Supporting Information

A rare three-coordinated zinc cluster-organic framework with two types of second building units

Jin-Song Hu,^{a, b} Lei Zhang,^b Ling Qin,^a He-Gen Zheng,*,^a Xiang-Biao Zhang*,^b

^aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

^bSchool of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001

- 1. Materials and methods
- 2. Synthesis procedure
- 3. Electronic structure calculations
- 4. CD, PXRD, TGA and luminescent and the photoluminescence lifetime patterns
- 5. Bond Lengths (Å) and Angles (deg) of 1

1. Materials and methods

Reagents and solvents employed were commercially available and used as received. Ligand H₃NTB was prepared by the literature methods [S1]. IR absorption spectra of the complexes were recorded in the range of 400–4000 cm⁻¹ on a Nicolet (Impact 410) spectrometer with KBr pellets (5 mg of sample in 500 mg of KBr). Powder X-ray diffraction (PXRD) measurements were performed on a Bruker D8 Advance X-ray diffractometer using Cu-Ka radiation (0.15418 nm), in which the X-ray tube was operated at 40 kV and 40 mA. Luminescent spectra were recorded with a SHIMAZU VF–320 X-ray fluorescence spectrophotometer at room temperature. The photoluminescence lifetime was measured with an Edinburgh Instruments FLS920P fluorescence spectrometer. The as-synthesized samples were characterized by thermogravimetric analysis (TGA) on a Perkin Elmer thermogravimetric analyzer Pyris 1 TGA up to 1023 K using a heating rate of 10 K min⁻¹ under N₂ atmosphere. A pulsed Q-switched Nd:YAG laser at a wavelength of 1064 nm was used to generate a SHG signal. The backscattered SHG light was collected by a spherical concave mirror and passed through a filter that transmits only 532 nm radiation.

The solvent molecules in the structure were found to be highly disordered and were impossible to refine using conventional discrete-atom models. To resolve these issues, the contribution of the electron density by the remaining solvent molecules was removed by the SQUEEZE routine in PLATON [S2]. The numbers of solvent molecules were obtained by element analysis, IR and TGA.

References

- [S1] J. Wang, C. He, P. Y. Wu, J. Wang, C. Y. Duan, J. Am. Chem. Soc., 2011, 133, 12402.
- [S2] A. L. Spek, Acta Crystallogr., Sect. A: Found Crystallogr. 1990, 46, 194.

2. Synthesis procedure

A mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (0.4 mmol), H_3NTB (0.1 mmol) and H_2NDB (0.1 mmol) is dispersed in 10 mL H_2O , and the mixture is adjusted to pH=6. The final mixture is placed in a Parr Teflon-lined stainless steel vessel (15 mL) and heated at 150 °C for 4d. Large quantities of faint yellow-block crystals is obtained, the crystals are filtered off, washed with mother liquid, and dried under ambient conditions. yield of the reaction is ~40%. Anal. Calcd for $C_{168}H_{178}N_9O_{94}Zn_{17}$: C, 40.86%, H, 3.63%, N, 2.55%; found C, 40.61%, H, 3.86%, N, 2.35%. IR (KBr, cm⁻¹): 3485(w), 3062(w), 2361(m), 1666(s), 1604(s), 1548(s), 1383(s), 1299(w), 1161(m), 1093(m), 1010(w), 844(w), 794(m), 733(s), 615(m).

3. Electronic structure calculations

Computational details

Starting from the crystal structures, geometry optimizations were performed for clusters $Zn_4H_6(\mu_4-O)(COO)_6$ and $Zn_9H_{12}(\mu_3-O)_3(COO)_{12}$ using the DFT/B3LYP/ 6-31G(d) with diffuse functions for oxygen atoms. In order to obtain the same geometry configurations with clusters in the MOFs, $Zn_4H_6(\mu_4-O)(COO)_6$ and $Zn_9H_{12}(\mu_3-D)(COO)_6$ $O_{3}(COO)_{12}$ are constrainted to have C_{3} and D_{3} symmetries, respectively. To further study the configuration of $Zn_9H_{12}(\mu_3-O)_3(COO)_{12}$, we calculated its structure again without any symmetry constraint. As a result, a stable configuration $Zn_9H_{12}(\mu_3-O)(\mu_4 O_{2}(COO)_{12}$ was obtained. Based on the optimized geometry structures, frequency calculations were carried out at the same theoretical level and accurate electronic energies for these clusters were calculated using the DFT/B3LYP/6-311++G(d,p). Finally, we performed natural bond orbital (NBO) analysis[S3] for all the clusters. All the calculations were carried out with the Gaussian03 package[S4]. Our calculation methods have been successfully used to the similar study of the Zn clusters.[S5] The calculated results indicate that $Zn_4H_6(\mu_4-O)(COO)_6$ and $Zn_9H_{12}(\mu_3-O)(\mu_4-O)_2(COO)_{12}$ have no imaginary frequency and $Zn_9H_{12}(\mu_3-O)_3(COO)_{12}$ has five imaginary frequencies (-59.1*i*, -59.1*i*, -30.0*i*, -30.0*i*, -16.6*i*).

