Supporting Information

Copper-Catalyzed Radical Cascade Cyclization for the Synthesis of Phosphorated Indolines

Hong-Yu Zhang,^a Liu-Liang Mao,^a Bin Yang^a and Shang-Dong Yang^{*, a, b}

^aState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.

^bState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.

Supporting Information

Table of Contents	
I. General Methods and Materials	S2
II. Typical Procedures for the Synthesis of Substrates	S2-S3
III. Detailed Reaction conditions Optimization	S4-S7
IV. General Procedures for Copper-Catalyzed Radical Cascado	e Cyclization of
Alkenes	S7
V. Radical Trapping Experiments	S7-S8
VI. Control Experiments	S8
VII. Plausible Mechanistic Pathway	S 9
VIII. Characterization of the Products	S9-S17
IX. References	S17
X. NMR Charts	S18-S105

I . General Methods and Materials

All reactions involving air- and moisture-sensitive reagents were carried out under an argon atmosphere. ¹H and ¹³C NMR spectra were recorded on a Bruker advance III 400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C) in CDCl₃ with TMS as internal standard. Chemical shifts (δ) were measured in ppm relative to TMS $\delta = 0$ for ¹H, or to chloroform $\delta = 77.0$ for ¹³C as internal standard. ³¹P and ¹⁹F NMR spectra were recorded on the same instrument. Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), Coupling constants, *J*, are reported in hertz. Mass data were measured with Thermo Scientific DSQ II mass spectrometer. The starting materials were purchased from Aldrich, Acros Organics, J&K Chemicals or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm). Substrates were prepared according to literature methods A¹ and methods B^{2, 3}.

II. Typical Procedures for the Synthesis of Substrates

Method A

Typical procedure:

Allyl bromide (16.24 mmol) was added dropwise to a solution of commercially available aniline (16.24 mmol) and K_2CO_3 (38.97 mmol) in DMF (37 mL). The solution was heated to 80 \mathbb{C} and stirred at this temperature overnight. The reaction mixture was then filtered, washed with H₂O (3x20 mL) and extracted with EtOAc (2x15 mL). The combined organic extracts were washed with brine (30 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography to afford *N*-allyl-aniline.

Next, $BF_3 OEt_2$ (7.36 mmol) was added to a solution of *N*-allyl-aniline (7.36 mmol) in xylene (4 mL) at 0 °C under Ar atmosphere. The mixture was heated to 180 °C in a sealed tube and stirred at this temperature for 12 hours. After cooling, the reaction mixture was poured into 10% NaOH (10 mL), and extracted with EtOAc (3x15 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by

column chromatography to yield 2-allylaniline as a colorless oil.

Subsequently, 2-allylaniline (4.08 mmol) and pyridine (8.58 mmol, 2.1 equiv) in CH_2Cl_2 (10 mL) was treated sequentially with tosyl chloride (4.49 mmol, 1.1 equiv) at 0 °C. The solution was allowed to warm to room temperature, and stirring was continued at this temperature overnight. Next, the reaction mixture was washed with a solution of 1 N HCl (20 mL) and extracted with EtOAc (3x20 mL). The combined organic extracts were washed with sat. aq. NaHCO₃ (20 mL) and then dried over Na₂SO₄. The solvents were removed in vacuo followed by flash chromatography to obtain the 2-allyl-*N*-tosylaniline as a white solid.

Method B:

(S)-*N*-Tosyl-1-isopropyl-4-pentenyl amine:

Allylmagnesium bromide (1.0 M solution in diethyl ether, 10.5 mmol, 5 equiv) was added dropwise to (S)-2-isopropyl-*N*-tosylaziridine³ (2.1 mmol, 1 equiv) dissolved in 5 mL Et₂O under Ar(g). The mixture was stirred for an additional 16 h. The reaction was quenched with saturated NH₄Cl(aq) (15 mL), and extracted with EtOAc (2 x10 mL). The crude oil was purified by flash chromatography to give (S)-*N*-tosyl-1-isopropyl-4-pentenyl amine as a white solid.

III. Detailed Reaction Conditions Optimization

Table S1 Screening Different Catalysts^a

entry	Cat. (50 mol %)	Oxidant (1.0 equiv)	T (°C)	Solvent	Yield (%) ^b
1	Cu(ClO ₄) ₂ ·6H ₂ O	AgNO ₃	80	CH₃CN	16 %
2	Cu(OAc) ₂	AgNO ₃	80	CH₃CN	Trace
3	Cu(OTf) ₂	AgNO ₃	80	CH₃CN	Trace
4	CuBr ₂	AgNO ₃	80	CH₃CN	N.R.
5	CuCl ₂	AgNO ₃	80	CH₃CN	N.R.
6	CuO	AgNO ₃	80	CH₃CN	N.R.
7	Cu(NO ₃) ₂ ·3H ₂ O	AgNO ₃	80	CH₃CN	N.R.
8	Cu(EN) ₂	AgNO ₃	80	CH₃CN	N.R.
9	CuF ₂	AgNO ₃	80	CH₃CN	N.R.
10	Cu ₂ (OH) ₂ CO ₃	AgNO ₃	80	CH₃CN	N.R.
11	Cu ₂ O	AgNO ₃	80	CH₃CN	N.R.

[a] All reactions were carried out in the presence of 0.2 mmol of **1a** and 0.3 mmol of **2a** in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

entry	Cat. (50 mol %)	Oxidant (1.0 equiv)	T (°C)	Solvent	Yield (%) ^b
1	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₂ O	80	CH₃CN	N.R.
2	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₂ CO ₃	80	CH₃CN	Trace
3	Cu(ClO ₄) ₂ ·6H ₂ O	AgOTf	80	CH₃CN	10 %
4	Cu(ClO ₄) ₂ ·6H ₂ O	AgNO ₃	80	CH₃CN	16 %
5	Cu(ClO ₄) ₂ ·6H ₂ O	AgBF ₄	80	CH₃CN	N.R.
6	Cu(ClO ₄) ₂ ·6H ₂ O	AgF	80	CH₃CN	N.R.
7	Cu(ClO ₄) ₂ ·6H ₂ O	AgTFA	80	CH₃CN	N.R.
8	Cu(ClO ₄) ₂ ·6H ₂ O	AgNO ₂	80	CH₃CN	N.R.
9	Cu(ClO ₄) ₂ ·6H ₂ O	AgNTf ₂	80	CH₃CN	N.R.
10	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	80	CH₃CN	37%

Table S2 Screening Different Ag Oxidant^a

[a] All reactions were carried out in the presence of 0.2 mmol of **1a** and 0.3 mmol of **2a** in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

entry	Cu(ClO ₄) ₂ ·6H ₂ O	Oxidant (1.0 equiv.)	T (°C)	Solvent	Yield (%) ^b
1	25 %	Ag ₃ PO ₄	80	CH₃CN	Trace
2	75 %	Ag ₃ PO ₄	80	CH₃CN	41 %
3	100 %	Ag ₃ PO ₄	80	CH₃CN	48 %

Table S3 Screening the Loading of $Cu(ClO_4)_2 \cdot 6H_2O^a$

4	150 %	Ag ₃ PO ₄	80	CH₃CN	57 %
5	200 %	Ag ₃ PO ₄ 80 CH ₃ CN		65 %	
6	250 %	Ag ₃ PO ₄	80	CH₃CN	62 %
7	300 %	Ag ₃ PO ₄	80	CH₃CN	46 %

[a] All reactions were carried out in the presence of 0.2 mmol of **1a** and 0.3 mmol of **2a** in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

entry	Cat. (200 mol %)	Oxidant (1.0 equiv)	T (°C)	Solvent	Yield (%) ^b
1	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	80	CH₃CN	65 %
2	Cu(OAc) ₂	Ag ₃ PO ₄	80	CH₃CN	Trace
3	Cu(OTf) ₂	Ag ₃ PO ₄	80	CH₃CN	60 %
4	CuBr ₂	Ag ₃ PO ₄	80	CH₃CN	N.R.
5	CuCl ₂	Ag ₃ PO ₄	80	CH₃CN	N.R.
6	CuO	Ag ₃ PO ₄	80	CH₃CN	20 %
7	Cu(NO ₃) ₂ ·3H ₂ O	Ag ₃ PO ₄	80	CH₃CN	N.R.
8	Cu(EN) ₂	Ag ₃ PO ₄	80	CH₃CN	Trace
9	CuF ₂	Ag ₃ PO ₄	80	CH₃CN	N.R.
10	Cu ₂ (OH) ₂ CO ₃	Ag ₃ PO ₄	80	CH₃CN	N.R.
11	Cu ₂ O	Ag ₃ PO ₄	80	CH₃CN	10 %
12	Cu(CH ₃ CN) ₄ PF ₆	Ag ₃ PO ₄	80	CH₃CN	13 %
13	Cul	Ag ₃ PO ₄	80	CH₃CN	N.R.
14	CuBr	Ag ₃ PO ₄	80	CH₃CN	Trace
15	CuCl	Ag ₃ PO ₄ 80 CH ₃ C		CH₃CN	N.R.
16	No	Ag ₃ PO ₄	80	CH₃CN	N.R.

