Electronic Suplementary Material for CrystEngComm This Journal is © The Royal Society of Chemistry 2005 data_global _journal_name_full CrystEngComm _journal_coden_Cambridge 1350 _publ_contact_author_name 'Dan Li' _publ_contact_author_address ; Department of Chemistry Shantou University Shantou Guangdong 515063 CHINA ; _publ_contact_author_email DLI@STU.EDU.CN _publ_section_title ; Solvent Control in the Hydrothermal Synthesis of Two Copper(I) Iodide CBenzimidazole Coordination Polymers ; loop_ _publ_author_name 'Dan Li' 'Seik Weng Ng.' 'Tao Wu.' data_cu _database_code_depnum_ccdc_archive 'CCDC 240361' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C7 H4 Cu I N2' _chemical_formula_weight 306.56 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Pbca loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z+1/2' 'x+1/2, -y+1/2, -z' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z-1/2' '-x-1/2, y-1/2, z' _cell_length_a 11.3793(9) _cell_length_b 9.6944(7) _cell_length_c 13.5323(10) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1492.82(19) _cell_formula_units_Z 8 _cell_measurement_temperature 123(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description block _exptl_crystal_colour red _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.27 _exptl_crystal_size_min 0.25 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.728 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1136 _exptl_absorpt_coefficient_mu 6.984 _exptl_absorpt_correction_type Multi-scan _exptl_absorpt_correction_T_min 0.2284 _exptl_absorpt_correction_T_max 0.2741 _exptl_absorpt_process_details ? _exptl_special_details ; ? ; _diffrn_ambient_temperature 123(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX area-detector diffractometer' _diffrn_measurement_method '\f and \w scan' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% none _diffrn_reflns_number 8297 _diffrn_reflns_av_R_equivalents 0.0295 _diffrn_reflns_av_sigmaI/netI 0.0251 _diffrn_reflns_limit_h_min -14 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_k_min -12 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_l_min -17 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min 3.01 _diffrn_reflns_theta_max 27.98 _reflns_number_total 1770 _reflns_number_gt 1547 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1053P)^2^+23.0610P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1770 _refine_ls_number_parameters 