Center Number	Atomic Number	Coordinates (Angstroms)			
	-	Х	Y	Z	
1	8	0.120544	-0.155879	0.058033	
2	8	-0.010014	-0.155879	4.750175	
3	8	4.118779	-0.155879	2.517170	
4	8	2.375327	-0.106159	-0.129036	
5	8	-1.299412	-0.106159	2.891010	
6	8	3.153394	-0.106159	4.563404	
7	8	-1.390279	2.459613	1.030208	
8	8	1.587326	2.459613	5.572498	
9	8	4.032262	2.459613	0.722672	
10	8	-0.240786	4.308682	1.648424	
11	8	1.547970	4.308682	4.267900	
12	8	2.922125	4.308682	1.409053	
13	8	1.409770	1.629354	2.441793	
14	30	-0.267237	0.966355	1.616922	
15	30	1.533914	0.966355	4.306558	
16	30	2.962631	0.966355	1.401898	
17	30	1.409770	3.612173	2.441793	
18	6	1.596244	3.706913	5.376700	
19	1	1.652304	4.340498	6.273167	
20	6	3.858237	58237 3.706912		
21	1	4.606570	06570 4.340498 (
22	6	-1.225172	3.706913	1.135830	
23	1	-2.029565	4.340498	0.736146	
24	6	1.217217	-0.454332	-0.491435	
25	1	1.156951	-1.089231	-1.386717	
26	6	4.046296	-0.454332	3.741651	
27	1	4.851766	-1.089231	4.137100	
28	6	-1.034204	-0.454332	4.075162	
29	1	-1.779408	-1.089231	4.574995	

Cartesian coordiantes and electronic energies (E) by the B3LYP/ 6-311++G(d,p)

 $Zn_4H_6(\mu_4-O)(COO)_6$ (E = -8328.43262 au)

 $Zn_9H_{12}(\mu_3-O)_3(COO)_{12}$ (E = -18511.4158202 au)

Center Number	Atomic Number	Coordinates (Angstroms)			
		Х	Y	Ζ	
1	8	0.000000	1.845597	0.000000	
2	8	-1.755508	0.597141	3.352372	
3	8	-2.428078	2.430027	2.195468	
4	30	0.000000	0.000000	3.014847	
5	30	0.000000	0.000000	0.000000	
6	30	-1.067422	3.099623	0.958902	
7	30	1.067422	3.099623	-0.958902	
8	8	0.360615	-1.818885	3.352372	
9	8	1.394894	1.221744	3.352372	
10	8	-1.598334	-0.922799	0.000000	
11	8	1.598334	-0.922799	0.000000	
12	8	0.215809	4.297395	1.918932	
13	8	-1.894635	4.308962	-0.390260	
14	8	2.428078	2.430027	-2.195468	
15	8	-0.215809	4.297395	-1.918932	
16	8	1.894635	4.308962	0.390260	
17	30	-3.218063	-0.625397	-0.958902	
18	30	-2.150641	-2.474226	0.958902	
19	30	2.150641	-2.474226	-0.958902	
20	30	3.218063	-0.625397	0.958902	
21	8	-0.890426	-3.317791	2.195468	
22	8	3.318504	0.887764	2.195468	
23	8	-3.318504	0.887764	-2.195468	
24	8	-3.613749	-2.335594	-1.918932	
25	8	-4.678988	-0.513680	0.390260	
26	8	-3.829558	-1.961801	1.918932	
27	8	-2.784354	-3.795283	-0.390260	
28	8	0.890426	-3.317791	-2.195468	
29	8	3.829558	-1.961801	-1.918932	
30	8	2.784354	-3.795283	0.390260	
31	8	3.613749	-2.335594	1.918932	
32	8	4.678988	-0.513680	-0.390260	
33	8	1.755508	0.597141	-3.352372	
34	30	0.000000	0.000000	-3.014847	
35	8	-0.360615	-1.818885	-3.352372	
36	8	-1.394894	1.221744	-3.352372	
37	6	4.705678	-1.166716	-1.472980	
38	1	5.595761	-1.021057	-2.104309	
39	6	3.363245	-3.491879	1.472980	
40	1	3.682142	-4.335543	2.104309	
41	6	0.023131	-2.988993	-3.031493	

