Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Elelectronic Supplimentary Information

General base-tuned unorthodox synthesis of amides and ketoesters with water

Saikat Khamarui, Rituparna Maiti and Dilip K. Maiti*

Department of Chemistry, University of Calcutta, University College of Science, 92, A. P. C. Road, Kolkata-700009, India *Corresponding author. Fax: 91-33-2351 9755, Tel: 91-33-2350 1014 *dkmchem@caluniv.ac.in*

<u>Serial</u>	No. <u>Content</u>	Page Numbers
1.	Materials and methods	S-2
2.	General procedure for amidation through cleavage of terminal alkyne	S-2
3.	Characterization data of amides (6a-m)	S-2
4.	General procedure for the synthesis of amides (8) from benzylamines	S-7
5.	Characterization data of amides (8a-g)	S-7
6.	General procedure for the synthesis of ketoesters (9)	S-10
7.	Characterization data of ketoesters (9a-e, D ₂ -9a)	S-10
8.	General procedure for the synthesis of ketoesters (11) using potassiumcarboxylate	es S-12
9.	Characterization data of ketoesters (11a-c)	S-12
10.	References	S-13
11.	¹ H and ¹³ C-NMR spectra of the compounds (6a-m , 8a-g , 9a-e , D ₂ - 9a and 11a-c)	S-14
12.	Crystal summary data of compound 9a (CCDC 973403)	S-44
13.	CIF data of compound 9a (CCDC 973403)	S-44

1. Materials and methods

All reagents were purchased from commercial suppliers and used without further purification, unless otherwise specified. Commercially supplied ethyl acetate and petroleum ether were distilled before use. CH_2Cl_2 was dried by distillation over P_2O_5 .Petroleum ether used in our experiments was in the boiling range of 60°-80° C. Column chromatography was performed on silica gel (60-120 mesh, 0.120 mm-0.250 mm). Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator. Reportedmelting pointsare uncorrected. ¹H NMR and ¹³C NMR spectra (Bruker Advance 300) were recorded at ambient temperature using 300 MHz spectrometers (300 MHz for ¹H and 75 MHz for ¹³C). Chemical shift is reported in ppm from internal reference tetramethylsilane and coupling constant in Hz. Proton multiplicities are represented as s (singlet), d (doublet), dd (double doublet), t (triplet), q (quartet), and m (multiplet). Infrared spectra were recorded on FT-IR spectrometer (Perkin Elmer Spectrum 100) in thin film. HR-MS data were acquired by electron spray ionization technique on a Q-tof-micro quadriple mass spectrophotometer (Bruker). Optical rotation of the chiral compounds was measured in a polarimeter using standard 10 cm quartz cell in sodium-D lamp at ambient temperature. MIR-ATR spectroscopy of the inline reaction was executed by React IR 15 of Mettler Toledo using iC IR 4.3 software.

2. General procedure for amidation through cleavage of terminal alkyne

Terminal alkyne (1, 1.0 mmol, 102 mg) and iodobenzene diacetate (3.0 mmol, 966 mg) were stirred for 30 min. and allowed to react with aqueous sodium bicarbonate solution (2.1 mmol, 176 mg in 2.0 mL of water) under stirring conditions at ambient temperature. After one hour amine (2, 1.5 mmol) was added in a drop-wise manner. The reaction was monitored by thin layer chromatography (TLC). The postreaction mixture was extracted with EtOAc (2x15 mL), and the combined organic layer was washed successively with saturated sodium bicarbonate solution (1x10 mL) and brine (1x10 mL). It was then dried over anhydrous Na₂SO₄, filtered and evaporated in a rotary evaporator under reduced pressure at room temperature. Thus, the reaction with phenylacetylene (1a, 102 mg, 1.0 mmol) and n-butylamine (1.5 mmol, 148 mg) afforded *N*-butylbenzamide (6a) after purification by column chromatography on silica gel (60-120 mesh) with ethyl acetate-petroleum ether (1:24, v/v) as an eluent in an yield of 85% (150 mg, 0.85 mmol). The structure of the product (6a) was confirmed with the help of the literature.¹ The synthesized amides (6a-1) were characterized by means of NMR (¹H and ¹³C), FT-IR, melting point (solid compounds), and mass (HR-MS) spectral analyses.

3. Characterization data of amides (6a-m)

3.1. n-Butylbenzamide (6a)

Yield: 85% (150 mg, 0.85 mmol). Characteristic: Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 0.97 (3H, t, *J* = 6.0 Hz), 1.36-1.48 (2H, m), 1.56-1.66 (2H, m), 3.43-3.50 (2H, m), 6.15 (1H, brs), 7.40-7.52 (3H, m), 7.75-7.78 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ 13.7, 20.1, 31.7, 39.8, 126.8, 128.5, 131.3, 134.8, 167.5. FT-IR (neat, cm⁻¹): 1308, 1490, 1542, 1578, 1603, 1640, 2872, 2931, 2959. HR-MS (*m*/*z*) for C₁₁H₁₅NO (M⁺): Calculated 177.1154, found 177.1156.

3.2. n-Dodecylbenzamide (6b)

Yield:83% (240 mg, 0.83 mmol).

Characteristic:Colourless solid.

Melting range: 66-69 °C

¹H NMR (300 MHz, CDCl₃): δ 0.87 (3H, t, *J* = 6.9 Hz), 1.25-131 (18H, m), 1.54-1.61 (2H, m), 3.38-3.44 (2H, m), 6.41 (1H, brs), 7.26-7.46 (3H, m), 7.74-7.77 (2H, m).

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.6, 27.0, 29.3, 29.6, 31.9, 40.1, 126.8, 128.4, 131.2, 134.9, 167.5. FT-IR (KBr, cm⁻¹): 1282, 1303, 1322, 1473, 1531, 1578,1603, 1631, 2849, 2920, 3340.

HR-MS (m/z) for C₁₉H₃₁NO(M⁺): Calculated 289.2406, found 289.2407.

3.3. n-Butyl-4-metylbenzamide (6c)

Yield: 82% (156 mg, 0.82 mmol).

Characteristic: Yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 0.97 (3H, t, J = 6.0 Hz), 1.33-1.47 (2H, m), 1.54-1.64 (2H, m), 2.38 (3H, s), 3.41-3.48 (2H, m), 6.09 (1H, brs), 7.22 (2H, d, J = 8.4 Hz), 7.65 (2H, d, J = 8.1 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 13.7, 20.1, 21.3, 31.7, 39.7, 126.7, 129.1, 132.0, 141.6, 167.4. FT-IR (neat, cm⁻¹): 1305, 1464, 1506, 1544, 1614, 1637, 2872, 2929, 2958. HR-MS (m/z) for C₁₂H₁₇NO (M⁺): Calculated 191.1310, found 191.1309.