Table S4 Screening Different Catalysts (200 mol %)^a

[a] All reactions were carried out in the presence of 0.2 mmol of **1a** and 0.3 mmol of **2a** in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

Table S5 Screening Different Temperature^a

entry	Cat. (200 mol %)	Oxidant (1.0 equiv) T (°C) Solvent		Yield (%) ^b	
1	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	95	CH₃CN	66 %
2	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄ 80 CH ₃ CN		65 %	
3	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	65	CH₃CN	68 %
4	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	50	CH₃CN	63 %
5	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	35	CH₃CN	60 %

[a] All reactions were carried out in the presence of 0.2 mmol of **1a** and 0.3 mmol of **2a** in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

entry	Cat. (200 mol %)	Oxidant (1.0 equiv)	T (°C)	Solvent	Yield (%) ^b
1	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	65	CICH ₂ CH ₂ CI	Trace
2	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	65	CHCl₃	Trace
3	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	65	CH ₂ Cl ₂	Trace

Table S6 Screening Different Solvent^a

4	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄ 65 toluene		trace	
5	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	65	THF	N.R.
6	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	65	DME	N.R.
7	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	65	1,4-dioxane	N.R.
8	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	65	DMF	N.R.
9	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	65	DMA	N.R.
10	Cu(ClO ₄) ₂ ·6H ₂ O	Ag ₃ PO ₄	65	DMSO	N.R.

[a] All reactions were carried out in the presence of 0.2 mmol of **1a** and 0.3 mmol of **2a** in 2.0 mL different solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

entry	Cat. (200 mol %)	Oxidant (1.0 equiv)	T (°C) Solvent		Yield (%) ^b	
1	Cu(ClO ₄) ₂ ·6H ₂ O	K ₂ S ₂ O ₈	65	CH₃CN	48 %	
2	Cu(ClO ₄) ₂ ·6H ₂ O	Na ₂ S ₂ O ₈	65	CH₃CN	41 %	
3	Cu(ClO ₄) ₂ ·6H ₂ O	^t BuOOH	65	CH₃CN	43 %	
4	Cu(ClO ₄) ₂ ·6H ₂ O	^t BuOO ^t Bu	65	CH₃CN	35 %	
5	Cu(ClO ₄) ₂ ·6H ₂ O	(NH ₄) ₂ S ₂ O ₈	(NH ₄) ₂ S ₂ O ₈ 65 CH ₃ CN		36 %	
6	Cu(ClO ₄) ₂ ·6H ₂ O	Dicumyl peroxide	65	CH₃CN	trace	
7	Cu(ClO ₄) ₂ ·6H ₂ O	Dibenzoyl peroxide	65	CH₃CN	trace	
8	Cu(ClO ₄) ₂ ·6H ₂ O	DDQ	65	CH₃CN	N.R.	
9	Cu(ClO ₄) ₂ ·6H ₂ O	BQ	65	CH₃CN	N.R.	
10	Cu(ClO ₄) ₂ ·6H ₂ O	PhI(OAc) ₂	65	CH₃CN	N.R.	
11	Cu(ClO ₄) ₂ ·6H ₂ O	MnO ₂	65	CH₃CN	N.R.	

Table S7 Screening Different Oxidant^a

[a] All reactions were carried out in the presence of 0.2 mmol of **1a** and 0.3 mmol of **2a** in 2.0 mL solvent under Ar atmosphere; N.R. = no reaction. [b] Yield of isolated product.

entry	Cat. (200 mol %)	2a	$K_2S_2O_8$	T (°C)	Solvent	Yield (%) ^b
1	Cu(ClO ₄) ₂ ·6H ₂ O	2.0 equiv	1.5 equiv	65	CH₃CN	36 %
2	Cu(ClO ₄) ₂ ·6H ₂ O	2.0 equiv	2.0 equiv	65	CH₃CN	34 %
3	Cu(ClO ₄) ₂ ·6H ₂ O	2.0 equiv	2.5 equiv	65	CH₃CN	17 %
4	Cu(ClO ₄) ₂ ·6H ₂ O	2.0 equiv	3.0 equiv	65	CH₃CN	trace
5	Cu(ClO ₄) ₂ ·6H ₂ O	3.0 equiv	1.5 equiv	65	CH₃CN	52 %
6	Cu(ClO ₄) ₂ ·6H ₂ O	3.0 equiv	2.0 equiv	65	CH₃CN	52 %
7	Cu(ClO ₄) ₂ ·6H ₂ O	3.0 equiv	2.5 equiv	65	CH₃CN	41 %
8	Cu(ClO ₄) ₂ ·6H ₂ O	3.0 equiv	3.0 equiv	65	CH₃CN	32 %
9	Cu(ClO ₄) ₂ ·6H ₂ O	4.0 equiv	1.5 equiv	65	CH₃CN	57 %
10	Cu(ClO ₄) ₂ ·6H ₂ O	4.0 equiv	2.0 equiv	65	CH₃CN	60 %
11	Cu(ClO ₄) ₂ ·6H ₂ O	4.0 equiv	2.5 equiv	65	CH₃CN	64 %
12	Cu(ClO ₄) ₂ ·6H ₂ O	4.0 equiv	3.0 equiv	65	CH₃CN	73 %

Table S8 Screening the Loading of $\boldsymbol{2a}$ and $K_2S_2{O_8}^a$

[a] All reactions were carried out in the presence of 0.2 mmol of **1a** in 2.0 mL solvent under Ar atmosphere; N.R.= no reaction. [b] Yield of isolated product.

Table S9 Screening for Reaction Conditions^a

entry	Cu(ClO ₄) ₂ ·6H ₂ O	Time	K ₂ S ₂ O ₈	T (°C)	Solvent	Yield (%) ^b
1	20 %	3 hour	3.0 equiv.	65	CH₃CN	35 %
2	20 %	6 hour	3.0 equiv.	65	CH₃CN	58 %
3	20 %	10 hour	3.0 equiv.	65	CH₃CN	40 %
4	20 %	6 hour	3.0 equiv.	50	CH₃CN	62 %
5	20 %	6 hour	3.0 equiv.	35	CH₃CN	74 %
6	25 %	6 hour	3.0 equiv.	35	CH₃CN	74 %
7	15 %	6 hour	3.0 equiv.	35	CH₃CN	60 %

[a] **2a** (0.8 mmol) in solvent (2 mL) was added dropwise *via* an automatic syringe to a mixture of **1a** (0.2 mmol), $Cu(ClO_4)_2 \cdot GH_2O$, $K_2S_2O_8$ (0.6 mmol) in solvent (2 mL). [b] Yield of isolated product.