42	1	-0.485716	-3.801782	-3.567807
43	6	2.576979	1.514529	-3.031493
44	1	3.535298	1.480248	-3.567807
45	6	-2.600110	1.474464	-3.031493
46	1	-3.049582	2.321533	-3.567807
47	6	-3.363245	-3.491879	-1.472980
48	1	-3.682142	-4.335543	-2.104309
49	6	-4.705678	-1.166716	1.472980
50	1	-5.595761	-1.021057	2.104309
51	6	-2.576979	1.514529	3.031493
52	1	-3.535298	1.480248	3.567807
53	6	-0.023131	-2.988993	3.031493
54	1	0.485716	-3.801782	3.567807
55	6	2.600110	1.474464	3.031493
56	1	3.049582	2.321533	3.567807
57	6	1.342433	4.658595	1.472980
58	1	1.913619	5.356600	2.104309
59	6	-1.342433	4.658595	-1.472980
60	1	-1.913619	5.356600	-2.104309

 $Zn_9H_{12}(\mu_3-O)(\mu_4-O)_2(COO)_{12}$ (E = -18511.5053905 au)

Center Number	Atomic Number	Coordinates (Angstroms)			
		Х	Y	Ζ	
1	8	-0.036607	1.629895	0.008158	
2	8	1.732262	3.137696	-2.228361	
3	8	2.747912	3.189557	-0.200972	
4	30	0.059473	2.183875	-1.853584	
5	30	0.323373	-0.314532	-0.161126	
6	30	1.194095	2.867263	0.930858	
7	30	-1.653741	2.177620	0.980246	
8	8	0.559327	0.313969	-2.428700	
9	8	-1.587159	2.852506	-2.676913	
10	8	1.932016	-1.179981	-0.079715	
11	8	-1.428464	-1.206665	-0.044426	
12	8	0.213967	4.636455	0.792153	
13	8	1.226129	2.431427	2.822535	
14	8	-3.067338	0.813996	1.337191	
15	8	-1.011644	2.089301	2.926764	
16	8	-1.986989	4.105348	0.747040	
17	30	3.090715	-1.373630	1.406319	
18	30	3.218920	-1.090502	-1.466107	
19	30	-1.784282	-2.885918	-1.022239	
20	30	-2.962474	-0.198372	-0.766816	
		6			

21	8	2.399346	-0.706348	-3.239340
22	8	-2.776026	1.762922	-1.117377
23	8	2.239538	-1.599608	3.174344
24	8	4.205114	-2.971710	0.933413
25	8	4.360953	0.171575	1.293062
26	8	4.475838	0.395741	-0.966756
27	8	4.289055	-2.752111	-1.328645
28	8	-0.999975	-4.390380	-0.067977
29	8	-3.760459	-3.191342	-0.718958
30	8	-1.588704	-2.522708	-2.925229
31	8	-2.713772	-0.560894	-2.787822
32	8	-4.660496	-1.134798	-0.423300
33	8	-3.071030	-0.883862	2.802941
34	30	-1.557469	-1.706357	1.836160
35	8	-1.339389	-3.652407	2.049547
36	8	0.186872	-1.013570	2.472175
37	6	-4.718174	-2.399211	-0.506954
38	1	-5.712954	-2.848450	-0.373130
39	6	-2.122167	-1.479246	-3.413918
40	1	-2.053666	-1.375288	-4.507071
41	6	-1.012013	-4.521063	1.188239
42	1	-0.700573	-5.499643	1.578778
43	6	-3.448547	0.250461	2.417552
44	1	-4.173096	0.783475	3.047047
45	6	0.999781	-1.493050	3.327660
46	1	0.590915	-1.834137	4.291768
47	6	4.537423	-3.333002	-0.230867
48	1	5.117079	-4.265951	-0.302644
49	6	4.773330	0.707592	0.224991
50	1	5.473906	1.547407	0.345003
51	6	2.717070	3.334732	-1.455363
52	1	3.648209	3.667958	-1.931770
53	6	1.336702	-0.064457	-3.374425
54	1	1.037104	0.196548	-4.401209
55	6	-2.673106	2.434508	-2.192428
56	1	-3.592674	2.692023	-2.734043
57	6	-1.013912	4.919374	0.743807
58	1	-1.275390	5.985950	0.684862
59	6	0.142862	2.164349	3.426813
60	1	0.231385	1.982345	4.507652