100 _refine_ls_number_restraints 42 _refine_ls_R_factor_all 0.0718 _refine_ls_R_factor_gt 0.0636 _refine_ls_wR_factor_ref 0.1949 _refine_ls_wR_factor_gt 0.1882 _refine_ls_goodness_of_fit_ref 1.167 _refine_ls_restrained_S_all 1.157 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.39798(6) 0.40011(7) 0.60116(5) 0.0286(3) Uani 1 1 d . . . Cu1 Cu 0.65376(8) 0.26108(12) 0.49528(7) 0.0169(3) Uani 1 1 d . . . N1 N 0.5027(6) 0.2019(8) 0.4587(5) 0.0170(15) Uani 1 1 d . . . N2 N 0.3061(6) 0.1858(8) 0.4686(5) 0.0185(15) Uani 1 1 d . . . C1 C 0.4713(8) 0.0949(10) 0.3969(6) 0.0182(18) Uani 1 1 d U . . C2 C 0.5322(8) 0.0067(11) 0.3371(7) 0.0236(19) Uani 1 1 d U . . H2 H 0.6151 0.0145 0.3307 0.028 Uiso 1 1 calc R . . C3 C 0.4711(10) -0.0943(12) 0.2860(8) 0.031(2) Uani 1 1 d U . . H3 H 0.5135 -0.1582 0.2465 0.038 Uiso 1 1 calc R . . C4 C 0.3501(11) -0.1046(12) 0.2909(8) 0.033(2) Uani 1 1 d U . . H4 H 0.3112 -0.1746 0.2542 0.039 Uiso 1 1 calc R . . C5 C 0.2843(9) -0.0145(11) 0.3486(7) 0.026(2) Uani 1 1 d U . . H5 H 0.2010 -0.0209 0.3505 0.031 Uiso 1 1 calc R . . C6 C 0.3431(7) 0.0848(10) 0.4030(6) 0.0176(18) Uani 1 1 d U . . C7 C 0.4013(7) 0.2478(10) 0.4972(7) 0.0173(18) Uani 1 1 d U . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0214(4) 0.0308(5) 0.0336(5) -0.0088(3) -0.0005(2) 0.0010(2) Cu1 0.0028(5) 0.0271(6) 0.0209(6) 0.0006(4) 0.0000(4) -0.0003(4) N1 0.010(3) 0.025(4) 0.016(3) 0.002(3) -0.001(3) 0.001(3) N2 0.009(3) 0.027(4) 0.019(3) 0.002(3) -0.004(3) -0.003(3) C1 0.009(4) 0.026(4) 0.020(4) 0.004(3) -0.001(3) -0.003(3) C2 0.014(4) 0.033(5) 0.024(4) 0.003(4) 0.001(3) 0.006(4) C3 0.032(5) 0.038(5) 0.024(4) -0.005(4) 0.002(4) 0.007(4) C4 0.040(5) 0.035(5) 0.023(5) -0.004(4) -0.004(4) -0.007(4) C5 0.020(4) 0.033(5) 0.025(4) 0.004(4) -0.003(3) -0.005(4) C6 0.004(3) 0.028(4) 0.022(4) 0.005(3) 0.000(3) -0.002(3) C7 0.015(4) 0.020(4) 0.017(4) 0.002(3) -0.005(3) 0.003(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 C7 2.040(9) . ? Cu1 N2 1.874(8) 4_556 ? Cu1 N1 1.879(7) . ? N1 C7 1.342(11) . ? N1 C1 1.379(12) . ? N2 C7 1.297(11) . ? N2 C6 1.386(12) . ? N2 Cu1 1.874(8) 4_456 ? C1 C2 1.366(13) . ? C1 C6 1.464(12) . ? C2 C3 1.386(15) . ? C2 H2 0.9500 . ? C3 C4 1.382(17) . ? C3 H3 0.9500 . ? C4 C5 1.390(16) . ? C4 H4 0.9500 . ? C5 C6 1.385(13) . ? C5 H5 0.9500 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N2 Cu1 N1 178.2(3) 4_556 . ? C7 N1 C1 105.2(7) . . ? C7 N1 Cu1 125.7(6) . . ? C1 N1 Cu1 128.8(6) . . ? C7 N2 C6 105.3(7) . . ? C7 N2 Cu1 124.6(7) . 