IV. General Procedures for Copper-Catalyzed Radical Cascade Cyclization of Alkenes:

To a Schlenk tube were added **1a** (0.2 mmol), $Cu(ClO_4)_2$ 6H₂O (0.04 mmol), $K_2S_2O_8$ (0.6 mmol) and charged with argon for three times. Anhydrous CH₃CN (2.0 mL) was added *via* syringe and the mixture was stirred at 35 °C under Ar for 5 min. Then **2a** (0.8 mmol) in CH₃CN (2 mL) was added dropwise *via* an automatic syringe to the mixture in 6 hour at 35 °C under Ar atmosphere. The substrate was consumed (monitored by TLC) after the mixture was stirred for an additional hour, and then the reaction was cooled to room temperature. The solvent was removed by rotary and the resulting residue was purified by column chromatography on silica gel (eluent: hexanes/ethylacetate = 4:3) to afford the product **3a** in 74 % yield.

V. Radical Trapping Experiments:

To a Schlenk tube were added **1a** (0.2 mmol), Cu(ClO₄)₂ 6H₂O (0.04 mmol), K₂S₂O₈ (0.6 mmol), **5a** (0.2 mmol) and charged with argon for three times. Anhydrous CH₃CN (2.0 mL) was added *via* syringe and the mixture was stirred at 35 °C under Ar for 5 min. Then **2a** (0.2 mmol) in CH₃CN (2 mL) was added dropwise *via* an automatic syringe to the mixture in 6 hour at 35 °C under Ar atmosphere. The substrate was consumed (monitored by TLC) after the mixture was stirred for an additional hour, and then the reaction was cooled to room temperature. The solvent was removed by rotary and the resulting residue was purified by column chromatography on silica gel (eluent: hexanes/ethylacetate = 2:1) to afford the product **3a** in 4 % yield and **6a** in 30 % yield.

To a Schlenk tube were added **1a** (0.2 mmol), Cu(ClO₄)₂ 6H₂O (0.04 mmol), K₂S₂O₈ (0.6 mmol), **5a** (0.2 mmol) and charged with argon for three times. Anhydrous CH₃CN (2.0 mL) was added *via* syringe and the mixture was stirred at 35 °C under Ar for 5 min. Then **2a** (0.8 mmol) in CH₃CN (2 mL) was added dropwise *via* an automatic syringe to the mixture in 6 hour at 35 °C under Ar atmosphere. The substrate was consumed (monitored by TLC) after the mixture was stirred for an additional hour, and then the reaction was cooled to room temperature. The solvent was removed by rotary and the resulting residue was purified by column chromatography on silica gel (eluent: hexanes/ethylacetate = 2:1) to afford the product **3a** in 57 % yield and **6a** in 28 % yield.

VI. Control Experiments:

To a Schlenk tube were added **1a** (0.2 mmol), $Cu(ClO_4)_2$ 6H₂O (0.04 mmol), $K_2S_2O_8$ (0.6 mmol) and charged with argon for three times. Anhydrous CH₃CN (2.0 mL) was added *via* syringe and the mixture was stirred at 35 °C under Ar for 6 hour. The reaction was monitored by TLC and no **7a** was detected.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} & \text{NHTs} \\ & \text{HP} = O \\ & \text{Ph} \end{array} \end{array} \xrightarrow{20 \text{ mol } \% \text{ Cu}(\text{CIO}_{4})_2 \cdot 6\text{H}_2\text{O}}_{3 \text{ equiv } \text{K}_2\text{S}_2\text{O}_8, \text{CH}_3\text{CN}, 35 \ ^\circ\text{C}} \end{array} \xrightarrow{\text{Ts}} \begin{array}{c} \begin{array}{c} O \\ & \text{PPh}_2 \end{array} + \begin{array}{c} \begin{array}{c} \text{NHTs} \\ & \text{PPh}_2 \end{array} + \begin{array}{c} \begin{array}{c} \text{NHTs} \\ & \text{PPh}_2 \end{array} \\ & \text{HP} = 48 \ \% \end{array}$$

To a Schlenk tube were added **2a** (0.8 mmol), $Cu(ClO_4)_2$ 6H₂O (0.04 mmol), $K_2S_2O_8$ (0.6 mmol), and charged with argon for three times. Anhydrous CH₃CN (2.0 mL) was added *via* syringe and the mixture was stirred at 35 °C under Ar for 5 min. Then **1a** (0.2 mmol) in CH₃CN (2 mL) was added dropwise *via* an automatic syringe to the mixture in 6 hour at 35 °C under Ar atmosphere. The substrate was consumed (monitored by TLC) after the mixture was stirred for an additional hour, and then the reaction was cooled to room temperature. The solvent was removed by rotary and the resulting residue was purified by column chromatography on silica gel (eluent: hexanes/ethylacetate = 2:1) to afford the product **3a** in 9 % yield and **4a** in 48 % yield.

To a Schlenk tube were added **1a** (0.2 mmol), $Cu(ClO_4)_2 6H_2O$ (0.2 mmol) and charged with argon for three times. Anhydrous CH₃CN (2.0 mL) was added *via* syringe and the mixture was

stirred at 35 °C under Ar for 1 hour. Then $Ph_2(O)PAg$ (0.2 mmol) was added and the mixture was stirred for 6 hour. The reaction was cooled to room temperature. The solvent was removed by rotary and the resulting residue was purified by column chromatography on silica gel (eluent: hexanes/ethylacetate = 2:1) to afford the product **3a** in 7 % yield and **8a** in 7 % yield.

VII. Plausible Mechanistic Pathway:

Considering that **2a** is added slowly in order to reduce the byproduct **4a**, we depicted a competitive alternate mechanism in Scheme S1 (Path B). Initially, **1a** reacts with copper salt in order to form the N-chelated copper complex **6A**, which is added by **2A** to give the alkyl radical **7A**. Subsequently, **7A** undergoes an intramolecular oxidative addition providing **5A** followed by reductive elimination to release the product **3a** along with copper (I). Finally, in the presence of $K_2S_2O_8$, the copper (I) is oxidized to copper (II) to complete the catalytic cycle. The slight difference between Path A (Scheme 3 in paper) and Path B is whether copper catalyst is free or coordinated.

Scheme S1

VIII. Characterization of the Products:

Note: 3e, 3f, 3g, 3h, 3z and 3aa are the mixture of diastereoisomers. 3l, 3n and 3v are mixture with trace amount of unknown impurities.

3a: colourless oil; 74 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 29.38; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.99-8.04 (m, 2 H), 7.69-7.76 (m, 2 H), 7.62-7.68 (m, 4 H), 7.44-7.54 (m, 3 H), 7.27-7.29 (m, 2 H), 7.19-7.22 (m, 1 H), 7.07-7.00 (m, 4 H), 4.30-4.39 (m, 1 H), 3.20-3.27 (m, 2 H), 2.91-2.98 (m, 1 H), 2.67-2.77 (m, 1 H), 2.32 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 144.07, 140.66, 134.11, 133.54 (d, J_{C-P} = 101.1 Hz), 132.13 (d, J_{C-P} = 2.5 Hz), 131.97 (d, J_{C-P} = 2.5 Hz), 131.58 (d, J_{C-P} = 98.8 Hz), 131.35 (d, J_{C-P} = 9.5 Hz), 131.26, 130.33 (d, J_{C-P} = 9.6 Hz), 129.58, 128.93 (d, J_{C-P} = 11.7 Hz), 127.76, 126.91, 125.46, 124.75, 116.61, 58.07, 37.18 (d, J_{C-P} = 66.8 Hz), 35.00, 21.47; **MS (ESI**): found [M+H]⁺ 488.1.

