150009 Hz AQ 3.3331940 sec RG 128 DW 69.600 usec DE 6.50 usec TE .302.4 K D1 2.00000000 sec MCREST 0.0150000 sec MCWRK 0.0150000 sec		Br Pr	N O N O Br Se COOEt		ŗ
Image: CHANNEL fl ====== NUC1 1H P1 10.00 usec PL1 0.00 dB SF01 598.8029940 MHz F2 - Processing parameters 32768 SF 598.800289 MHz WDW no SSB 0 LB 0.00 Hz GB 0 PC 1.00					
1D NMR plot parameters CX 20.00 cm CY 4.00 cm F1P 10.000 ppm F1 5988.00 Hz					
P2P -0.500 ppm F2 -299.40 Hz PPMCM 0.52500 ppm/cm HZCM 314.37003 Hz/cm	Integral	2.0000 3.1023 2.3412 2.0443 2.0633	2.2328		3.1510
	ppm	8 6	4	2	0 7

Current Data Parameters NAME RKS-2-143 EXPNO 1 PROCNO 1	wdd	7, 49782 7, 49782 7, 49782 7, 49782 7, 49786 7, 49786 7, 41957 7, 41057 7, 410577 7, 4105777777777777777777777777777777777777	4.10037 4.10036 4.06850	1.00383
F2 - Acquisition Parameters Date_ 20140814 Time 19.54 INSTRUM spect PROBHD 5 mm QNP PROBHD 5 mm QNP PULPROG zg TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 9615.385 Hz FIDRES 0.293438 Hz AQ 1.7039860 sec RG 128 DW 52.000 usec DE 6.50 usec TE 302.5 K D1 2.0000000 sec MCREST 0.0100000 sec			$ \begin{array}{c} & & & \\ & &$	r
Instant CHAINEL fl ====== NUC1 1H P1 10.00 usec PL1 3.00 dB SF01 598.7029935 MHz				
F2 - Processing parameters SI 32768 SF 598.7000255 MDW no SSB 0 LB 0.00 B 0 PC 1.00				x
CY 6.00 cm F1P 10.000 ppm F1 5987.00 Hz				
F2P -0.500 ppm F2 -299.35 Hz PPMCM 0.52500 ppm/cm HZCM 314.31750 Hz/cm	Integral	10.000	4.106	6.036
	ppm	8	5	2 0