4_456 ? C6 N2 Cu1 129.9(6) . 4_456 ? C2 C1 N1 134.3(9) . . ? C2 C1 C6 119.8(8) . . ? N1 C1 C6 105.9(8) . . ? C1 C2 C3 118.9(9) . . ? C1 C2 H2 120.6 . . ? C3 C2 H2 120.6 . . ? C4 C3 C2 121.8(10) . . ? C4 C3 H3 119.1 . . ? C2 C3 H3 119.1 . . ? C3 C4 C5 121.2(10) . . ? C3 C4 H4 119.4 . . ? C5 C4 H4 119.4 . . ? C6 C5 C4 118.4(10) . . ? C6 C5 H5 120.8 . . ? C4 C5 H5 120.8 . . ? C5 C6 N2 133.2(8) . . ? C5 C6 C1 119.8(9) . . ? N2 C6 C1 106.9(7) . . ? N2 C7 N1 116.6(8) . . ? N2 C7 I1 121.7(7) . . ? N1 C7 I1 121.6(6) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N2 Cu1 N1 C7 141(9) 4_556 . . . ? N2 Cu1 N1 C1 -31(10) 4_556 . . . ? C7 N1 C1 C2 -179.8(10) . . . . ? Cu1 N1 C1 C2 -6.5(15) . . . . ? C7 N1 C1 C6 0.5(9) . . . . ? Cu1 N1 C1 C6 173.8(6) . . . . ? N1 C1 C2 C3 178.1(10) . . . . ? C6 C1 C2 C3 -2.3(14) . . . . ? C1 C2 C3 C4 2.6(15) . . . . ? C2 C3 C4 C5 -0.7(16) . . . . ? C3 C4 C5 C6 -1.3(16) . . . . ? C4 C5 C6 N2 -177.9(10) . . . . ? C4 C5 C6 C1 1.6(14) . . . . ? C7 N2 C6 C5 179.7(10) . . . . ? Cu1 N2 C6 C5 -5.1(16) 4_456 . . . ? C7 N2 C6 C1 0.1(10) . . . . ? Cu1 N2 C6 C1 175.4(6) 4_456 . . . ? C2 C1 C6 C5 0.3(13) . . . . ? N1 C1 C6 C5 180.0(8) . . . . ? C2 C1 C6 N2 179.9(8) . . . . ? N1 C1 C6 N2 -0.4(9) . . . . ? C6 N2 C7 N1 0.2(11) . . . . ? Cu1 N2 C7 N1 -175.4(6) 4_456 . . . ? C6 N2 C7 I1 -176.5(6) . . . . ? Cu1 N2 C7 I1 7.9(11) 4_456 . . . ? C1 N1 C7 N2 -0.4(11) . . . . ? Cu1 N1 C7 N2 -174.1(6) . . . . ? C1 N1 C7 I1 176.3(6) . . . . ? Cu1 N1 C7 I1 2.7(11) . . . . ? _diffrn_measured_fraction_theta_max 0.984 _diffrn_reflns_theta_full 27.98 _diffrn_measured_fraction_theta_full 0.984 _refine_diff_density_max 3.626 _refine_diff_density_min -1.296 _refine_diff_density_rms 0.387 data_cu_a _database_code_depnum_ccdc_archive 'CCDC 240362' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C7 H6 Cu2 I2 N2' _chemical_formula_weight 499.02 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M P2(1)/c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 15.8807(12) _cell_length_b 4.1476(3) _cell_length_c 17.2672(13) _cell_angle_alpha 90.00 _cell_angle_beta 111.9290(10) _cell_angle_gamma 90.00 _cell_volume 1055.05(14) _cell_formula_units_Z 4 _cell_measurement_temperature 296(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description bar _exptl_crystal_colour yellow _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.12 _exptl_crystal_size_min 0.10 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.142 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 904 _exptl_absorpt_coefficient_mu 9.836 _exptl_absorpt_correction_type Multi-scan _exptl_absorpt_correction_T_min 0.1564 _exptl_absorpt_correction_T_max 0.4396 _exptl_absorpt_process_details ? _exptl_special_details ; ? ; _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker APEX area-detector diffractometer' _diffrn_measurement_method '\f and \w scan' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% none _diffrn_reflns_number 5859 _diffrn_reflns_av_R_equivalents 0.0254 _diffrn_reflns_av_sigmaI/netI 0.0329 _diffrn_reflns_limit_h_min -20 _diffrn_reflns_limit_h_max 21 _diffrn_reflns_limit_k_min -4 _diffrn_reflns_limit_k_max 5 _diffrn_reflns_limit_l_min -20 _diffrn_reflns_limit_l_max 22 _diffrn_reflns_theta_min 1.38 _diffrn_reflns_theta_max 27.98 _reflns_number_total 2445 _reflns_number_gt 2004 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0658P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0084(5) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 2445 _refine_ls_number_parameters 119 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0488 _refine_ls_R_factor_gt 0.0373 _refine_ls_wR_factor_ref 0.1135 _refine_ls_wR_factor_gt 0.0954 _refine_ls_goodness_of_fit_ref 1.105 _refine_ls_restrained_S_all 1.105 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.25690(3) 0.13631(8) 0.18739(2) 0.03529(17) Uani 1 1 d . . . I2 I 0.50204(3) 0.61735(8) 0.36290(2) 0.03579(17) Uani 1 1 d . . . Cu1 Cu 0.31414(7) 0.61148(19) 0.29090(5) 0.0515(3) Uani 1 1 d . . . Cu2 Cu 0.43175(7) 0.1114(2) 0.26106(6) 0.0611(3) Uani 1 1 d . . . N1 N 0.2760(3) 0.7084(13) 0.3854(3) 0.0383(11) Uani 1 1 d . . . N2 N 0.2718(4) 0.9345(14) 0.4993(3) 0.0486(13) Uani 1 1 d . . . H6 H 0.2902 1.0364 0.5461 0.058 Uiso 1 1 calc R . . C1 C 0.1895(4) 0.6641(13) 0.3870(3) 0.0357(13) Uani 1 1 d . . . C2 C 0.1141(4) 0.5090(18) 0.3304(4) 0.0445(15) Uani 1 1 d . . . H2 H 0.1160 0.4078 0.2830 0.053 Uiso 1 1 calc R . . C3 C 0.0365(5) 0.5129(19) 0.3480(4) 0.0520(16) Uani 1 1 d . . . H3 H -0.0158 0.4160 0.3109 0.062 Uiso 1 1 calc R . . C4 C 0.0341(5) 0.6582(17) 0.4200(5) 0.0563(19) Uani 1 1 d . . . H4 H -0.0197 0.6552 0.4296 0.068 Uiso 1 1 calc R . . C5 C 0.1084(5) 0.8043(17) 0.4766(4) 0.0500(16) Uani 1 1 d . . . H5 H 0.1069 0.8986 0.5249 0.060 Uiso 1 1 calc R . . C6 C 0.1859(4) 