3b: colourless oil; 83 % yield; ³¹**P NMR** (CDCl₃, 162 MHz) δ : 29.88; ¹**H NMR** (CDCl₃, 400 MHz) δ : 7.84-7.89 (m, 2 H), 7.57-7.66 (m, 3 H), 7.42-7.45 (m, 2 H), 7.24-7.30 (m, 4 H), 7.16-7.21 (m, 1 H), 6.99-7.07 (m, 4 H), 4.31-4.39 (m, 1 H), 3.15-3.26 (m, 2 H), 2.90-2.96 (m, 1 H), 2.63-2.73 (m, 1 H), 2.50 (s, 3 H), 2.38 (s, 3 H), 2.32 (s, 3 H); ¹³**C NMR** (CDCl₃, 100 MHz) δ : 144.00, 142.50 (d, J_{C-P} = 2.7 Hz), 142.37 (d, J_{C-P} = 2.6 Hz), 140.68, 134.22, 131.37, 131.35 (d, J_{C-P} = 9.9 Hz), 130.51 (d, J_{C-P} = 103.6 Hz), 130.33 (d, J_{C-P} = 10.1 Hz), 129.66, 129.54, 129.43 (d, J_{C-P} = 12.2 Hz), 128.37 (d, J_{C-P} = 101.2 Hz), 127.69, 126.96, 125.46, 124.69, 116.61, 58.20, 37.27 (d, J_{C-P} = 67.0 Hz), 34.96, 21.66, 21.53, 21.49; **MS** (**ESI**): found [M+H]⁺ 516.2.

3c: colourless oil; 73 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 28.61; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.89-7.94 (m, 2 H), 7.60-7.67 (m, 5 H), 7.43-7.45 (m, 2 H), 7.29 (d, J = 8.2 Hz, 2 H), 7.18-7.22 (m, 1 H), 7.00-7.10 (m, 4 H), 4.27-4.33 (m, 1 H), 3.16-3.20 (m, 2 H), 2.91-2.98 (m, 1 H), 2.66-2.76 (m, 1 H), 2.33 (s, 3 H); ¹³**C** NMR (CDCl₃, 100 MHz) δ : 144.29, 140.50, 139.08 (d, J_{C-P} = 3.4 Hz), 138.87 (d, J_{C-P} = 3.2 Hz), 134.04, 132.70 (d, J_{C-P} = 10.3 Hz), 132.01, 131.71 (d, J_{C-P} = 11.6 Hz),130.97, 130.20, 129.67, 129.40 (d, J_{C-P} = 12.6 Hz), 129.21 (d, J_{C-P} = 12.6 Hz), 127.89, 126.87, 125.47, 124.86, 116.57, 57.83, 37.06 (d, J_{C-P} = 67.8 Hz), 35.00, 21.50; **MS (ESI**): found $[M+H]^+$ 556.0.

3d: Reaction was carried out in the presence of **1** (0.2 mmol), **2** (0.8 mmol), Cu(ClO₄)₂ 6H₂O (0.4 mmol), K₂S₂O₈ (0.6 mmol) in CH₃CN (2 mL) in 6 hour at 65 °C under Ar atmosphere. colourless oil; 53 % yield; ³¹P NMR (CDCl₃, 162 MHz) δ : 29.53; ¹H NMR (CDCl₃, 400 MHz) δ : 7.87-7.92 (m, 2 H), 7.59-7.66 (m, 3 H), 7.30 (d, J = 8.2 Hz, 2 H), 7.18-7.21 (m, 1 H), 7.12-7.14 (m, 2 H), 7.00-7.08 (m, 4 H), 6.93-6.96 (m, 2 H), 4.31-4.38 (m, 1 H), 3.93 (s, 3 H), 3.83 (s, 3 H), 3.21-3.26 (m, 1 H), 3.11-3.16 (m, 1 H), 2.90-2.96 (m, 1 H), 2.60-2.70 (m, 1 H), 2.32 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 162.62 (d, J_{C-P} = 2.6 Hz), 162.37 (d, J_{C-P} = 2.7 Hz), 144.03, 140.68, 134.23, 133.17 (d, J_{C-P} = 10.7 Hz), 132.15 (d, J_{C-P} = 11.0 Hz), 131.40, 129.56, 127.70, 126.95, 125.47, 124.69, 116.61, 114.44 (d, J_{C-P} = 12.8 Hz), 114.24 (d, J_{C-P} = 12.9 Hz), 58.25, 55.45, 55.34, 37.56 (d, J_{C-P} = 67.4 Hz), 34.96, 21.48; **MS (ESI**): found [M+H]⁺ 548.2.

3e: colourless oil; 70 % yield; ³¹**P NMR** (CDCl₃, 162 MHz) δ: 48.10, 44.63; ¹**H NMR** (CDCl₃, 400 MHz) δ: 7.96-8.01 (m, 1 H), 7.44-7.70 (m, 6 H), 7.17-7.28 (m, 3 H), 6.88-7.07 (m, 3 H), 4.77-4.85 (m, 0.43 H), 4.15-4.22 (m, 0.55 H), 2.62-3.26 (m, 3 H), 2.42-2.52 (m, 1 H), 2.28-2.35 (m, 3 H), 1.12-1.24 (m, 9 H); ¹³**C NMR** (CDCl₃, 100 MHz) δ: 144.08, 143.99, 140.67, 140.60, 134.66, 134.22, 132.62, 132.54, 131.93, 131.91, 131.64, 131.61, 131.51, 131.47, 131.39, 131.31, 131.05, 129.88, 129.71, 129.52, 129.08, 128.50, 128.39, 128.30, 128.22, 128.19, 127.70, 127.68, 127.03, 126.82, 125.56, 125.34, 124.72, 124.58, 116.69, 116.57, 58.85, 58.30, 34.95, 34.93, 33.86, 33.29, 33.17, 32.59, 31.96, 31.38, 30.57, 29.99, 24.16, 24.12, 21.50, 21.41; **MS** (**ESI**): found [M+H]⁺ 468.2.

3f: colourless oil; 51 % yield; ³¹**P NMR** (CDCl₃, 162 MHz) δ: 40.47, 39.91; ¹**H NMR** (CDCl₃, 400 MHz) δ: 7.87-7.92 (m, 1 H), 7.76-7.81 (m, 1 H), 7.48-7.70 (m, 5 H), 7.17-7.26 (m, 3 H), 7.00-7.07 (m, 3 H), 4.61-4.70 (m, 0.5 H), 4.06-4.19 (m, 1.5 H), 3.83-3.98 (m, 1 H), 2.78-3.14 (m, 3 H), 2.25-2.49 (m, 4 H), 1.28-1.38 (m, 3 H); ¹³**C NMR** (CDCl₃, 100 MHz) δ: 144.04, 143.94, 140.86, 140.72, 134.64, 134.11, 132.58, 132.56, 132.50, 132.48, 131.91, 131.81, 131.69, 131.56, 131.47, 131.32, 131.07, 130.97, 130.45, 129.72, 129.63, 129.51, 128.87, 128.77, 128.74, 128.65, 128.48, 127.76, 127.73, 127.08, 126.99, 125.32, 125.31, 124.69, 124.64, 116.93, 116.70, 60.80, 60.75, 57.89, 57.37, 57.31, 37.82, 37.52, 36.86, 36.57, 34.85, 34.74, 21.51, 21.46, 16.51, 16.45, 16.39; **MS (ESI)**: found [M+H]⁺ 456.1.

3g: colourless oil; 77 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ: 39.11, 38.52; ¹H NMR (CDCl₃, 400 MHz) δ: 7.89-7.94 (m, 1 H), 7.77-7.82 (m, 1 H), 7.64-7.69 (m, 1 H), 7.54-7.62 (m, 3 H), 7.46-7.51 (m, 1 H), 7.15-7.23 (m, 3 H), 7.00-7.07 (m, 3 H), 4.51-4.68 (m, 1.5 H), 4.04-4.13 (m, 0.5 H), 2.76-3.16 (m, 3 H), 2.23-2.48 (m, 4 H), 1.36-1.44 (m, 3 H), 1.15-1.22 (m, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ: 144.04, 143.92, 140.87, 140.76, 134.62, 134.07, 132.56, 132.46, 132.44, 132.37, 132.34, 131.94, 131.84, 131.64, 131.56, 131.46, 131.40, 131.31, 131.12, 130.40, 129.77, 129.62, 129.49, 128.77, 128.65, 128.52, 127.73, 127.70, 127.09, 126.98, 125.31, 124.69, 124.62, 116.95, 116.68, 70.10, 70.03, 69.95, 69.89, 57.96, 57.40, 57.33, 38.17, 37.88, 37.21, 36.92, 34.76, 34.65, 24.62, 24.59, 24.54, 24.51, 23.98, 23.96, 23.94, 23.91, 21.52, 21.46; MS (ESI): found [M+H]⁺ 470.3.