3.4. **n-Propyl-2-chlorobenzamide (6d)**

Yield: 62% (122 mg, 0.62 mmol). Characteristic: Colouless solid. Melting range: 102-103 °C ¹H NMR (300 MHz, CDCl₃): δ 0.95 (3H, t, *J* = 7.5 Hz), 1.54-1.66 (2H, m), 3.35 (2H, d, *J* = 7.2 Hz), 6.45 (1H, brs), 7.21-7.35 (3H, m), 7.51-7.54 (1H, m). ¹³C NMR (75 MHz, CDCl₃): δ 11.4, 22.6, 41.7, 126.9, 129.8, 130.0, 130.5, 130.9, 135.5, 166.6. FT-IR (KBr, cm⁻¹): 1144, 1259, 1314, 1436, 1551, 1595, 1651, 2860, 2935, 2967, 3284. HR-MS (*m*/*z*) for C₁₀H₁₂CINO(M⁺): Calculated 197.0607, found 197.0605 (One of the peaks).

3.5. n-Propylthiophene-3-carboxamide (6e)

Yield:68% (115 mg, 0.68 mmol). Characteristic: Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 0.97 (3H, t, *J* = 7.2 Hz), 1.59-1.68 (2H, m), 3.38 (2H, q, *J* = 6.9 Hz), 5.96 (1H, brs), 7.31-7.38 (2H, m), 7.83 (1H, d, *J* = 1.2 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 11.3, 22.9, 41.5, 125.9, 126.4, 127.8, 132.3, 168.5. FT-IR (neat, cm⁻¹): 1094, 1292, 1407, 1551, 1604, 1630, 2927, 2962, 3398. HR-MS (*m*/*z*) for C₈H₁₁NOS(M⁺): Calculated 169.0561, found 169.0562.

3.6. N-Cyclohexylbenzamide (6f)

Yield:74% (150 mg, 0.74 mmol).

Characteristic:Colourless solid.

Melting range: 90-94 °C

¹H NMR (300 MHz, CDCl₃): δ 1.20-1.42 (5H, m), 1.58-1.62 (1H, m), 1.68-1.72 (2H, m), 1.94-1.98 (2H, m), 3.86-3.98 (1H, m), 6.36 (1H, d, J = 6.6 Hz), 7.32-7.45 (3H, m), 7.74 (2H, d, J = 7.2 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 24.9, 25.5, 33.1, 48.7, 126.9, 128.4, 131.1, 135.0, 166.7. FT-IR (KBr, cm⁻¹): 1291, 1328, 1446, 1488, 1534, 1577, 1603, 1628, 2850, 2929, 3240, 3329. HR-MS (m/z) for C₁₃H₁₇NO (M⁺): Calculated 203.1310, found 203.1312.

3.7. Benzoylamino-acetic acid ethyl ester (6g)

Yield: 60% (124 mg, 0.60 mmol). Characteristic:Colourless solid. Melting range: 102-104 °C ¹H NMR (300 MHz, CDCl₃): δ 1.30 (3H, t, *J* = 7.2 Hz), 4.21-4.28 (4H, m), 6.87 (1H, brs), 7.40-7.53 (3H, m), 7.82 (2H, d, *J* = 8.4 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 41.8, 61.5, 127.0, 128.5, 131.7, 133.8, 167.4, 170.0. FT-IR (KBr, cm⁻¹): 1175, 1223, 1450, 1603, 1629, 1736, 2945. HR-MS (*m*/*z*) for C₁₁H₁₄NO₃(M⁺+H): Calculated 208.0975, found 208.0972.

3.8. N,N-Diiospropylbenzamide (6h)

Yield: 75% (153 mg, 0.75 mmol).

Characteristic:Yellow solid.

Melting range: 58-60 °C

¹H NMR (300 MHz, CDCl₃): δ 0.82-1.83 (12H, broad peak), 3.27-4.02 (2H, broad peak), 7.27-7.41 (5H, m).

¹³C NMR (75 MHz, CDCl₃): δ 20.7,51.2, 125.5, 128.4, 128.6, 138.8, 171.1.

FT-IR (KBr, cm⁻¹): 1156, 1211, 1340, 1371, 1440, 1605, 1628, 2936, 2968.

HR-MS (*m*/*z*) for C₁₃H₁₉NO(M⁺): Calculated 205.1467, found 205.1467.

3.9. (R)-N-(1-Cyclohexylethyl)benzamide (6i)

Yield: 62% (122 mg, 0.62 mmol). Characteristic: Colorless solid. Melting range: 105-108 °C $[\alpha]_D^{20} = -60.9^{\circ}$ (c 1.2, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 1.03-1.27 (9H, m), 1.43-1.46 (1H, m), 1.66-1.85 (4H, m), 4.07-4.12 (1H, m), 5.97-5.99 (1H, m), 7.41-7.50 (3H, m), 7.76-7.79 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ 18.0, 26.1, 26.4, 29.1, 43.3, 49.8, 126.8, 128.4, 128.5, 131.2, 135.1, 166.9. FT-IR (KBr, cm⁻¹): 1230, 1347, 1443, 1539, 1604, 1635, 2857, 2926, 3342. HR-MS (*m*/*z*) for C₁₅H₂₁ NO(M⁺): Calculated 231.1623, found 231.1626. HPLC data: Column : chiralpak IB (1B00CE-LF003); Detection : Single Peak Mobile Phase : hex/ea 99:1; Temperature : 25 °C Flow Rate : 0.8 ml/min; Pressure : 26 kgf.

3.10. (**R**,**R**)-**Bis**(*N*-**benzoyl**)**cyclohexyldiamine** (6j)

Yield: 68% (219 mg, 0.68 mmol). Characteristic: Colourless solid. Melting range: 210-215 °C $[\alpha]_D^{20} = +111.2^\circ$ (c 1.6, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 1.41-1.52 (4H, m), 1.86 (2H, d, J = 6.3 Hz), 2.24 (2H, d, J = 10.5 Hz), 4.06 (2H, d, J = 7.5 Hz), 7.06 (2H, d, J = 5.7 Hz), 7.25 (4H, t, J = 7.5 Hz), 7.36-7.41 (2H, m), 7.67-7.72 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δ 24.8, 32.3, 54.5, 126.9, 128.4, 131.3, 134.2, 168.2. FT-IR (KBr, cm⁻¹): 1303, 1328, 1489, 1533, 1578, 1602, 1630, 2857, 2933, 3302. HR-MS (m/z) for C₂₀H₂₂N₂O₂(M⁺): Calculated 322.1681, found 322.1682. HPLC data: Column : chiralpak IB (1B00CE-LF003); Detection : Single Peak Mobile Phase : hex/ea 98:2; Temperature : 25 °C

Flow Rate : 0.9 ml/min; Pressure : 26 kgf.

