Supporting Information

Copper-Catalyzed Radical Cascade Cyclization for the Synthesis of Phosphorated Indolines

Hong-Yu Zhang, ${ }^{\text {a }}$ Liu-Liang Mao, ${ }^{\text {a }}$ Bin Yang ${ }^{\text {a }}$ and Shang-Dong Yang*, a, b
${ }^{\text {a }}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
${ }^{\mathrm{b}}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.

Supporting Information

Table of Contents

I. General Methods and Materials S2
II. Typical Procedures for the Synthesis of Substrates S2-S3
III. Detailed Reaction conditions Optimization S4-S7
IV. General Procedures for Copper-Catalyzed Radical Cascade Cyclization of
AlkenesS7
V. Radical Trapping Experiments S7-S8
VI. Control Experiments S8
VII. Plausible Mechanistic Pathway S9
VIII. Characterization of the Products S9-S17
IX. References S17
X. NMR Charts S18-S105

I . General Methods and Materials

All reactions involving air- and moisture-sensitive reagents were carried out under an argon atmosphere. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker advance III 400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) in CDCl_{3} with TMS as internal standard. Chemical shifts (δ) were measured in ppm relative to TMS $\delta=0$ for ${ }^{1} \mathrm{H}$, or to chloroform $\delta=77.0$ for ${ }^{13} \mathrm{C}$ as internal standard. ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on the same instrument. Data are reported as follows: Chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, m $=$ multiplet), Coupling constants, J, are reported in hertz. Mass data were measured with Thermo Scientific DSQ II mass spectrometer. The starting materials were purchased from Aldrich, Acros Organics, J\&K Chemicals or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm). Substrates were prepared according to literature methods A^{1} and methods $\mathrm{B}^{2,3}$.

II. Typical Procedures for the Synthesis of Substrates

Method A

Typical procedure:
Allyl bromide (16.24 mmol) was added dropwise to a solution of commercially available aniline (16.24 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(38.97 \mathrm{mmol})$ in DMF (37 mL). The solution was heated to 80 ${ }^{\circ} \mathrm{C}$ and stirred at this temperature overnight. The reaction mixture was then filtered, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by column chromatography to afford N-allyl-aniline.

Next, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(7.36 \mathrm{mmol})$ was added to a solution of N -allyl-aniline (7.36 mmol) in xylene $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was heated to $180^{\circ} \mathrm{C}$ in a sealed tube and stirred at this temperature for 12 hours. After cooling, the reaction mixture was poured into $10 \% \mathrm{NaOH}$ $(10 \mathrm{~mL})$, and extracted with EtOAc $(3 x 15 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified by
column chromatography to yield 2-allylaniline as a colorless oil.
Subsequently, 2-allylaniline (4.08 mmol) and pyridine (8.58 mmol , 2.1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was treated sequentially with tosyl chloride ($4.49 \mathrm{mmol}, 1.1$ equiv) at $0^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature, and stirring was continued at this temperature overnight. Next, the reaction mixture was washed with a solution of $1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed in vacuo followed by flash chromatography to obtain the 2-allyl- N-tosylaniline as a white solid.

Method B:

(S)-N-Tosyl-1-isopropyl-4-pentenyl amine:

Allylmagnesium bromide (1.0 M solution in diethyl ether, 10.5 mmol , 5 equiv) was added dropwise to (S)-2-isopropyl- N -tosylaziridine ${ }^{3}$ (2.1 mmol , 1 equiv) dissolved in $5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ under $\operatorname{Ar}(\mathrm{g})$. The mixture was stirred for an additional 16 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})(15 \mathrm{~mL})$, and extracted with EtOAc (2 x 10 mL). The crude oil was purified by flash chromatography to give (S)- N-tosyl-1-isopropyl-4-pentenyl amine as a white solid.

III. Detailed Reaction Conditions Optimization

Table S1 Screening Different Catalysts ${ }^{\text {a }}$

entry	Cat. (50 mol \%)	Oxidant (1.0 equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	16 \%
2	$\mathrm{Cu}(\mathrm{OAc})_{2}$	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	Trace
3	$\mathrm{Cu}(\mathrm{OTf})_{2}$	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	Trace
4	CuBr_{2}	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
5	CuCl_{2}	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
6	CuO	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
7	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
8	$\mathrm{Cu}(\mathrm{EN})_{2}$	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
9	CuF_{2}	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
10	$\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
11	$\mathrm{Cu}_{2} \mathrm{O}$	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.

[a] All reactions were carried out in the presence of 0.2 mmol of $\mathbf{1 a}$ and 0.3 mmol of $\mathbf{2 a}$ in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

Table S2 Screening Different Ag Oxidant ${ }^{\text {a }}$

entry	Cat. (50 mol \%)	Oxidant (1.0 equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Yield (\%)
1	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{2} \mathrm{O}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
2	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	Trace
3	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	AgOTf^{2}	80	$\mathrm{CH}_{3} \mathrm{CN}$	10%
4	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	AgNO_{3}	80	$\mathrm{CH}_{3} \mathrm{CN}$	16%
5	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	AgBF_{4}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
6	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	AgF	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
7	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	AgTFA_{2}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
8	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	AgNO_{2}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
9	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	AgNTf_{2}	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
10	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	37%

[a] All reactions were carried out in the presence of 0.2 mmol of $\mathbf{1 a}$ and 0.3 mmol of $\mathbf{2 a}$ in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

Table S3 Screening the Loading of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{\text {a }}$

entry	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	Oxidant (1.0 equiv.)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Yield (\%) ${ }^{\mathrm{b}}$
1	25%	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	Trace
2	75%	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	41%
3	100%	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	48%

4	150%	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	57%
5	200%	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	65%
6	250%	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	62%
7	300%	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	46%

[a] All reactions were carried out in the presence of 0.2 mmol of $\mathbf{1 a}$ and 0.3 mmol of 2a in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

Table S4 Screening Different Catalysts ($200 \mathrm{~mol} \%)^{\text {a }}$

entry	Cat. (200 mol \%)	Oxidant (1.0 equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	65 \%
2	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	Trace
3	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	60 \%
4	CuBr_{2}	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
5	CuCl_{2}	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
6	CuO	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	20 \%
7	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
8	$\mathrm{Cu}(\mathrm{EN})_{2}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	Trace
9	CuF_{2}	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
10	$\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
11	$\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	10 \%
12	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	13 \%
13	Cul	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
14	CuBr	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	Trace
15	CuCl	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
16	No	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.