3h: colourless oil; 72 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ: 40.38, 39.80; ¹**H** NMR (CDCl₃, 400 MHz) δ: 7.87-7.92 (m, 1 H), 7.76-7.81 (m, 1 H), 7.48-7.70 (m, 5 H), 7.17-7.26 (m, 3 H), 7.01-7.07 (m, 3 H), 4.62-4.70 (m, 0.43 H), 3.99-4.17 (m, 1.58 H), 3.75-3.84 (m, 1 H), 2.78-3.15 (m, 3 H), 2.25-2.50 (m, 4 H), 1.59-1.74 (m, 2 H), 1.34-1.52 (m, 2 H), 0.88-0.99 (m, 3 H); ¹³C

NMR (CDCl₃, 100 MHz) δ: 144.05, 143.94, 140.85, 140.73, 134.65, 134.12, 132.58, 132.55, 132.51, 132.48, 131.91, 131.81, 131.59, 131.49, 131.35, 131.08, 130.90, 130.33, 129.62, 129.51, 128.86, 128.77, 128.74, 128.65, 127.76, 127.74, 127.07, 126.99, 126.32, 125.33, 125.31, 124.71, 124.65, 116.96, 116.71, 64.47, 64.41, 64.34, 57.88, 57.39, 57.33, 37.81, 37.46, 36.85, 36.51, 34.84, 34.73, 32.59, 32.51, 32.44, 21.51, 21.46, 18.85, 18.76, 13.65, 13.55; **MS** (**ESI**): found [M+H]⁺ 484.2.

3i: colourless oil; 42 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 29.19; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.67 (d, J = 8.1 Hz, 1 H), 7.57 (d, J = 8.4 Hz, 2 H), 7.18-7.25 (m, 3 H), 7.03-7.09 (m, 2 H), 4.47-4.55 (m, 1 H), 3.76-3.84 (m, 6 H), 2.98-2.96 (m, 2 H), 2.58-2.68 (m, 1 H), 2.37 (s, 3 H), 2.18-2.26 (m, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 144.13, 140.67, 134.68, 131.04, 129.69, 127.87, 127.04, 125.35, 124.80, 116.88, 57.81, 52.60, 52.42 (d, $J_{C-P} = 6.5$ Hz), 34.65, 32.49 (d, $J_{C-P} = 134.5$ Hz), 21.50; **MS (ESI)**: found [M+H]⁺ 396.1.

3j: colourless oil; 53 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 26.44; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.67 (d, J = 8.1 Hz, 1 H), 7.56 (d, J = 8.2 Hz, 2 H), 7.17-7.24 (m, 3 H), 7.02-7.08 (m, 2 H), 4.46-4.55 (m, 1 H), 4.07-4.21 (m, 4 H), 2.91-3.03 (m, 2 H), 2.56-2.66 (m, 1 H), 2.36 (s, 3 H), 2.14-2.24 (m, 1 H), 1.33-1.41 (m, 6 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 144.10, 140.73, 134.67, 131.17, 129.67, 127.82, 127.03, 125.33, 124.77, 116.92, 61.60 (d, $J_{C-P} = 6.6$ Hz), 61.87 (d, $J_{C-P} = 6.3$ Hz), 57.96 (d, $J_{C-P} = 2.3$ Hz), 34.61, 33.31 (d, $J_{C-P} = 134.4$ Hz), 21.50, 16.45, 16.42, 16.39, 16.36; **MS (ESI**): found [M+H]⁺ 424.1.

3k: colourless oil; 61 % yield; ³¹**P NMR** (CDCl₃, 162 MHz) δ : 24.24; ¹**H NMR** (CDCl₃, 400 MHz) δ : 7.67 (d, J = 8.1 Hz, 1 H), 7.56 (d, J = 8.3 Hz, 2 H), 7.18-7.25 (m, 3 H), 7.02-7.08 (m, 2 H), 4.68-4.80 (m, 2 H), 4.46-4.55 (m, 1 H), 3.03-3.08 (m, 1 H), 2.87-2.93 (m, 1 H), 2.52-2.61 (m, 1 H), 2.37 (s, 3 H), 2.09-2.20 (m, 1 H) , 1.33-1.40 (m, 12 H); ¹³C **NMR** (CDCl₃, 100 MHz) δ : 144.02, 140.79, 134.80, 131.37, 129.62, 127.77, 127.04, 125.31, 124.74, 117.05, 70.64 (d, $J_{C-P} = 6.8$ Hz), 70.61 (d, $J_{C-P} = 6.5$ Hz), 58.23 (d, $J_{C-P} = 2.5$ Hz), 34.69 (d, $J_{C-P} = 135.9$ Hz), 34.42, 24.12, 24.08, 24.04, 24.00, 21.50; **MS** (**ESI**): found [M+H]⁺ 452.1.

3I: colourless oil; 53 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 26.41; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.67 (d, J = 8.0 Hz, 1 H), 7.56 (d, J = 7.9 Hz, 2 H), 7.17-7.23 (m, 3 H), 7.03-7.06 (m, 2 H), 4.47-4.54 (m, 1 H), 4.03-4.12 (m, 4 H), 2.90-3.04 (m, 2 H), 2.58-2.66 (m, 1 H), 2.37 (s, 3 H), 2.13-2.24 (m, 1 H), 1.65-1.74 (m, 4 H), 1.39-1.50 (m, 4 H), 0.94-1.01 (m, 6 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 144.05, 140.77, 134.78, 131.20, 129.63, 127.81, 127.03, 125.31, 124.75, 116.95, 65.66 (d, $J_{C-P} = 7.1$ Hz), 58.01, 34.57, 33.20 (d, $J_{C-P} = 125.5$ Hz), 32.78, 32.48, 21.47, 18.79, 18.75,

13.61, 13.56; **MS (ESI)**: found $[M+H]^+$ 480.1.

3m: colourless oil; 45 % yield; ³¹**P NMR** (CDCl₃, 162 MHz) δ : 27.55; ¹**H NMR** (CDCl₃, 400 MHz) δ : 7.66 (d, J = 8.0 Hz, 1 H), 7.47 (d, J = 8.3 Hz, 2 H), 7.32-7.42 (m, 10 H), 7.20-7.24 (m, 1 H), 7.11 (d, J = 8.1 Hz, 2 H), 7.00-7.05 (m, 2 H), 4.98-5.15 (m, 4 H), 4.43-4.52 (m, 1 H), 2.69-2.99 (m, 3 H), 2.35 (s, 3 H), 2.18-2.29 (m, 1 H); ¹³C **NMR** (CDCl₃, 100 MHz) δ : 144.02, 140.69, 136.18 (d, $J_{C-P} = 6.4$ Hz), 136.08 (d, $J_{C-P} = 6.1$ Hz), 134.51, 131.04, 129.62, 128.65, 128.49 (d, $J_{C-P} = 4.0$ Hz), 127.97 (d, $J_{C-P} = 4.6$ Hz), 127.83, 127.06, 125.31, 124.75, 116.89, 67.44 (d, $J_{C-P} = 6.7$ Hz), 67.43 (d, $J_{C-P} = 6.7$ Hz), 57.82 (d, $J_{C-P} = 2.4$ Hz), 34.59, 33.67 (d, $J_{C-P} = 134.8$ Hz), 21.51; **MS (ESI**): found [M+H]⁺ 548.1.

3n: colourless oil; 31 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 19.69; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.70 (d, J = 8.1 Hz, 1 H), 7.54 (d, J = 8.3 Hz, 2 H), 7.36-7.42 (m, 2 H), 7.28-7.34 (m, 4 H), 7.22-7.27 (m, 2 H), 7.16-7.20 (m, 5 H), 7.04-7.09 (m, 2 H), 4.64-4.73 (m, 1 H), 3.11-3.16 (m, 2 H), 2.95-3.04 (m, 2 H), 2.48-2.59 (m, 1 H), 2.37 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 150.26 (d, $J_{C-P} = 9.0$ Hz), 150.00 (d, $J_{C-P} = 8.8$ Hz), 144.22, 140.62, 134.49, 130.98 129.90 (d, $J_{C-P} = 4.4$ Hz), 129.71, 127.96, 127.07, 125.40, 124.97, 120.61, 120.58, 120.56, 120.54, 117.11, 57.66 (d, $J_{C-P} = 2.9$ Hz), 34.68, 33.97 (d, $J_{C-P} = 135.0$ Hz), 21.52; **MS (ESI**): found [M+H]⁺ 520.1.