3.11. *N*,*N'*,*N''*-(2,2',2''-Nitrilotris(ethane-2,1-diyl))tribenzamide (6k)

Yield:66% (296 mg, 0.66 mmol). Characteristic:Yellow solid. Melting range: 132-135 °C ¹H NMR (300 MHz, DMSO-d₆): δ 2.71 (6H, t, *J* = 6.3 Hz), 3.20-3.45 (6H, m), 7.37 (6H, t, *J* = 7.2 Hz) 7.44-7.46 (3H, m), 7.77-7.80 (6H, m), 8.37 (3H, t, *J* = 5.1 Hz). ¹³C NMR (75 MHz, DMSO-d₆): δ 38.1, 53.7, 127.5, 128.6, 131.4, 134.9, 166.8. FT-IR (KBr, cm⁻¹): 1311, 1457, 1491, 1542, 1577,1604, 1632, 2802, 2927, 3289, 3348. HR-MS (*m*/*z*) for C₂₇H₃₀N₄O₃ (M⁺): Calculated 458.2318, found 458.2317.

3.12. N,N',N''-(2,2',2''-Nitrilotris(ethane-2,1-diyl))trithiophene-3-carboxamide (6l)

Yield: 61% (267 mg, 0.61 mmol).

Characteristic: Yellow oil.

¹H NMR (300 MHz, DMSO-d₆): δ 2.35 (6H, t, *J* = 6.3 Hz), 2.52 (6H, t, *J* = 6.3 Hz), 7.27 (3H, dd, *J* = 4.8, 3.0 Hz), 7.32 (3H, dd, *J* = 4.8, 0.9 Hz), 7.71 (3H, dd, *J* = 3.0, 1.2 Hz).

¹³C NMR (75 MHz, DMSO-d₆): δ 39.8, 57.8, 124.2, 127.5, 129.8, 132.7, 167.3.

FT-IR (neat, cm⁻¹): 1451, 1542, 1579, 1602, 1631, 2857, 2926, 3230.

HR-MS (m/z) for C₂₁H₂₄N₄O₃S₃(M⁺): Calculated 476.1011, found 476.1016.

3.13. Hexanoic acid dodecylamide (6m)

$$Me' \stackrel{(CH_2)_3}{\underset{H}{\overset{}}} \stackrel{O}{\underset{H}{\overset{}}} (CH_2)_{11} - Me$$

Yield: 65% (183 mg, 0.65 mmol). Characteristic:Yellow oil. ¹H NMR (300 MHz, DMSO-d₆): δ 0.42-0.45 (14H, m), 0.81-0.95 (12H, m), 1.04-1.13 (4H, m), 1.65-1.87 (4H, m), 2.94 (2H, t, *J* = 6.9 Hz), 5.78 (1H, brs). ¹³C NMR (75 MHz, DMSO-d₆): δ 13.7, 13.8, 22.3, 22.4, 22.6, 25.5, 25.6, 28.1, 28.8, 29.4, 31.1, 31.2, 31.4, 31.8, 32.7, 33.0, 39.5, 164.5. FT-IR (neat, cm⁻¹): 1120, 1213, 1456, 1546, 1631, 2857, 2923, 3236. HR-MS (*m*/*z*) for C₁₈H₃₇NO(M⁺): Calculated 283.2875, found 283.2872.

4. General procedure for the synthesis of amides (8) from benzylamines

To a suspention of terminal alkynes (1.0 mmol, 102 mg) and iodobenzene diacetate (2.0 mmol, 644 mg) in water (2.0 mL) sodium bicarbonate (3.0 mmol, 252 mg) was added and allowed to stir for 15 min. Then benzylamine (2.0 mmol) was added dropwise under stirring conditions at room temperature. The completeness of the reaction was confirmed by monitoring in thin layer chromatography (TLC). The post reaction mixture was extracted with EtOAc (2x15 mL) and the combined organic layer was washed successively with saturated sodium bicarbonate solution (1x10 mL) and brine (3x10 mL). It was dried over anhydrous Na₂SO₄, filtered and evaporated in a rotary evaporator under reduced pressure at room temperature. Thus, the reaction with phenylacetylene (**1a**, 102 mg, 1.0 mmol) and 4-methylbenzylamine (1.0 mmol, 121 mg) afforded 4-methyl-*N*-(4-methylbenzyl)benzamide (**8b**)after purification by column chromatography on silica gel (60-120 mesh) with ethyl acetate-petroleum ether (1:19, v/v)as an eluent in an yield of 78% (186 mg, 0.78 mmol). The synthesized amide (**8a-f**) were characterized by means of NMR (¹H and ¹³C), FT-IR and Mass (HR-MS) spectral analysis and comparing with the literature spectral data and melting points.³

5. Characterization data of amides (8a-g)

5.1. N-Benzyl-benzamide (8a)

Yield: 80% (169 mg, 0.80 mmol).

Characteristic:Colourless solid.

Melting range: 101-102 °C

¹H NMR (300 MHz, CDCl₃): δ 4.65 (2H, d, J = 5.7 Hz), 6.42 (1H, brs), 7.28-7.53 (8H, m), 7.79 (2H, d, J = 6.9 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 44.1, 126.9, 127.6, 127.9, 128.6, 128.8, 131.5, 134.4, 138.1, 167.3.

FT-IR (KBr, cm⁻¹): 1260, 1314, 1454, 1546, 1578, 1604, 1643, 2854, 2930, 3325.

HR-MS (m/z) for C₁₄H₁₃NO(M⁺): Calculated 211.0997, found 211.0998.

5.2. 4-Methyl-*N*-(4-methylbenzyl)benzamide (8b)

Yield: 78% (186 mg, 0.78 mmol).

Characteristic: Yellow solid.