Summary of natural population analyses

Center Natural Natural Popul					pulation			
Atom	Number	Charge	Cor	Val	Ryd	Total		
	$Zn_4H_6(\mu_4-O)(COO)_6$							
0	1	-0.86142	1.99973	6.83757	0.02412	8.86142		
Ο	2	-0.86143	1.99973	6.83758	0.02412	8.86143		
Ο	3	-0.86137	1.99973	6.83753	0.02412	8.86137		
Ο	4	-0.86105	1.99973	6.83721	0.02410	8.86105		
Ο	5	-0.86103	1.99973	6.83720	0.02410	8.86103		
Ο	6	-0.86101	1.99973	6.83718	0.02410	8.86101		
Ο	7	-0.86159	1.99973	6.83774	0.02412	8.86159		
0	8	-0.86162	1.99973	6.83777	0.02412	8.86162		
Ο	9	-0.86160	1.99973	6.83775	0.02412	8.86160		
Ο	10	-0.86114	1.99973	6.83730	0.02411	8.86114		
Ο	11	-0.86115	1.99973	6.83731	0.02411	8.86115		
Ο	12	-0.86113	1.99973	6.83730	0.02411	8.86113		
Ο	13	-1.85458	1.99999	7.77981	0.07477	9.85458		
Zn	14	1.74499	17.99825	10.20505	0.05170	28.25501		
Zn	15	1.74497	17.99825	10.20506	0.05172	28.25503		
Zn	16	1.74503	17.99825	10.20504	0.05168	28.25497		
Zn	17	1.74507	17.99825	10.20499	0.05168	28.25493		
		Natura	l Electron Cor	nfiguration				
Ο	1	[core]2S(1.7	72)2p(5.12)3p	o(0.01)3d(0.0	01)			
Ο	2	[core]2S(1.7	72)2p(5.12)3p	o(0.01)3d(0.0	01)4p(0.01)			
Ο	3	[core]2S(1.'	72)2p(5.12)3p	o(0.01)3d(0.0	01)			
0	4	[core]2S(1.7	72)2p(5.12)3p	o(0.01)3d(0.0	01)			
Ο	5	[core]2S(1.7	72)2p(5.12)3p	o(0.01)3d(0.0	01)4p(0.01)			
0	6	[] 2 0(1/	70)0(510)2	(0,01)24(0,0)	1)			

Ο	1	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)
Ο	2	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)4p(0.01)
Ο	3	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)
Ο	4	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)
Ο	5	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)4p(0.01)
Ο	6	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)
Ο	7	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)4p(0.01)
Ο	8	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)4p(0.01)
Ο	9	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)4p(0.01)
Ο	10	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)
Ο	11	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)4p(0.01)
Ο	12	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)
Ο	13	[core]2S(1.94)2p(5.84)3p(0.06)4p(0.01)
Zn	14	[core]4S(0.27)3d(9.93)4p(0.01)5p(0.04)
Zn	15	[core]4S(0.27)3d(9.93)4p(0.01)5p(0.04)
Zn	16	[core]4S(0.27)3d(9.93)5p(0.05)
Zn	17	[core]4S(0.27)3d(9.93)4p(0.01)5p(0.04)
		$Zn_9H_{12}(\mu_3-O)_3(COO)_{12}$