3p: colourless oil; 65 % yield; ³¹**P NMR** (CDCl₃, 162 MHz) δ : 29.58; ¹**H NMR** (CDCl₃, 400 MHz) δ : 7.98-8.01 (m, 2 H), 7.67-7.74 (m, 2 H), 7.60-7.66 (m, 4 H), 7.42-7.52 (m, 4 H), 7.37-7.39 (m, 2 H), 7.23-7.27 (m, 2 H), 7.17-7.21 (m, 1 H), 6.99-7.04 (m, 2 H), 4.29-4.38 (m, 1 H), 3.17-3.25 (m, 2 H), 2.87-2.93 (m, 1 H), 2.66-2.76 (m, 1 H); ¹³C **NMR** (CDCl₃, 100 MHz) δ : 140.41, 136.97, 133.75 (d, J_{C-P} = 101.1 Hz), 133.07, 132.07 (d, J_{C-P} = 2.7 Hz), 131.91 (d, J_{C-P} = 2.7 Hz), 131.38 (d, J_{C-P} = 98.7 Hz), 131.25 (d, J_{C-P} = 9.3 Hz), 131.16, 130.24 (d, J_{C-P} = 9.5 Hz), 128.88, 128.86 (d, J_{C-P} = 11.7 Hz), 128.68 (d, J_{C-P} = 11.8 Hz), 127.73, 126.77, 125.43, 124.79,116.54, 58.06, 37.01 (d, J_{C-P} = 66.9 Hz), 34.84; **MS (ESI**): found [M+H]⁺ 474.1.

3q: colourless oil; 61 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 29.38; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.92-7.97 (m, 2 H), 7.67-7.72 (m, 2 H), 7.55-7.60 (m, 3 H), 7.40-7.52 (m, 4 H), 7.17-7.21 (m, 2 H), 7.05-7.09 (m, 1 H), 4.53-4.61 (m, 1 H), 3.51-3.42 (m, 2 H), 3.16-3.23 (m, 1 H), 2.75 (s, 3 H), 2.66-2.73 (m, 1 H); ¹³**C** NMR (CDCl₃, 100 MHz) δ : 140.39, 133.65 (d, J_{C-P} = 101.1 Hz), 132.20 (d, J_{C-P} = 2.8 Hz), 131.93 (d, J_{C-P} = 2.2 Hz), 131.38 (d, J_{C-P} = 99.1 Hz), 131.15 (d, J_{C-P} = 9.4 Hz), 130.69, 130.29 (d, J_{C-P} = 9.6 Hz), 128.95 (d, J_{C-P} = 11.9 Hz), 128.74 (d, J_{C-P} = 12.0 Hz), 128.05, 125.79, 124.72, 115.23, 58.93, 37.24 (d, J_{C-P} = 66.7 Hz), 35.82, 35.10; **MS (ESI)**: found [M+H]⁺

3r: colourless oil; 45 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 29.61; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.95-8.00 (m, 2 H), 7.68-7.73 (m, 2 H), 7.60-7.65 (m, 3 H), 7.48-7.52 (m, 2 H), 7.41-7.46 (m, 2 H), 7.24 (d, *J* = 8.3 Hz, 2 H), 7.04 (d, *J* = 8.1 Hz, 2 H), 6.98 (d, *J* = 7.7 Hz, 1 H), 6.83 (s, 1 H), 4.26-4.33 (m, 1 H), 3.16-3.22 (m, 2 H), 2.83-2.90 (m, 1 H), 2.66-2.76 (m, 1 H), 2.30 (s, 3 H), 2.25 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 143.93, 138.24, 134.54, 134.07, 133.60 (d, *J*_{C-P} = 101.1 Hz), 132.09 (d, *J*_{C-P} = 2.7 Hz), 131.94 (d, *J*_{C-P} = 2.7 Hz), 131.54 (d, *J*_{C-P} = 98.8 Hz), 131.41, 131.36 (d, *J*_{C-P} = 9.4 Hz), 130.32 (d, *J*_{C-P} = 9.5 Hz), 129.54, 128.91 (d, *J*_{C-P} = 11.8 Hz), 128.73 (d, *J*_{C-P} = 11.9 Hz), 128.36, 126.95, 126.02, 116.47, 58.16 (d, *J*_{C-P} = 0.8 Hz), 37.14 (d, *J*_{C-P} = 66.8 Hz), 34.98, 21.47, 20.93; **MS (ESI)**: found [M+H]⁺ 502.1.

3s: Reaction was carried out in the presence of **1** (0.2 mmol), **2** (0.8 mmol), Cu(ClO₄)₂ 6H₂O (0.4 mmol), K₂S₂O₈ (0.6 mmol) in CH₃CN (2 mL) in 6 hour at 65 °C under Ar atmosphere. colourless oil; 55 % yield; ³¹P NMR (CDCl₃, 162 MHz) δ : 29.46; ¹H NMR (CDCl₃, 400 MHz) δ : 7.96-8.01 (m, 2 H), 7.69-7.74 (m, 2 H), 7.61-7.66 (m, 3 H), 7.43-7.56 (m, 4 H), 7.24 (d, *J* = 7.9 Hz, 2 H), 7.05 (d, *J* = 8.2 Hz, 2 H), 6.73-6.76 (m, 1 H), 6.59 (d, *J* = 1.9 Hz, 1 H), 4.29-4.36 (m, 1 H), 3.74 (s, 3 H), 3.13-3.18 (m, 2 H), 2.78-2.85 (m, 1 H), 2.64-2.74 (m, 1 H), 2.31 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 157.48, 143.92, 133.95, 133.90, 133.22, 133.61 (d, J_{C-P} = 100.9 Hz), 132.09 (d, J_{C-P} = 2.7 Hz), 131.93 (d, J_{C-P} = 2.6 Hz), 131.57 (d, J_{C-P} = 98.8 Hz), 131.33 (d, J_{C-P} = 9.4 Hz), 130.32 (d, J_{C-P} = 9.6 Hz), 129.52, 128.93 (d, J_{C-P} = 12.8 Hz), 128.73 (d, J_{C-P} = 11.9 Hz), 126.99, 117.90, 113.17, 110.89, 58.39 (d, J_{C-P} = 1.1 Hz), 55.57, 37.01 (d, J = 66.9 Hz), 35.11, 21.47; MS (ESI): found [M+H]⁺ 518.1.

3t: colourless oil; 75 % yield; ³¹**P NMR** (CDCl₃, 162 MHz) δ : 29.30; ¹**H NMR** (CDCl₃, 400 MHz) δ : 7.96-8.00 (m, 2 H), 7.69-7.74 (m, 2 H), 7.55-7.64 (m, 4 H), 7.42-7.52 (m, 3 H), 7.21 (d, *J* = 8.2 Hz, 2 H), 7.06 (d, *J* = 8.1 Hz, 2 H), 7.85-7.90 (m, 1 H), 6.73 (d, *J* = 8.0 Hz, 1 H), 4.31-4.38 (m, 1 H), 3.14-3.24 (m, 2 H), 2.83-2.90 (m, 1 H), 2.65-2.75 (m, 1 H), 2.31 (s, 3 H); ¹³**C NMR** (CDCl₃, 100 MHz) δ : 160.37 (d, *J*_{C-F} = 243.3 Hz), 144.24, 136.71 (d, *J*_{C-F} = 2.1 Hz), 133.75, 133.64 (d, *J*_{C-F} = 8.7 Hz), 133.41 (d, *J*_{C-P} = 101.2 Hz), 132.16 (d, *J*_{C-P} = 2.6 Hz), 132.01 (d, *J*_{C-P} = 2.5 Hz), 131.47 (d, *J*_{C-F} = 98.7 Hz), 131.30 (d, *J*_{C-F} = 9.4 Hz), 130.32 (d, *J*_{C-F} = 8.6 Hz), 112.64, 128.98 (d, *J*_{C-F} = 11.8 Hz), 128.76 (d, *J*_{C-F} = 11.9 Hz), 126.94, 117.80 (d, *J*_{C-F} = 8.6 Hz), 134.92, 21.47; ¹⁹**F NMR** (CDCl₃, 376 MHz) δ : -118.08; **MS** (**ESI**): found [M+H]⁺ 506.1.