0.8054(15) 0.4587(3) 0.0383(13) Uani 1 1 d . . . C7 C 0.3214(5) 0.8716(14) 0.4524(4) 0.0449(15) Uani 1 1 d . . . H7 H 0.3813 0.9375 0.4664 0.054 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0409(3) 0.0311(2) 0.0315(2) -0.00023(13) 0.01085(18) -0.00046(14) I2 0.0358(3) 0.0323(3) 0.0363(3) -0.00143(14) 0.01012(18) -0.00064(14) Cu1 0.0631(6) 0.0573(6) 0.0404(5) -0.0094(4) 0.0266(4) -0.0045(4) Cu2 0.0542(6) 0.0637(7) 0.0572(6) 0.0027(4) 0.0113(5) -0.0001(4) N1 0.041(3) 0.047(3) 0.027(2) -0.006(2) 0.013(2) -0.005(2) N2 0.054(3) 0.062(3) 0.029(3) -0.013(2) 0.014(2) -0.002(3) C1 0.044(3) 0.033(3) 0.028(3) 0.004(2) 0.012(2) 0.002(2) C2 0.049(4) 0.047(4) 0.035(3) -0.002(3) 0.013(3) -0.004(3) C3 0.048(4) 0.059(4) 0.041(4) 0.002(3) 0.008(3) -0.002(3) C4 0.047(4) 0.069(5) 0.061(4) 0.012(4) 0.030(4) 0.011(3) C5 0.055(4) 0.059(4) 0.043(4) 0.004(3) 0.026(3) 0.008(3) C6 0.050(4) 0.040(3) 0.025(3) 0.005(2) 0.014(3) 0.008(3) C7 0.043(4) 0.057(4) 0.033(3) -0.009(3) 0.013(3) -0.006(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 Cu1 2.5868(9) . ? I1 Cu2 2.5887(11) . ? I1 Cu1 2.7470(9) 1_545 ? I2 Cu2 2.6591(10) 1_565 ? I2 Cu2 2.6974(10) . ? I2 Cu2 2.7146(12) 2_655 ? I2 Cu1 2.7712(11) . ? Cu1 N1 1.982(5) . ? Cu1 I1 2.7470(9) 1_565 ? Cu1 Cu2 2.9617(13) 1_565 ? Cu1 Cu2 2.9623(13) . ? Cu2 I2 2.6591(10) 1_545 ? Cu2 I2 2.7146(12) 2_645 ? Cu2 Cu1 2.9617(13) 1_545 ? N1 C7 1.302(7) . ? N1 C1 1.397(8) . ? N2 C7 1.349(8) . ? N2 C6 1.388(8) . ? N2 H6 0.8600 . ? C1 C2 1.389(9) . ? C1 C6 1.390(7) . ? C2 C3 1.375(9) . ? C2 H2 0.9300 . ? C3 C4 1.395(9) . ? C3 H3 0.9300 . ? C4 C5 1.361(10) . ? C4 H4 0.9300 . ? C5 C6 1.376(9) . ? C5 H5 0.9300 . ? C7 H7 0.9300 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Cu1 I1 Cu2 69.83(3) . . ? Cu1 I1 Cu1 102.04(3) . 1_545 ? Cu2 I1 Cu1 67.36(3) . 1_545 ? Cu2 I2 Cu2 101.48(3) 1_565 . ? Cu2 I2 Cu2 71.10(3) 1_565 2_655 ? Cu2 I2 Cu2 70.53(3) . 2_655 ? Cu2 I2 Cu1 66.07(3) 1_565 . ? Cu2 I2 Cu1 65.58(3) . . ? Cu2 I2 Cu1 108.39(3) 2_655 . ? N1 Cu1 I1 125.92(16) . . ? N1 Cu1 I1 104.27(17) . 1_565 ? I1 Cu1 I1 102.04(3) . 1_565 ? N1 Cu1 I2 103.75(15) . . ? I1 Cu1 I2 111.00(3) . . ? I1 Cu1 I2 108.92(3) 1_565 . ? N1 Cu1 Cu2 114.06(16) . 1_565 ? I1 Cu1 Cu2 119.66(4) . 1_565 ? I1 Cu1 Cu2 53.77(3) 1_565 1_565 ? I2 Cu1 Cu2 55.15(3) . 1_565 ? N1 Cu1 Cu2 133.74(16) . . ? I1 Cu1 Cu2 55.11(2) . . ? I1 Cu1 Cu2 121.24(4) 1_565 . ? I2 Cu1 Cu2 56.01(3) . . ? Cu2 Cu1 Cu2 88.88(4) 1_565 . ? I1 Cu2 I2 117.65(4) . 