Supplementary Information

Rhodium-Catalysed Direct C-H Allylation of N-Sulfonyl

Ketimines with Allyl Carbonates

Shu-Tao Mei, Nan-Jin Wang, Qin Ouyang* and Ye Wei* College of Pharmacy, Third Military Medical University, Chongqing 400038, China

Table of Contents

Materials and Methods	
Preparation of Substrates	
Rh-Catalysed Direct Aryl C-H Allylation	
Synthetic Transformations	S17
Deuteration and Competition Experiments	S18
Computational Studies	S19
1H and 13C NMR Spectra	S 53

Materials and Methods

General. All reactions dealing with air- and moisture-sensitive compounds were carried out in dry reaction vessels under a nitrogen atmosphere. ¹H and¹³C nuclear magnetic resonance (NMR) spectra were recorded on Agilent 600 MHz NMR spectrometer. ¹H and ¹³C NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0 ppm) and CHCl₃ (77.0 ppm), respectively. ESI high-resolution mass spectra (HRMS) were recorded on a Waters SYNPAT G2. Melting points were determined using a capillary melting point apparatus and are uncorrected.

Materials. Unless otherwise noted, materials were purchased from commercial suppliers and were used as received. Anhydrous DCM was distilled over CaH_2 and stored under N_2 .

Preparation of Substrates

All *N*-sulfonyl ketimines¹ were synthesized according to the literature procedures, and the yields were not optimized. Allyl carbonates were synthesized from the corresponding allyl alcohols and methyl chloroformate.² Below are summaried characterization data for newly synthesized ketimines and allyl carbonates. ¹H and ¹³C NMR spectra data for the rest of the ketimines and allyl carbonates showed good agreement with the literature data.

3-(4-Chlorophenyl)benzo[d]isothiazole 1,1-dioxide (1f): Brown solid; Mp = 210–211 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.03 (d, J = 7.4 Hz, 1H), 7.94 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 7.6 Hz, 1H), 7.81 (t, J = 7.4 Hz, 1H), 7.76 (t, J = 7.5 Hz, 1H), 7.60 (d, J = 8.4 Hz, 2H); ¹³C NMR (150 MHz CDCl₃): δ 169.9, 141.1, 140.0, 133.7, 133.5, 130.8, 130.2, 129.6, 128.8, 126.2, 123.2; HRMS (ESI) Calcd for C₁₃H₈CINO₂S [M + Na]⁺299.9862 , found 299.9863.

5-Chloro-3-phenylbenzo[d]isothiazole 1,1-dioxide (10): Yellow solid; Mp = 156–157 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.96–7.94 (m, 3H), 7.85 (d, *J* = 1.0 Hz, 1H), 7.77–7.70 (m, 2H), 7.64 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (150 MHz CDCl₃): δ 169.7, 140.2, 139.3, 133.7, 133.2, 132.4, 129.9, 129.4, 129.4, 126.7, 123.9; HRMS (ESI) Calcd for C₁₃H₈ClNO₂S [M + H]⁺ 299.9862, found 299.9863.

N-((2-Bromophenyl)(phenyl)methylene)-4-methylbenzenesulfonamide (1u): White solid; Mp = 93–95 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.85 (d, J = 8.1 Hz, 2H), 7.67 (d, J = 7.7 Hz, 2H), 7.61 (d, J = 8.1 Hz, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.43–7.35 (m, 4H), 7.29 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (150 MHz CDCl₃): δ 175.3, 143.8, 137.5, 136.8, 135.7, 133.8, 132.5, 131.0, 130.1, 129.4 (two signals are overlapped), 128.7, 127.7, 127.0, 120.1, 21.6;

 ⁽a) G. Yang and W. Zhang, *Angew. Chem., Int. Ed.*, 2013, **52**, 7540; (b) T. Nishimura, A. Noishiki, G. C. Tsui and T. Hayashi, *J. Am. Chem. Soc.*, 2012, **134**, 5056; (c) D. Hellwinkel and R. Karle, *Synthesis*, 1989, 394.
D. C. Vrieze, G. S. Hoge, P. Z. Hoerter, J. T. V. Haitsma and B. M. Sames, *Org. Lett.*, 2009, **11**, 3140.

HRMS (ESI) Calcd for $C_{20}H_{16}BrNO_2S [M + H]^+ 435.9983$, found 435.9980.

Methyl (4-methylpent-1-en-3-yl) carbonate (2g): Yellow oil; ¹H NMR (600 MHz, CDCl₃): 5.80–5.75 (m, 1H), 5.28 (d, J = 16.8 Hz, 1H), 5.25 (d, J = 10.2 Hz, 1H), 4.84 (t, J = 6.5 Hz, 1H), 3.77 (s, 3H), 1.94–1.89 (m, 1H), 0.93 (dd, J = 13.8, 7.2 Hz, 6H); ¹³C NMR (150 MHz CDCl₃): δ 155.4, 134.2, 118.3, 83.8, 54.6, 31.8, 17.9; **HRMS** (ESI) Calcd for C₈H₁₄O₃ [M + Na]⁺ 181.0841, found 181.0841.

Hept-1-en-3-yl methyl carbonate (2h): Yellow oil; ¹H NMR (600 MHz, CDCl₃): δ 5.79–5.76 (m, 1H), 5.29 (d, J = 17.2 Hz, 1H), 5.20 (d, J = 10.5 Hz, 1H), 5.04 (m, 1H), 3.77 (s, 3H), 1.64–1.55 (m, 2H), 1.35–1.31 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz CDCl₃): δ 155.3, 136.0, 117.3, 79.2, 54.6, 33.9, 27.0, 22.4, 13.9; HRMS (ESI) Calcd for C₉H₁₆O₃ [M + H]⁺ 195.0997, found 195.1000.

Methyl (5-(triisopropylsilyl)pent-1-en-4-yn-3-yl) carbonate (2i) : Colorless oil; ¹**H NMR** (600 MHz, CDCl₃): δ 5.96–5.92 (m, 1H), 5.76 (d, J = 5.6 Hz, 1H), 5.62 (d, J = 16.8 Hz, 1H), 5.34 (d, J = 10.1 Hz, 1H), 3.80 (s, 3H), 1.07 (s, 18H), 1.05–0.96 (m, 3H); ¹³**C NMR** (150 MHz CDCl₃): δ 154.7, 132.5, 119.5, 101.2, 89.9, 68.7, 54.9, 18.5, 11.0; **HRMS** (ESI) Calcd for C₁₆H₂₈O₃Si [M + H]⁺ 319.1705, found 319.1699.

Rh-Catalysed Direct Aryl C-H Allylation

1 abit 51	. Reaction optim	Ization		
0,0 5,0 1a (0.1 mmol)	+ 2 (2 equiv) 2a (R = OAc), 2b (R = 0 2c (R = OCOPh), 2d (R 2e (R = OTs)	$[Cp*RhCl_2]_2 (2.5 mol%) AgSbF_6 (10 mol%) additive (1 equiv) solvent, 120 °C, 12 h DCO_2Me) = OCO'Bu)$	Sab	
Entry	2	Additive	Solvent ^[a]	Yield (%) ^b
1	2a	none	dioxane	41
2	2a	K ₂ CO ₃	dioxane	0
3	2a	NaOAc	dioxane	0
4	2a	HOAc	dioxane	30
5	2a	EtCOOH	dioxane	54
6	2a	PhCOOH	dioxane	51
7	2a	<i>p</i> -MeO-C ₆ H ₄ COOH	dioxane	40
8	2a	p-NO ₂ -C ₆ H ₄ COOH	dioxane	62
9	2a	p-NO ₂ -C ₆ H ₄ COOH	toluene	0
10	2a	p-NO ₂ -C ₆ H ₄ COOH	PhCl	74
11	2a	p-NO ₂ -C ₆ H ₄ COOH	DCM	60
12	2a	p-NO ₂ -C ₆ H ₄ COOH	PhCI/DCM	85
13	2b	p-NO ₂ -C ₆ H ₄ COOH	PhCI/DCM	89
14	2c	p-NO ₂ -C ₆ H ₄ COOH	PhCI/DCM	55
15	2d	p-NO ₂ -C ₆ H ₄ COOH	PhCI/DCM	31
16	2e	p-NO ₂ -C ₆ H ₄ COOH	PhCI/DCM	30
17 ^[c]	2b	p-NO ₂ -C ₆ H ₄ COOH	PhCI/DCM	89

Table S1. Reaction optimization

^aThe ratio of mixed solvents is 1:9. ^bIsolated yields. ^cReaction was run at 80 ^oC.

N-sulfonyl ketimine **1a**, a readily accessible derivative of saccharin, and allyl acetate **2a** were chosen as model substrates to optimize the reaction conditions (Table S1). Pleasingly, the reaction took place in the presence of $[Cp^*RhCl_2]_2$ (2.5 mol%) and AgSbF₆ (10 mol%) at 120 °C in dioxane, affording the desirable **3ab** in 41% yield (entry 1). Next, we tested the effect of various additives on the reaction. Whereas the reaction did not occur at all with K₂CO₃ or NaOAc as a base (entries 2 and 3), the addition of 1 equiv of acid, such as propionic acid, benzoic acid, 4-methoxybenzoic acid or 4-nitrobenzoic acid, improved the yield up to 62% (entries 5-8) while acetic acid gave a lower yield (entry 4). A screening of different solvents showed that mixed solvents of PhCl and DCM gave an 85% yield of **3ab** (entries 9-12). Among other allyl electrophiles with different leaving groups, allyl carbonate **2b** slightly improved the yield (entries 13-16). Note that, with **2b** as the allyl electrophile, the allylation reaction was also performed excellently at 80 °C (entry 17).

A General Procedure

A 10 mL of Schlenk tube equipped with a stirrer bar was charged with ketimine (0.2 mmol), 4nitrobenzoic acid (1 equiv), $[Cp*RhCl_2]_2$ (2.5 mol%), and AgSbF₆ (10 mol%) under air. Then, the Schlenk tube was quickly evacuated and refilled with N₂ for three times, followed by the addition of allyl carbonate (2 equiv), chlorobenzene (0.2 mL), and dichloromethane (1.8 mL). The Schlenk tube was sealed with a Teflon screwcap and the reaction mixture was stirred at 80 °C for 12 h. Upon cooling to room temperature, the reaction mixture was diluted with 10 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with ethyl acetate (20 mL). Subsequently, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the allylated product.

3-(2-Allylphenyl)benzo[d]isothiazole 1,1-dioxide (3ab): Following the general procedure; White solid (89% yield, eluent = petroleum ether/EtOAc (13:1)); Mp = 89–90 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.99 (d, *J* = 7.5 Hz, 1H), 7.77 (t, *J* = 7.5 Hz, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.50–7.48 (m, 2H), 7.46 (d, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 5.85 (ddt, *J* = 17.1, 13.2, 6.65 Hz, 1H), 4.96–4.91 (m, 2H), 3.62 (d, *J* = 6.5 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 172.0, 140.1, 140.0, 136.2, 133.7, 133.4, 131.7, 131.7, 131.2, 129.1, 129.0, 126.4, 126.4, 122.7, 116.9, 37.4; HRMS (ESI) Calcd for C₁₆H₁₃NO₂S [M + Na]⁺ 306.0565, found 306.0565.

3-(2-Allyl-4-methylphenyl)benzo[d]isothiazole 1,1-dioxide (3bb): Following the general procedure; Yellow oil (97% yield, eluent = petroleum ether/EtOAc (13:1)); ¹**H** NMR (600 MHz, CDCl₃): δ 7.97 (d, J = 7.4 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.26 (s, 1H), 7.22 (d, J = 7.8 Hz, 1H), 5.84 (ddt, J = 17.1, 12.6, 6.6 Hz, 1H), 4.99–4.86 (m, 2H), 3.61 (d, J = 6.4 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 171.9, 142.4, 140.2, 136.4, 133.6, 133.2, 132.0, 131.9, 129.3, 127.0, 126.5, 126.2, 122.6, 116.7 (two signals are overlapped), 37.4, 21.5; **HRMS** (ESI) Calcd for C₁₇H₁₅NO₂S [M + Na]⁺ 320.0721, found 320.0720.

3-(2-Allyl-5-methylphenyl)benzo[d]isothiazole 1,1-dioxide (3cb): Following the general procedure but the reaction was run at 120 °C; Yellow oil (92% yield, eluent = petroleum ether/EtOAc (13:1)); ¹**H NMR** (600 MHz, CDCl₃): δ 7.98 (d, *J* = 7.5 Hz, 1H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.36–7.32 (m, 2H), 7.29 (s, 1H), 5.81 (ddt, *J* = 17.7, 12.6, 6.6 Hz, 1H), 4.93–4.90 (m, 2H), 3.55 (d, *J* = 6.5 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 172.3, 140.1, 136.8, 136.4, 136.2, 133.7, 133.3, 132.5, 131.8, 131.1, 129.3, 129.0, 126.4, 122.6, 116.6, 37.0, 20.9; **HRMS** (ESI) Calcd for C₁₇H₁₅NO₂S [M + Na]⁺ 320.0721, found 320.0719.

3-(2-Allyl-4-methoxyphenyl)benzo[d]isothiazole 1,1-dioxide (3db): Following the general procedure; Yellow solid (88% yield, eluent = petroleum ether/EtOAc (13:1)); Mp = 73–74 °C; ¹H **NMR** (600 MHz, CDCl₃): δ 7.98 (d, *J* = 7.4 Hz, 1H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 8.5 Hz, 1H), 6.98 (d, *J* = 2.4 Hz, 1H), 6.92 (dd, *J* = 8.5, 2.5 Hz, 1H), 5.86 (ddt, *J* = 17.7, 12.6, 6.6 Hz, 1H), 5.01–4.95 (m, 2H), 3.89 (s, 3H), 3.67 (d, *J* = 6.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 171.1, 162.4, 143.2, 140.3, 136.2, 133.5, 133.1, 132.0, 131.5, 126.5, 122.6, 121.3, 117.0, 116.9, 111.6, 55.5, 37.6; HRMS (ESI) Calcd for C₁₇H₁₅NO₃S [M + Na]⁺ 336.0670, found 336.0668.