3u: colourless oil; 70 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 29.35; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.95-8.00 (m, 2 H), 7.68-7.74 (m, 2 H), 7.60-7.67 (m, 3 H), 7.49-7.56 (m, 2 H), 7.43-7.47 (m, 2 H), 7.24 (d, *J* = 8.3 Hz, 2 H), 7.13-7.16 (m, 1 H), 7.07 (d, *J* = 8.1 Hz, 2 H), 7.00 (s, 1 H), 4.28-4.36 (m, 1 H), 3.17-3.24 (m, 2 H), 2.87-2.93 (m, 1 H), 2.64-2.74 (m, 1 H), 2.32 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 144.38, 139.43, 133.75, 133.35 (d, J_{C-P} = 101.3 Hz), 133.27, 132.18 (d, J_{C-P} = 2.7 Hz), 132.06 (d, J_{C-P} = 2.7 Hz), 131.42 (d, J_{C-P} = 98.9 Hz), 131.32 (d, J_{C-P} = 9.3 Hz), 131.12 (d, J_{C-P} = 9.6 Hz), 120.00, 129.73, 129.75 (d, J_{C-P} = 11.7 Hz), 129.58 (d, J_{C-P} = 11.9 Hz), 128.65, 127.68, 126.34, 118.24, 58.77, 37.35 (d, J_{C-P} = 66.7 Hz), 35.02, 21.64; **MS (ESI**): found [M+H]⁺ 522.1.

3v: colourless oil; 73 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 29.99; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.87-7.92 (m, 2 H), 7.59-7.65 (m, 5 H), 7.44-7.46 (m, 1 H), 7.37-7.42 (m, 2 H), 7.08-7.15 (m, 3 H), 7.02-7.06 (m, 3 H), 6.85 (d, *J* = 9.2 Hz, 1 H), 4.51-4.58 (m, 1 H), 2.71-2.77 (m, 2 H), 2.53 (s, 3 H), 2.37-2.48 (m, 1 H), 2.33 (s, 3 H), 2.07-2.13 (m, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 143.98, 139.77, 135.81, 134.13, 133.45 (d, *J*_{C-P} = 101.0 Hz), 132.64, 132.11 (d, *J*_{C-P} = 2.3 Hz), 131.83 (d, *J*_{C-P} = 2.4 Hz), 131.27 (d, *J*_{C-P} = 99.2 Hz), 131.13 (d, *J*_{C-P} = 9.3 Hz), 130.31, 130.22 (d, *J*_{C-P} = 9.7 Hz), 129.35, 128.91 (d, *J*_{C-P} = 11.8 Hz), 128.61 (d, *J*_{C-P} = 12.0 Hz), 127.35, 126.66, 122.74, 59.69, 35.18 (d, *J*_{C-P} = 67.7 Hz), 34.38, 21.47, 19.90; **MS (ESI)**: found [M+H]⁺ 502.1.

3w: colourless oil; 60 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 29.70; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.86-7.91 (m, 2 H), 7.57-7.66 (m, 5 H), 7.39-7.48 (m, 3 H), 7.32 (d, *J* = 8.2 Hz, 2 H), 7.07-7.10 (m, 3 H), 6.82 (d, *J* = 9.2 Hz, 1 H), 6.68 (d, *J* = 7.4 Hz, 1 H), 4.67-4.73 (m, 1 H), 3.86 (s, 3 H), 2.95 (d, *J* = 16.4 Hz, 1 H), 2.79-2.86 (m, 1 H), 2.43-2.56 (m, 2 H), 2.35 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 152.56, 143.78, 137.11, 135.27, 133.62 (d, *J*_{C-P} = 100.9 Hz), 132.15, 131.88, 131.14 (d, *J*_{C-P} = 9.4 Hz), 130.90, 130.26 (d, *J*_{C-P} = 9.6 Hz), 129.33, 128.97 (d, *J*_{C-P} = 12.8 Hz), 128.68 (d, *J*_{C-P} = 12.9 Hz), 127.70, 127.36, 117.88, 112.06, 60.22, 56.08, 35.48 (d, *J* = 67.2 Hz), 34.86, 21.52; **MS (ESI)**: found [M+H]⁺ 518.1.

3x: colourless solid; 66 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 29.50; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.89-7.95 (m, 2 H), 7.60-7.68 (m, 5 H), 7.47-7.51 (m, 1 H), 7.41-7.45 (m, 2 H), 7.31 (d, *J* = 8.3 Hz, 2 H), 7.04-7.11 (m, 3 H), 6.97-7.01 (m, 1 H), 6.86 (d, *J* = 7.3 Hz, 1 H), 4.58-4.64 (m, 1

H), 3.10 (d, J = 16.6 Hz, 1 H), 2.84-2.90 (m, 1 H), 2.48-2.61 (m, 2 H), 2.35 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 155.11 (d, $J_{C-F} = 255.2$ Hz), 144.29, 137.86, 134.43, 133.41 (d, $J_{C-P} = 101.7$ Hz), 132.26 (d, $J_{C-P} = 2.4$ Hz), 132.01 (d, $J_{C-P} = 2.4$ Hz), 131.22 (d, $J_{C-P} = 99.2$ Hz), 131.17 (d, $J_{C-P} = 9.3$ Hz), 130.25 (d, $J_{C-P} = 9.7$ Hz), 129.63, 129.03 (d, $J_{C-P} = 11.8$ Hz), 128.75 (d, $J_{C-P} = 12.0$ Hz), 127.75 (d, $J_{C-F} = 10.4$ Hz), 127.50 (d, $J_{C-F} = 6.8$ Hz), 127.29, 121.20 (d, $J_{C-F} = 3.4$ Hz), 116.00 (d, $J_{C-F} = 20.3$ Hz), 60.40, 36.66 (d, J = 67.0 Hz), 34.75, 21.54; ¹⁹F NMR (CDCl₃, 376 MHz) δ : -118.75; MS (ESI): found [M+H]⁺ 506.1.

3y: colourless oil; 64 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ : 29.42; ¹**H** NMR (CDCl₃, 400 MHz) δ : 7.98-8.03 (m, 2 H), 7.71-7.76 (m, 2 H), 7.62-7.66 (m, 3 H), 7.43-7.53 (m, 3 H), 7.33 (s, 1 H), 7.26 (d, *J* = 8.2 Hz, 2 H), 7.06 (d, *J* = 8.2 Hz, 2 H), 6.66 (s, 1 H), 4.29-4.37 (m, 1 H), 3.23-3.29 (m, 1 H), 3.05-3.10 (m, 1 H), 2.67-2.86 (m, 2 H), 2.31-2.32 (m, 6 H), 2.05 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ : 143.80, 140.40, 137.73, 134.48, 134.10, 133.57 (d, J_{C-P} = 100.7 Hz), 131.96 (d, J_{C-P} = 2.7 Hz), 131.82 (d, J_{C-P} = 2.7 Hz), 131.60 (d, J_{C-P} = 98.5 Hz), 131.29 (d, J_{C-P} = 9.4 Hz), 130.24 (d, J_{C-P} = 9.5 Hz), 129.45, 128.78 (d, J_{C-P} = 66.9 Hz), 128.64 (d, J_{C-P} = 11.9 Hz), 126.86, 126.81, 126.46, 114.31, 58.07, 37.38 (d, J_{C-P} = 66.9 Hz), 33.71, 21.43, 21.39, 18.57; **MS (ESI**): found [M+H]⁺ 516.1.