[a] All reactions were carried out in the presence of 0.2 mmol of $\mathbf{1 a}$ and 0.3 mmol of $\mathbf{2 a}$ in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

Table S5 Screening Different Temperature ${ }^{\text {a }}$

entry	Cat. $(200$ mol \%)	Oxidant (1.0 equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	95	$\mathrm{CH}_{3} \mathrm{CN}$	66%
2	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	80	CH 3 CN	65%
3	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	65	$\mathrm{CH}_{3} \mathrm{CN}$	68%
4	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	50	$\mathrm{CH}_{3} \mathrm{CN}$	63%
5	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	35	CH 3 CN	60%

[a] All reactions were carried out in the presence of 0.2 mmol of $\mathbf{1 a}$ and 0.3 mmol of $\mathbf{2 a}$ in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

Table S6 Screening Different Solvent ${ }^{\text {a }}$

entry	Cat. (200 mol \%)	Oxidant (1.0 equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Yield (\%)
1	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	65	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	Trace
2	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	65	CHCl_{3}	Trace
3	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	65	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Trace

4	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	65	toluene	trace
5	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	65	THF	N.R.
6	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	65	DME	N.R.
7	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	65	1,4-dioxane	N.R.
8	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	65	DMF	N.R.
9	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	65	DMA	N.R.
10	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	65	DMSO	N.R.

[a] All reactions were carried out in the presence of 0.2 mmol of $\mathbf{1 a}$ and 0.3 mmol of $\mathbf{2 a} \mathbf{a} 2.0 \mathrm{~mL}$ different solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.
Table S7 Screening Different Oxidant ${ }^{a}$

entry	Cat. $(200 \mathrm{~mol} \%)$	Oxidant (1.0 equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	65	$\mathrm{CH}_{3} \mathrm{CN}$	48%
2	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	65	$\mathrm{CH} 3{ }_{3} \mathrm{CN}$	41%
3	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	${ }^{t} \mathrm{BuOOH}$	65	$\mathrm{CH}_{3} \mathrm{CN}$	43%
4	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	${ }^{t} \mathrm{BuOO}{ }^{t} \mathrm{Bu}$	65	$\mathrm{CH}_{3} \mathrm{CN}$	35%
5	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	65	$\mathrm{CH}_{3} \mathrm{CN}$	36%
6	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	Dicumyl peroxide	65	$\mathrm{CH}_{3} \mathrm{CN}$	trace
7	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	Dibenzoyl peroxide	65	$\mathrm{CH}_{3} \mathrm{CN}$	trace
8	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	DDQ	65	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
9	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	BQ	65	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
10	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{PhI}(\mathrm{OAc})_{2}$	65	$\mathrm{CH}_{3} \mathrm{CN}$	N.R.
11	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	MnO	2	65	$\mathrm{CH}_{3} \mathrm{CN}$

[a] All reactions were carried out in the presence of 0.2 mmol of $\mathbf{1 a}$ and 0.3 mmol of $\mathbf{2 a}$ in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

Table 58 Screening the Loading of $\mathbf{2 a}$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}{ }^{\text {a }}$

entry	$\mathrm{Cat} .(2 \mathrm{OO} \mathrm{mol} \%)$	2a	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Yield (\%)
1	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	2.0 equiv	1.5 equiv	65	$\mathrm{CH}_{3} \mathrm{CN}$	36%
2	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	2.0 equiv	2.0 equiv	65	CH 3 CN	34%
3	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	2.0 equiv	2.5 equiv	65	$\mathrm{CH}_{3} \mathrm{CN}$	17%
4	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	2.0 equiv	3.0 equiv	65	$\mathrm{CH}_{3} \mathrm{CN}$	trace
5	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	3.0 equiv	1.5 equiv	65	$\mathrm{CH}_{3} \mathrm{CN}$	52%
6	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	3.0 equiv	2.0 equiv	65	$\mathrm{CH}_{3} \mathrm{CN}$	52%
7	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	3.0 equiv	2.5 equiv	65	$\mathrm{CH}_{3} \mathrm{CN}$	41%
8	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	3.0 equiv	3.0 equiv	65	$\mathrm{CH}_{3} \mathrm{CN}$	32%
9	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	4.0 equiv	1.5 equiv	65	$\mathrm{CH}_{3} \mathrm{CN}$	57%
10	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	4.0 equiv	2.0 equiv	65	$\mathrm{CH}_{3} \mathrm{CN}$	60%
11	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	4.0 equiv	2.5 equiv	65	$\mathrm{CH}_{3} \mathrm{CN}$	64%
12	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	4.0 equiv	3.0 equiv	65	$\mathrm{CH}_{3} \mathrm{CN}$	73%

[a] All reactions were carried out in the presence of 0.2 mmol of 1 a in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

Table S9 Screening for Reaction Conditions ${ }^{\text {a }}$

entry	$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	Time	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)$	Solvent	Yield (\%)
1	20%	3 hour	3.0 equiv.	65	$\mathrm{CH}_{3} \mathrm{CN}$	35%
2	20%	6 hour	3.0 equiv.	65	$\mathrm{CH}_{3} \mathrm{CN}$	58%
3	20%	10 hour	3.0 equiv.	65	$\mathrm{CH}_{3} \mathrm{CN}$	40%
4	20%	6 hour	3.0 equiv.	50	$\mathrm{CH}_{3} \mathrm{CN}$	62%
5	20%	6 hour	3.0 equiv.	35	$\mathrm{CH}_{3} \mathrm{CN}$	74%
6	25%	6 hour	3.0 equiv.	35	$\mathrm{CH}_{3} \mathrm{CN}$	74%
7	15%	6 hour	3.0 equiv.	35	$\mathrm{CH}_{3} \mathrm{CN}$	60%

[a] 2a (0.8 mmol) in solvent (2 mL) was added dropwise via an automatic syringe to a mixture of $\mathbf{1 a}(0.2 \mathrm{mmol})$, $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.6 \mathrm{mmol})$ in solvent $(2 \mathrm{~mL})$. [b] Yield of isolated product.