Melting range: 140-142 °C

¹H NMR (300 MHz, CDCl₃): δ 2.35 (3H, s), 2.40 (3H, s), 4.60 (2H, d, J = 5.4 Hz), 6.33 (1H, brs), 7.12-7.27 (6H, m), 7.68 (2H, d, J = 8.1 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 21.0, 21.4, 43.8, 126.9, 127.9, 129.2, 129.4, 131.6, 135.2, 137.3, 141.9, 167.2.

FT-IR (KBr, cm⁻¹): 1256, 1323, 1430, 1513, 1549, 1617, 1640, 2865, 2923, 3316.

HR-MS (m/z) for C₁₆H₁₇NO(M⁺): Calculated 239.1310, found 239.1310.

5.3. 4-Fluoro-N-(4-fluorobenzyl)benzamide (8c)

Yield: 65% (160 mg, 0.65 mmol). Characteristic: Brown solid. Melting range: 90-93 °C ¹H NMR (300 MHz, CDCl₃): δ 4.59 (2H, d, *J* = 5.7 Hz), 6.48 (1H, brs), 6.96-7.14 (4H, m), 7.27-7.34 (2H, m), 7.78-7.80 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ 43.4, 115.4, 115.7, 129.2, 129.3, 129.5, 129.6, 130.3, 133.8, 166.3. FT-IR (KBr, cm⁻¹): 1154, 1222, 1511, 1547, 1601, 1634, 3278. HR-MS (*m*/*z*) for C₁₄H₁₁F₂NO(M⁺): Calculated 247.0809, found 247.0804 (one of the peaks).

5.4. N-Pyridine-4-ylmethyl-isonicotinamide (8d)

Yield: 60% (128 mg, 0.60 mmol).

Characteristic:Yellow solid.

Melting range: 167-170 °C

¹H NMR (300 MHz, CDCl₃): δ 5.09 (2H, s), 6.67 (1H, d, J = 5.7 Hz), 6.70 (1H, d, J = 6.0 Hz), 6.77-6.79 (1H, m), 7.31 (1H, d, J = 6.0 Hz), 7.48 (1H, d, J = 6.0 Hz), 7.95-8.03 (2H, m), 8.30-8.33 (1H, m), 8.40-8.44 (1H, m).

¹³C NMR (75 MHz, CDCl₃): δ 54.4, 122.7, 122.9, 124.2, 124.3, 144.8, 148.2, 149.6, 149.7, 149.9, 150.0, 167.7.

FT-IR (KBr, cm⁻¹): 1457, 1486, 1574, 1593, 1604, 1632, 2032, 2986.

HR-MS (m/z) for C₁₂H₁₁N₃O(M⁺): Calculated 213.0902, found 213.0905.

5.5. 2-Nitro-*N*-(2-nitrobenzyl)benzamide (8e)

Yield: 73% (220 mg, 0.73 mmol). Characteristic: Brown solid. Melting range: 72-74 °C ¹H NMR (300 MHz, CDCl₃): δ 5.23 (2H, s), 7.46-7.48 (1H, m), 7.50-7.71 (2H, m), 7.74-7.88 (2H, m), 7.92-7.97 (1H, m), 8.04-8.12 (1H, m), 8.35-8.39 (1H, m), 8.89 (1H, s). ¹³C NMR (75 MHz, CDCl₃): δ 61.3, 124.3, 124.7, 125.5, 128.0, 129.8, 130.4, 131.0, 133.4, 133.5, 134.1, 135.5, 159.2. FT-IR (KBr, cm⁻¹): 1207, 1273, 1323, 1339, 1378, 1514, 1570, 1609, 1638, 2850, 2921. HR-MS (*m*/*z*) for C₁₄H₁₁N₃O₅(M⁺): Calculated 301.0699, found 301.0691.

5.6. Naphthalene-1-carboxylic acid (naphthalen-1-ylmethyl)amide (8f)

Yield: 60% (186 mg, 0.60 mmol). Characteristic: Colourless solid. Melting range: 112-113°C ¹H NMR (300 MHz, CDCl₃): δ 5.08 (2H, d, *J* = 5.1 Hz), 6.56 (1H, brs), 7.36-7.58 (8H, m), 7.76-7.91 (4H, m), 8.08-8.11 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ 42.3, 123.4, 125.4, 126.0, 126.7, 126.8, 127.0, 128.5, 128.7, 128.8, 131.5, 133.4, 134.3, 167.2. FT-IR (KBr, cm⁻¹): 1265, 1313, 1549, 1577, 1600, 1634, 2939, 3065, 3280. HR-MS (*m*/*z*) for C₂₂H₁₇NO(M⁺): Calculated 311.1310, found 311.1316.

5.7. 4-Methyl-N-(2-nitrobenzyl)benzamide (8g) [Cross addition product]

Yield: 40% (108 mg, 0.40 mmol). Characteristic:Yellow solid. Melting range: 107-110 °C ¹H NMR (300 MHz, CDCl₃): δ 2.37 (3H, s),5.22 (2H, s), 7.45-7.50 (1H, m), 7.58-7.74 (4H, m), 8.04-8.12 (3H, m), 8.89 (1H, s). ¹³C NMR (75 MHz, CDCl₃): δ 20.3, 61.3, 124.3, 124.7, 128.0, 129.8, 130.4, 130.8, 131.0, 133.4, 134.3, 141.7, 167.2.
FT-IR (KBr, cm⁻¹): 1257, 1474, 1578, 1605, 1638, 2929, 3060.
HR-MS (*m*/*z*) for C₁₅H₁₅N₂O₃ (M⁺+H): Calculated 271.1084, found 271.1083.

6. General procedure for the synthesis of ketoesters (9)

To a suspention of aromatic terminal alkynes (1.0 mmol, 102 mg) and iodobenzene diacetate (3.0 mmol, 966 mg) in water (2.0 mL) sodium bicarbonate (2.0 mmol, 168 mg) was added under vigorously stirring condition at room temperature. The appearance of the reaction mixture changedafter 10 h.The oil (yellow) was separated out. The formation of product was checked by thin layer chromatography (TLC). The post reaction mixture was extracted with EtOAc (2x15 mL) and the combined organic layer was washed successively with saturated sodium bicarbonate solution (1x10 mL) and brine (1x10 mL). It was dried over anhydrous Na₂SO₄, filtered and evaporated in a rotary evaporator under reduced pressure at room temperature. Thus, the reaction with phenylacetylene (**1a**, 102 mg, 1.0 mmol) afforded benzoic acid 2-oxo-2-phenyl-ethyl ester (**9a**) after purification by column chromatography on silica gel (60-120 mesh) with ethyl acetate-petroleum ether (1:20, v/v)as an eluent in an yield of 65% (156 mg, 0.65 mmol). The α -ketoacesters (**3a-e**) were characterized by means of XRD, NMR (¹H and ¹³C), FT-IR and Mass (HR-MS) spectral analysis.