3-(2-Allyl-4-(trifluoromethyl)phenyl)benzo[d]isothiazole 1,1-dioxide (3eb): Following the general procedure; White solid (84% yield, eluent = petroleum ether/EtOAc (9:1)); Mp = 74–75 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.02 (d, *J* = 7.5 Hz, 1H), 7.81 (t, *J* = 7.5 Hz, 1H), 7.72–7.69 (m, 3H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 5.81 (ddt, *J* = 16.5, 12.6, 6.6 Hz, 1H), 4.99–4.96 (m, 2H), 3.64 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 171.0, 141.1, 140.0,

134.9, 133.9, 133.8, 133.4 (q, ${}^{2}J_{C-F}$ = 33 Hz), 132.7, 131.2, 129.3, 127.8 (q, ${}^{3}J_{C-F}$ = 4 Hz), 126.0, 125.2 (q, ${}^{1}J_{C-F}$ = 272 Hz), 123.4 (q, ${}^{3}J_{C-F}$ = 4 Hz), 123.0, 118.0, 37.3; **HRMS** (ESI) Calcd for C₁₇H₁₂F₃NO₂S [M + H]⁺ 352.0619, found 352.0621.

3-(2-Allyl-4-chlorophenyl)benzo[d]isothiazole 1,1-dioxide (3fb): Following the general procedure but the reaction was run at 120 °C; White solid (65% yield, eluent = petroleum ether/EtOAc (13:1)); Mp = 87–88 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.00 (d, *J* = 7.4 Hz, 1H), 7.78 (t, *J* = 7.4 Hz, 1H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.48–7.44 (m, 3H), 7.41 (d, *J* = 8.0 Hz, 1H), 5.81 (ddt, *J* = 17.1, 13.8, 6.6 Hz, 1H), 4.98 (d, *J* = 12.6 Hz, 2H), 3.60 (d, *J* = 6.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 171.0, 142.3, 140.1, 138.0, 135.3, 133.8, 133.6, 131.4, 131.3, 130.3, 127.5, 126.7, 126.1, 122.9, 117.7, 37.2; HRMS (ESI) Calcd for C₁₆H₁₂ClNO₂S [M + Na]⁺ 340.0175, found 340.0170.

3-(2-Allylnaphthalen-1-yl)benzo[d]isothiazole 1,1-dioxide (3gb): Following the general procedure and using 20 mol% of Cu(OAc)₂ as an additive; Brown oil (83% yield, eluent = petroleum ether/EtOAc (13:1)); ¹H NMR (600 MHz, CDCl₃): δ 8.04 (d, J = 7.6 Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.56–7.50 (m, 3H), 7.47 (d, J = 8.4 Hz, 1H), 7.45–7.41 (m, 1H), 7.04 (d, J = 7.6 Hz, 1H), 5.83 (ddt, J = 16.5, 13.2, 6.6 Hz, 1H), 4.98–4.94 (m, 2H), 3.56 (dd, J = 15.6, 7.2 Hz, 1H), 3.44 (dd, J = 15.0, 5.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 173.4, 139.6, 136.8, 135.5, 133.9, 133.7, 132.5, 132.0, 131.0, 130.7, 128.4, 127.8, 127.4, 126.3, 126.2, 125.5, 124.6, 122.6, 117.2, 38.0; HRMS (ESI) Calcd for C₂₀H₁₅NO₂S [M + H]⁺ 334.0902, found 334.0903.

3-(3-Allylthiophen-2-yl)benzo[d]isothiazole 1,1-dioxide (3hb): Following the general procedure but the reaction was run in the presence of $AgSbF_6$ (40 mol%) and $Cu(OAc)_2$ (50 mol%) at 120 °C;

Yellow solid (55% yield, eluent = petroleum ether/EtOAc (8:1)); Mp = 124–125 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.28–8.26 (m, 1H), 7.99–7.98 (m, 1H), 7.77–7.74 (m, 3H), 7.24 (d, *J* = 5.0 Hz, 1H), 6.02 (ddt, *J* = 16.8, 13.8, 6.6 Hz, 1H), 5.17–5.10 (m, 2H), 3.92 (d, *J* = 6.7 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 163.5, 151.3, 140.4, 135.3, 133.5, 133.1, 132.8, 131.9, 131.5, 126.5, 125.6, 122.8, 117.0, 35.5; HRMS (ESI) Calcd for C₁₄H₁₁NO₂S₂ [M + Na]⁺ 312.0129, found 312.0125.

3-(3-Allyl-5-methylthiophen-2-yl)benzo[d]isothiazole 1,1-dioxide (3ib): Following the general procedure but the reaction was run in the presence of AgSbF₆ (40 mol%) and Cu(OAc)₂ (50 mol%); Yellow solid (57% yield, eluent = petroleum ether/EtOAc (11:1)); Mp = 130–131 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.31–8.27 (m, 1H), 7.99–7.95 (m, 1H), 7.76–7.71 (m, 2H), 6.93 (s, 1H), 6.02 (ddt, *J* = 16.5, 13.2, 6.6 Hz, 1H), 5.16 (d, *J* = 17.0 Hz, 1H), 5.11 (d, *J* = 9.9 Hz, 1H), 3.89 (d, *J* = 6.8 Hz, 2H), 2.61 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 162.7, 152.8, 149.3, 140.5, 135.4, 133.3, 132.9, 131.8, 131.0, 126.4, 123.5, 122.7, 116.9, 35.9, 15.8; HRMS (ESI) Calcd for C₁₅H₁₃NO₂S₂ [M + Na]⁺ 326.0285, found 326.0280.

3-(3-Allylfuran-2-yl)benzo[d]isothiazole 1,1-dioxide (3jb): Following the general procedure but the reaction was run in the presence of AgSbF₆ (40 mol%) and Cu(OAc)₂ (50 mol%) at 120 °C; Yellow solid (41% yield, eluent = petroleum ether/EtOAc (7:1)); Mp = 143–144 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.55–8.54 (m, 1H), 7.98–7.97 (m, 1H), 7.81 (s, 1H), 7.77–7.72 (m, 2H), 6.70 (s, 1H), 6.01 (ddt, *J* = 16.5, 13.2, 6.6 Hz, 1H), 5.22 (d, *J* = 16.8 Hz, 1H), 5.16 (d, *J* = 10.2 Hz, 1H), 3.87 (d, *J* = 6.7 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 158.1, 148.2, 143.4, 140.3, 140.1, 134.0, 133.6, 133.1, 130.6, 127.9, 122.4, 117.4, 115.8, 31.4; HRMS (ESI) Calcd for C₁₄H₁₁NO₃S [M + Na]⁺ 296.0357, found 296.0353.

Following the general procedure and using 20 mol% of Cu(OAc)₂ as an additive. The reaction gave an inseparable mixture containing **3kb** and **3kb**' with a ratio of 2:1 determined by ¹H NMR. **3-(2-Allyl-6-methylphenyl)benzo[d]isothiazole 1,1-dioxide (3kb):** 43% yield (eluent = petroleum ether/EtOAc (19:1)); ¹H NMR (600 MHz, CDCl₃): δ 8.00 (d, J = 7.5 Hz, 1H), 7.77–7.34 (m, 1H), 7.65–7.61 (m, 1H), 7.46–7.37 (m, 1H), 7.25–7.18 (m, 3H), 5.73 (ddt, J = 16.8, 13.2, 6.6 Hz, 1H, 1H), 4.90–4.86 (m, 2H), 3.35 (dd, J = 15.6, 7.2 Hz,1H), 3.24 (dd, J = 15.6, 6.0 Hz, 1H), 2.19 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 173.9, 139.6, 138.1, 135.7, 134.0, 133.6, 132.0, 130.5, 129.2, 128.6, 127.5, 125.7, 123.6, 122.7, 117.0, 37.7, 19.7; HRMS (ESI) Calcd for C₁₇H₁₅NO₂S [M + Na]⁺ 320.0721, found 320.0720.

(*E*)-3-(2-methyl-6-(prop-1-en-1-yl)phenyl)benzo[d]isothiazole 1,1-dioxide (3kb'): 22% yield (eluent = petroleum ether/EtOAc (19:1)); ¹H NMR (600 MHz, CDCl₃): δ 8.00 (d, *J* = 7.5 Hz, 1H), 7.77–7.34 (m, 1H), 7.65–7.61 (m, 1H), 7.46–7.37 (m, 1H), 7.25–7.18 (m, 3H), 6.21–6.13 (m, 2H), 2.22 (s, 3H), 1.69 (d, *J* = 5.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 174.0, 139.7, 138.1, 135.8, 133.9, 133.5, 131.9, 130.4, 129.2, 129.0, 127.5, 126.1, 123.6, 122.6, 117.0, 19.6, 18.6; HRMS (ESI) Calcd for C₁₇H₁₅NO₂S [M + Na]⁺ 320.0721, found 320.0720.

3-(2-Allylphenyl)-5-methylbenzo[d]isothiazole 1,1-dioxide (3lb): Following the general procedure; Yellow solid (78% yield, eluent = petroleum ether/EtOAc (15:1)); Mp = 101–102 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.86 (d, *J* = 7.7 Hz, 1H), 7.56–7.54 (m, 2H), 7.49–7.38 (m, 3H), 7.24 (s, 1H), 5.83 (ddt, *J* = 17.1, 13.2, 6.6 Hz, 1H), 4.97–4.93 (m, 2H), 3.61 (d, *J* = 6.5 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 172.1, 145.0, 139.9, 137.4, 136.2, 133.9, 132.3, 131.6, 131.1, 129.2, 129.0, 126.8, 126.3, 122.5, 116.8, 37.4, 21.7; HRMS (ESI) Calcd for C₁₇H₁₅NO₂S [M + H]⁺ 298.0902, found 298.0906.

3-(2-Allylphenyl)-6-(tert-butyl)benzo[d]isothiazole 1,1-dioxide (3mb): Following the general procedure but the reaction was run at 120 °C; Yellow solid (66% yield, eluent = petroleum ether/EtOAc (19:1)); Mp = 91–92 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.01 (s, 1H), 7.67 (d, *J* = 8.1 Hz, 1H), 7.53 (tf, *J* = 7.5 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 7.7 Hz, 1H), 7.42–7.39 (m, 2H), 5.85 (m, 1H), 5.00–4.89 (m, 2H), 3.63 (d, *J* = 6.2 Hz, 2H), 1.39 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 172.0, 158.4, 140.5, 140.0, 136.3, 131.6, 131.1, 130.8, 129.3, 129.0, 126.3, 126.0, 119.9, 116.8, 37.4, 35.8, 31.0; HRMS (ESI) Calcd for C₂₀H₂₁NO₂S [M + Na]⁺ 362.1191, found 362.1185.

3-(2-Allylphenyl)-5-methoxybenzo[d]isothiazole 1,1-dioxide (3nb): Following the general procedure but the reaction was stirred at 120 °C; Yellow solid (72% yield, eluent = petroleum ether/EtOAc (13:1)); Mp = 87–88 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.88 (d, *J* = 8.3 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.46 (t, *J* = 9.2 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 8.3 Hz, 1H), 6.88 (s, 1H), 5.84 (ddt, *J* = 16.5, 13.2, 6.6 Hz, 1H), 5.00–4.90 (m, 2H), 3.84 (d, *J* = 18.7 Hz, 3H), 3.61 (d, *J* = 6.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 171.5, 164.1, 139.9, 136.2, 134.3, 131.6, 131.5, 131.2, 129.1, 128.9, 126.4, 124.0, 117.7, 116.9, 112.1, 56.2, 37.4; HRMS (ESI) Calcd for C₁₇H₁₅NO₃S [M + H]⁺ 314.0851, found 314.0857.

3-(2-Allylphenyl)-5-chlorobenzo[d]isothiazole 1,1-dioxide (3ob): Following the general procedure but the reaction was stirred at 120 °C; Yellow solid (81% yield, eluent = petroleum ether/EtOAc (19:1)); Mp = 110–111 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.49–7.42 (m, 4H), 5.87–5.80 (m, 1H), 4.97–4.91 (m, 2H), 3.62 (d, *J* = 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 170.7, 140.3, 140.2, 138.4, 136.1, 133.6, 133.3, 132.0, 131.4, 128.9, 128.5, 126.6, 126.4, 123.6, 117.0, 37.4; HRMS (ESI) Calcd for C₁₆H₁₂CINO₂S [M + H]⁺ 318.0356, found 318.0353.

Following the general procedure and using 50 mol% of Cu(OAc)₂ as an additive. The reaction gave an inseparable mixture containing **3pb** and **3pb**' with a ratio of 1.45:1 determined by ¹H NMR. **4-(2-Allylphenyl)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3pb)**: 51% yield (eluent = petroleum ether/EtOAc (39:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.74–7.69 (m, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.42-7.35 (m, 3H), 7.31–7.24 (m, 3H), 5.81 (ddt, *J* = 16.8, 13.2, 6.6 Hz, 1H), 4.96–4.92 (m, 2H), 3.47 (d, *J* = 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 177.6, 154.2, 139.3, 137.2, 133.1, 131.7, 131.4, 130.7, 129.5, 127.5, 126.6, 125.7, 119.0, 117.2, 117.1, 37.4; HRMS (ESI) Calcd for C₁₆H₁₃NO₃S [M + Na]⁺ 322.0514, found 322.0507.

(E)-4-(2-(prop-1-en-1-yl)phenyl)benzo[e][1,2,3]oxathiazine 2,2-dioxide (3pb'): 36% yield

(eluent = petroleum ether/EtOAc (39:1)); ¹**H NMR** (600 MHz, CDCl₃): δ 7.74–7.69 (m, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.42-7.35 (m, 3H), 7.31–7.24 (m, 3H), 6.27 (d, *J* = 15.6 Hz, 1H), 6.19–6.13 (m, 1H), 1.72 (d, *J* = 6.6 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃): δ 178.0, 154.0, 137.5, 137.1, 135.9, 131.5, 131.5, 130.7, 129.4, 127.5, 126.8, 126.3, 118.9, 117.2, 117.1, 18.7; **HRMS** (ESI) Calcd for C₁₆H₁₃NO₃S [M + Na]⁺ 322.0514, found 322.0507.