0	1	-1.79416	1.99998	7.75328	0.04090	9.79416
0	2	-0.91346	1.99971	6.88560	0.02815	8.91346
0	3	-0.83152	1.99970	6.80512	0.02670	8.83152
Zn	4	1.70598	17.99763	10.23702	0.05937	28.29402
Zn	5	1.74650	17.99874	10.19775	0.05701	28.25350
Zn	6	1.74887	17.99829	10.19684	0.05600	28.25113
Zn	7	1.74887	17.99829	10.19684	0.05600	28.25113
0	8	-0.91346	1.99971	6.88560	0.02815	8.91346
0	9	-0.91346	1.99971	6.88560	0.02815	8.91346
0	10	-1.79416	1.99998	7.75328	0.04090	9.79416
0	11	-1.79416	1.99998	7.75328	0.04090	9.79416
0	12	-0.85307	1.99973	6.82958	0.02375	8.85307
0	13	-0.85295	1.99973	6.83020	0.02301	8.85295
0	14	-0.83152	1.99970	6.80512	0.02670	8.83152
0	15	-0.85307	1.99973	6.82958	0.02375	8.85307
0	16	-0.85295	1.99973	6.83020	0.02301	8.85295
Zn	17	1.74887	17.99829	10.19684	0.05600	28.25113
Zn	18	1.74887	17.99829	10.19684	0.05600	28.25113
Zn	19	1.74887	17.99829	10.19684	0.05600	28.25113
Zn	20	1.74887	17.99829	10.19684	0.05600	28.25113
0	21	-0.83152	1.99970	6.80512	0.02670	8.83152
0	22	-0.83152	1.99970	6.80512	0.02670	8.83152
0	23	-0.83152	1.99970	6.80512	0.02670	8.83152
0	24	-0.85307	1.99973	6.82958	0.02375	8.85307
0	25	-0.85295	1.99973	6.83020	0.02301	8.85295
0	26	-0.85307	1.99973	6.82958	0.02375	8.85307
0	27	-0.85295	1.99973	6.83020	0.02301	8.85295
0	28	-0.83152	1.99970	6.80512	0.02670	8.83152
0	29	-0.85307	1.99973	6.82958	0.02375	8.85307
0	30	-0.85295	1.99973	6.83020	0.02301	8.85295
0	31	-0.85307	1.99973	6.82958	0.02375	8.85307
0	32	-0.85295	1.99973	6.83020	0.02301	8.85295
0	33	-0.91346	1.99971	6.88560	0.02815	8.91346
Zn	34	1.70598	17.99763	10.23702	0.05937	28.29402
0	35	-0.91346	1.99971	6.88560	0.02815	8.91346
Ο	36	-0.91346	1.99971	6.88560	0.02815	8.91346

Natural E	lectron	Configu	ration
-----------	---------	---------	--------

0	1	[core]2S(1.93)2p(5.82)3p(0.03)4p(0.01)
Ο	2	[core]2S(1.71)2p(5.17)3S(0.01)3p(0.01)3d(0.01)
Ο	3	[core]2S(1.71)2p(5.10)3p(0.01)3d(0.01)
Zn	4	[core]4S(0.32)3d(9.91)4p(0.02)5p(0.03)
Zn	5	[core]4S(0.31)3d(9.89)4p(0.04)5p(0.02)

Zn	6	[core]4S(0.27)3d(9.93)4p(0.04)5p(0.01)
Zn	7	[core]4S(0.27)3d(9.93)4p(0.04)5p(0.01)
Ο	8	[core]2S(1.71)2p(5.17)3S(0.01)3p(0.01)3d(0.01)
Ο	9	[core]2S(1.71)2p(5.17)3S(0.01)3p(0.01)3d(0.01)
Ο	10	[core]2S(1.93)2p(5.82)3p(0.03)4p(0.01)
Ο	11	[core]2S(1.93)2p(5.82)3p(0.03)4p(0.01)
Ο	12	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Ο	13	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Ο	14	[core]2S(1.71)2p(5.10)3p(0.01)3d(0.01)
Ο	15	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Ο	16	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Zn	17	[core]4S(0.27)3d(9.93)4p(0.03)5p(0.02)
Zn	18	[core]4S(0.27)3d(9.93)4p(0.04)5p(0.02)
Zn	19	[core]4S(0.27)3d(9.93)4p(0.04)5p(0.02)
Zn	20	[core]4S(0.27)3d(9.93)4p(0.03)5p(0.02)
Ο	21	[core]2S(1.71)2p(5.10)3p(0.01)3d(0.01)
Ο	22	[core]2S(1.71)2p(5.10)3p(0.01)3d(0.01)
Ο	23	[core]2S(1.71)2p(5.10)3p(0.01)3d(0.01)
Ο	24	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Ο	25	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Ο	26	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Ο	27	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Ο	28	[core]2S(1.71)2p(5.10)3p(0.01)3d(0.01)
Ο	29	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Ο	30	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Ο	31	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Ο	32	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Ο	33	[core]2S(1.71)2p(5.17)3S(0.01)3p(0.01)3d(0.01)
Zn	34	[core]4S(0.32)3d(9.91)4p(0.02)5p(0.03)
Ο	35	[core]2S(1.71)2p(5.17)3S(0.01)3p(0.01)3d(0.01)
Ο	36	[core]2S(1.71)2p(5.17)3S(0.01)3p(0.01)3d(0.01)