1_545 ? I1 Cu2 I2 113.33(4) . . ? I2 Cu2 I2 101.48(3) 1_545 . ? I1 Cu2 I2 105.81(4) . 2_645 ? I2 Cu2 I2 109.75(4) 1_545 2_645 ? I2 Cu2 I2 108.61(3) . 2_645 ? I1 Cu2 Cu1 58.87(3) . 1_545 ? I2 Cu2 Cu1 58.79(3) 1_545 1_545 ? I2 Cu2 Cu1 124.44(4) . 1_545 ? I2 Cu2 Cu1 126.78(4) 2_645 1_545 ? I1 Cu2 Cu1 55.06(3) . . ? I2 Cu2 Cu1 124.11(4) 1_545 . ? I2 Cu2 Cu1 58.41(3) . . ? I2 Cu2 Cu1 125.86(4) 2_645 . ? Cu1 Cu2 Cu1 88.88(4) 1_545 . ? C7 N1 C1 105.9(5) . . ? C7 N1 Cu1 126.8(4) . . ? C1 N1 Cu1 126.5(4) . . ? C7 N2 C6 107.8(5) . . ? C7 N2 H6 126.1 . . ? C6 N2 H6 126.1 . . ? C2 C1 C6 120.7(6) . . ? C2 C1 N1 130.0(5) . . ? C6 C1 N1 109.3(5) . . ? C3 C2 C1 116.6(6) . . ? C3 C2 H2 121.7 . . ? C1 C2 H2 121.7 . . ? C2 C3 C4 121.8(7) . . ? C2 C3 H3 119.1 . . ? C4 C3 H3 119.1 . . ? C5 C4 C3 121.8(7) . . ? C5 C4 H4 119.1 . . ? C3 C4 H4 119.1 . . ? C4 C5 C6 116.6(6) . . ? C4 C5 H5 121.7 . . ? C6 C5 H5 121.7 . . ? C5 C6 N2 132.9(6) . . ? C5 C6 C1 122.5(6) . . ? N2 C6 C1 104.7(5) . . ? N1 C7 N2 112.3(6) . . ? N1 C7 H7 123.8 . . ? N2 C7 H7 123.8 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag Cu2 I1 Cu1 N1 -122.4(2) . . . . ? Cu1 I1 Cu1 N1 -62.2(2) 1_545 . . . ? Cu2 I1 Cu1 I1 119.85(4) . . . 1_565 ? Cu1 I1 Cu1 I1 180.0 1_545 . . 1_565 ? Cu2 I1 Cu1 I2 3.94(3) . . . . ? Cu1 I1 Cu1 I2 64.09(4) 1_545 . . . ? Cu2 I1 Cu1 Cu2 64.87(4) . . . 1_565 ? Cu1 I1 Cu1 Cu2 125.02(4) 1_545 . . 1_565 ? Cu1 I1 Cu1 Cu2 60.15(4) 1_545 . . . ? Cu2 I2 Cu1 N1 -109.94(17) 1_565 . . . ? Cu2 I2 Cu1 N1 133.91(17) . . . . ? Cu2 I2 Cu1 N1 -168.55(17) 2_655 . . . ? Cu2 I2 Cu1 I1 112.25(4) 1_565 . . . ? Cu2 I2 Cu1 I1 -3.90(3) . . . . ? Cu2 I2 Cu1 I1 53.65(4) 2_655 . . . ? Cu2 I2 Cu1 I1 0.67(3) 1_565 . . 1_565 ? Cu2 I2 Cu1 I1 -115.48(4) . . . 1_565 ? Cu2 I2 Cu1 I1 -57.93(4) 2_655 . . 1_565 ? Cu2 I2 Cu1 Cu2 -116.15(5) . . . 1_565 ? Cu2 I2 Cu1 Cu2 -58.61(3) 2_655 . . 1_565 ? Cu2 I2 Cu1 Cu2 116.15(5) 1_565 . . . ? Cu2 I2 Cu1 Cu2 57.54(3) 2_655 . . . ? Cu1 I1 Cu2 I2 113.97(5) . . . 1_545 ? Cu1 I1 Cu2 I2 0.76(3) 1_545 . . 1_545 ? Cu1 I1 Cu2 I2 -4.12(3) . . . . ? Cu1 I1 Cu2 I2 -117.32(5) 1_545 . . . ? Cu1 I1 Cu2 I2 -123.02(4) . . . 2_645 ? Cu1 I1 Cu2 I2 123.77(4) 1_545 . . 2_645 ? Cu1 I1 Cu2 Cu1 113.21(4) . . . 1_545 ? Cu1 I1 Cu2 Cu1 -113.21(4) 1_545 . . . ? Cu2 I2 Cu2 I1 -52.89(6) 1_565 . . . ? Cu2 I2 Cu2 I1 -117.90(4) 2_655 . . . ? Cu1 I2 Cu2 I1 3.96(3) . . . . ? Cu2 I2 Cu2 I2 180.0 1_565 . . 1_545 ? Cu2 I2 Cu2 I2 114.98(5) 2_655 . . 