3-(2-Allylphenyl)-4,5-dihydroisothiazole 1,1-dioxide (3qb): Following the general procedure, and using 50 mol% of Cu(OAc)₂ as an additive; Yellow solid (74% yield, eluent = petroleum ether/EtOAc (5:1)); Mp = 120–121 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.58 (d, *J* = 7.8 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.40–7.33 (m, 2H), 6.01–5.91 (m, 1H), 5.06–5.00 (m, 2H), 3.82 (d, *J* = 6.4 Hz, 2H), 3.62–3.59 (m, 2H), 3.36 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 177.0, 141.9, 136.8, 132.8, 131.7, 130.6, 129.2, 126.7, 116.4, 43.7, 38.4, 36.6; HRMS (ESI) Calcd for C₁₂H₁₃NO₂S [M + Na]⁺ 258.0565, found 258.0561.

(*E*)-3-(2-(But-2-en-1-yl)phenyl)benzo[d]isothiazole 1,1-dioxide and (*Z*)- 3-(2-(but-2-en-1-yl)phenyl)benzo[d]isothiazole 1,1-dioxide (3af): Following the general procedure and the reaction was run in the presence of $[Cp*RhCl_2]_2$ (5 mol%), AgSbF₆ (20 mol%) and Cu(OAc)₂ (20 mol%); Colorless oil (75% yield, eluent = petroleum ether/EtOAc (13:1)); ¹H NMR (600 MHz, CDCl₃): *E* isomer: δ 8.00 (d, *J* = 7.5 Hz, 1H), 7.78–7.76 (m, 1H), 7.70–7.68 (m, 1H), 7.54–7.44 (m, 4H), 7.40 (t, *J* = 7.2 Hz, 1H), 5.52–5.31 (m, 2H), 3.58 (d, *J* = 7.0 Hz, 2H), 1.55 (d, *J* = 6.6 Hz, 3H). *Z* isomer: δ 8.00 (d, *J* = 7.5 Hz, 1H), 7.78–7.76 (m, 1H), 7.70–7.68 (m, 1H), 7.54–7.44 (m, 4H), 7.40 (t, *J* = 7.2 Hz, 1H), 5.52–5.31 (m, 2H), 3.52 (d, *J* = 5.5 Hz, 2H), 1.40 (d, *J* = 5.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): *E* isomer: δ 172.3, 141.1, 140.1, 133.7, 133.4, 131.8, 131.7, 130.8, 129.0, 128.9, 127.8, 126.4, 126.2, 126.1, 122.7, 30.9, 12.9. *Z* isomer: δ 172.4, 141.0, 140.0, 133.6, 133.3, 132.0, 131.5, 131.0, 128.7, 128.6, 127.9, 126.3, 126.2, 126.1, 122.6, 36.5, 17.6; HRMS (ESI) Calcd for C₁₇H₁₅NO₂S [M + Na]⁺ 320.0721, found 320.0719.

(*E*)-3-(2-(4-Methylpent-2-en-1-yl)phenyl)benzo[d]isothiazole 1,1-dioxide and (*Z*)- 3-(2-(4-methylpent-2-en-1-yl)phenyl)benzo[d]isothiazole 1,1-dioxide (3ag): Following the general procedure and the reaction was run in the presence of [Cp*RhCl₂]₂ (5 mol%), AgSbF₆ (20 mol%) and Cu(OAc)₂ (20 mol%); Yellow solid (70% yield, eluent = petroleum ether/EtOAc (15:1)); Mp = 92–93 °C; ¹H NMR (600 MHz, CDCl₃): *E* isomer: δ 7.98 (d, *J* = 7.2 Hz, 1H), 7.77–7.74 (m, 1H), 7.69–7.65 (m, 1H), 7.55–7.40 (m, 4H), 7.38 (t, *J* = 7.5 Hz, 1H), 5.36–5.18 (m, 2H), 3.55–(m, 2H), 2.57–2.53 (m, 1H), 0.87 (d, *J* = 6.6 Hz, 6H); *Z* isomer: δ 7.96 (d, *J* = 7.8 Hz, 1H), 7.77–7.74 (m, 1H), 7.69–7.65 (m, 1H), 7.55–7.40 (m, 4H), 7.38 (t, *J* = 6.7 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃): *E* isomer: δ 172.2, 141.3, 140.2, 139.5, 133.7, 133.4, 131.7, 131.5, 130.7, 128.9, 128.8, 126.5, 126.1, 124.4, 122.7, 31.0, 26.6, 22.9. *Z* isomer: δ 172.2, 141.3, 140.2, 140.0, 133.6, 133.3, 131.9, 131.7, 131.0, 129.2, 128.8, 126.3, 126.1, 124.7, 122.6, 36.3, 30.8, 22.0; HRMS (ESI) Calcd for C₁₉H₁₉NO₂S [M + Na]⁺ 348.1034, found 348.1031.

(*E*)-3-(2-(Hept-2-en-1-yl)phenyl)benzo[d]isothiazole 1,1-dioxide and (*Z*)- 3-(2-(hept-2-en-1-yl)phenyl)benzo[d]isothiazole 1,1-dioxide (i): Following the general procedure and the reaction was run in the presence of $[Cp*RhCl_2]_2$ (5 mol%), AgSbF₆ (20 mol%) and Cu(OAc)₂ (20 mol%); Yellow oil (47% yield, eluent = petroleum ether/EtOAc (15:1)); ¹H NMR (600 MHz, CDCl₃): *E* isomer: δ 8.00 (d, *J* = 7.4 Hz, 1H), 7.77 (t, *J* = 7.5 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.54–7.45 (m, 4H), 7.39 (t, *J* = 7.4 Hz, 1H), 5.46–5.38 (m, 2H), 3.58 (d, *J* = 5.5 Hz, 2H), 1.97–1.93 (m, 2H), 1.26 (m, 4H), 0.88–0.84 (m, 2H). *Z* isomer: δ 8.00 (d, *J* = 7.4 Hz, 1H), 7.51–7.43 (m, 3H), 7.39 (t, *J* = 7.4 Hz, 1H), 5.38–5.35 (m, 2H), 3.58 (d, *J* = 5.5 Hz, 2H), 1.97–1.93 (m, 2H), 1.26 (m, 4H), 0.88–0.84 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): *E* isomer: δ 172.2, 141.3, 140.2, 133.7, 133.4, 132.2, 131.8, 131.7, 130.7, 129.0, 128.9, 126.7, 126.4, 126.1, 122.7, 31.6, 31.1, 27.0, 22.3, 13.9. *Z* isomer: δ 172.2, 141.2, 140.2, 133.6, 133.3, 132.2, 131.8, 131.5, 131.0, 129.1, 128.8, 127.5, 126.3, 126.1, 122.6, 32.0, 31.2, 29.7, 22.1, 13.9; HRMS (ESI) Calcd for C₂₀H₂₁NO₂S [M + Na]+ 362.1191, found 362.1187.

(*E*)-3-(2-(5-(Triisopropylsilyl)pent-2-en-4-yn-1-yl)phenyl)benzo[d]isothiazole 1,1-dioxide and (*Z*)- 3-(2-(5-(triisopropylsilyl)pent-2-en-4-yn-1-yl)phenyl)benzo[d]isothiazole 1,1-dioxide (3ai): Following the general procedure and using 20 mol% of Cu(OAc)₂ as an additive; Yellow solid (60% yield, eluent = petroleum ether/EtOAc (24:1)); Mp = 99–100 °C; ¹H NMR (600 MHz, CDCl₃): *E* isomer: δ 8.02–7.99 (m, 1H), 7.79–7.74 (m, 1H), 7.72–7.65 (m, 1H), 7.59–7.47 (m, 4H), 7.46–7.41 (m, 1H), 6.17–6.09 (m, 1H), 5.61 (d, *J* = 10.8 Hz, 1H), 3.86 (d, *J* = 7.2 Hz, 1H), 1.08–1.02 (m, 21H). *Z* isomer: δ 8.02–7.98 (m, 1H), 7.77 (dd, *J* = 15.0, 7.4 Hz, 1H), 7.72–7.65 (m, 1H), 7.59–7.47 (m, 4H), 7.46–7.41 (m, 1H), 6.17–6.09 (m, 1H), 5.45 (d, *J* = 16.2 Hz, 1H), 3.66 (d, *J* = 6.6 Hz, 1H), 1.08–1.02 (m, 21H); ¹³C NMR (150 MHz, CDCl₃): *E* isomer: δ 171.8, 141.6, 139.8, 139.1, 133.7, 133.4, 131.9, 131.6, 131.3, 129.0, 128.8, 126.5, 126.4, 122.8, 112.2, 103.4, 95.9, 34.1, 18.6, 11.3. *Z* isomer: δ 171.8, 142.0, 140.2, 139.1, 133.7, 133.4, 131.8, 131.6, 131.4, 129.2, 128.8, 126.6, 126.3, 122.7, 112.4, 105.1, 90.5, 36.3, 18.5, 11.2; HRMS (ESI) Calcd for C₂₇H₃₃NO₂SSi [M + Na]⁺ 486.1899, found 486.1895.

3-(2-(But-3-en-2-yl)phenyl)benzo[d]isothiazole 1,1-dioxide (3aj): Following the general procedure and the reaction was run in the presence of [Cp*RhCl₂]₂ (5 mol%), AgSbF₆ (20 mol%) and Cu(OAc)₂ (20 mol%); Yellow solid (28% yield, eluent = petroleum ether/EtOAc (13:1)); Mp = 77–78 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.00 (d, *J* = 7.5 Hz, 1H), 7.77 (t, *J* = 7.5 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.46–7.42 (m, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 5.93–5.86 (m, 1H), 4.96–4.94 (m, 2H), 3.96–3.88 (m, 1H), 1.37 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 172.3, 145.2, 141.9, 140.1, 133.7, 133.4, 132.0, 131.6, 128.7, 128.6, 128.2, 126.4, 126.1, 122.7, 114.3, 38.7, 20.8; HRMS (ESI) Calcd for C₁₇H₁₅NO₂S [M + Na]⁺ 320.0721, found 320.0715.

N-(1-(2-Allylphenyl)ethylidene)-4-methylbenzenesulfonamide (3rb): Following the general procedure and using 50 mol% of Cu(OAc)₂ as an additive; Yellow solid (32% yield, eluent = petroleum ether/EtOAc (79:1)); Mp = 79–80 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.88 (d, *J* = 8.2 Hz, 2H), 7.37–7.30 (m, 4H), 7.27–7.25 (m, 1H), 7.23 (d, *J* = 7.7 Hz, 1H), 5.80 (ddt, *J* = 16.8, 12.6, 6.6 Hz, 1H), 4.99–4.93 (m, 2H), 3.47 (d, *J* = 6.3 Hz, 2H), 2.91 (s, 3H), 2.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 184.2, 143.7, 139.7, 138.2, 137.7, 136.9, 130.9, 130.5, 129.4, 127.7, 127.2, 126.4, 116.2, 37.4, 25.5, 21.6; HRMS (ESI) Calcd for C₁₈H₁₉NO₂S [M + Na]⁺ 336.1034, found 336.1028.

N-(1-(2-Allyl-4-methoxyphenyl)ethylidene)-4-methylbenzenesulfonamide (3sb): Following the general procedure and using 50 mol% of Cu(OAc)₂ as an additive; Yellow oil (50% yield, eluent = petroleum ether/EtOAc (15:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.88 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 8.6 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.78–6.74 (m, 2H), 5.75 (ddt, *J* = 16.8, 12.6, 6.6 Hz, 1H), 4.96–4.90 (m, 2H), 3.81 (s, 3H), 3.49 (d, *J* = 6.3 Hz, 2H), 2.91 (s, 3H), 2.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 182.5, 161.6, 143.4, 141.5, 138.5, 136.9, 131.5, 130.8, 129.4, 127.1, 116.7, 116.0, 111.4, 55.3, 38.1, 24.9, 21.5; HRMS (ESI) Calcd for C₁₉H₂₁NO₃S [M + Na]⁺ 366.1140, found 366.1137.

N-(**Bis(2-allylphenyl)methylene)-4-methylbenzenesulfonamide (3tb)**: Following the general procedure and using 20 mol% of Cu(OAc)₂ as an additive in the presence of 6 equiv of **2b**; White solid (80% yield, eluent = petroleum ether/EtOAc (39:1)); Mp = 80–81 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.80 (d, *J* = 8.1 Hz, 2H), 7.46–7.31 (m, 4H), 7.28 (d, *J* = 7.8 Hz, 4H), 7.14–7.04 (m, 2H), 5.78–5.67 (m, 2H), 4.93–4.83 (m, 4H), 3.60 (s, 2H), 3.10 (d, *J* = 75.2 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 180.1, 143.5, 141.4, 138.1, 137.1, 137.0, 136.8, 136.2, 135.8, 133.2, 132.1, 131.7, 130.2, 129.4, 129.3, 128.7, 127.5, 126.2, 125.7, 116.6, 115.6, 38.3, 37.7, 21.6; HRMS (ESI) Calcd for C₂₆H₂₅NO₂S [M + Na]⁺ 438.1504, found 438.1501.

N-((2-Allylphenyl)(2-bromophenyl)methylene)-4-methylbenzenesulfonamide (3ub): Following the general procedure; Yellow oil (67% yield, eluent = petroleum ether/EtOAc (39:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.84 (d, *J* = 8.2 Hz, 2H), 7.62–7.53 (m, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.42–7.34 (m, 2H), 7.29 (d, *J* = 7.8 Hz, 3H), 7.13 (t, *J* = 7.3 Hz, 1H), 7.07 (d, *J* = 7.8 Hz, 1H), k9 (m, 1H), 4.92–4.86 (m, 2H), 3.61–3.56 (m, 2H), 2.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 176.8 143.8, 142.0, 138.3, 137.6, 137.1, 135.2, 132.7, 132.3, 132.1, 131.6, 131.2, 130.1, 129.4, 127.6, 126.9, 126.0, 120.1, 115.6, 38.3, 21.6; HRMS (ESI) Calcd for C₂₃H₂₀BrNO₂S [M + Na]⁺ 476.0296, found 476.0295.

Scheme S1. Unreactive substrates with respect to the allyl carbonates and aromatics.

We tried to explore the substrate scope with respect to the allyl carbonates and aromatics, however, no desired products were obtained after considerable experimentation.