Zn₉H₁₂(µ₃-O)(µ₄-O)₂(COO)₁₂

0	1	-1.83001	1.99998	7.78003	0.05000	9.83001
0	2	-0.87372	1.99973	6.84994	0.02405	8.87372
0	3	-0.85444	1.99973	6.82956	0.02516	8.85444
Zn	4	1.75314	17.99807	10.19848	0.05031	28.24686
Zn	5	1.80552	17.99847	10.15923	0.03678	28.19448
Zn	6	1.74079	17.99810	10.20676	0.05435	28.25921
Zn	7	1.76228	17.99799	10.19326	0.04647	28.23772
0	8	-0.96514	1.99974	6.92366	0.04174	8.96514
0	9	-0.83041	1.99974	6.80053	0.03015	8.83041
0	10	-1.78967	1.99998	7.75863	0.03107	9.78967

0	11	-1.83393	1.99998	7.78132	0.05262	9.83393
0	12	-0.85386	1.99973	6.83025	0.02388	8.85386
0	13	-0.85635	1.99974	6.83380	0.02281	8.85635
0	14	-0.96232	1.99974	6.92402	0.03856	8.96232
0	15	-0.85635	1.99973	6.83110	0.02552	8.85635
0	16	-0.86220	1.99975	6.83887	0.02358	8.86220
Zn	17	1.74681	17.99833	10.20193	0.05293	28.25319
Zn	18	1.74220	17.99836	10.20460	0.05485	28.25780
Zn	19	1.74333	17.99810	10.20771	0.05085	28.25667
Zn	20	1.76181	17.99800	10.19422	0.04597	28.23819
0	21	-0.80041	1.99972	6.76942	0.03127	8.80041
0	22	-0.94528	1.99974	6.90741	0.03813	8.94528
0	23	-0.81700	1.99972	6.78534	0.03194	8.81700
0	24	-0.85300	1.99973	6.82989	0.02338	8.85300
0	25	-0.85263	1.99973	6.82900	0.02391	8.85263
0	26	-0.86520	1.99974	6.84105	0.02442	8.86520
0	27	-0.85829	1.99973	6.83570	0.02286	8.85829
0	28	-0.84849	1.99973	6.82540	0.02336	8.84849
0	29	-0.85406	1.99973	6.83015	0.02418	8.85406
0	30	-0.85920	1.99974	6.83624	0.02322	8.85920
0	31	-0.85142	1.99973	6.82594	0.02575	8.85142
0	32	-0.86336	1.99975	6.83993	0.02368	8.86336
0	33	-0.81826	1.99973	6.78806	0.03047	8.81826
Zn	34	1.75544	17.99808	10.19466	0.05182	28.24456
0	35	-0.87142	1.99973	6.84774	0.02394	8.87142
0	36	-0.92787	1.99973	6.88997	0.03818	8.92787

Natural Electron Configuration

0	1	[core]2S(1.93)2p(5.85)3p(0.04)4p(0.01)
0	2	[core]2S(1.72)2p(5.13)3p(0.01)3d(0.01)
0	3	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
Zn	4	[core]4S(0.27)3d(9.93)4p(0.02)5p(0.03)
Zn	5	[core]4S(0.24)3d(9.92)4p(0.02)5S(0.01)
Zn	6	[core]4S(0.28)3d(9.93)4p(0.03)5p(0.02)
Zn	7	[core]4S(0.26)3d(9.94)4p(0.02)5p(0.02)
0	8	[core]2S(1.73)2p(5.20)3S(0.01)3p(0.03)3d(0.01)
0	9	[core]2S(1.72)2p(5.08)3p(0.01)3d(0.01)
0	10	[core]2S(1.93)2p(5.83)3p(0.02)
0	11	[core]2S(1.93)2p(5.85)3p(0.04)4p(0.01)
0	12	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
0	13	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
0	14	[core]2S(1.72)2p(5.21)3S(0.01)3p(0.02)3d(0.01)
Ο	15	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)