IV. General Procedures for Copper-Catalyzed Radical Cascade Cyclization of Alkenes:

To a Schlenk tube were added 1a $(0.2 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.6 \mathrm{mmol})$ and charged with argon for three times. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was added via syringe and the mixture was stirred at $35{ }^{\circ} \mathrm{C}$ under Ar for 5 min . Then 2a (0.8 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added dropwise via an automatic syringe to the mixture in 6 hour at $35^{\circ} \mathrm{C}$ under Ar atmosphere. The substrate was consumed (monitored by TLC) after the mixture was stirred for an additional hour, and then the reaction was cooled to room temperature. The solvent was removed by rotary and the resulting residue was purified by column chromatography on silica gel (eluent: hexanes/ethylacetate $=4: 3$) to afford the product $\mathbf{3 a}$ in 74% yield.

V. Radical Trapping Experiments:

To a Schlenk tube were added $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.6$ $\mathrm{mmol}), \mathbf{5 a}(0.2 \mathrm{mmol})$ and charged with argon for three times. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was added via syringe and the mixture was stirred at $35^{\circ} \mathrm{C}$ under Ar for 5 min . Then $\mathbf{2 a}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added dropwise via an automatic syringe to the mixture in 6 hour at $35^{\circ} \mathrm{C}$ under Ar atmosphere. The substrate was consumed (monitored by TLC) after the mixture was stirred for an additional hour, and then the reaction was cooled to room temperature. The solvent was removed by rotary and the resulting residue was purified by column chromatography on silica gel (eluent: hexanes/ethylacetate $=2: 1$) to afford the product $\mathbf{3 a}$ in 4% yield and $\mathbf{6 a}$ in 30% yield.

To a Schlenk tube were added $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.6$ mmol), 5a (0.2 mmol) and charged with argon for three times. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was added via syringe and the mixture was stirred at $35^{\circ} \mathrm{C}$ under Ar for 5 min . Then $\mathbf{2 a}(0.8 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added dropwise via an automatic syringe to the mixture in 6 hour at $35{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The substrate was consumed (monitored by TLC) after the mixture was stirred for an additional hour, and then the reaction was cooled to room temperature. The solvent was removed by rotary and the resulting residue was purified by column chromatography on silica gel (eluent: hexanes/ethylacetate $=2: 1$) to afford the product 3a in 57% yield and $\mathbf{6 a}$ in 28% yield.

VI. Control Experiments:

To a Schlenk tube were added $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.6 \mathrm{mmol})$ and charged with argon for three times. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was added via syringe and the mixture was stirred at $35^{\circ} \mathrm{C}$ under Ar for 6 hour. The reaction was monitored by TLC and no 7a was detected.

To a Schlenk tube were added $2 \mathrm{a}(0.8 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.6$ $\mathrm{mmol})$, and charged with argon for three times. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was added via syringe and the mixture was stirred at $35{ }^{\circ} \mathrm{C}$ under Ar for 5 min . Then $\mathbf{1 a}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2$ mL) was added dropwise via an automatic syringe to the mixture in 6 hour at $35{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The substrate was consumed (monitored by TLC) after the mixture was stirred for an additional hour, and then the reaction was cooled to room temperature. The solvent was removed by rotary and the resulting residue was purified by column chromatography on silica gel (eluent: hexanes/ethylacetate $=2: 1$) to afford the product $\mathbf{3 a}$ in 9% yield and $\mathbf{4 a}$ in 48% yield.

To a Schlenk tube were added 1a $(0.2 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol})$ and charged with argon for three times. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was added via syringe and the mixture was
stirred at $35^{\circ} \mathrm{C}$ under Ar for 1 hour. Then $\mathrm{Ph}_{2}(\mathrm{O}) \mathrm{PAg}(0.2 \mathrm{mmol})$ was added and the mixture was stirred for 6 hour. The reaction was cooled to room temperature. The solvent was removed by rotary and the resulting residue was purified by column chromatography on silica gel (eluent: hexanes/ethylacetate $=2: 1$) to afford the product $\mathbf{3 a}$ in 7% yield and $\mathbf{8 a}$ in 7% yield.

VII. Plausible Mechanistic Pathway:

Considering that $\mathbf{2 a}$ is added slowly in order to reduce the byproduct $\mathbf{4 a}$, we depicted a competitive alternate mechanism in Scheme S1 (Path B). Initially, 1a reacts with copper salt in order to form the N -chelated copper complex $\mathbf{6 A}$, which is added by $\mathbf{2 A}$ to give the alkyl radical 7A. Subsequently, 7A undergoes an intramolecular oxidative addition providing 5A followed by reductive elimination to release the product $\mathbf{3 a}$ along with copper (I). Finally, in the presence of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, the copper (I) is oxidized to copper (II) to complete the catalytic cycle. The slight difference between Path A (Scheme 3 in paper) and Path B is whether copper catalyst is free or coordinated.

Scheme S1

VIII. Characterization of the Products:

Note: $\mathbf{3 e}, \mathbf{3 f}, \mathbf{3 g}, \mathbf{3 h}, \mathbf{3 z}$ and 3aa are the mixture of diastereoisomers. 31, 3n and $\mathbf{3 v}$ are mixture with trace amount of unknown impurities.

3a: colourless oil; 74% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.38 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ §: 7.99-8.04 (m, 2 H), 7.69-7.76 (m, 2 H), 7.62-7.68 (m, 4 H), 7.44-7.54 (m, 3 H), 7.27-7.29 (m, 2 H), 7.19-7.22 (m, 1 H$), ~ 7.07-7.00(\mathrm{~m}, 4 \mathrm{H})$, 4.30-4.39 (m, 1 H$), 3.20-3.27(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.98(\mathrm{~m}$, $1 \mathrm{H}), 2.67-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 144.07,140.66,134.11$, $133.54\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=101.1 \mathrm{~Hz}\right), 132.13\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 131.97\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 131.58\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=\right.$ $98.8 \mathrm{~Hz}), 131.35\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.5 \mathrm{~Hz}\right), 131.26,130.33\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.6 \mathrm{~Hz}\right), 129.58,128.93\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.7\right.$ $\mathrm{Hz}), 128.75\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.7 \mathrm{~Hz}\right), 127.76,126.91,125.46,124.75,116.61,58.07,37.18\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=\right.$ $66.8 \mathrm{~Hz}), 35.00,21.47$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 488.1$.