3z: colourless solid; 63 % yield; ³¹**P** NMR (CDCl₃, 162 MHz) δ: 29. 67; ¹**H** NMR (CDCl₃, 400 MHz) δ: 7.92-7.97 (m, 2 H), 7.65-7.71 (m, 2 H), 7.50-7.56 (m, 3 H), 7.39-7.45 (m, 4 H), 7.16-7.19 (m, 2 H), 7.01-7.05 (m, 1 H), 4.57-4.63 (m, 1 H), 3.46-3.50 (m, 2 H), 3.19-3.32 (m, 2 H), 2.64-2.82 (m, 2 H), 2.42-2.54 (m, 1 H), 2.30-2.34 (m, 1 H), 2.03-2.07 (m, 2 H), 1.86-1.91 (m, 1 H), 1.54-1.60 (m, 1 H), 1.37-1.42 (m, 1 H), 1.11-1.12 (m, 3 H), 0.77-0.80 (m, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ: 214.70, 214.63, 140.55, 140.42, 132.14, 131.93, 131.26, 131.17, 130.76, 130.62, 130.36, 130.26, 130.23, 129.07, 128.97, 128.85, 128.79, 128.75, 128.68, 128.63, 128.05, 127.89, 125.89, 125.79, 124.33, 114.65, 114.42, 58.86, 58.28, 58.26, 47.92, 47.73, 45.73, 45.68, 42.98, 42.88, 42.48, 42.45, 37.74, 37.43, 37.07, 36.77, 35.04, 34.91, 26.89, 26.83, 25.52, 25.33, 20.09, 20.04, 19.76, 19.73; **MS (ESI)**: found [M+H]⁺ 548.2.

3aa: colourless oil; 49 % yield; ³¹**P NMR** (CDCl₃, 162 MHz) δ: 29. 29, 29.73; ¹**H NMR** (CDCl₃, 400 MHz) δ: 7.94-8.037 (m, 2 H), 7.73-7.79 (m, 2 H), 7.56-7.65 (m, 3 H), 7.42-7.52 (m, 4 H), 7.28-7.32 (m, 1 H), 7.12-7.16 (m, 2 H), 4.05-4.10 (m, 0.46 H), 3.89-3.92 (m, 0.46 H), 3.48-3.62 (m, 1 H), 3.30-3.382 (m, 1 H), 2.28-2.48 (m, 5 H), 1.98-2.06 (m, 1.13 H), 1.88-1.957 (m, 0.63 H), 1.71-1.83 (m, 1.49 H), 1.62-1.68 (m, 0.63 H), 1.11-1.17 (m, 0.59 H), 0.98-1.00 (m, 1.64 H),

0.91-0.93 (m, 1.71 H), 0.79-0.81 (m, 1.44 H), 0.24-0.25 (m, 1.34 H); 13 C NMR (CDCl₃, 100 MHz) δ : 143.37, 142.77, 139.00, 134.52, 134.19, 133.75, 133.52, 133.19, 132.15, 132.08, 131.93, 131.91, 131.87, 131.81, 131.79, 131.53, 131.47, 131.44, 131.37, 131.17, 131.11, 130.43, 130.35, 130.33, 130.26, 129.54, 129.36, 128.88, 128.80, 128.77, 128.69, 128.65, 127.46, 126.56, 67.36, 65.04, 57.07, 57.05, 56.77, 38.14, 37.48, 35.24, 34.59, 31.68, 31.18, 31.01, 29.03, 25.60, 23.08, 21.45, 21.43, 20.10, 19.89, 17.70, 15.38; **MS (ESI)**: found [M+H]⁺ 482.2.

4a: colourless oil; ³¹**P NMR** (CDCl₃, 162 MHz) δ : 34.68; ¹**H NMR** (CDCl₃, 400 MHz) δ : 9.45(s), 7.71-7.76 (m, 4 H), 7.66 (d, *J* = 8.2 Hz, 2 H), 7.39-7.53 (m, 7 H), 7.01-7.13 (m, 5 H), 2.46-2.50 (m, 2 H), 2.33 (s, 3 H), 2.05-2.11 (m, 2 H), 1.75-1.87 (m, 2 H); ¹³**C NMR** (CDCl₃, 100 MHz) δ : 142.83, 137.79, 135.51, 134.79, 132.31 (d, J_{C-P} = 99.1 Hz), 131.91 (d, J_{C-P} = 2.5 Hz), 130.90, 130.81, 129.44, 129.26, 128.80, 128.69, 127.25, 126.96, 125.98 (d, J_{C-P} = 6.9 Hz), 29.22 (d, J_{C-P} = 5.5 Hz), 26.83 (d, J_{C-P} = 4.3 Hz), 23.20 (d, J_{C-P} = 71.0 Hz), 21.50; **MS** (**ESI**): found [M+H]⁺ 490.1.

6a: white solid; ³¹**P NMR** (CDCl₃, 162 MHz) δ : 18.75,18.66; ¹**H NMR** (CDCl₃, 400 MHz) δ : 7.68-7.74 (m, 4 H), 7.29-7.39 (m, 11 H), 7.24-7.27 (m, 2 H), 7.07-7.16 (m, 3 H), 6.82 (d, *J* = 18.2 Hz, 2 H); ¹³**C NMR** (CDCl₃, 100 MHz) δ :162.00 (d, J_{C-P} = 2.6 Hz), 141.88 (d, J_{C-P} = 16.3 Hz), 138.03 (d, J_{C-P} = 6.6 Hz), 134.40 (d, J_{C-P} = 108.8 Hz), 131.08 (d, J_{C-P} = 2.6 Hz), 130.87 (d, J_{C-P} = 9.4 Hz), 130.32, 129.09 (d, J_{C-P} = 90.4 Hz), 128.36 (d, J_{C-P} = 5.0 Hz), 128.26 (d, J_{C-P} = 6.4 Hz), 127.59, 120.55 (d, J_{C-P} = 103.7 Hz); **MS** (**ESI**): found [M+H]⁺ 381.2.

8a:3a = **1:1**: colourless oil; ³¹**P NMR** (CDCl₃, 162 MHz) δ : 29.49, 28.55; ¹**H NMR** (CDCl₃, 400 MHz) δ : 9.56 (s, 1 H), 7.97-8.01 (m, 2 H), 7.43-7.77 (m, 23 H), 7.00-7.24 (m, 11 H), 4.28-4.35 (m, 1 H), 3.53 (s, 2 H), 3.48 (d, J_{H-P} = 14.2 Hz, 2 H), 3.18-3.25 (m, 2 H), 2.89-2.96 (m, 1 H), 2.65-2.75 (m, 1 H), 2.36 (s, 3 H), 2.30 (s, 3 H); **MS** (**ESI**): found [M+H]⁺ 488.1, 504.1.

IX. References:

- 1. Correa, A.; Tellitu, I.; Dom ńguez, E.; SanMartin, R. J. Org. Chem. 2006, 71, 8316.
- 2. Sherman, E. S.; Fuller, P. H.; Kasi, D.; Chemler, S. R. J. Org. Chem. 2007, 72, 3896.
- 3. Berry, M. B.; Craig, D. Synlett 1992, 41.

X. NMR Charts

a1-C

29.88

3b-C

3c-H

3c-C

 		18			1			1					,		1	-	-		1				T			
	1	00			50			0			-	50			 100			-1	50			-	200		PF	om

3d-C

- 48.10

3e-H

3f-C

 $< \frac{39.11}{38.52}$

P3g-C

3i-H

3k-H

3k-C

3l-C

3m-H

3m-C

3n-H

3n-C

3q-C

3r-H

3r-C

3s-C

3t-C

3t-F

3u-H

3u-C

Зv-Н

3v-C

3w-H

3w-C

3x-P

3x-C

3y-C

3z-C

 $<^{29.73}_{29.29}$

\

3aa-H

3aa-C

4a-H

4a-C

6a-C

8a:3a = 1:1-H