0	16	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)
Zn	17	[core]4S(0.27)3d(9.93)4p(0.02)5p(0.03)
Zn	18	[core]4S(0.27)3d(9.93)4p(0.05)
Zn	19	[core]4S(0.28)3d(9.93)4p(0.04)
Zn	20	[core]4S(0.26)3d(9.94)4p(0.02)5p(0.02)
0	21	[core]2S(1.71)2p(5.05)3p(0.01)3d(0.01)
Ο	22	[core]2S(1.72)2p(5.19)3S(0.01)3p(0.02)3d(0.01)
Ο	23	[core]2S(1.72)2p(5.07)3p(0.01)3d(0.01)4p(0.01)
0	24	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
0	25	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
0	26	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)
0	27	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)4p(0.01)
0	28	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
0	29	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
0	30	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
0	31	[core]2S(1.72)2p(5.11)3p(0.01)3d(0.01)
0	32	[core]2S(1.72)2p(5.12)3p(0.01)3d(0.01)
0	33	[core]2S(1.72)2p(5.07)3p(0.01)3d(0.01)
Zn	34	[core]4S(0.26)3d(9.93)4p(0.03)5p(0.02)
Ο	35	[core]2S(1.72)2p(5.13)3p(0.01)3d(0.01)
0	36	[core]2S(1.72)2p(5.17)3S(0.01)3p(0.02)3d(0.01)

References

[S3] E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, *NBO Version 3.1*.
[S4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,

C. Gonzalez and J. A. Pople, *GAUSSIAN 03 (Revision D.02)*, Gaussian, Inc., Wallingford CT, 2004.

[S5] (a) D. Samanta and P. Jena, J. Am. Chem. Soc., 2012, 134, 8400; (b) S. S. Hepperle and Y. A. Wang, J. Phys. Chem. A, 2013, 117, 4657; (c) D. P. Martin, P. G. Blachly, A. R. Marts, T. M. Woodruff, C. A. F. de Oliveira, J. A. McCammon, D. L. Tierney and S. M. Cohen, J. Am. Chem. Soc., 2014, 136, 5400.

4. CD, PXRD, TGA and luminescent and the photoluminescence

lifetime patterns

Figure S1. Solid-state circular dichroism spectrum of 1

Figure S2. Powder X-ray diffraction pattern of 1

Figure S3. The TGA pattern of complex 1

Figure S4. The solid photoluminescent patterns of complex 1, H₃NTB and H₂NDB

Figure S5. The fitted decay curve monitored at 450nm (a) and 520 nm (b) for complex 1 in the solid state at room temperature. The sample is excited at 370 nm. Yellow lines: experimental data; Solid line: fitted by $Fit = A+B_1 \times exp(-t/\tau_1)+B_2 \times exp(-t/\tau_2)$.

5. Bond lengths (Å) and angles (deg) of complex 1

Complex 1							
O1-Zn2	1.740(5)	O1-Zn3	1.891(4)				
O2-Zn1	1.949(4)	O3-Zn3	1.922(5)				
O4-Zn3	1.914(4)	O5-Zn3	1.973(4)				
O6-Zn4	1.909(4)	O7-Zn4	1.880(4)				
O8-Zn4	1.944(4)	O9-Zn5	1.956(4)				
O10-Zn5	1.884(6)	O10-Zn4	1.960(2)				
O2-Zn1-O2	99.43(16)	O1-Zn2-O1	120.0				
O1-Zn3#1-O4	99.02(13)	O1-Zn3#1-O3	142.45(17)				
O4-Zn3#1O3	105.88(17)	O1-Zn3#1-O5	92.70(12)				
O4-Zn3#1-O5	116.30(16)	O3-Zn3#1-O5	100.67(16)				
O7-Zn4-O6	118.56(16)	O7-Zn4-O8	102.98(18)				
O6-Zn4-O8	103.78(17)	O7-Zn4-O10	110.84(14)				
O6-Zn4-O10	113.25(13)	O8-Zn4-O10	105.8(2)				
O10-Zn5-O9	109.54(12)	O9-Zn5-O9	109.40(12)				

Table S1. Selected Bond Lengths (\AA) and Angles (deg) for Complex 1

#1 = 1-x, 1-x+y, -z.