3b: colourless oil; 83% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.88 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ ס: 7.84-7.89 (m, 2 H), 7.57-7.66 (m, 3 H), 7.42-7.45 (m, 2 H), 7.24-7.30 (m, 4 H), 7.16-7.21 (m, 1 H), 6.99-7.07 (m, 4 H), 4.31-4.39 (m, 1 H), 3.15-3.26 (m, 2 H), 2.90-2.96 (m, 1 H$)$, 2.63-2.73 (m, $1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 8: 144.00,142.50(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 142.37\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 140.68,134.22,131.37,131.35\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.9 \mathrm{~Hz}\right), 130.51$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=103.6 \mathrm{~Hz}\right), 130.33\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}\right), 129.66,129.54,129.43\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.2 \mathrm{~Hz}\right), 128.37$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=101.2 \mathrm{~Hz}\right), 127.69,126.96,125.46,124.69,116.61,58.20,37.27\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=67.0 \mathrm{~Hz}\right)$, 34.96, 21.66, 21.53, 21.49; MS (ESI): found [M+H] ${ }^{+}$516.2.

3c: colourless oil; 73% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 28.61 ;{ }^{1} \mathbf{H} \mathbf{~ N M R ~}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ §: 7.89-7.94 (m, 2 H), 7.60-7.67 (m, 5 H), 7.43-7.45 (m, 2 H), 7.29 (d, J = 8.2 Hz, 2 H), 7.18-7.22 $(\mathrm{m}, 1 \mathrm{H}), 7.00-7.10(\mathrm{~m}, 4 \mathrm{H}), 4.27-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.98(\mathrm{~m}, 1 \mathrm{H})$, $2.66-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 144.29,140.50,139.08\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}\right.$ $=3.4 \mathrm{~Hz}), 138.87\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=3.2 \mathrm{~Hz}\right), 134.04,132.70\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=10.3 \mathrm{~Hz}\right), 132.01,131.71\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=\right.$ $11.6 \mathrm{~Hz}), 130.97,130.20,129.67,129.40\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}\right), 129.21\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.6 \mathrm{~Hz}\right), 127.89$, 126.87, 125.47, 124.86, 116.57, 57.83, 37.06 (d, $\mathrm{J}_{\mathrm{C}-\mathrm{P}}=67.8 \mathrm{~Hz}$), 35.00, 21.50; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 556.0$.

3d: Reaction was carried out in the presence of $\mathbf{1}(0.2 \mathrm{mmol}), \mathbf{2}(0.8 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.4$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ in 6 hour at $65^{\circ} \mathrm{C}$ under Ar atmosphere. colourless oil; 53% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.53 ;{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.87-7.92$ (m, 2 H), 7.59-7.66 (m, 3 H), $7.30(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18-7.21 (m, 1 H), 7.12-7.14 (m, 2 H), 7.00-7.08 (m, 4 H), 6.93-6.96 (m, 2 H$), 4.31-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.26$ $(\mathrm{m}, 1 \mathrm{H}), 3.11-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 162.62\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 162.37\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C} \cdot \mathrm{P}}=2.7 \mathrm{~Hz}\right), 144.03,140.68,134.23$, 133.17 (d, $\mathrm{J}_{\mathrm{C}-\mathrm{P}}=10.7 \mathrm{~Hz}$), $132.15\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.0 \mathrm{~Hz}\right), 131.40,129.56,127.70,126.95,125.47$, $124.69,116.61,114.44\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.8 \mathrm{~Hz}\right), 114.24\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.9 \mathrm{~Hz}\right), 58.25,55.45,55.34,37.56$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=67.4 \mathrm{~Hz}\right), 34.96,21.48$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 548.2$.

3e: colourless oil; 70% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 48.10,44.63 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta: 7.96-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.70(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.88-7.07(\mathrm{~m}, 3 \mathrm{H})$, 4.77-4.85 (m, 0.43 H), 4.15-4.22 (m, 0.55 H), 2.62-3.26 (m, 3 H), 2.42-2.52 (m, 1 H$), 2.28-2.35$ (m, 3 H), 1.12-1.24 (m, 9 H$) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 144.08,143.99,140.67,140.60$, $134.66,134.22$, $132.62,132.54,131.93$, 131.91, 131.64, 131.61, 131.51, 131.47, 131.39, 131.31, $131.05,129.88,129.71,129.52,129.08,128.50,128.39,128.30,128.22,128.19,127.70,127.68$, $127.03,126.82,125.56,125.34,124.72,124.58,116.69,116.57,58.85,58.30,34.95,34.93,33.86$, $33.29,33.17,32.59,31.96,31.38,30.57,29.99,24.16,24.12,21.50,21.41$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 468.2$.

3f: colourless oil; 51% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 40.47,39.91 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta: 7.87-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.81(\mathrm{~m}, 1 \mathrm{H})$, 7.48-7.70(m,5 H), 7.17-7.26 (m, 3 H), 7.00-7.07 (m, 3 H), 4.61-4.70 (m, 0.5 H), 4.06-4.19 (m, 1.5 H), 3.83-3.98 (m, 1 H), 2.78-3.14 (m, $3 \mathrm{H})$, 2.25-2.49 (m, 4 H$), 1.28-1.38(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 144.04,143.94$, $140.86,140.72$, 134.64, 134.11, 132.58, 132.56, 132.50, 132.48, 131.91, 131.81, 131.69, 131.56, $131.47,131.32,131.07,130.97,130.45,129.72,129.63,129.51,128.87,128.77,128.74,128.65$, $128.48,127.76,127.73,127.08,126.99$, 125.32 , $125.31,124.69,124.64,116.93,116.70,60.80$, $60.75,57.89,57.37,57.31,37.82,37.52,36.86,36.57,34.85,34.74,21.51,21.46,16.51,16.45$, 16.39; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$456.1.