7. Characterization data of ketoesters (9a-e, D₂-9a)

7.1. Benzoic acid 2-oxo-2-phenyl-ethylester (9a)

Yield: 65% (156 mg, 0.65 mmol). Characteristic: Colourless solid. Melting range: 117-120 °C ¹H NMR (300 MHz, CDCl₃): δ 5.56(2H, s), 7.42-7.51 (4H, m), 7.55-7.62 (2H, m), 7.93-7.96 (2H, m), 8.06-8.13 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ 66.4, 127.8, 128.4, 128.6, 128.8, 129.9, 130.1, 133.3, 133.6, 133.8, 134.4, 166.0, 192.1. FT-IR (KBr, cm⁻¹): 1073, 1121, 1229, 1282, 1373, 1420, 1449, 1581, 1597, 1694, 1718, 2851, 2921.

HR-MS (m/z) for C₁₅H₁₂O₃ (M⁺): Calculated 240.0786, found 240.0786.

7.2. 4-Methyl-benzoicacid-2-oxo-2-p-tolyl-ethylester (9b)

Yield: 70% (187 mg, 0.70 mmol). Characteristic: Yellow solid. Melting range: 107-108 °C ¹H NMR (300 MHz, CDCl₃): δ 2.38 (3H, s), 2.40 (3H, s), 5.51 (2H, s), 7.23-7.28 (4H, m), 7.84 (1H, d, J = 8.1 Hz), 7.96-8.02 (3H, m). ¹³C NMR (75 MHz, CDCl₃): δ 21.7, 66.2, 127.9, 129.1, 129.2, 129.5, 129.7, 130.0, 130.2, 130.6, 131.9, 144.4, 144.7, 166.1, 191.9. FT-IR (KBr, cm⁻¹): 1129, 1178, 1232, 1281, 1368, 1417, 1605, 1702, 1724, 2934. HR-MS (m/z) for C₁₇H₁₆O₃ (M⁺): Calculated 268.1099, found 268.1097.

7.3. Thiophene-3-carboxylicacid-2-oxo-2-thiophen-3-yl-ethylester (9c)

Yield: 66% (167 mg, 0.66 mmol).

Characteristic: Yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 5.38 (2H, s), 7.32-7.39 (2H, m), 7.58-7.60 (2H, m), 8.15 (1H, d, J = 1.8 Hz), 8.24 (1H, d, J = 2.4 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 66.4, 126.1, 126.5, 126.8, 128.0, 132.2, 132.5, 133.6, 138.8, 161.9, 187.0. FT-IR (neat, cm⁻¹): 1404, 1465, 1650, 1690, 1718, 2342, 2853.

HR-MS (m/z) for C₁₁H₈O₃S₂ (M⁺): Calculated 251.9915, found 251.9911.

7.4. 2-Chloro-benzoic acid 2-(2-chloro-phenyl)-2-oxo-ethyl ester (9d)

Yield: 68% (211 mg, 0.68 mmol).

Characteristic: Yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 5.46 (2H, s), 7.32-7.53 (6H, m), 7.68-7.72 (1H, m), 7.97-8.00 (1H, m). ¹³C NMR (75 MHz, CDCl₃): δ 68.9, 126.6, 127.2, 130.1, 130.6, 131.1, 132.3, 132.6, 133.0, 133.4, 134.1, 134.6, 135.8, 168.6, 195.0.

FT-IR (neat, cm⁻¹): 1250, 1434, 1474, 1590, 1717, 2928.

HR-MS (m/z) for C₁₅H₁₀Cl₂O₃ (M⁺): Calculated 308.0007, found 308.0010 (One of the peaks).

7.5. 7-Methoxy-naphthalene-2-carboxylic acid 2-(7-methoxynaphthalen-2-yl)-2-oxo-ethyl ester (9e)

Yield: 62% (248 mg, 0.62 mmol).

Characteristic: Yellow viscous liquid.

¹H NMR (300 MHz, CDCl₃): δ 3.97 (6H, s), 4.99 (2H, d, J = 1.2 Hz), 7.18-7.31 (7H, m), 7.85 (3H, dd, J = 16.8, 9.0 Hz), 7.96 (1H, dd, J = 8.4, 1.5 Hz), 8.37 (1H, s).

¹³C NMR (75 MHz, CDCl₃): δ 55.4, 65.3, 105.9, 120.1, 123.8, 127.5, 127.7, 128.7, 129.3, 131.2, 137.9, 167.9, 197.9.

FT-IR (neat, cm⁻¹): 1197, 1269, 1482, 1623, 1688, 1732, 2851, 2925.

HR-MS (m/z) for C₂₅H₂₀O₅ (M⁺): Calculated 400.1311, found 400.1310.

7.6. Deuteriated benzoic acid 2-oxo-2-phenyl-ethylester (D₂-9a)

Yield: 65% (157 mg, 0.65 mmol). Characteristic: Colourless solid. Melting range: 119-120 °C ¹H NMR (300 MHz, CDCl₃): δ 7.47-7.56 (4H, m), 7.60-7.65 (2H, m), 7.98-8.01 (2H, m), 8.15-8.18 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ 66.4, 127.8, 128.4, 128.6, 128.8, 129.9, 130.1, 133.3, 133.6, 133.8, 134.4, 166.0, 192.1. FT-IR (KBr, cm⁻¹): 1073, 1121, 1229, 1420, 1449, 1581, 1597, 1694, 1718, 2851, 2921.

HR-MS (m/z) for C₁₅H₁₀D₂O₃ (M⁺): Calculated 242.0912, found 242.0915.