Synthetic Transformations

To a solution of **3ab** (0.035mmol, 10 mg) in 1 ml of dry dichloromethane was added trimethylsilyl trifluoromethanesulfonate (1.2 equiv, 0.042mmol, 8 μ l). The mixture was stirred at room temperature for 12h and then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the product **4a**. Yellow solid (90% yield, eluent = petroleum ether/EtOAc (17:3)); Mp = 131-132 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.26 (d, *J* = 7.9 Hz, 1H), 7.96–7.90 (m, 2H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.63–7.57 (m, 3H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.42–7.39 (m, 2H), 7.35 (d, *J* = 8.4 Hz, 1H), 3.96 (s, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 141.6, 138.1, 135.5, 133.4, 133.0, 132.1, 131.8, 129.0, 128.5, 128.5, 128.2, 127.9, 126.7, 126.2, 125.6, 125.1; HRMS (ESI) Calcd for C₁₆H₁₃NO₂S [M + Na]⁺ 306.0565, found 306.0560.

NaBH₄ (5 equiv) was added portionwise to a solution of **3ab** (0.035 mmol, 10 mg) in MeOH (1 mL) at 0 °C. The resulting suspension was stirred for 12h at room temperature and then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford **4f** in quantitative yield. Yellow solid (eluent = petroleum ether/EtOAc (13:1)); Mp = 152-153 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.85–7.84 (m, 1H), 7.57–7.55 (m, 2H), 7.32 (d, *J* = 7.2 Hz, 1H), 7.26 (d, *J* = 7.8 Hz, 1H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.10–7.07 (m, 2H), 6.09–6.03 (m, 1H), 6.01 (d, *J* = 4.2 Hz, 1H), 5.14 (d, *J* = 10.2 Hz, 1H), 5.00 (d, *J* = 16.8 Hz, 1H), 4.78 (s, 1H), 3.63–3.55 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 140.3, 138.4, 137.2, 136.6, 135.7, 133.3, 130.8, 129.4, 129.3, 128.4, 127.8, 125.4, 121.2, 116.6, 57.4, 37.0; HRMS (ESI) Calcd for C₁₆H₁₄BrNO₂S [M + Na]⁺ 308.0721, found 308.0720.

To a solution of the **4f** (0.035 mmol, 10 mg) in dry tetrahydrofuran (1 mL) was added K₂CO₃ (2 equiv, 0.07 mmol, 9.6 mg), CuBr₂ (3 equiv, 0.1 mmol, 22.3 mg) and Pd(TFA)₂ (10 mol%, 1.5 mg) at 0 °C. Then the mixture was stirred at rt for 12 h. Volatile materials were removed and the residue was purified by flash chromatography on silica gel to afford the final product **4b**. Yellow solid (79% yield, eluent = petroleum ether/EtOAc (13:1)); Mp = 159-160 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.87 (d, *J* = 7.8 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.62–7.58 (m, 2H), 7.33–7.27 (m, 3H), 7.19 (d, *J* = 7.5 Hz, 1H), 5.71 (s, 1H), 4.34–4.26 (m, 1H), 3.72 (dd, *J* = 10.5, 4.1 Hz, 1H), 3.62–3.59 (m, 1H), 3.21 (dfd, *J* = 15.3, 4.9 Hz, 1H), 3.07 (dd, *J* = 15.3, 7.7 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 135.7, 135.4, 133.6, 133.3, 132.7, 129.6, 128.9, 128.6, 127.2, 125.7, 124.8, 121.8, 58.7, 51.0, 35.4, 32.0; HRMS (ESI) Calcd for C₁₆H₁₄BrNO₂S [M + Na]⁺ 385.9826, found 385.9828.

Deuteration and Competition Experiments

(A) H-D exchange experiment (Scheme S2a)

The reaction between **1a** (0.2 mmol) and D_2O (10 equiv) was performed in the presence of $[Cp*RhCl_2]_2$ (2.5 mol%), AgSbF₆ (10 mol%), and 4-nitrobenzoic acid (1 equiv) with PhCl/DCM as the solvent at 80 °C for 1 h. After standard workup and purification, a mixture of **1a** and D-**1a** was obtained. ¹H NMR analysis of the mixture showed 11% D was incorporated into the two *ortho* positions of the ketimine aryl ring (see the attached spectrum).

(B) Intermolecular Competition (Scheme S2b)

A mixture of **1a** and **1a**- d_5 (0.2 mmol each) was subjected to the standard reaction conditions for 12 h. After standard workup and purification, a mixture of **3ab** and **3ab**- d_4 was obtained. ¹H NMR analysis of the mixture showed a large value of $k_{\rm H}/k_{\rm D}$ = 3.7 (see the attached spectrum).

(C) Intermolecular Competition (Scheme S2c)

A mixture of **1d** and **1e** (0.2 mmol each) was subjected to the standard reaction conditions for 12 h. GC results showed a ratio of 95:5 of **3db** and **3eb**.

Scheme S2. Deuteration and competition experiments.

The result of H/D exchange experiment between **1a** and 10 equiv of deuterium oxide showed that 11% D was introduced into the two ortho positions of the ketimine aryl ring (Scheme S2a). An intermolecular competition reaction between **1a** and **1a**-*d*5 was performed, giving a primary kinetic isotope effect of 3.7 (Scheme S2b). These results suggested that the reaction involved a Rh-mediated reversible C-H activation process, which was consistent with our previous observation in the Rh-catalysed aryl C-H olefination. Furthermore, an intermolecular competition reaction of **1d** and **1e** with **2b** was also carried out (Scheme S2c). GC analysis of the resulting mixture revealed that **3db** was the major product, indicating that the more electron-rich ketimine is significantly kinetically favored.

Computational Studies

Computational method

All calculations were performed with the Gaussian 09 program suite.³ Density functional theory (DFT) method was used, employing B3LYP hybrid functional.⁴ Geometry optimization was done using a combined basis set where LANL2DZ⁵ was used for Rh atom and 6-31+G(d) for the rest. Frequency calculations were carried out at the same level of theory for thermochemical analysis and to confirm that the number of imaginary frequencies of intermediate and transition states was 0 and 1, respectively. For transition states, intrinsic reaction coordinate analysis (IRC)⁶ was done to verify that they connect the right reactants and products on the potential energy surface.

To take solvent effects into account, solution-phase single-point calculations were performed on the gas-phase geometries.⁷ The M06-L functional was used, and this method has been frequently employed in describing the energetics of Rh-catalysed reactions.⁸In the solution-phase single-point calculations, the Lanl2DZ ECP with an additional polarization function Rh(ζ (f)=1.350) was used for the Rh atom,⁹ and 6-311++G(d,p) was used for C, H, O, N, and S atoms. The self-consistent reaction field (SCRF) with CPCM solvation model was used for all these calculations.¹⁰ DMC was used as solvent, because this reaction also can be carried out in the DMC with 40% yield. Solution-phase single-point energies corrected by the gas-phase Gibbs free energy corrections were used to describe all the reaction energetics. All of these energies correspond to the reference state of 1 mol L⁻¹, 298 K.

³ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et al., Revision C. 01 ed., Gaussian, Inc., Wallingford, CT, USA, 2010.

^{4 (}a) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648; (b) C. Lee, W. Yang, R. G. Parr and *Phys. Rev. B*, 1988, **37**, 785.

⁵ P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.

⁶ K. Fukui, Acc. Chem. Res., 1981, 14, 363.

⁷ J. M. Um, D. A. DiRocco, E. L. Noey, T. Rovis and K. N. Houk, J. Am. Chem. Soc., 2011, 133, 11249.

^{8 (}a) D. G. Gusev, *Organometallics*, 2013, **32**, 4239; (b) H. Z. Yu, C. Wang, Y. M. Yang and Z. M. Dang, *Chem.-Eur. J.* 2014, **20**, 3839.

⁹ A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A.

Veldkamp and G. Frenking, Chem. Phys. Lett., 1993, 208, 111.

¹⁰ M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669.

Computational Results and Discuss

Scheme S3. Two Plausible Pathways.

Scheme S4. Energy profile of olefin insertion and allylarene formation with relative Gibbs free energies [kcal/mol].

Scheme S5. Optimized structure of intermediates INT1 (A), TS1 (B), and INT3a (C). The bond distances of the optimized structures are in angstroms.

On the basis of the literatures and our experiments, a coordinatively unsaturated cationic species (**INT1**) was postulated to be formed by the reaction of **1a** and [Cp*RhCl₂]₂ through C-H cleavage. (Scheme S3).

It was interesting to note that the bond length between the rhodium metal center and carbon atom in a pentamethylcyclopentadienyl (Cp*) ligand is not equivalent depending on the relative position to 3-phenylbenzo[d]isothiazole 1,1-dioxide (1a). For example, the Rh- C_a distance (2.32 Å) was calculated to be longer than that of Rh- C_b (2.22 Å), presumably due to the discrepancy in the degree of trans-influence between the thiazole and phenyl moieties of 1a in INT1 (Scheme S5). As a result, this mode of metal-ligand bonding was revealed to provide more open space around the thiazole than the phenyl side. Such perturbation results in the directional preference in the coordination of Rh metal with an allyl methyl carbonate 2b to form INT2, which showed a 0.2 kcal/mol lower energy than INT2a (Scheme S4). Moreover, the proposed intermediate INT3a generated through TS1a had a higher energy value (-2.7 kcal/mol) than that of INT2a (-3.2 kcal/mol). The energy barrier for olefin insertion through TS1a (16.2 kcal/mol) was higher than TS1 (15.7 kcal/mol). As reported by Chang group,¹¹ these results indicated that the INT1 may prefer to coordinate with 2b as INT2. While, as shown in Scheme S5 (INT3a), the dihedral angle between β -H, α -C, β -C, and Rh(III) atoms was 113.3. The coordinative model of **INT3a** may prohibit the hydrogen atom from approaching a coplanar configuration to occur β -hydride elimination. Indeed, we didn't observe olefin by-product derived from β -hydride elimination during the reaction even though adding $Cu(OAc)_2$ as an oxidant.

DFT calculations allowed us to validate our proposed stepwise olefin insertion and the allyl formation process from **INT2** to **INT5** through the path **A** as shown in Scheme S3.¹² In addition, pathway B involving a concerted process to directly produce **INT5** was also considered as shown in Scheme S3. However, we failed to identify any reasonable TS in this mechanism. Thus, our calculated results indicated that the reaction might prefer to occur via the olefin insertion mechanism. The coordinatively saturated species **INT5** can release one CO₂ to give final product **3a** and unsaturated species [Cp*RhOMe]⁺ that could react with **1a** to generate **INT1** to fulfill the catalytic cycle. Although the reaction of Rh-catalysed decarboxylation is important for catalytic cycle, the processes of decarboxylation of **INT5** and formation of **INT1** were not included because the current DFT calculations were only focused on the allylation process. Importantly, the process of releasing CO₂ from HOC(O)OMe has been calculated.¹³

In addition, a pathway involving a π -allyl rhodium (V) complex generated by oxidative addition of allyl carbonate to a Rh(III) species seems to be less likely owing to the excellent γ -selectivity of reactions involving the branched allyl carbonates **1f-1j**.

¹¹ S. H. Park, J. Kwak, K. Shin, J. Ryu, Y. Park and S. Chang, J. Am. Chem. Soc., 2014, 136, 2492.

¹² A. Cajaraville, S. Lopez, J. A. Varela and C. Saa, Org. Lett., 2013, 15, 4576.

¹³ A. Dibenedetto, M. Aresta, P. Giannoccaro, C. Pastore, I. Papai and G. Schubert, *Eur. J. Inorg. Chem.*, 2006, 908.

Scheme S6. Optimized structure of intermediate 1p-INT1. The bond distances of the optimized structures are in angstroms.

0.347012 A.U.

Thermal correction to Gibbs Free Energy= E(sov) = -1603.22528394 A.U. Standard orientation:

_____ Center Atomic Atomic Coordinates (Angstroms) Х Y Ζ Number Number Type 1 6 0 5.717080 -0.807662 -0.071000 2 0 6 5.586458 0.584435 -0.087218 3 6 0 4.328254 1.196861 -0.079044 4 0 6 0.399182 -0.054059 3.176433 5 0 -0.995727 6 3.347108 -0.041341 6 6 0 4.578730 -1.625664 -0.046355 7 6 0 1.735889 0.761837 -0.047435 8 7 0 0.920016 -0.276327 -0.048027 9 16 0 1.748306 -1.791218 0.001085 10 8 0 1.448033 -2.527545 -1.225564 11 8 0 -2.408530 1.302831 1.488066 12 6 0 1.056222 2.055856 -0.038997 13 6 0 -0.370910 1.970071 -0.048503 14 45 0 -1.135036 0.074083 -0.183502 15 6 0 3.306959 -0.033380 1.697213 0 0.943815 4.481566 -0.039733 16 6 17 6 0 -0.449144 4.409097 -0.060645 18 6 0 -1.094846 3.161637 -0.064997 19 1 0 6.704014 -1.260295 -0.077862 20 1 0 6.475963 1.206632 -0.107632 21 4.278138 2.276602 -0.095967 1 0 22 1 0 -2.708021 4.661649 -0.033696 23 0 1 2.775502 3.389182 -0.026202 24 1 0 1.444803 5.444733 -0.031575 25 1 0 -1.039514 5.321778 -0.069054 26 1 0 -2.179950 3.144562 -0.080507 27 6 0 -2.240368 -1.929958 0.311928