3g: colourless oil; 77% yield; ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 39.11,38.52 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta: 7.89-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.62(\mathrm{~m}, 3 \mathrm{H})$, 7.46-7.51 (m, 1 H$), 7.15-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.00-7.07(\mathrm{~m}, 3 \mathrm{H}), 4.51-4.68(\mathrm{~m}, 1.5 \mathrm{H}), 4.04-4.13(\mathrm{~m}$, $0.5 \mathrm{H})$, 2.76-3.16 (m, 3 H), 2.23-2.48 (m, 4 H), 1.36-1.44 (m, 3 H), 1.15-1.22 (m, 3 H); ${ }^{13}$ C NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 144.04,143.92,140.87,140.76,134.62,134.07,132.56,132.46,132.44$, $132.37,132.34,131.94,131.84,131.64,131.56,131.46,131.40,131.31,131.12,130.40,129.77$, $129.62,129.49,128.77,128.65,128.52,127.73,127.70,127.09,126.98,125.31,124.69,124.62$, $116.95,116.68,70.10,70.03,69.95,69.89,57.96,57.40,57.33,38.17,37.88,37.21,36.92,34.76$, 34.65, 24.62, 24.59, 24.54, 24.51, 23.98, 23.96, 23.94, 23.91, 21.52, 21.46; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 470.3$.

3h: colourless oil; 72% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 40.38,39.80 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta: 7.87-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.81(\mathrm{~m}, 1 \mathrm{H})$, 7.48-7.70(m,5 H), 7.17-7.26(m, 3 H), 7.01-7.07 (m, 3 H), 4.62-4.70 (m, 0.43 H), 3.99-4.17 (m, 1.58 H), 3.75-3.84 (m, 1 H$), 2.78-3.15$ $(\mathrm{m}, 3 \mathrm{H}), 2.25-2.50(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.52(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.99(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$

NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 144.05,143.94,140.85,140.73,134.65,134.12,132.58,132.55$, $132.51,132.48$, $131.91,131.81,131.59,131.49,131.35,131.08,130.90,130.33,129.62,129.51$, $128.86,128.77,128.74,128.65,127.76,127.74,127.07,126.99,126.32,125.33,125.31,124.71$, $124.65,116.96,116.71,64.47,64.41,64.34,57.88,57.39,57.33,37.81,37.46,36.85,36.51,34.84$, $34.73,32.59,32.51,32.44,21.51,21.46,18.85,18.76,13.65,13.55$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$ 484.2.

3i: colourless oil; 42% yield; ${ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.19 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta: 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.09(\mathrm{~m}, 2 \mathrm{H})$, 4.47-4.55 (m, 1 H$), 3.76-3.84(\mathrm{~m}, 6 \mathrm{H}), 2.98-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, 2.18-2.26 (m, 1 H$) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 144.13,140.67,134.68,131.04,129.69$, $127.87,127.04,125.35,124.80,116.88,57.81,52.60,52.42\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6.5 \mathrm{~Hz}\right), 34.65,32.49\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}\right.$ $=134.5 \mathrm{~Hz}$), 21.50; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 396.1$.

$\mathbf{3 j}$: colourless oil; 53% yield; ${ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 26.44 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta: 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 2 \mathrm{H})$, 4.46-4.55 (m, 1 H$), 4.07-4.21(\mathrm{~m}, 4 \mathrm{H}), 2.91-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, 2.14-2.24 (m, 1 H$), 1.33-1.41(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 144.10,140.73,134.67$, 131.17, 129.67, 127.82, 127.03, 125.33, 124.77, 116.92, $61.60\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right), 61.87\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=\right.$ $6.3 \mathrm{~Hz}), 57.96\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 34.61,33.31\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=134.4 \mathrm{~Hz}\right), 21.50,16.45,16.42,16.39$, 16.36; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$424.1.

3k: colourless oil; 61% yield; ${ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 24.24 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta: 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 2 \mathrm{H})$, 4.68-4.80 (m, 2 H), 4.46-4.55 (m, 1 H), 3.03-3.08 (m, 1 H$), 2.87-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.61(\mathrm{~m}, 1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.40(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 144.02$, $140.79,134.80$, 131.37, 129.62, 127.77, 127.04, 125.31, 124.74, 117.05, $70.64\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6.8 \mathrm{~Hz}\right)$, $70.61\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6.5 \mathrm{~Hz}\right), 58.23\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 34.69\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=135.9 \mathrm{~Hz}\right), 34.42,24.12,24.08$, 24.04, 24.00, 21.50; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 452.1$.

31: colourless oil; 53% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 26.41 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta: 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.06(\mathrm{~m}, 2 \mathrm{H})$, 4.47-4.54 (m, 1 H$), ~ 4.03-4.12(\mathrm{~m}, 4 \mathrm{H}), 2.90-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, 2.13-2.24 (m, 1 H), 1.65-1.74 (m, 4 H), 1.39-1.50 (m, 4 H$), 0.94-1.01(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (CDCl_{3}, $100 \mathrm{MHz}) \delta: 144.05,140.77,134.78$, 131.20, 129.63, 127.81, 127.03, 125.31, 124.75, 116.95, $65.66\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}\right), 58.01,34.57,33.20\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=125.5 \mathrm{~Hz}\right), 32.78,32.48,21.47,18.79,18.75$,

3m: colourless oil; 45% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 27.55 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta: 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 10 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 1$ H), $7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-7.05(\mathrm{~m}, 2 \mathrm{H}), 4.98-5.15(\mathrm{~m}, 4 \mathrm{H}), 4.43-4.52(\mathrm{~m}, 1 \mathrm{H})$, 2.69-2.99 (m, 3 H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 144.02$, $140.69,136.18\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6.4 \mathrm{~Hz}\right), 136.08\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 134.51,131.04,129.62,128.65$, $128.49\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 127.97\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=4.6 \mathrm{~Hz}\right), 127.83,127.06,125.31,124.75,116.89,67.44$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=6.7 \mathrm{~Hz}\right), 67.43\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6.7 \mathrm{~Hz}\right), 57.82\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 34.59,33.67\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=134.8\right.$ $\mathrm{Hz}), 21.51$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 548.1$.