1_545 ? Cu1 I2 Cu2 I2 -123.15(4) . . . 1_545 ? Cu2 I2 Cu2 I2 64.39(5) 1_565 . . 2_645 ? Cu2 I2 Cu2 I2 -0.63(2) 2_655 . . 2_645 ? Cu1 I2 Cu2 I2 121.24(4) . . . 2_645 ? Cu2 I2 Cu2 Cu1 -120.13(4) 1_565 . . 1_545 ? Cu2 I2 Cu2 Cu1 174.86(7) 2_655 . . 1_545 ? Cu1 I2 Cu2 Cu1 -63.28(4) . . . 1_545 ? Cu2 I2 Cu2 Cu1 -56.85(4) 1_565 . . . ? Cu2 I2 Cu2 Cu1 -121.87(4) 2_655 . . . ? N1 Cu1 Cu2 I1 108.8(2) . . . . ? I1 Cu1 Cu2 I1 -82.79(4) 1_565 . . . ? I2 Cu1 Cu2 I1 -175.56(3) . . . . ? Cu2 Cu1 Cu2 I1 -128.10(3) 1_565 . . . ? N1 Cu1 Cu2 I2 6.7(2) . . . 1_545 ? I1 Cu1 Cu2 I2 -102.15(5) . . . 1_545 ? I1 Cu1 Cu2 I2 175.05(3) 1_565 . . 1_545 ? I2 Cu1 Cu2 I2 82.28(4) . . . 1_545 ? Cu2 Cu1 Cu2 I2 129.74(3) 1_565 . . 1_545 ? N1 Cu1 Cu2 I2 -75.6(2) . . . . ? I1 Cu1 Cu2 I2 175.56(3) . . . . ? I1 Cu1 Cu2 I2 92.77(4) 1_565 . . . ? Cu2 Cu1 Cu2 I2 47.46(3) 1_565 . . . ? N1 Cu1 Cu2 I2 -166.6(2) . . . 2_645 ? I1 Cu1 Cu2 I2 84.55(5) . . . 2_645 ? I1 Cu1 Cu2 I2 1.75(7) 1_565 . . 2_645 ? I2 Cu1 Cu2 I2 -91.02(5) . . . 2_645 ? Cu2 Cu1 Cu2 I2 -43.56(7) 1_565 . . 2_645 ? N1 Cu1 Cu2 Cu1 56.9(2) . . . 1_545 ? I1 Cu1 Cu2 Cu1 -51.90(3) . . . 1_545 ? I1 Cu1 Cu2 Cu1 -134.69(3) 1_565 . . 1_545 ? I2 Cu1 Cu2 Cu1 132.54(3) . . . 1_545 ? Cu2 Cu1 Cu2 Cu1 180.0 1_565 . . 1_545 ? I1 Cu1 N1 C7 156.4(5) . . . . ? I1 Cu1 N1 C7 -86.8(5) 1_565 . . . ? I2 Cu1 N1 C7 27.1(6) . . . . ? Cu2 Cu1 N1 C7 -30.5(6) 1_565 . . . ? Cu2 Cu1 N1 C7 82.9(6) . . . . ? I1 Cu1 N1 C1 -35.5(6) . . . . ? I1 Cu1 N1 C1 81.2(5) 1_565 . . . ? I2 Cu1 N1 C1 -164.8(5) . . . . ? Cu2 Cu1 N1 C1 137.6(5) 1_565 . . . ? Cu2 Cu1 N1 C1 -109.0(5) . . . . ? C7 N1 C1 C2 179.4(6) . . . . ? Cu1 N1 C1 C2 9.3(9) . . . . ? C7 N1 C1 C6 -0.7(7) . . . . ? Cu1 N1 C1 C6 -170.8(4) . . . . ? C6 C1 C2 C3 1.9(9) . . . . ? N1 C1 C2 C3 -178.2(6) . . . . ? C1 C2 C3 C4 -1.5(11) . . . . ? C2 C3 C4 C5 0.1(12) . . . . ? C3 C4 C5 C6 0.8(10) . . . . ? C4 C5 C6 N2 178.2(7) . . . . ? C4 C5 C6 C1 -0.4(9) . . . . ? C7 N2 C6 C5 -178.2(7) . . . . ? C7 N2 C6 C1 0.5(7) . . . . ? C2 C1 C6 C5 -1.1(9) . . . . ? N1 C1 C6 C5 179.0(6) . . . . ? C2 C1 C6 N2 -180.0(6) . . . . ? N1 C1 C6 N2 0.1(6) . . . . ? C1 N1 C7 N2 1.1(7) . . . . ? Cu1 N1 C7 N2 171.2(4) . . . . ? C6 N2 C7 N1 -1.0(7) . . . . ? _diffrn_measured_fraction_theta_max 0.956 _diffrn_reflns_theta_full 27.98 _diffrn_measured_fraction_theta_full 0.956 _refine_diff_density_max 1.439 _refine_diff_density_min -1.384 _refine_diff_density_rms 0.418