8. General procedure for the synthesis of ketoesters (11) using potassiumcarboxylates

To a suspention of terminal alkyne (1.0 mmol, 102 mg) and iodobenzene diacetate (1.0 mmol, 322 mg) in water (2.0 mL) potassium salt of carboxylilic acid (4.0 mmol) was added. The benzylamine (1.0 mmol) was added dropwise under stirring condition at room temperature. The oil was separated out after 10-15 min. The completeness of the reaction was confirmed by monitoring thin layer chromatography (TLC). The post reaction mixture was extracted with EtOAc (2x15 mL) and the combined organic layer was washed successively with saturated sodium bicarbonate solution (1x10 mL) and brine (1x10 mL). It was dried over anhydrous Na₂SO₄, filtered and evaporated in a rotary evaporator under reduced pressure at room temperature. Thus, the reaction with phenylacetylene (**1a**, 102 mg, 1.0 mmol) and sodiumcinnamate (4 mmol, 680 mg) afforded 3-phenyl-acrylic acid 2-oxo-2-phenyl-ethyl ester (**11a**) after purification by column chromatography on silica gel (60-120 mesh) with ethyl acetate-petroleum ether (1:18, v/v) as an eluent in an yield of 75% (199 mg, 0.75 mmol). The ketoesters (**11a-c**) were characterized by means of NMR (¹H and ¹³C), FT-IR and Mass (HR-MS) spectral analysis.

9. Characterization data of ketoesters (11a-c)

9.1. Cinnamic acid 2-oxo-2-phenyl-ethyl ester (11a)

Yield: 75% (199 mg, 0.75 mmol).

Characteristic: Yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 5.84 (2H, s), 6.60 (1H, d, *J* = 15.9 Hz), 7.29-7.41 (4H, m), 7.48-7.65 (4H, m), 7.81 (1H, d, *J* = 15.9 Hz), 7.96 (2H, d, *J* = 8.1 Hz).

¹³C NMR (75 MHz, CDCl₃): δ 66.1, 117.0, 117.8, 128.0, 128.2, 128.5, 128.6, 128.8, 128.9, 129.0, 129.1, 130.5, 133.8, 134.3, 146.1, 166.2, 192.3.

FT-IR (neat, cm⁻¹): 1123, 1201, 1318, 1401, 1449, 1637, 1697, 1707, 2091, 2347.

HR-MS (m/z) for C₁₇H₁₄O₃ (M⁺): Calculated 266.0943, found 266.0941.

9.2. L-lactic acid 2-oxo-2-phenyl-ethyl ester (11b)

Yield: 69% (144 mg, 0.69 mmol). Characteristic: Yellow oil. $[\alpha]_D^{20} = -4.39^{\circ}$ (c 2.10, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 1.47 (3H, d, *J* = 6.9 Hz), 4.48 (1H, q, *J* = 6.9 Hz), 5.35 (1H, s), 5.39 (1H, s), 7.47-7.49 (2H, m), 7.57-7.62 (1H, m), 7.85-7.89 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ 20.4, 66.5, 66.9, 127.7, 128.9, 133.9, 134.1, 175.0, 191.6. FT-IR (neat, cm⁻¹): 970, 1129, 1233, 1450, 1598, 1651, 1694, 1727, 3428. HR-MS (*m*/*z*) for C₁₁H₁₂O₄ (M⁺): Calculated 208.0736, found 208.0735. HPLC data: Column : chiralpak IB (1B00CE-LF003); Detection : Single Peak Mobile Phase : hex/ea 99:1; Temperature : 25 °C Flow Rate : 0.8 ml/min; Pressure : 23 kgf.

9.3. Undecanoic acid 2-oxo-2-phenyl-ethyl ester (11c)

Yield: 72% (218 mg, 0.72 mmol).

Characteristic: Yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 0.87 (3H, t, J = 6.9 Hz), 1.08-1.42 (14H, broad peak), 1.64-1.72 (2H, m), 2.48 (2H, t, J = 7.5 Hz), 5.33 (2H, s), 7.49 (2H, t, J = 7.5 Hz), 7.57-7.60 (1H, m), 7.91 (2H, d, J = 7.5 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.6, 24.9, 29.1, 29.2, 29.4, 29.5, 31.8, 33.9, 65.8, 127.7, 128.8, 133.8, 134.3, 173.2, 192.3.

FT-IR (neat, cm⁻¹): 1160, 1223, 1372, 1450, 1598, 1708, 1747, 2855, 2926.

HR-MS (m/z) for C₁₉H₂₈O₃ (M⁺): Calculated 304.2038, found 304.2037.

10. References

(1) Muñoz, J. M.; Alcázar, J.; Hoz, A.; Díaz-Ortizb, Á.; Diego, S. A. A. Green Chem. 2012, 14, 1335-1341.

(2) Cao, H.; McNamee, L.; Alper, H. Org. Lett. 2008, 10, 5281-5284.

(3) T. Ohshima, Y. Hayashi, K. Agura, Y. Fujii, A. Yoshiyamab and K. Mashima; Chem. Commun. 2012, 48, 5434-5436.

(4) Mo, D. L.; Doi, L. X.; Hou; X. L. Tetrahedron Lett. 2009, 50, 5578-5581.

11. ¹H and ¹³C-NMR spectra of the compounds (6a-m, 8a-g, 9a-e, D₂-9a and 11a-c)

SI Figure 1: ¹H and ¹³C-NMR spectra of compound 6a

SI Figure 4:¹H and ¹³C-NMR spectra of compound 6d

SI Figure 5: ¹H and ¹³C-NMR spectra of compound 6e

SI Figure 8: ¹H and ¹³C-NMR spectra of compound **6h**

SI Figure 9: ¹H and ¹³C-NMR spectra of compound 6i

SI Figure 12: ¹H and ¹³C and DEPT-135 NMR spectra of compound **6**l

- 39.05

|--|

 	****							mmmm	111111111			*****	********					
							1											
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

SI Figure 16: ¹H and ¹³C-NMR spectra of compound **8c**

SI Figure 17: ¹H and ¹³C-NMR spectra of compound 8d

SI Figure 18: ¹H and ¹³C-NMR spectra of compound 8e

SI Figure 19: ¹H and ¹³C-NMR spectra of compound **8f**

SI Figure 22: ¹H and ¹³C-NMR spectra of compound 9b

SI Figure 23: ¹H and ¹³C-NMR spectra of compound 9c

SI Figure 24: ¹H and ¹³C-NMR spectra of compound 9d

SI Figure 27:¹H and ¹³C-NMR spectra of compound 11a

S-41

SI Figure 28: ¹H and ¹³C-NMR spectra of compound 11b

12. Crystal Summary Data of Compound 9a (CCDC 973403)

- Chemical formula and formula weight (M): C15 H12 O3 and 240.25
- Crystal system: Monoclinic Unit-cell dimensions (angstrom or pm, degrees) and volume, with edges: a 9.0155(13) b 14.112(2) c 9.6804(14), 90.00, 90.552(5), 90.00, 1231.5(3)
- ✤ Temperature: 296 K
- ✤ Space group symbol: P2(1)/c
- ✤ No. of formula units in unit cell (Z): 4
- ♦ Number of reflections measured and/or number of independent reflections, Rint: 2027
- ✤ Final R values (and whether quoted for all or observed data): 0.0696