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	6	0	-2.748041	-1.428643	-0.896675
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	6	0	-3.294375	-0.071100	-0.660552
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	6	0	-3.142274	0.231662	0.716069
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	6	0	-2.375681	-0.867437	1.307754
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	6	0	-1.684716	-3.298332	0.570831
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	6	0	-2.771647	-2.117864	-2.223048
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	6	0	-4.035868	0.724706	-1.690199
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	6	0	-3.737946	1.373439	1.480790
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	6	0	-2.004431	-0.990447	2.748873
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	1	0	-1.286218	-3.754946	-0.338368
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	1	0	-0.881726	-3.283129	1.310795
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	1	0	-2.481807	-3.951075	0.952759
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1	0	-2.534334	-1.428817	-3.040284
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	1	0	-2.066254	-2.950755	-2.262516
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	1	0	-3.777303	-2.515904	-2.420395
44 1 0 -4.154204 1.769457 -1.393 45 1 0 -3.530240 0.704284 -2.660 46 1 0 -4.047959 2.190869 0.823 47 1 0 -4.634341 1.025158 2.012 48 1 0 -3.047880 1.775703 2.227 49 1 0 -2.802669 -1.524280 3.286 50 1 0 -1.080909 -1.561096 2.878 51 1 0 -1.881100 -0.013037 3.221	43	1	0	-5.040570	0.304183	-1.837287
45 1 0 -3.530240 0.704284 -2.660 46 1 0 -4.047959 2.190869 0.82; 47 1 0 -4.634341 1.025158 2.012 48 1 0 -3.047880 1.775703 2.222 49 1 0 -2.802669 -1.524280 3.286 50 1 0 -1.080909 -1.561096 2.878 51 1 0 -1.881100 -0.013037 3.221	44	1	0	-4.154204	1.769457	-1.393140
46 1 0 -4.047959 2.190869 0.823 47 1 0 -4.634341 1.025158 2.013 48 1 0 -3.047880 1.775703 2.223 49 1 0 -2.802669 -1.524280 3.286 50 1 0 -1.080909 -1.561096 2.878 51 1 0 -1.881100 -0.013037 3.221	45	1	0	-3.530240	0.704284	-2.660529
4710-4.6343411.0251582.0124810-3.0478801.7757032.2224910-2.802669-1.5242803.2865010-1.080909-1.5610962.8785110-1.881100-0.0130373.221	46	1	0	-4.047959	2.190869	0.825637
48 1 0 -3.047880 1.775703 2.22' 49 1 0 -2.802669 -1.524280 3.286 50 1 0 -1.080909 -1.561096 2.878 51 1 0 -1.881100 -0.013037 3.221	47	1	0	-4.634341	1.025158	2.012001
49 1 0 -2.802669 -1.524280 3.286 50 1 0 -1.080909 -1.561096 2.878 51 1 0 -1.881100 -0.013037 3.221	48	1	0	-3.047880	1.775703	2.227402
50 1 0 -1.080909 -1.561096 2.878 51 1 0 -1.881100 -0.013037 3.221	49	1	0	-2.802669	-1.524280	3.286162
51 1 0 -1.881100 -0.013037 3.221	50	1	0	-1.080909	-1.561096	2.878355
	51	1	0	-1.881100	-0.013037	3.221829

Allyl methyl carbonate (2a)

OCO₂Me

Thermal correction to Gibbs Free Energy= 0.094390 E(sov) = -421.068599597A.U. Standard orientation:

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	3.273098	0.418136	-0.470402	
2	6	0	1.971866	0.543243	-0.195739	
3	6	0	1.252259	-0.320696	0.797366	
4	8	0	0.206680	-1.123600	0.175454	
5	6	0	-1.001901	-0.609850	-0.091590	
6	8	0	-1.886186	-1.259907	-0.597427	
7	8	0	-1.106998	0.690864	0.268676	
8	6	0	-2.392941	1.292421	0.019802	

9	1	0	3.773092	1.076648	-1.175818
10	1	0	3.887627	-0.345592	0.003229
11	1	0	1.377653	1.314350	-0.683314
12	1	0	1.924915	-1.065364	1.228396
13	1	0	0.808147	0.272869	1.601589
14	1	0	-2.297443	2.322670	0.364064
15	1	0	-2.625298	1.258964	-1.047344
16	1	0	-3.170954	0.767070	0.578946

INT2

Thermal correction to Gibbs Free Energy= E(sov) = -2024.32729968 A.U. Standard orientation:

Center Atomic Atomic O			Coor	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	45	0	-0.079972	-1.196404	0.034342	
2	6	0	-3.074940	5.077031	-0.653256	
3	6	0	-3.827246	4.470167	0.356876	
4	6	0	-3.563811	3.160596	0.775791	
5	6	0	-2.527562	2.440631	0.167261	
6	6	0	-1.786202	3.088181	-0.830858	
7	6	0	-2.024417	4.380657	-1.265616	
8	6	0	-2.014555	1.061801	0.406793	
9	7	0	-0.968884	0.728195	-0.327447	
10	16	0	-0.498645	2.001263	-1.411044	
11	8	0	-0.743932	1.557343	-2.784686	
12	8	0	0.831902	2.477991	-1.036827	
13	6	0	-2.453401	0.035155	1.335473	
14	6	0	-1.629340	-1.126548	1.367366	
15	6	0	-3.592676	0.119099	2.167734	
16	6	0	-3.901854	-0.912889	3.043312	

0.469321

17	6	0	-3.068004	-2.036087	3.109245
18	6	0	-1.945389	-2.135766	2.281690
19	6	0	1.233425	-1.165002	1.948613
20	6	0	1.431182	0.054113	1.334369
21	6	0	2.679490	0.395169	0.561239
22	8	0	3.458743	1.228691	1.448625
23	6	0	4.659760	1.595862	0.950529
24	8	0	5.108282	1.235639	-0.119206
25	8	0	5.249326	2.398482	1.834280
26	6	0	6.559230	2.879865	1.459618
27	6	0	-0.687666	-2.116526	-1.945408
28	6	0	0.745426	-1.840803	-2.118373
29	6	0	1.438170	-2.601289	-1.162041
30	6	0	0.456875	-3.349202	-0.361178
31	6	0	-0.838635	-3.122385	-0.934199
32	6	0	-1.772492	-1.642871	-2.863312
33	6	0	1.350447	-1.024464	-3.222815
34	6	0	2.922275	-2.780565	-1.058522
35	6	0	0.805462	-4.440095	0.608292
36	6	0	-2.096978	-3.875723	-0.626847
37	1	0	-3.297666	6.094294	-0.960544
38	1	0	-4.631102	5.023426	0.832951
39	1	0	-4.162434	2.744016	1.573379
40	1	0	-1.419936	4.837601	-2.043027
41	1	0	-4.250325	0.976150	2.127851
42	1	0	-4.780817	-0.843043	3.676635
43	1	0	-3.294970	-2.839003	3.806251
44	1	0	-1.315612	-3.016819	2.365119
45	1	0	1.964385	-1.959684	1.831432
46	1	0	0.535575	-1.274528	2.769701
47	1	0	0.835404	0.906172	1.650581
48	1	0	3.257422	-0.495781	0.310982
49	1	0	2.463387	0.959132	-0.346940
50	1	0	6.874999	3.509815	2.290488
51	1	0	7.245824	2.040489	1.326222
52	1	0	6.497528	3.458389	0.534909
53	1	0	-1.831058	-2.316917	-3.730176
54	1	0	-1.583530	-0.634582	-3.235046
55	1	0	-2.750619	-1.654339	-2.374575
56	1	0	1.503482	-1.657938	-4.108111
57	1	0	2.325182	-0.617074	-2.940305
58	1	0	0.710446	-0.191112	-3.517990
59	1	0	3.262569	-2.894676	-0.024819
60	1	0	3.475962	-1.957474	-1.515842

61	1	0	3.209082	-3.701474	-1.586490
62	1	0	1.013791	-5.370400	0.061170
63	1	0	-0.011683	-4.651124	1.303473
64	1	0	1.697956	-4.206736	1.195201
65	1	0	-2.174017	-4.740089	-1.301151
66	1	0	-2.990243	-3.263262	-0.772495
67	1	0	-2.113753	-4.256677	0.396441

INT2a

Thermal correction to Gibbs Free Energy= E(sov) = -2024.32592959 A.U. Standard orientation:

0.468294 A.U.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
			0 210760	0.015212	0.012025
1	43	0	0.219700	-0.913212	-0.018983
2	6	0	-5.65/623	2.774772	-0.608513
3	6	0	-4.794056	3.653481	0.052720
4	6	0	-3.501255	3.264110	0.422954
5	6	0	-3.066646	1.965147	0.130607
6	6	0	-3.953255	1.118959	-0.550859
7	6	0	-5.236802	1.476579	-0.926704
8	6	0	-1.764902	1.285847	0.383955
9	7	0	-1.687545	0.056884	-0.090882
10	16	0	-3.160737	-0.452173	-0.845573
11	8	0	-3.760926	-1.508711	-0.028493
12	8	0	-2.902832	-0.695119	-2.265047
13	6	0	-0.556037	1.756151	1.032830
14	6	0	0.557786	0.869650	0.927965
15	6	0	-0.442990	2.966369	1.754826
16	6	0	0.759529	3.314695	2.353927
17	6	0	1.863595	2.461133	2.230526
18	6	0	1.761170	1.256751	1.526728

19	6	0	-0.340579	-2.514432	1.451573
20	6	0	-0.412508	-3.210278	0.158124
21	6	0	0.867697	-3.171154	-0.413360
22	6	0	1.774759	-2.474476	0.515348
23	6	0	1.032320	-2.173585	1.703434
24	6	0	-1.454795	-2.445260	2.450929
25	6	0	-1.603386	-3.951639	-0.373608
26	6	0	1.284280	-3.830204	-1.693809
27	6	0	3.269210	-2.437408	0.391556
28	6	0	1.595639	-1.715197	3.013788
29	6	0	0.279431	-0.173964	-2.214114
30	6	0	1.614572	-0.203681	-1.887018
31	6	0	2.467404	1.023001	-1.747627
32	8	0	3.576465	0.678862	-0.896088
33	6	0	4.605289	1.536921	-0.721140
34	8	0	5.482647	1.307557	0.076876
35	8	0	4.511037	2.613873	-1.514403
36	6	0	5.596935	3.566748	-1.405328
37	1	0	-6.656073	3.099621	-0.885082
38	1	0	-5.127185	4.661019	0.282666
39	1	0	-2.862826	3.985164	0.914167
40	1	0	-5.888015	0.783570	-1.450389
41	1	0	-1.293647	3.622783	1.879026
42	1	0	0.839217	4.239587	2.917045
43	1	0	2.810656	2.728944	2.692830
44	1	0	2.641515	0.630296	1.445846
45	1	0	-1.493768	-3.384497	3.021207
46	1	0	-2.425093	-2.308440	1.968764
47	1	0	-1.305857	-1.632394	3.166864
48	1	0	-1.566623	-4.994525	-0.027699
49	1	0	-1.618659	-3.971105	-1.467226
50	1	0	-2.546076	-3.519943	-0.035650
51	1	0	1.653993	-4.843824	-1.484264
52	1	0	2.097630	-3.299544	-2.197186
53	1	0	0.450763	-3.926825	-2.394752
54	1	0	3.695118	-3.339458	0.853754
55	1	0	3.707818	-1.569224	0.888081
56	1	0	3.599988	-2.419110	-0.649236
57	1	0	1.784799	-2.592961	3.647562
58	1	0	0.908321	-1.059861	3.554533
59	1	0	2.545282	-1.189452	2.894874
60	1	0	-0.208022	-1.013784	-2.697567
61	1	0	-0.256028	0.769905	-2.260243
62	1	0	2.180124	-1.115088	-2.055708

63	1	0	2.844383	1.299893	-2.740007
64	1	0	1.921137	1.874905	-1.334504
65	1	0	5.349750	4.358596	-2.111554
66	1	0	5.652277	3.954404	-0.385994
67	1	0	6.540730	3.086531	-1.671512

INT2'

Standard orientation:

	15)
Number Number Type X Y	Z
1 45 0 0.048955 0.271510	0 527720
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.327720
$3 \qquad 6 \qquad 0 \qquad -5.778267 \qquad 1.026492 \qquad -1.026492 \qquad -1.02$	0.113711
A = 6 = 0 = -4.441405 = 1.511980 = -4.441405 = -4.5119800 = -4.5119800 = -4.5119800 = -4.5119000 = -4.5119000 = -4.5119000 =	0.272022
5 6 0 3 364563 0 654587 0	0.399070
5 0 0 -5.504305 0.054587 -1	0.139329
7 6 0 4025501 1158560	0.273011
7 0 0 -4.955591 -1.158500 0	0.407009
	0.104309
9 / 0 -1.162/51 -0.11481/ (0.270133
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.638927
	2.06/99/
12 8 0 -1.843667 -2.546298 -0).348261
13 6 0 -1.135288 2.056282 -0	0.602099
14 6 0 0.269129 1.968252 -	0.372915
15 6 0 -1.680652 3.159362 -	1.291889
16 6 0 -0.854677 4.185903 -	1.739448
17 6 0 0.523815 4.109326 -	1.515278
18 6 0 1.074903 3.008162 -	0.846625
19 6 0 1.145591 0.313622	2.690442
20 6 0 1.693096 -1.016032	2.398394
21 6 0 2.805044 -0.832749	1.567314
22 6 0 2.989683 0.608566	1.322681
23 6 0 2.037352 1.311712	2.123566
24 6 0 0.033139 0.585019	3.654188

25	6	0	1.182828	-2.315558	2.946211
26	6	0	3.724073	-1.881987	1.031789
27	6	0	4.177950	1.190820	0.616050
28	6	0	2.025037	2.775087	2.444910
29	6	0	2.975388	0.714915	-4.282444
30	6	0	2.214457	-0.311955	-3.890933
31	6	0	0.991699	-0.142542	-3.043206
32	8	0	1.145346	-0.804094	-1.727545
33	6	0	1.015880	-2.158892	-1.622965
34	8	0	1.269423	-2.724003	-0.586055
35	8	0	0.598832	-2.718933	-2.754660
36	6	0	0.350222	-4.148707	-2.690149
37	1	0	-7.021153	-0.647664	0.206884
38	1	0	-6.580962	1.693485	-0.474684
39	1	0	-4.295420	2.548382	-0.672165
40	1	0	-5.110755	-2.179358	0.733384
41	1	0	-2.737224	3.211163	-1.518735
42	1	0	-1.279590	5.031876	-2.271073
43	1	0	1.174712	4.905229	-1.869315
44	1	0	2.152119	2.969494	-0.713905
45	1	0	0.424505	0.540773	4.680947
46	1	0	-0.762110	-0.159036	3.568559
47	1	0	-0.399407	1.578460	3.508508
48	1	0	0.107465	-2.285639	3.131076
49	1	0	1.683383	-2.544878	3.897459
50	1	0	1.376949	-3.140462	2.255977
51	1	0	4.669529	-1.853028	1.592860
52	1	0	3.967389	-1.707720	-0.020779
53	1	0	3.300079	-2.882321	1.119819
54	1	0	5.071226	1.114670	1.252003
55	1	0	4.037842	2.249030	0.380113
56	1	0	4.395588	0.660665	-0.316014
57	1	0	2.591344	2.940908	3.372064
58	1	0	1.012962	3.156139	2.602613
59	1	0	2.493198	3.376028	1.662521
60	1	0	3.834973	0.571190	-4.931388
61	1	0	2.755068	1.738485	-3.984487
62	1	0	2.446469	-1.324234	-4.217142
63	1	0	0.825753	0.902268	-2.784876
64	1	0	0.097431	-0.555034	-3.514617
65	1	0	0.013251	-4.418075	-3.690317
66	1	0	1.272767	-4.673258	-2.433654
67	1	0	-0.421796	-4.347434	-1.945141

