Electronic Supplementary Information

for

Molecular botanical garden: assembly of supramolecular silver(I) and mercury(II) complexes of NS_2 -donor macrocycles with flower-, leaf- and tree-shaped structures

Sunhong Park, So Young Lee, Minhye Jo, Jai Young Lee and Shim Sung Lee*

Department of Chemistry (BK21) and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, S. Korea. E-mail: sslee@gnu.ac.kr

Fig. S1 ¹H NMR spectrum of L^1 in CDCl₃.

Fig. S2 13 C NMR spectrum of L¹ in CDCl₃.

Fig. S3 ¹H NMR spectrum of L^2 in CDCl₃.

Fig. S4 13 C NMR spectrum of L² in CDCl₃.

Electronic Supplementary Material for CrystEngComm This journal is (c) The Royal Society of Chemistry 2008

Fig. S5 ¹H NMR spectrum of L^3 in CDCl₃.

Fig. S6 13 C NMR spectrum of L³ in CDCl₃.

 $[Ag_6(L^1)_6(PF_6)](PF_6)_5$ (1). Layering a methanol (3 mL) of AgPF₆ (15.9 mg, 0.06 mmol) onto a dichloromethane solution (2 mL) of L¹ (15.2 mg, 0.06 mmol) afforded colourless crystalline 1 suitable for X-ray analysis. M.p. 169.5 °C (decomp.). IR (KBr, cm⁻¹): 3336, 2933, 1662, 1456, 1105, 841 (PF₆⁻), 775, 557. Anal. Calc. for C₇₂H₁₀₂Ag₆F₃₆N₆P₆S₁₂: C, 29.28; H, 3.48; N, 2.85. Found: C, 28.93; H, 3.26; N, 3.19%.

 $[Ag_3(L^2)_4](PF_6)_3 \cdot C_6H_5CH_3$ (2). Complex 2 was obtained after adding a small amount of toluene to the top layer of dichloromethane solution of L² (15.2 mg, 0.06 mmol) then layering this with a methanol (3 mL) of AgPF₆ (15.9 mg, 0.06 mmol), allowing the three phase system to stand. M.p 198.6 °C (decomp.). IR (KBr, cm⁻¹): 3305, 1552, 1425, 1380, 1108, 837 (PF₆⁻), 713. ESI-MS: m/z 426.1 $[Ag_3(L^2)_4]^{3+}$.

 $[Hg_2(L^2)Br_4]_n$ (**3a**). To the stirring solution of L^2 (20.2 mg, 0.08 mmol) in dichloromethane was added to HgBr₂ (29.2 mg, 0.08 mmol) in methanol afforded colourless precipitate. After the filtration, the vapor diffusion of diethyl ether to DMSO solution gave rise to crystalline product, affording colourless single crystals. M.p. 185.1 °C (decomp.), IR (KBr, cm⁻¹): 3191, 2358, 1686, 1518, 1410, 1301, 1218, 1047, 952, 712, 455. Anal. Calc. for C₁₂H₁₇Br₄Hg₂NS₂: C, 15.01; H, 1.78; N, 1.46. Found: C, 15.38; H, 2.08; N, 1.83%.

 $[Hg_2(L^2)I_4]_n$ (**3b**). To the stirring solution of L^2 (20.2 mg, 0.08 mmol) in dichloromethane was added to HgI₂ (36.3 mg, 0.08 mmol) in methanol afforded colourless precipitate. After the filtration, the vapor diffusion of diethyl ether to DMSO solution gave rise to crystalline product, affording colourless single crystals. M.p. 203.2 °C (decomp.). IR (KBr, cm⁻¹): 3177, 2361, 1684, 1520, 1408, 1215, 1136, 1043, 947, 708, 455. Anal. Calc. for C₁₂H₁₇I₄Hg₂NS₂: C, 12.55; H, 1.49; N, 1.22; S, 5.59. Found: C, 12.93; H, 1.52; N, 1.49; S, 5.76%.

 $[Hg_2(L^3)Br_4]_n$ (4). Layering a methanol (3 mL) of HgI₂ (28.6 mg, 0.06 mmol) onto a dichloromethane solution (2 mL) of L³ (15.2 mg, 0.06 mmol) afforded pale yellow-coloured crystalline 4 suitable for X-ray analysis. M.p. 152.6 °C (decomp.). IR (KBr, cm⁻¹): 3259, 2912, 1503, 1437, 1408, 1093, 825, 738. Anal. Calc. for C₁₂H₁₇Br₄Hg₂NS₂: C, 15.01; H, 1.78; N, 1.46. Found: C, 14.94; H, 2.03; N, 1.66%.