13. CIF data of compound 9a (CCDC 973403)

data_skkk	
_audit_creation_method _chemical_name_systematic	SHELXL-97
?	
; _chemical_name_common _chemical_melting_point _chemical_formula_moiety _chemical_formula_sum _chemical_formula_weight	? 'C15 H12 O3' 'C15 H12 O3' 240.25
loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_ri _atom_type_scat_dispersion_ii _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Ta 'H' 'H' 0.0000 0.0000	real imag ibles 4.2.6.8 and 6.1.1.4'

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M P12(1)/c1

loop_

_symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2'

_cell_length_a 9.0155(13) _cell_length_b 14.112(2)_cell_length_c 9.6804(14) cell angle alpha 90.00 _cell_angle_beta 90.552(5) _cell_angle_gamma 90.00 _cell_volume 1231.5(3) cell formula units Z 4 _cell_measurement_temperature 296(2)_cell_measurement_reflns_used ? _cell_measurement_theta_min ? ? cell measurement theta max ? _exptl_crystal_description ? _exptl_crystal_colour _exptl_crystal_size_max 0.86 _exptl_crystal_size_mid 0.66 _exptl_crystal_size_min 0.44_exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.296 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 504 _exptl_absorpt_coefficient_mu 0.090 _exptl_absorpt_correction_type ? _exptl_absorpt_correction_T_min 0.9445 _exptl_absorpt_correction_T_max 0.9696 _exptl_absorpt_process_details ? _exptl_special_details ; ? ; _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a

'fine-focus sealed tube' diffrn radiation source _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ? diffrn measurement method ? _diffrn_detector_area_resol_mean ? _diffrn_reflns_number 12609 _diffrn_reflns_av_R_equivalents 0.0514 diffrn reflns av sigmal/netI 0.0324 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 10 diffrn reflns limit k min -16 _diffrn_reflns_limit_k max 16 diffrn reflns limit 1 min -11 _diffrn_reflns_limit_1 max 11 _diffrn_reflns_theta_min 2.26 diffrn reflns theta max 24.51 _reflns_number_total 2027 reflns number gt 1292 reflns threshold expression >2sigma(I) ? _computing_data_collection ? computing cell refinement ? _computing_data_reduction computing structure solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' computing molecular graphics ? _computing_publication_material ?

_refine_special_details

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of $F^2^> 2sigma(F^2^)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

```
_refine_ls_structure_factor_coef Fsqd
refine ls matrix type
                             full
_refine_ls_weighting_scheme
                                calc
_refine_ls_weighting_details
'calc w=1/[\s^2^(Fo^2^)+(0.1134P)^2^+0.5410P] where P=(Fo^2^+2Fc^2)/3'
_atom_sites_solution_primary
                                direct
atom sites solution secondary
                                difmap
_atom_sites_solution_hydrogens
                                 geom
_refine_ls_hydrogen_treatment
                                mixed
refine ls extinction method
                               none
_refine_ls_extinction_coef
                              9
```

refine ls number reflns 2027 _refine_ls_number_parameters 163 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.1048 _refine_ls_R_factor_gt 0.0696 _refine_ls_wR_factor_ref 0.2377 _refine_ls_wR_factor_gt 0.2077 refine ls goodness of fit ref 1.091 refine ls restrained S all 1.091 _refine_ls_shift/su_max 0.050 refine ls shift/su mean 0.007 loop _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y atom site fract z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy atom site symmetry multiplicity _atom_site_calc_flag atom site refinement flags _atom_site_disorder_assembly atom site disorder group O1 O 0.7459(3) 0.10289(18) 0.9941(3) 0.0844(9) Uani 1 1 d . . . O2 O 0.6010(4) 0.00754(19) 0.8002(4) 0.1091(11) Uani 1 1 d . . . O3 O 0.9370(3) 0.08358(17) 0.8493(3) 0.0935(10) Uani 1 1 d . . . C1 C 0.6239(5) -0.3416(3) 0.8611(5) 0.0852(12) Uani 1 1 d . . . H1 H 0.6146 -0.4071 0.8552 0.102 Uiso 1 1 calc R . . C2 C 0.5414(5) -0.2842(3) 0.7762(5) 0.0854(12) Uani 1 1 d . . . H2 H 0.4767 -0.3108 0.7116 0.102 Uiso 1 1 calc R ... C3 C 0.5534(4) -0.1876(3) 0.7858(4) 0.0803(11) Uani 1 1 d . . . H3 H 0.4961 -0.1492 0.7284 0.096 Uiso 1 1 calc R . . C4 C 0.6505(4) -0.1470(2) 0.8805(4) 0.0642(9) Uani 1 1 d . . . C5 C 0.6589(4) -0.0424(2) 0.8862(4) 0.0693(10) Uani 1 1 d . . . C6 C 0.7372(4) 0.0007(2) 1.0036(4) 0.0725(10) Uani 1 1 d . . . H6A H 0.6867 -0.0162 1.0881 0.087 Uiso 1 1 calc R . . H6B H 0.8369 -0.0250 1.0089 0.087 Uiso 1 1 calc R . . C7 C 0.8532(4) 0.1361(2) 0.9074(4) 0.0660(9) Uani 1 1 d . . . C8 C 0.8577(3) 0.2402(2) 0.8989(4) 0.0609(9) Uani 1 1 d . . . C9 C 0.9514(4) 0.2810(3) 0.8047(4) 0.0766(11) Uani 1 1 d . . . H9 H 1.0086 0.2427 0.7479 0.092 Uiso 1 1 calc R . . C10 C 0.9611(4) 0.3784(3) 0.7941(5) 0.0857(12) Uani 1 1 d ... H10 H 1.0236 0.4055 0.7292 0.103 Uiso 1 1 calc R ... C11 C 0.8793(5) 0.4351(3) 0.8783(5) 0.0859(12) Uani 1 1 d . . . H11 H 0.8859 0.5006 0.8704 0.103 Uiso 1 1 calc R . . C12 C 0.7209(5) -0.3016(3) 0.9553(5) 0.0913(13) Uani 1 1 d . . . H12 H 0.7781 -0.3403 1.0124 0.110 Uiso 1 1 calc R . .

```
C13 C 0.7334(4) -0.2049(2) 0.9653(4) 0.0739(10) Uani 1 1 d . . .
H13 H 0.7983 -0.1785 1.0298 0.089 Uiso 1 1 calc R . .
C14 C 0.7738(4) 0.2970(3) 0.9843(4) 0.0790(11) Uani 1 1 d . . .
H14 H 0.7093 0.2699 1.0475 0.095 Uiso 1 1 calc R . .
C15 C 0.7867(5) 0.3954(3) 0.9751(5) 0.0935(13) Uani 1 1 d . . .
H15 H 0.7330 0.4342 1.0341 0.112 Uiso 1 1 calc R . .
```