Imaginary frequency: -315.75Thermal correction to Gibbs Free Energy= E(sov) = -2024.30335553 A.U. Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	45	0	0.333903	-0.861712	-0.166943
2	6	0	-5.250397	3.327011	-0.302100
3	6	0	-5.262528	2.801116	0.994355
4	6	0	-4.319586	1.848860	1.399828
5	6	0	-3.360087	1.412259	0.479304
6	6	0	-3.357860	1.977910	-0.802878
7	6	0	-4.275587	2.923530	-1.226571
8	6	0	-2.238701	0.456225	0.645426
9	7	0	-1.433286	0.348455	-0.388872
10	16	0	-1.964623	1.334353	-1.723624
11	8	0	-2.391663	0.437103	-2.798264
12	8	0	-0.957166	2.360596	-1.983787
13	6	0	-1.876669	-0.348498	1.801457
14	6	0	-0.509379	-0.762974	1.858433
15	6	0	-2.797372	-0.794281	2.766600
16	6	0	-2.383653	-1.633952	3.798296
17	6	0	-1.041283	-2.026332	3.875223
18	6	0	-0.118424	-1.589440	2.923204
19	6	0	0.823970	0.628554	1.625343
20	6	0	1.297550	0.996488	0.306103
21	6	0	2.780455	1.022783	0.068262
22	8	0	3.285196	2.217164	0.720595
23	6	0	4.602404	2.442457	0.526454

24	8	0	5.347791	1.714778	-0.099826
25	8	0	4.927824	3.579991	1.137609
26	6	0	6.313057	3.975350	1.020967
27	6	0	-0.275604	-2.639208	-1.473152
28	6	0	0.699021	-1.792361	-2.185914
29	6	0	1.940311	-1.880920	-1.494775
30	6	0	1.715844	-2.643242	-0.288243
31	6	0	0.364172	-3.188255	-0.339754
32	6	0	-1.654828	-2.943810	-1.973856
33	6	0	0.487992	-1.192864	-3.544190
34	6	0	3.270076	-1.426461	-2.016943
35	6	0	2.782040	-3.077410	0.674216
36	6	0	-0.194241	-4.207280	0.605410
37	1	0	-5.991062	4.065640	-0.593334
38	1	0	-6.009826	3.142629	1.704164
39	1	0	-4.332102	1.486038	2.420586
40	1	0	-4.239600	3.342682	-2.227341
41	1	0	-3.846263	-0.531909	2.684559
42	1	0	-3.100389	-1.983507	4.534872
43	1	0	-0.711646	-2.672899	4.684329
44	1	0	0.924100	-1.879008	3.024339
45	1	0	1.579826	0.246360	2.307326
46	1	0	0.149037	1.333116	2.103776
47	1	0	0.766569	1.803195	-0.193123
48	1	0	3.285922	0.153840	0.499612
49	1	0	3.024768	1.083814	-0.993163
50	1	0	6.385315	4.911344	1.573709
51	1	0	6.961494	3.213545	1.460112
52	1	0	6.574802	4.123897	-0.029290
53	1	0	-1.600903	-3.714325	-2.755918
54	1	0	-2.129032	-2.063224	-2.414279
55	1	0	-2.303543	-3.326226	-1.181117
56	1	0	0.692849	-1.949893	-4.315220
57	1	0	1.159568	-0.349021	-3.724320
58	1	0	-0.536342	-0.843125	-3.684628
59	1	0	3.993008	-1.212529	-1.227082
60	1	0	3.188364	-0.543125	-2.654984
61	1	0	3.694723	-2.231214	-2.634103
62	1	0	3.280302	-3.981372	0.295927
63	1	0	2.371733	-3.325192	1.657076
64	1	0	3.555391	-2.315278	0.807089
65	1	0	0.179437	-5.205658	0.339441
66	1	0	-1.285928	-4.243835	0.569161
67	1	0	0.100710	-4.015117	1.640711

Imaginary frequency: 318.015Thermal correction to Gibbs Free Energy=E(sov) = -2024.301717A.U.Standard orientation:

0.469757

Center Atomic Atomic			Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	45	0	-0.093974	0.882062	-0.171647	
2	6	0	5.715118	-2.779852	-1.358673	
3	6	0	5.654965	-2.699509	0.036774	
4	6	0	4.646278	-1.970686	0.678288	
5	6	0	3.694468	-1.304382	-0.101289	
6	6	0	3.763896	-1.428397	-1.495555	
7	6	0	4.747940	-2.146198	-2.153104	
8	6	0	2.517655	-0.501703	0.306463	
9	7	0	1.736454	-0.105142	-0.672400	
10	16	0	2.355882	-0.599010	-2.226456	
11	8	0	2.746309	0.609581	-2.953204	
12	8	0	1.419185	-1.545993	-2.827951	
13	6	0	2.082527	-0.108815	1.639941	
14	6	0	0.695713	0.216343	1.769208	
15	6	0	2.967331	0.085040	2.715546	
16	6	0	2.500770	0.591113	3.926559	
17	6	0	1.141641	0.897172	4.072549	
18	6	0	0.254751	0.699929	3.013408	
19	6	0	-0.993286	-1.030282	-0.263823	
20	6	0	-0.633970	-1.077439	1.139873	
21	6	0	0.089475	-2.332227	1.626909	
22	8	0	-0.890927	-3.379823	1.528735	
23	6	0	-0.413756	-4.621677	1.781291	

24	8	0	0.743047	-4.878108	2.045771
25	8	0	-1.424096	-5.480143	1.683344
26	6	0	-1.089275	-6.867662	1.915427
27	6	0	0.273457	3.005260	-0.989930
28	6	0	-0.607807	2.231591	-1.886807
29	6	0	-1.817590	1.966466	-1.183792
30	6	0	-1.654383	2.449680	0.168406
31	6	0	-0.385865	3.166175	0.248375
32	6	0	1.583315	3.602040	-1.406955
33	6	0	-0.365624	2.007614	-3.349811
34	6	0	-3.064214	1.360680	-1.756620
35	6	0	-2.729911	2.479789	1.214363
36	6	0	0.081340	3.968642	1.424965
37	1	0	6.506375	-3.351801	-1.833853
38	1	0	6.395968	-3.219637	0.636055
39	1	0	4.601076	-1.958067	1.760741
40	1	0	4.768091	-2.224316	-3.235702
41	1	0	4.028132	-0.102912	2.592429
42	1	0	3.190155	0.750456	4.749966
43	1	0	0.772046	1.285645	5.017925
44	1	0	-0.800434	0.911329	3.165166
45	1	0	-0.482718	-1.704257	-0.947741
46	1	0	-2.041999	-0.870389	-0.499082
47	1	0	-1.434909	-0.779766	1.813031
48	1	0	0.945840	-2.581057	0.996079
49	1	0	0.421662	-2.244565	2.664305
50	1	0	-2.027394	-7.406856	1.789951
51	1	0	-0.348049	-7.202398	1.186083
52	1	0	-0.699471	-6.996211	2.927801
53	1	0	1.402689	4.512046	-1.996512
54	1	0	2.160379	2.916498	-2.033070
55	1	0	2.197159	3.883805	-0.547344
56	1	0	-0.715075	2.880918	-3.919295
57	1	0	-0.906047	1.132723	-3.721314
58	1	0	0.693680	1.866915	-3.573259
59	1	0	-3.663459	0.849750	-0.997196
60	1	0	-2.845464	0.647922	-2.556306
61	1	0	-3.694552	2.151983	-2.185272
62	1	0	-3.389767	3.342777	1.047114
63	1	0	-2.318238	2.581623	2.222177
64	1	0	-3.358646	1.584525	1.188304
65	1	0	-0.435472	4.937700	1.451562
66	1	0	1.154779	4.169115	1.379749
67	1	0	-0.124207	3.464131	2.373995

INT3

Thermal correction to Gibbs Free Energy= E(sov) = -2024.33114223 A.U. 0.469535

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
			0 605201	0 206512	0 102915
1	43	0	-0.003301	-0.890318	0.192813
2	6	0	5.024980	3.218//6	0.69/522
3	6	0	5.457845	2.191836	-0.149498
4	6	0	4.595288	1.155397	-0.528011
5	6	0	3.289594	1.159060	-0.029599
6	6	0	2.878612	2.203760	0.805980
7	6	0	3.708408	3.243967	1.185816
8	6	0	2.190189	0.207378	-0.297207
9	7	0	1.048926	0.477684	0.273830
10	16	0	1.146976	1.971066	1.204213
11	8	0	0.944809	1.640905	2.613171
12	8	0	0.300561	2.965125	0.548628
13	6	0	2.293002	-0.991135	-1.157015
14	6	0	1.355222	-1.196237	-2.202374
15	6	0	3.303698	-1.935938	-0.903456
16	6	0	3.379546	-3.105802	-1.657595
17	6	0	2.458268	-3.322357	-2.687174
18	6	0	1.470265	-2.372259	-2.956330
19	6	0	-1.070193	-1.578955	2.434586
20	6	0	-2.164365	-0.903199	1.713997
21	6	0	-2.596683	-1.760442	0.618537
22	6	0	-1.635005	-2.802771	0.528965

23	6	0	-0.723312	-2.709850	1.697324
24	6	0	-0.495869	-1.108439	3.735416
25	6	0	-2.882963	0.300454	2.225607
26	6	0	-3.865577	-1.638372	-0.167609
27	6	0	-1.653919	-3.953175	-0.429258
28	6	0	0.346070	-3.713930	1.994758
29	6	0	0.313798	-0.149721	-2.568012
30	6	0	-0.999539	-0.171397	-1.746376
31	6	0	-1.634192	1.209934	-1.830645
32	8	0	-2.862657	1.199220	-1.072435
33	6	0	-3.655441	2.283967	-1.014035
34	8	0	-4.639661	2.299254	-0.306823
35	8	0	-3.231703	3.281732	-1.800425
36	6	0	-4.037943	4.483366	-1.774302
37	1	0	5.711108	4.013017	0.975992
38	1	0	6.476591	2.201622	-0.524895
39	1	0	4.933347	0.374298	-1.201160
40	1	0	3.361804	4.046275	1.829710
41	1	0	4.010874	-1.765993	-0.095971
42	1	0	4.155520	-3.836625	-1.449721
43	1	0	2.520335	-4.222546	-3.292418
44	1	0	0.783579	-2.533522	-3.783941
45	1	0	-1.204278	-1.316139	4.549243
46	1	0	-0.301368	-0.033605	3.730517
47	1	0	0.441109	-1.617657	3.975198
48	1	0	-3.586640	-0.015683	3.011500
49	1	0	-3.458175	0.805056	1.447522
50	1	0	-2.192240	1.016983	2.680098
51	1	0	-4.630972	-2.282213	0.287913
52	1	0	-3.740128	-1.965527	-1.204240
53	1	0	-4.242234	-0.615786	-0.180510
54	1	0	-2.224151	-3.719541	-1.331850
55	1	0	-2.126837	-4.825260	0.044743
56	1	0	-0.644025	-4.252170	-0.726931
57	1	0	-0.103684	-4.648449	2.358343
58	1	0	1.039579	-3.358880	2.760756
59	1	0	0.924838	-3.966430	1.099468
60	1	0	0.069256	-0.273528	-3.632114
61	1	0	0.771510	0.843743	-2.483438
62	1	0	-1.687045	-0.914995	-2.166640
63	1	0	-0.976876	1.985757	-1.428169
64	1	0	-1.866612	1.463675	-2.874263
65	1	0	-3.542271	5.170750	-2.459107
66	1	0	-5.052388	4.259988	-2.111389
INT3a

67

Thermal correction to Gibbs Free Energy= E(sov) = -2024.32468 A.U. Standard orientation: 0.467879

Center Atomic Atomic Coordinates (Angstroms) Number Х Y Ζ Number Type 1 45 0 -1.565333 -0.392159 -0.133591 2 0 6 3.681080 4.201712 -0.439625 3 6 0 3.742891 3.745091 0.881960 4 0 6 2.819028 2.811293 1.367395 5 6 0 1.822952 2.349345 0.503441 6 6 0 1.788906 2.814136 -0.816409 7 3.730456 -1.321226 6 0 2.694356 8 6 0 0.764888 1.349467 0.756387 9 7 0 -0.014692 1.074655 -0.248302 10 0 16 0.458549 1.982546 -1.682568 11 8 0 -0.639578 -2.013526 2.889875 12 8 0 0.957011 1.035797 -2.676270 13 6 0 0.511499 0.673663 2.047460 14 0 6 0.432387 -0.741521 2.145765 15 0 0.268322 1.487655 3.168972 6 16 0 -0.083578 0.924942 4.393975 6 17 -0.177289-0.464289 4.505919 6 0 0 18 6 0.088471 -1.273881 3.399928 19 0 6 0.025053 -1.713338 -0.283421 20 6 0 0.844867 -1.725552 1.035077 21 6 0 2.354362 -1.576804 0.779546 22 8 0 2.756059 -2.691961 -0.031533 23 6 0 -2.657040 -0.455637 4.037287