3n: colourless oil; 31% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 19.69 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta: 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 4 \mathrm{H})$, 7.22-7.27 (m, 2 H), 7.16-7.20 (m, 5H), 7.04-7.09 (m, 2 H), 4.64-4.73 (m, 1 H), 3.11-3.16 (m, 2 H), 2.95-3.04 (m, 2 H), 2.48-2.59 (m, 1 H), $2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 150.26(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 150.00\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=8.8 \mathrm{~Hz}\right), 144.22,140.62,134.49,130.98129 .90\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=4.4 \mathrm{~Hz}\right)$, $129.71,127.96,127.07,125.40,124.97,120.61,120.58,120.56,120.54,117.11,57.66\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=\right.$ $2.9 \mathrm{~Hz}), 34.68,33.97\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=135.0 \mathrm{~Hz}\right), 21.52$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 520.1$.

3p: colourless oil; 65% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.58 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ ס: 7.98-8.01 (m, 2 H), 7.67-7.74 (m, 2 H), 7.60-7.66 (m, 4 H), 7.42-7.52 (m, 4 H), 7.37-7.39 (m, 2 Н), 7.23-7.27 (m, 2 H$), ~ 7.17-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.99-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.25(\mathrm{~m}$, $2 \mathrm{H}), 2.87-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 140.41,136.97$, $133.75\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=101.1 \mathrm{~Hz}\right), 133.07,132.07\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.91\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.38(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{P}}=98.7 \mathrm{~Hz}\right), 131.25\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.3 \mathrm{~Hz}\right), 131.16,130.24\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.5 \mathrm{~Hz}\right), 128.88,128.86\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}\right.$ $=11.7 \mathrm{~Hz}), 128.68\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 127.73,126.77,125.43,124.79,116.54,58.06,37.01\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}\right.$ $=66.9 \mathrm{~Hz}), 34.84$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 474.1$.

3q: colourless oil; 61% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.38 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta: 7.92-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 2$ H), 7.05-7.09 (m, 1 H), 4.53-4.61 (m, 1 H$), 3.51-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H})$, 2.66-2.73 (m, 1 H$) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 140.39,133.65\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=101.1 \mathrm{~Hz}\right), 132.20$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 131.93\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 131.38\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=99.1 \mathrm{~Hz}\right), 131.15\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.4 \mathrm{~Hz}\right)$, $130.69,130.29\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.6 \mathrm{~Hz}\right), 128.95\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.9 \mathrm{~Hz}\right), 128.74\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 128.05$, $125.79,124.72,115.23,58.93,37.24\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=66.7 \mathrm{~Hz}\right), 35.82,35.10$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$
412.1.

3r: colourless oil; 45% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.61 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta: 7.95-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 2$ H), $7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H})$, 4.26-4.33 (m, 1 H), 3.16-3.22 (m, 2 H), 2.83-2.90 (m, 1 H), 2.66-2.76 (m, 1 H), 2.30 (s, 3 H$), 2.25$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 143.93,138.24,134.54,134.07,133.60\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=101.1\right.$ $\mathrm{Hz}), 132.09\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.94\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.54\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=98.8 \mathrm{~Hz}\right), 131.41,131.36$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=9.4 \mathrm{~Hz}\right), 130.32\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.5 \mathrm{~Hz}\right), 129.54,128.91\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 128.73\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=\right.$ $11.9 \mathrm{~Hz}), 128.36,126.95,126.02,116.47,58.16\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=0.8 \mathrm{~Hz}\right), 37.14\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=66.8 \mathrm{~Hz}\right), 34.98$, 21.47, 20.93; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$502.1.

3s: Reaction was carried out in the presence of $\mathbf{1}(0.2 \mathrm{mmol}), \mathbf{2}(0.8 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.4$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ in 6 hour at $65{ }^{\circ} \mathrm{C}$ under Ar atmosphere. colourless oil; 55% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.46 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.96-8.01$ (m, 2 H), 7.69-7.74 (m, 2 H), 7.61-7.66 (m, 3 H), 7.43-7.56 (m, 4 H$), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.73-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H})$, 3.13-3.18 (m, 2 H), 2.78-2.85 (m, 1 H), 2.64-2.74 (m, 1 H$), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (CDCl ${ }_{3}$, $100 \mathrm{MHz}) \delta: 157.48,143.92,133.95,133.90,133.22,133.61\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=100.9 \mathrm{~Hz}\right), 132.09\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}\right.$ $=2.7 \mathrm{~Hz}), 131.93\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 131.57\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=98.8 \mathrm{~Hz}\right), 131.33\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.4 \mathrm{~Hz}\right), 130.32$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=9.6 \mathrm{~Hz}\right), 129.52,128.93\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.8 \mathrm{~Hz}\right), 128.73\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.9 \mathrm{~Hz}\right), 126.99,117.90$, 113.17, 110.89, $58.39\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 55.57,37.01(\mathrm{~d}, \mathrm{~J}=66.9 \mathrm{~Hz}), 35.11,21.47$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$518.1.

3t: colourless oil; 75% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.30 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta: 7.96-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.85-7.90(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.38(\mathrm{~m}, 1$ H), 3.14-3.24 (m, 2 H$), 2.83-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta: 160.37\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=243.3 \mathrm{~Hz}\right), 144.24,136.71\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.1 \mathrm{~Hz}\right), 133.75,133.64\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}\right.$ $=8.7 \mathrm{~Hz}), 133.41\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=101.2 \mathrm{~Hz}\right), 132.16\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 132.01\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 131.47$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=98.7 \mathrm{~Hz}\right), 131.30\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.4 \mathrm{~Hz}\right), 130.32\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.7 \mathrm{~Hz}\right), 129.64,128.98\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=\right.$ $11.8 \mathrm{~Hz}), 128.76\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.9 \mathrm{~Hz}\right), 126.94,117.80\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.6 \mathrm{~Hz}\right), 114.41\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23.5 \mathrm{~Hz}\right)$, $112.56\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23.9 \mathrm{~Hz}\right), 58.57\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=1.0 \mathrm{~Hz}\right), 37.04(\mathrm{~d}, \mathrm{~J}=66.8 \mathrm{~Hz}), 34.92,21.47 ;{ }^{19} \mathbf{F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta:-118.08$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 506.1$.