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 atom site aniso U 22 _atom_site_aniso_U_33 atom site aniso U 23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 O1 0.0843(18) 0.0646(16) 0.105(2) -0.0029(13) 0.0143(16) -0.0008(13) O2 0.116(2) 0.0670(17) 0.144(3) 0.0200(18) -0.049(2) -0.0008(16) O3 0.0895(19) 0.0622(16) 0.129(2) -0.0069(16) 0.0300(18) 0.0090(14) C1 0.087(3) 0.058(2) 0.110(3) -0.008(2) 0.011(3) -0.001(2) C2 0.080(3) 0.072(3) 0.104(3) -0.011(2) 0.000(2) -0.011(2) C3 0.071(2) 0.072(2) 0.097(3) -0.002(2) -0.008(2) -0.0004(19) C4 0.0560(19) 0.057(2) 0.079(2) 0.0028(17) 0.0066(18) -0.0009(16) C5 0.056(2) 0.060(2) 0.092(3) 0.0097(19) 0.0008(19) 0.0002(16) C6 0.072(2) 0.057(2) 0.089(3) 0.0165(18) 0.000(2) -0.0053(17) C7 0.062(2) 0.058(2) 0.079(2) 0.0005(17) 0.0009(19) 0.0029(17) C8 0.0546(19) 0.0525(19) 0.075(2) -0.0054(15) -0.0047(17) 0.0019(15) C9 0.073(2) 0.068(2) 0.089(3) 0.002(2) 0.008(2) 0.0041(18) C10 0.081(3) 0.064(2) 0.112(3) 0.015(2) 0.006(2) -0.006(2) C11 0.092(3) 0.056(2) 0.110(3) 0.003(2) -0.009(3) -0.004(2) C12 0.098(3) 0.068(3) 0.107(3) 0.004(2) -0.004(3) 0.010(2) C13 0.073(2) 0.059(2) 0.089(3) 0.0001(19) -0.007(2) 0.0022(18) C14 0.087(3) 0.063(2) 0.087(3) -0.0055(19) 0.013(2) 0.0002(19) C15 0.105(3) 0.065(2) 0.111(3) -0.015(2) 0.013(3) 0.007(2)

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag

```
O1 C7 1.369(4).?
O1 C6 1.447(4).?
O2 C5 1.205(4).?
O3 C7 1.202(4).?
C1 C2 1.369(6) . ?
C1 C12 1.378(6) . ?
C1 H1 0.9300 . ?
C2 C3 1.369(5).?
C2 H2 0.9300 . ?
C3 C4 1.386(5).?
C3 H3 0.9300 . ?
C4 C13 1.375(5).?
C4 C5 1.479(5).?
C5 C6 1.464(5).?
C6 H6A 0.9700 . ?
C6 H6B 0.9700.?
C7 C8 1.472(5).?
C8 C9 1.375(5).?
C8 C14 1.382(5).?
C9 C10 1.382(5).?
C9 H9 0.9300 . ?
C10 C11 1.364(6).?
C10 H10 0.9300 . ?
C11 C15 1.379(6).?
C11 H11 0.9300 . ?
C12 C13 1.372(5).?
C12 H12 0.9300 . ?
C13 H13 0.9300 . ?
C14 C15 1.397(5).?
C14 H14 0.9300 . ?
C15 H15 0.9300 . ?
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
C7 O1 C6 114.8(3) . . ?
C2 C1 C12 119.5(4) . . ?
C2 C1 H1 120.3 . . ?
C12 C1 H1 120.3 . . ?
C3 C2 C1 120.4(4) . . ?
C3 C2 H2 119.8 . . ?
C1 C2 H2 119.8 . . ?
C2 C3 C4 120.4(4) . . ?
C2 C3 H3 119.8 . . ?
C4 C3 H3 119.8 . . ?
```

C13 C4 C3 119.0(3) . . ? C13 C4 C5 122.9(3) . . ? C3 C4 C5 118.1(3) . . ? O2 C5 C6 119.7(3) . . ? O2 C5 C4 122.4(4) . . ? C6 C5 C4 117.9(3) . . ? O1 C6 C5 113.0(3) . . ? O1 C6 H6A 109.0 . . ? C5 C6 H6A 109.0 . . ? O1 C6 H6B 109.0 . . ? C5 C6 H6B 109.0 . . ? H6A C6 H6B 107.8 . . ? O3 C7 O1 121.8(3) . . ? O3 C7 C8 124.8(3) . . ? O1 C7 C8 113.3(3) . . ? C9 C8 C14 119.8(3) . . ? C9 C8 C7 118.2(3) . . ? C14 C8 C7 122.0(3) . . ? C8 C9 C10 120.3(4) . . ? C8 C9 H9 119.8 . . ? C10 C9 H9 119.8 . . ? C11 C10 C9 120.3(4) . . ? C11 C10 H10 119.8 . . ? C9 C10 H10 119.9 . . ? C10 C11 C15 120.2(4) . . ? C10 C11 H11 119.9 . . ? C15 C11 H11 119.9 . . ? C13 C12 C1 120.4(4) . . ? C13 C12 H12 119.8 . . ? C1 C12 H12 119.8 . . ? C12 C13 C4 120.4(4) . . ? C12 C13 H13 119.8 . . ? C4 C13 H13 119.8 . . ? C8 C14 C15 119.5(4) . . ? C8 C14 H14 120.3 . . ? C15 C14 H14 120.3 . . ? C11 C15 C14 119.9(4) . . ? C11 C15 H15 120.1 . . ? C14 C15 H15 120.1 . . ? diffrn measured fraction theta max 0.988 _diffrn_reflns_theta_full 24.51 _diffrn_measured_fraction_theta_full 0.988 _refine_diff_density_max 0.156 _refine_diff_density_min -0.256 _refine_diff_density_rms 0.049 _atom_sites_special_details

The structure was solved using Direct Methods (ShelXS). RE = 0.2, Nqual = -1, Ralpha = 0.030