24	8	0	4.826450	-1.764822	-0.219378
25	8	0	4.268757	-3.759211	-1.167630
26	6	0	5.605357	-3.885456	-1.700918
27	6	0	-3.603572	0.642164	-0.860187
28	6	0	-2.966862	-0.335833	-1.765752
29	6	0	-3.046503	-1.654231	-1.149264
30	6	0	-3.480762	-1.444086	0.186426
31	6	0	-3.881339	-0.020981	0.332665
32	6	0	-3.873477	2.072765	-1.217118
33	6	0	-2.615636	-0.062741	-3.193483
34	6	0	-2.773011	-2.958579	-1.832520
35	6	0	-3.740714	-2.494991	1.223114
36	6	0	-4.484562	0.539607	1.583189
37	1	0	4.410914	4.922922	-0.794978
38	1	0	4.524252	4.113569	1.539516
39	1	0	2.885704	2.447170	2.387580
40	1	0	2.651859	4.069275	-2.351611
41	1	0	0.324450	2.568163	3.067597
42	1	0	-0.280288	1.564086	5.249589
43	1	0	-0.440598	-0.919819	5.456429
44	1	0	0.048618	-2.354350	3.513984
45	1	0	0.632441	-1.391108	-1.133644
46	1	0	-0.362708	-2.710742	-0.498569
47	1	0	0.712042	-2.718273	1.479407
48	1	0	2.593121	-0.647549	0.252018
49	1	0	2.919132	-1.593488	1.718479
50	1	0	5.606105	-4.834559	-2.235879
51	1	0	5.820254	-3.057023	-2.380132
52	1	0	6.336003	-3.897437	-0.888735
53	1	0	-4.671394	2.127958	-1.970031
54	1	0	-2.989147	2.559162	-1.638452
55	1	0	-4.197998	2.652193	-0.349046
56	1	0	-3.514329	-0.186457	-3.816518
57	1	0	-1.854758	-0.752646	-3.567350
58	1	0	-2.254399	0.958665	-3.335386
59	1	0	-2.530370	-3.752140	-1.120920
60	1	0	-1.949061	-2.881326	-2.547629
61	1	0	-3.664701	-3.277072	-2.389591
62	1	0	-4.803692	-2.775074	1.216771
63	1	0	-3.506444	-2.136968	2.230450
64	1	0	-3.159067	-3.402190	1.039687
65	1	0	-5.496057	0.137497	1.731764
66	1	0	-4.559367	1.628861	1.548946
67	1	0	-3.900466	0.267250	2.469794

INT4a

Thermal correction to Gibbs Free Energy= E(sov) = -2024.34131236 A.U. Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	45		0 977492	0 552780	0 165855
2	6	0	-4 877636	-3 234307	0.621715
- 3	6	0	-5.399483	-2.060118	0.066239
4	6	0	-4.570712	-0.973836	-0.239411
5	6	0	-3.203005	-1.074532	0.036366
6	6	0	-2.707290	-2.266121	0.572719
7	6	0	-3.502813	-3.358920	0.872813
8	6	0	-2.122258	-0.088251	-0.223913
9	7	0	-0.911695	-0.486111	0.062449
10	16	0	-0.927525	-2.147600	0.679468
11	8	0	-0.449827	-2.109682	2.059708
12	8	0	-0.289674	-3.013600	-0.308324
13	6	0	-2.374308	1.244572	-0.801310
14	6	0	-1.616244	1.703252	-1.905945
15	6	0	-3.388381	2.051389	-0.250733
16	6	0	-3.643332	3.320596	-0.766102
17	6	0	-2.902929	3.779650	-1.859337
18	6	0	-1.910361	2.972402	-2.420730
19	6	0	0.934251	1.190594	2.437254
20	6	0	2.175790	0.590758	2.203163
21	6	0	2.828726	1.322869	1.098538
22	6	0	2.003190	2.426248	0.729414
23	6	0	0.759694	2.279916	1.458235
24	6	0	-0.068865	0.835347	3.491001
25	6	0	2.788997	-0.578444	2.911273

26	6	0	4.221698	1.041437	0.623597
27	6	0	2.363163	3.560141	-0.181526
28	6	0	-0.348056	3.287955	1.494328
29	6	0	-0.556803	0.844226	-2.558905
30	6	0	0.841173	0.933403	-1.922907
31	6	0	1.766385	-0.178277	-2.414984
32	8	0	1.926000	-1.033661	-1.218607
33	6	0	2.794696	-2.075844	-1.157201
34	8	0	3.151801	-2.539579	-0.101488
35	8	0	3.162424	-2.465189	-2.377953
36	6	0	4.069394	-3.596564	-2.428579
37	1	0	-5.539201	-4.065154	0.848081
38	1	0	-6.463292	-1.992511	-0.140532
39	1	0	-4.985053	-0.081458	-0.695566
40	1	0	-3.083949	-4.274578	1.278547
41	1	0	-3.955957	1.695882	0.604766
42	1	0	-4.416881	3.941466	-0.323812
43	1	0	-3.106019	4.759519	-2.282626
44	1	0	-1.359957	3.326932	-3.289197
45	1	0	0.010770	1.539220	4.331195
46	1	0	0.082281	-0.174914	3.873929
47	1	0	-1.094174	0.897986	3.113741
48	1	0	3.650197	-0.250306	3.509426
49	1	0	3.143226	-1.333416	2.201605
50	1	0	2.075723	-1.061947	3.581800
51	1	0	4.947712	1.489799	1.316502
52	1	0	4.411594	1.461998	-0.367953
53	1	0	4.422967	-0.033134	0.592104
54	1	0	2.799044	4.381246	0.404020
55	1	0	1.487601	3.958520	-0.702034
56	1	0	3.103321	3.266714	-0.931539
57	1	0	-0.104307	4.081518	2.215711
58	1	0	-1.293733	2.840520	1.808778
59	1	0	-0.505965	3.759846	0.520921
60	1	0	-0.480480	1.140328	-3.616379
61	1	0	-0.879290	-0.203161	-2.564457
62	1	0	1.275855	1.919166	-2.108149
63	1	0	1.353901	-0.793144	-3.219858
64	1	0	2.760436	0.173300	-2.703078
65	1	0	4.251174	-3.762791	-3.489507
66	1	0	4.996741	-3.354283	-1.905367
67	1	0	3.596958	-4.467448	-1.970276

Thermal correction to Gibbs Free Energy= E(sov) = -2024.35632412 Standard orientation: 0.475614

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	45	0	-1.210058	0.208309	-0.150051
2	6	0	5.395430	-2.097904	-0.704833
3	6	0	5.641434	-0.793403	-0.260823
4	6	0	4.589572	0.080998	0.037887
5	6	0	3.274543	-0.365864	-0.132538
6	6	0	3.061022	-1.680192	-0.553798
7	6	0	4.081793	-2.570225	-0.842354
8	6	0	1.995771	0.345471	0.140009
9	7	0	0.904209	-0.358223	-0.022123
10	16	0	1.308901	-2.011276	-0.496134
11	8	0	0.727753	-2.266825	-1.812446
12	8	0	1.009732	-2.903041	0.625678
13	6	0	1.951567	1.742599	0.597906
14	6	0	1.134145	2.118447	1.690729
15	6	0	2.754572	2.702777	-0.050980
16	6	0	2.745356	4.032915	0.358650
17	6	0	1.951092	4.410160	1.446179
18	6	0	1.164568	3.459406	2.099137
19	6	0	-1.308083	0.605848	-2.493428
20	6	0	-2.415188	-0.174171	-2.149001
21	6	0	-3 166096	0 545877	-1 102914
22	6	0	-2 551177	1 822148	-0 903244
23	6	ů 0	-1 322087	1 819228	-1 654154
23 74	6	ů 0	-0.277616	0 322774	-3 543122
25	6	0 0	-2 812958	-1 511631	-2 694061
20	0	v	2.012/30	1.011001	2.074001

26	6	0	-4.487094	0.091601	-0.559761
27	6	0	-3.114034	2.976642	-0.131274
28	6	0	-0.423389	3.001284	-1.861060
29	6	0	0.259817	1.135667	2.433926
30	6	0	-1.142629	0.981984	1.814290
31	6	0	-2.064119	0.176237	2.715261
32	8	0	-1.640320	-1.196850	2.967240
33	6	0	-1.717283	-2.055855	1.964280
34	8	0	-1.807505	-1.751949	0.765663
35	8	0	-1.710937	-3.289120	2.416420
36	6	0	-1.756157	-4.369153	1.447859
37	1	0	6.227518	-2.758812	-0.928397
38	1	0	6.665508	-0.454945	-0.135331
39	1	0	4.799505	1.077082	0.410791
40	1	0	3.878200	-3.589733	-1.154733
41	1	0	3.360198	2.410836	-0.904039
42	1	0	3.355584	4.766239	-0.160293
43	1	0	1.950690	5.440753	1.790297
44	1	0	0.565618	3.759126	2.955975
45	1	0	-0.483171	0.925942	-4.438453
46	1	0	-0.267680	-0.728832	-3.833563
47	1	0	0.729953	0.582536	-3.203895
48	1	0	-3.720806	-1.424391	-3.306297
49	1	0	-3.028912	-2.219076	-1.885814
50	1	0	-2.026102	-1.946494	-3.313928
51	1	0	-5.279603	0.270603	-1.299824
52	1	0	-4.763589	0.628505	0.351929
53	1	0	-4.482139	-0.979993	-0.339296
54	1	0	-3.752021	3.581584	-0.790098
55	1	0	-2.330394	3.634240	0.255432
56	1	0	-3.734148	2.651664	0.709462
57	1	0	-0.819081	3.634067	-2.668747
58	1	0	0.585586	2.698002	-2.150406
59	1	0	-0.342267	3.620199	-0.963743
60	1	0	0.144291	1.499902	3.466791
61	1	0	0.745740	0.158194	2.513468
62	1	0	-1.596464	1.976996	1.741315
63	1	0	-2.093733	0.591234	3.729292
64	1	0	-3.086625	0.144846	2.325902
65	1	0	-1.733024	-5.275350	2.051375
66	1	0	-2.685050	-4.310912	0.876158
67	1	0	-0.889248	-4.309661	0.790908

0.470227 A.U.

 Standard orientation:

 Center
 Atomic
 Coordinates (Angstroms)

 Number
 Number
 Type
 X
 Y

Number	Number	Туре	Х	Y	Ζ
1	45	0	-1.030008	0.522843	-0.070564
2	6	0	4.843168	-3.306134	-0.518787
3	6	0	5.381095	-2.091044	-0.077550
4	6	0	4.558402	-0.989640	0.185854
5	6	0	3.179554	-1.119583	-0.014680
6	6	0	2.669457	-2.348428	-0.436201
7	6	0	3.459166	-3.456810	-0.692291
8	6	0	2.104797	-0.119716	0.216604
9	7	0	0.882200	-0.543577	0.049276
10	16	0	0.884731	-2.258616	-0.452551
11	8	0	0.338390	-2.289053	-1.808576
12	8	0	0.335222	-3.100618	0.600431
13	6	0	2.408289	1.270440	0.615264
14	6	0	1.775904	1.868576	1.729836
15	6	0	3.372938	1.986051	-0.120382
16	6	0	3.700986	3.296757	0.221036
17	6	0	3.085616	3.892910	1.325013
18	6	0	2.142647	3.178382	2.067552
19	6	0	-0.813891	1.157133	-2.236538
20	6	0	-2.031026	0.416272	-2.116228
21	6	0	-2.884117	1.127970	-1.172951
22	6	0	-2.190773	2.299774	-0.733989
23	6	0	-0.876829	2.302214	-1.351449
24	6	0	0.312652	0.836419	-3.167884

25	6	0	-2.440429	-0.784711	-2.907635
26	6	0	-4.299319	0.760677	-0.859393
27	6	0	-2.761803	3.394132	0.115284
28	6	0	0.099467	3.437589	-1.307887
29	6	0	0.772563	1.128707	2.589807
30	6	0	-0.679211	1.211672	2.116122
31	6	0	-1.593608	0.284765	2.635687
32	8	0	-1.765279	-1.110894	1.162442
33	6	0	-2.785511	-1.919337	1.001411
34	8	0	-3.326505	-2.201703	-0.060573
35	8	0	-3.177567	-2.422395	2.195364
36	6	0	-4.233160	-3.402960	2.151197
37	1	0	5.500559	-4.147957	-0.714804
38	1	0	6.452871	-2.003026	0.072573
39	1	0	4.986159	-0.063243	0.553303
40	1	0	3.029094	-4.402738	-1.006537
41	1	0	3.850501	1.520174	-0.977920
42	1	0	4.437708	3.841859	-0.361782
43	1	0	3.348166	4.906254	1.615879
44	1	0	1.691144	3.640128	2.942736
45	1	0	0.090121	1.256409	-4.158885
46	1	0	0.447642	-0.241128	-3.282578
47	1	0	1.256051	1.275486	-2.832780
48	1	0	-3.098003	-0.468752	-3.730905
49	1	0	-2.985451	-1.497522	-2.284362
50	1	0	-1.579496	-1.299257	-3.337469
51	1	0	-4.943871	1.078150	-1.691685
52	1	0	-4.662529	1.257849	0.044148
53	1	0	-4.408856	-0.320006	-0.740338
54	1	0	-3.314412	4.098349	-0.522196
55	1	0	-1.985356	3.965879	0.630312
56	1	0	-3.464171	3.014414	0.862665
57	1	0	-0.157792	4.178646	-2.078007
58	1	0	1.122184	3.105499	-1.496358
59	1	0	0.089568	3.948074	-0.341756
60	1	0	0.831287	1.549533	3.603672
61	1	0	1.053341	0.074016	2.683050
62	1	0	-1.063348	2.219059	1.959279
63	1	0	-1.280813	-0.520150	3.291974
64	1	0	-2.656569	0.502765	2.647751
65	1	0	-4.399700	-3.690461	3.189795
66	1	0	-5.140713	-2.971785	1.720403
67	1	0	-3.922288	-4.266710	1.558463

Imaginary frequency-230.40Thermal correction to Gibbs Free Energy=E(sov) = -2024.32792925A.U.Standard orientation:

0.472103

Center Atomic Atomic Coordinates (Angstroms) Х Ζ Number Y Number Type 0 1 45 1.154948 0.247094 0.143952 2 6 0 -5.346067 -2.499312 0.362896 3 6 0 -1.175819 -5.661884 0.032528 4 6 0 -4.658197 -0.222281 -0.173061 5 6 0 -3.321733 -0.611610 -0.0247776 6 0 -3.037453 -1.942126 0.281376 7 6 0 -4.009486-2.9096000.474445 8 6 0 -2.083244 0.192393 -0.207750 9 7 0 -0.108875-0.952003 -0.454251 10 16 0 -1.270418 -2.182960 0.196241 11 8 0 -0.680955 -2.5028921.496345 12 8 0 -0.960694 -2.977871 -0.986123 13 6 0 -2.144568 1.633669 -0.513383 14 6 0 -1.407690 2.180337 -1.588732 15 6 0 -2.998913 2.455715 0.250115 6 0 -3.124429 3.812826 -0.034494 16 0 17 6 -2.422127 4.354537 -1.115567 0 18 6 -1.580667 3.542155 -1.877115 19 6 0 0.958378 0.690253 2.352146 20 6 0 1.984004 -0.299885 2.173868 0 21 6 3.022676 0.293116 1.353642 22 6 0 2.640295 1.642079 1.049115

23	6	0	1.335058	1.885275	1.634310
24	6	0	-0.266902	0.530470	3.195965
25	6	0	2.066806	-1.648276	2.817998
26	6	0	4.324579	-0.358806	1.007653
27	6	0	3.506663	2.658408	0.371509
28	6	0	0.638303	3.211712	1.700180
29	6	0	-0.423259	1.377644	-2.411516
30	6	0	0.990650	1.487579	-1.817819
31	6	0	2.087302	1.092675	-2.593015
32	8	0	3.229859	-0.620471	-2.149369
33	6	0	2.579282	-1.601209	-1.709396
34	8	0	1.587661	-1.541757	-0.903209
35	8	0	2.974815	-2.810977	-2.131158
36	6	0	2.288291	-3.977988	-1.629539
37	1	0	-6.141734	-3.222343	0.515873
38	1	0	-6.702300	-0.885049	-0.076986
39	1	0	-4.919404	0.790458	-0.458575
40	1	0	-3.751767	-3.940855	0.694773
41	1	0	-3.549028	2.031044	1.085021
42	1	0	-3.773912	4.437847	0.571373
43	1	0	-2.532010	5.405807	-1.366822
44	1	0	-1.043773	3.970461	-2.720312
45	1	0	-0.024178	0.785905	4.237038
46	1	0	-0.636005	-0.497430	3.181031
47	1	0	-1.069787	1.199434	2.875454
48	1	0	2.809871	-1.624779	3.627312
49	1	0	2.378080	-2.415102	2.102781
50	1	0	1.110192	-1.960287	3.237276
51	1	0	5.075787	-0.098151	1.766653
52	1	0	4.699170	-0.040383	0.032443
53	1	0	4.235921	-1.447813	0.994452
54	1	0	4.080815	3.205627	1.132459
55	1	0	2.927416	3.399720	-0.186047
56	1	0	4.224700	2.192006	-0.307049
57	1	0	0.953175	3.758764	2.599948
58	1	0	-0.448237	3.102366	1.741552
59	1	0	0.875619	3.840235	0.837753
60	1	0	-0.417876	1.793429	-3.427936
61	1	0	-0.725708	0.331243	-2.507012
62	1	0	1.157886	2.411630	-1.265188
63	1	0	1.946819	0.571440	-3.534421
64	1	0	3.048999	1.573464	-2.472359
65	1	0	2.756344	-4.816846	-2.145245
66	1	0	2.431412	-4.070677	-0.549132

Thermal correction to Gibbs Free Energy= 0.471090E(sov) = -2024.35564955 A.U.

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	45	0	1.103891	0.447624	-0.023999
2	6	0	-4.918702	-3.284171	0.503620
3	6	0	-5.450241	-2.022077	0.209972
4	6	0	-4.615454	-0.923908	-0.023375
5	6	0	-3.228957	-1.105716	0.057277
6	6	0	-2.728363	-2.377611	0.328127
7	6	0	-3.531477	-3.483853	0.551010
8	6	0	-2.141363	-0.115266	-0.158423
9	7	0	-0.918351	-0.566678	-0.103480
10	16	0	-0.947168	-2.351259	0.183223
11	8	0	-0.307255	-2.604240	1.469864
12	8	0	-0.581476	-3.048078	-1.042341
13	6	0	-2.464472	1.302232	-0.444034
14	6	0	-1.935268	1.960245	-1.576005
15	6	0	-3.369368	1.974232	0.399414
16	6	0	-3.730639	3.296832	0.150684
17	6	0	-3.212545	3.952093	-0.969819
18	6	0	-2.331984	3.281845	-1.822015
19	6	0	1.353161	0.726460	2.183618
20	6	0	2.657094	0.578573	1.602544
21	6	0	2.844173	1.636239	0.638011

22	6	0	1.688537	2.521566	0.734745
23	6	0	0.773533	1.959484	1.668296
24	6	0	0.791317	-0.122846	3.280421
25	6	0	3.641280	-0.482135	1.967517
26	6	0	4.105825	1.908331	-0.121686
27	6	0	1.569114	3.867031	0.088239
28	6	0	-0.466786	2.610920	2.191297
29	6	0	-0.981442	1.275232	-2.534259
30	6	0	0.477457	1.459664	-2.183719
31	6	0	1.434090	0.499402	-2.368211
32	8	0	1.723531	-1.508744	-0.381164
33	6	0	2.883169	-1.834881	-0.884831
34	8	0	3.774177	-1.071052	-1.262510
35	8	0	3.001001	-3.178943	-0.935889
36	6	0	4.226333	-3.686338	-1.493647
37	1	0	-5.585713	-4.122757	0.680400
38	1	0	-6.527016	-1.894148	0.153475
39	1	0	-5.042315	0.040844	-0.274125
40	1	0	-3.107942	-4.463993	0.747243
41	1	0	-3.772596	1.463875	1.269355
42	1	0	-4.419723	3.806153	0.818027
43	1	0	-3.504233	4.975394	-1.189000
44	1	0	-1.957825	3.788140	-2.709042
45	1	0	1.215358	0.192325	4.244503
46	1	0	1.027121	-1.178418	3.130956
47	1	0	-0.295302	-0.033467	3.350190
48	1	0	4,119841	-0.204283	2.917816
49	1	0	4 418096	-0 594988	1 210663
50	1	0	3 150991	-1 448658	2 114923
51	1	0	4 838744	2 393984	0 537679
52	1	ů 0	3 934824	2.578448	-0.968957
53	1	0	4 535749	0 979675	-0 504104
54	1	0	1 998639	4 625018	0.758463
55	1	0	0 528856	4 146009	-0.099550
56	1	0	2 123530	3 925872	-0.852129
50 57	1	0	-0.211282	3 203049	3 081891
58	1	0	-0.211202	1 878386	2 495220
50 59	1	0	-0.920290	3 285421	1 462706
60	1	0	-0.920290	1 718329	-3 531386
61	1	0	-1.204469	0.200706	-2 638443
62	1	0	0 785652	0.209790	-2.030443
63	1	0	1 154052	2.40/943	-2.012372
64	1	0	2 402740	0.725502	-2.000390
04 65	1	U	2.493/40	0.725502	-2.38181/
03	1	U	4.124268	-4.//1393	-1.439841

66	1	0	4.350896	-3.345115	-2.524819
67	1	0	5.085489	-3.363862	-0.898878

3a

Thermal correction to Gibbs Free Energy= E(sov) = -1220.95241658 A.U. Standard orientation: 0.207522

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	3.778850	-1.861796	-0.750979
2	6	0	2.658302	-2.693285	-0.863347
3	6	0	1.376073	-2.222499	-0.554264
4	6	0	1.235436	-0.902174	-0.120384
5	6	0	2.364879	-0.088263	-0.032755
6	6	0	3.641789	-0.529305	-0.336082
7	6	0	-0.001892	-0.137557	0.240818
8	7	0	0.145701	1.110105	0.550032
9	16	0	1.812396	1.552703	0.461869
10	8	0	2.286673	1.888244	1.805280
11	8	0	1.985294	2.504585	-0.639251
12	6	0	-1.343990	-0.770376	0.254941
13	6	0	-2.452852	-0.224800	-0.431993
14	6	0	-1.492196	-1.957216	0.998382
15	6	0	-2.721823	-2.604081	1.084902
16	6	0	-3.817967	-2.082125	0.393259
17	6	0	-3.672394	-0.916132	-0.356514
18	6	0	-2.395991	1.050579	-1.261182
19	6	0	-3.109816	2.212003	-0.600427
20	6	0	-2.541585	3.381601	-0.298359
21	1	0	4.764192	-2.247820	-0.996805
22	1	0	2.783327	-3.718405	-1.200642
23	1	0	0.511597	-2.870032	-0.660117
24	1	0	4.501420	0.129914	-0.261426
25	1	0	-0.638515	-2.354819	1.540564

26	1	0	-2.821664	-3.506433	1.681717
27	1	0	-4.781759	-2.582970	0.434733
28	1	0	-4.528089	-0.524061	-0.902097
29	1	0	-2.883128	0.842585	-2.225697
30	1	0	-1.365591	1.337802	-1.478601
31	1	0	-4.165201	2.053923	-0.372562
32	1	0	-1.487920	3.572638	-0.487817
33	1	0	-3.111588	4.183607	0.164304

Cp*RhOMe

Thermal correction to Gibbs Free Energy=0.217783SCF Done:E(RM06L) = -614.723159263A.U.Standard orientation:A.U.

Center Atomic Atomic Coordinates (Angstroms) Number Type Х Y Ζ Number 45 0 0.000957 1 -0.486831 -0.586173 2 6 0 0.794035 1.204047 0.710496 3 0 0.146796 6 0.148072 1.468433 4 0 6 0.604873 -1.116726 0.924959 5 6 0 1.544078 -0.830765 -0.141851 6 6 0 1.661014 0.588667 -0.269287 7 2.671177 6 0 0.655704 0.961059 8 0 -0.734111 2.662056 6 0.331296 9 6 0 0.250848 -2.474018 1.441041 10 -1.858122 -0.955787 6 0 2.266683 11 6 0 2.523341 1.323855 -1.247923 12 8 0 -2.257494 0.004043 -1.158265 13 -3.611154 6 0 0.001906 -0.758826 14 1.432800 2.994160 1.668676 1 0 15 -0.313567 2.923063 1.398531 1 0 16 1 0 0.782039 3.256407 0.046617 17 1 0 -0.113780 0.380811 3.568314 18 0 -1.432598 -0.4999872.786168 1 19 -1.309429 1.258964 2.606590 1 0 20 0.980460 -2.773856 2.206990 0 1 21 1 0 0.274237 -3.230533 0.652524 22 1 0 -0.739048 -2.490750 1.903845 23 1 0 3.189494 -2.156275 -0.438781 24 1 0 2.550576 -1.476103 -1.939416 25 1 0 1.667055 -2.760996 -1.100401 26 1 0 3.495980 1.549125 -0.788906

27	1	0	2.077205	2.274865	-1.551444
28	1	0	2.714399	0.735061	-2.148557
29	1	0	-4.234234	0.141486	-1.649902
30	1	0	-3.864293	-0.957492	-0.290004
31	1	0	-3.802607	0.820323	-0.053136

$\rm CO_2$

Sum of electronic and thermal Free Energies= -188.59					
Thermal cor	rection to Gibbs Free Energy=	-0.005636			
SCF Done:	E(RM06L) = -188.633399100	A.U			

1p-INT1

Stand	lard	orient	ation

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-5.846446	0.363119	-0.334048
2	6	0	-5.351842	-0.829895	-0.879559
3	6	0	-4.006940	-1.154010	-0.747365
4	6	0	-3.119652	-0.288670	-0.067189
5	6	0	-3.640920	0.940375	0.395543
6	6	0	-4.986946	1.263350	0.297834
7	6	0	-1.703673	-0.580024	0.136892
8	7	0	-0.816512	0.396954	0.320720
9	16	0	-1.314889	2.014249	0.307297
10	8	0	-1.478929	2.466033	-1.065566
11	8	0	-0.502000	2.741677	1.257353
12	6	0	-1.104794	-1.916123	0.201896
13	6	0	0.320549	-1.952421	0.163644
14	45	0	1.240164	-0.133115	0.185315
15	6	0	-1.845790	-3.091783	0.426214
16	6	0	-1.191719	-4.318769	0.548089
17	6	0	0.199930	-4.371166	0.464001

18	6	0	0.944911	-3.194327	0.280868
19	6	0	2.442917	1.735440	-0.594810
20	6	0	2.396170	0.572324	-1.491446
21	6	0	3.129033	-0.523069	-0.868673
22	6	0	3.427733	-0.106722	0.457390
23	6	0	3.024879	1.313286	0.605675
24	6	0	1.975554	3.112859	-0.953837
25	6	0	1.908807	0.602000	-2.902897
26	6	0	3.570023	-1.776081	-1.562204
27	6	0	4.186764	-0.870403	1.496703
28	6	0	3.239905	2.119282	1.847144
29	8	0	-2.800301	1.854816	1.017162
30	1	0	-6.899582	0.609737	-0.431198
31	1	0	-6.016937	-1.499857	-1.415174
32	1	0	-3.626836	-2.057383	-1.209074
33	1	0	-5.336616	2.212316	0.690607
34	1	0	-2.921356	-3.054970	0.554984
35	1	0	-1.766657	-5.222830	0.724068
36	1	0	0.713917	-5.324022	0.561412
37	1	0	2.027315	-3.270082	0.253123
38	1	0	1.089418	3.096211	-1.593705
39	1	0	1.736501	3.706213	-0.069253
40	1	0	2.770246	3.632959	-1.506642
41	1	0	1.681428	-0.399671	-3.275706
42	1	0	1.017419	1.226267	-3.010006
43	1	0	2.689788	1.030677	-3.548773
44	1	0	4.430374	-1.550305	-2.206675
45	1	0	3.889257	-2.545801	-0.855695
46	1	0	2.784014	-2.197732	-2.194310
47	1	0	4.179269	-1.945897	1.304793
48	1	0	5.235251	-0.540200	1.508574
49	1	0	3.783414	-0.700388	2.499735
50	1	0	4.294642	2.418588	1.924989
51	1	0	2.629230	3.024468	1.854418
52	1	0	3.002059	1.543584	2.747752

¹H and ¹³C NMR Spectra