3u: colourless oil; 70% yield; ${ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.35 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta: 7.95-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 2$ H), $7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.28-4.36$ $(\mathrm{m}, 1 \mathrm{H}), 3.17-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 144.38,139.43,133.75,133.35\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=101.3 \mathrm{~Hz}\right), 133.27,132.18\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}\right.$ $=2.7 \mathrm{~Hz}), 132.06\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.42\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=98.9 \mathrm{~Hz}\right), 131.32\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.3 \mathrm{~Hz}\right), 131.12$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=9.6 \mathrm{~Hz}\right), 120.00,129.73,129.75\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.7 \mathrm{~Hz}\right), 129.58\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.9 \mathrm{~Hz}\right), 128.65$, $127.68,126.34,118.24,58.77,37.35\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=66.7 \mathrm{~Hz}\right), 35.02,21.64$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$ 522.1.

3v: colourless oil; 73% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.99 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ ס: 7.87-7.92 (m, 2 H), 7.59-7.65 (m, 5 H), 7.44-7.46 (m, 1 H), 7.37-7.42 (m, 2 H), 7.08-7.15 (m, 3 H), 7.02-7.06 (m, 3 H$), 6.85(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.58(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~s}$, $3 \mathrm{H}), 2.37-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.13(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$: $143.98,139.77,135.81,134.13,133.45\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=101.0 \mathrm{~Hz}\right), 132.64,132.11\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right)$, $131.83\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 131.27\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=99.2 \mathrm{~Hz}\right), 131.13\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.3 \mathrm{~Hz}\right), 130.31,130.22(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{P}}=9.7 \mathrm{~Hz}\right), 129.35,128.91\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 128.61\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 127.35,126.66$, $122.74,59.69,35.18\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=67.7 \mathrm{~Hz}\right), 34.38,21.47,19.90$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 502.1$.

3w: colourless oil; 60% yield; ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.70 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz})$: $7.86-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.66(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.07-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.73(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 2.95(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 152.56,143.78,137.11,135.27,133.62\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=100.9 \mathrm{~Hz}\right), 132.15,131.88$, $131.14\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.4 \mathrm{~Hz}\right), 130.90,130.26\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.6 \mathrm{~Hz}\right), 129.33,128.97\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.8 \mathrm{~Hz}\right)$, $128.68\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.9 \mathrm{~Hz}\right), 127.70,127.36,117.88,112.06,60.22,56.08,35.48(\mathrm{~d}, \mathrm{~J}=67.2 \mathrm{~Hz})$, 34.86, 21.52; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 518.1$.

$\mathbf{3 x}$: colourless solid; 66% yield; ${ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.50 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) ~ \delta: 7.89-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.68(\mathrm{~m}, 5 \mathrm{H}), 7.47-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.97-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.64(\mathrm{~m}, 1$
H), $3.10(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 155.11\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=255.2 \mathrm{~Hz}\right), 144.29,137.86,134.43,133.41\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=101.7\right.$ $\mathrm{Hz}), 132.26\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 132.01\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 131.22\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=99.2 \mathrm{~Hz}\right), 131.17\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}\right.$ $=9.3 \mathrm{~Hz}), 130.25\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.7 \mathrm{~Hz}\right), 129.63,129.03\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 128.75\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right)$, $127.75\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10.4 \mathrm{~Hz}\right), 127.50\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=6.8 \mathrm{~Hz}\right), 127.29,121.20\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right), 116.00(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{F}}=20.3 \mathrm{~Hz}\right), 60.40,36.66(\mathrm{~d}, \mathrm{~J}=67.0 \mathrm{~Hz}), 34.75,21.54 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta:$ -118.75; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$506.1.

3y: colourless oil; 64% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.42 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ ס: 7.98-8.03 (m, 2 H$), 7.71-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H})$, $7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.29(\mathrm{~m}$, $1 \mathrm{H}), 3.05-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.32(\mathrm{~m}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta: 143.80,140.40,137.73,134.48,134.10,133.57\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=100.7 \mathrm{~Hz}\right), 131.96\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=\right.$ $2.7 \mathrm{~Hz}), 131.82\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.60\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=98.5 \mathrm{~Hz}\right), 131.29\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9.4 \mathrm{~Hz}\right), 130.24(\mathrm{~d}$, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{P}}=9.5 \mathrm{~Hz}\right), 129.45,128.78\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.9 \mathrm{~Hz}\right), 128.64\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=11.9 \mathrm{~Hz}\right), 126.86,126.81$, 126.46, 114.31, 58.07, 37.38 (d, $\mathrm{J}_{\mathrm{C}-\mathrm{P}}=66.9 \mathrm{~Hz}$), 33.71, 21.43, 21.39, 18.57; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$516.1.

3z: colourless solid; 63% yield; ${ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.67 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz})$ 8: 7.92-7.97 (m, 2 H), 7.65-7.71 (m, 2 H), 7.50-7.56 (m, 3 H), 7.39-7.45 (m, 4 H), 7.16-7.19 $(\mathrm{m}, 2 \mathrm{H}), 7.01-7.05(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.63(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.32(\mathrm{~m}, 2 \mathrm{H})$, 2.64-2.82 (m, 2 H$), 2.42-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.91(\mathrm{~m}, 1 \mathrm{H})$, 1.54-1.60 (m, 1 H), 1.37-1.42 (m, 1 H$), 1.11-1.12(\mathrm{~m}, 3 \mathrm{H}), 0.77-0.80(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta: 214.70,214.63,140.55,140.42,132.14,131.93,131.26,131.17,130.76,130.62$, 130.36, 130.26, 130.23, 129.07, 128.97, 128.85, 128.79, 128.75, 128.68, 128.63, 128.05, 127.89, $125.89,125.79,124.33,114.65,114.42,58.86,58.28,58.26,47.92,47.73,45.73,45.68,42.98$, $42.88,42.48,42.45,37.74,37.43,37.07,36.77,35.04,34.91,26.89,26.83,25.52,25.33,20.09$, 20.04, 19.76, 19.73; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+}$548.2.

3aa: colourless oil; 49% yield; ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.29,29.73 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta: 7.94-8.037(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.52(\mathrm{~m}, 4 \mathrm{H})$, 7.28-7.32 (m, 1 H), 7.12-7.16 (m, 2 H$), ~ 4.05-4.10(\mathrm{~m}, 0.46 \mathrm{H}), 3.89-3.92(\mathrm{~m}, 0.46 \mathrm{H}), 3.48-3.62$ $(\mathrm{m}, 1 \mathrm{H}), 3.30-3.382(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.48(\mathrm{~m}, 5 \mathrm{H}), 1.98-2.06(\mathrm{~m}, 1.13 \mathrm{H}), 1.88-1.957(\mathrm{~m}, 0.63 \mathrm{H})$, $1.71-1.83(\mathrm{~m}, 1.49 \mathrm{H}), 1.62-1.68(\mathrm{~m}, 0.63 \mathrm{H}), 1.11-1.17(\mathrm{~m}, 0.59 \mathrm{H}), 0.98-1.00(\mathrm{~m}, 1.64 \mathrm{H})$,
0.91-0.93 (m, 1.71 H), 0.79-0.81 (m, 1.44 H), 0.24-0.25 (m, 1.34 H); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta: 143.37,142.77,139.00,134.52,134.19,133.75,133.52,133.19,132.15,132.08,131.93,131.91$, $131.87,131.81,131.79,131.53,131.47,131.44,131.37,131.17,131.11,130.43,130.35,130.33$, $130.26,129.54,129.36,128.88,128.80$, 128.77 , $128.69,128.65,127.46,126.56,67.36,65.04$, $57.07,57.05,56.77,38.14,37.48,35.24,34.59,31.68,31.18,31.01,29.03,25.60,23.08,21.45$, 21.43, 20.10, 19.89, 17.70, 15.38; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 482.2$.

4a: colourless oil; ${ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 34.68 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 9.45(\mathrm{~s})$, $7.71-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.53(\mathrm{~m}, 7 \mathrm{H}), 7.01-7.13(\mathrm{~m}, 5 \mathrm{H}), 2.46-2.50(\mathrm{~m}$, $2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$: $142.83,137.79,135.51,134.79,132.31\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=99.1 \mathrm{~Hz}\right), 131.91\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 130.90$, $130.81,129.44,129.26,128.80,128.69,127.25,126.96,125.98\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6.9 \mathrm{~Hz}\right), 29.22\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=\right.$ $5.5 \mathrm{~Hz}), 26.83\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=4.3 \mathrm{~Hz}\right), 23.20\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=71.0 \mathrm{~Hz}\right), 21.50 ; \mathbf{M S}(\mathbf{E S I})$: found $[\mathrm{M}+\mathrm{H}]^{+} 490.1$.

6a: white solid; ${ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 18.75,18.66 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$: 7.68-7.74 (m, 4 H), 7.29-7.39 (m, 11 H), 7.24-7.27 (m, 2 H), 7.07-7.16 (m, 3 H), 6.82 (d, J= 18.2 $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 162.00\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 141.88\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=16.3 \mathrm{~Hz}\right)$, $138.03\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right), 134.40\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=108.8 \mathrm{~Hz}\right), 131.08\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 130.87\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=\right.$ $9.4 \mathrm{~Hz}), 130.32,129.09\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=90.4 \mathrm{~Hz}\right), 128.36\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 128.26\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6.4 \mathrm{~Hz}\right)$, $127.59,120.55\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=103.7 \mathrm{~Hz}\right) ; \mathbf{M S}(\mathbf{E S I})$: found $[\mathrm{M}+\mathrm{H}]^{+} 381.2$.

$\mathbf{8 a}: \mathbf{3 a}=\mathbf{1 : 1}$: colourless oil; ${ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta: 29.49,28.55 ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta: 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.97-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.77(\mathrm{~m}, 23 \mathrm{H}), 7.00-7.24(\mathrm{~m}, 11 \mathrm{H}), 4.28-4.35(\mathrm{~m}$, $1 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.48\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{P}}=14.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.18-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.75$ $(\mathrm{m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$; MS (ESI): found $[\mathrm{M}+\mathrm{H}]^{+} 488.1,504.1$.

IX. References:

1. Correa, A.; Tellitu, I.; Domínguez, E.; SanMartin, R. J. Org. Chem. 2006, 71, 8316.
2. Sherman, E. S.; Fuller, P. H.; Kasi, D.; Chemler, S. R. J. Org. Chem. 2007, 72, 3896.
3. Berry, M. B.; Craig, D. Synlett 1992, 41.

X. NMR Charts

$\stackrel{\square}{\text { ® }}$

Man

	100	50	0	-50	-100	-150

3b-H

3b-C

$3 \mathrm{c}-\mathrm{H}$

$$
\begin{aligned}
& \text { ABMin定 }
\end{aligned}
$$ n m

$3 \mathrm{c}-\mathrm{C}$

3e-C

3f-H

3f-C

P3g-P
[100

P3g-H

P3g-C

3h-H

 min wh

3h-C

3i-P
\qquad

	100	50	0	-100			
150	-150	-200	ppm				

3i-H

3i-C

3j-H

3j-C

3k-P

3k-H

3k-C

\qquad

31-C

3m-P
\qquad

	100	50	0	-100			
150	-100	-200	ppm				

3m-C

$\begin{array}{llllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

3n-H

3n-C

3p-C

$3 q-H$

$3 q-C$

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 100 | 50 | 0 | -50 | -100 | -150 | -200 | ppm |

3r-H

3r-C

3s-H

3s-C

3t-H

3t-C

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

100	50	0	-50	-100	-150	-200

3u-C

요 ~~~ 융

3w-H

3x-P ,

3x-F
\qquad

100	50	0	-50	-100	-150	-200	ppm

$3 y-H$

3y-C

(mineman.

3z-C

3aa-H

3aa-C

\qquad

4a-H

4a-C

\sim
NVN^{\sim}

(2a-P

100	50	0	-50			
100	-100	-150	-200	ppm		

6a-H

6a-C