	1	2	3a	3b	4
Formula	$C_{72}H_{102}Ag_6F_{36}N_6P_6S_{12}\\$	$C_{55}H_{76}Ag_3F_{18}N_4P_3S_8$	$C_{12}H_{17}Br_4Hg_2NS_2$	$C_{12}H_{17}Hg_2I_4NS_2$	$C_{12}H_{17}Br_4Hg_2NS_2$
Formula weight	2953.36	1808.20	960.21	1148.17	960.21
Temperature (K)	173(2)	173(2)	173(2)	173(2)	173(2)
Crystal system	Cubic	Triclinic	Orthorhombic	Orthorhombic	Monoclinic
Space group	Ia-3d	<i>P</i> 1	Pbca	Pbca	$P2_{1}/c$
Ζ	16	1	8	8	4
<i>a</i> (Å)	36.322(3)	11.4605(5)	18.2813(8)	18.9518(19)	13.5645(11)
<i>b</i> (Å)	36.322(3)	11.6121(6)	8.1124(4)	8.5212(9)	11.9094(10)
<i>c</i> (Å)	36.322(3)	13.1785(6)	26.4524(12)	27.755(3)	12.4053(10)
α (°)	90	90.294(1)	90	90	90
β (°)	90	99.549(1)	90	90	104.114(2)
γ (°)	90	94.075(1)	90	90	90
V (Å ³)	47921(8)	1724.87(14)	3923.0(3)	4482.2(8)	1943.5(3)
$D_{\rm x} ({\rm g/cm}^3)$	1.637	1.741	3.251	3.403	3.282
$2\theta_{\max}$ (°)	56.92	54	56.56	54	53
R	0.0433	0.0535	0.0463	0.0427	0.0778
wR	0.1194	0.1340	0.1018	0.1084	0.1129
GOF	1.112	1.049	1.016	1.118	1.002
No. of reflection used $[>2\sigma(I)]$	5010 [$R_{int} = 0.1461$]	8741 [$R_{int} = 0.0118$]	4740 [$R_{int} = 0.1028$]	4888 [$R_{\rm int} = 0.0589$]	3943 $[R_{int} = 0.0857]$
Diffractometer	Bruker SMART CC D	Bruker SMART CC D	Bruker SMART CC D	Bruker SMART CC D	Bruker SMART CC D
Structure determination	SHELXTL	SHELXTL	SHELXTL	SHELXTL	SHELXTL
Refinement	full-matrix	full-matrix	full-matrix	full-matrix	full-matrix

Table S1	Crystal	and ex	perimental	data

Fig. S7 Molecular structure of 1, $[Ag_6(L^1)_6(PF_6)](PF_6)_5$: (a) top view (Ortep) and (b) general view (ball-andstick, the anion at the centre was removed). Thermal ellipsoids are drawn at the 30% probability level. Symmetry operations: (A) 1/2 - x, 1/2 + y, z, (B) -1/2 + x, y, 1/2 - z, (C) 1/2 - x, -y, 1/2 + z, (D) -1/2 + x, 1/2 - y, -z, (E) 1-x,-y,-z.

(a)

Fig. S8 (a) Packing diagram and (b) the π - π stacking interactions (dashed lines) of 1, $[Ag_6(L^1)_6(PF_6)](PF_6)_5$.

Ag1-N1	2.338(3)	S1-Ag1B	2.452(1)
Ag1-S1A	2.452(1)	Ag1-S2	2.613(1)
Ag1-S1	2.614(1)	-	
N1-Ag1-S1A	144.2(1)	N1-Ag1-S1	79.8(1)
S1A-Ag1-S1	117.6(1)	N1-Ag1-S2	80.0(1)
S1A-Ag1-S2	116.8(1)	S1-Ag1-S2	110.9(1)
Ag1B-S1-Ag1	137.0(1)	e	~ /

 Table S2
 Selected bond lengths (Å) and bond angles (°) for 1

Fig. S9 Molecular structure of **2**, $[Ag_3(L^2)_4](PF_6)_3 \cdot C_6H_5CH_3$. Hydrogen atoms, noncoordinating anions and solvent are omitted. Thermal ellipsoids are drawn at the 30% probability level.

Ag1-N1	2.315(8)	Ag1-S4	2.486(2)
Ag1-S1	2.761(2)	Ag1-S2	2.773(2)
Ag2-N2	2.269(6)	Ag2-N3	2.280(6)
Ag2-S5	2.900(2)	Ag2-S6	2.928(2)
Ag3-N4	2.352(7)	Ag3-S3	2.516(2)
Ag3-S8	2.669(2)	Ag3-S7	2.708(2)
-		-	
N1-Ag1-S4	156.2(2)	S4-Ag1-S1	108.2(1)
N1-Ag1-S1	80.2(2)	N1-Ag1-S2	79.8 (2)
S4-Ag1-S2	109.4(1)	S1-Ag1-S2	127.6(1)
N2-Ag2-N3	166.3(2)	N2-Ag2-S5	114.3(2)
N3-Ag2-S5	77.2(2)	N2-Ag2-S6	101.0(2)
N3-Ag2-S6	78.5(2)	S5-Ag2-S6	118.1(1)
N4-Ag3-S3	132.2(2)	N4-Ag3-S8	79.8(2)
S3-Ag3-S8	127.8(1)	N4-Ag3-S7	80.0(2)
S3-Ag3-S7	100.1(1)	S8-Ag3-S7	129.0(1)
-		e	

Table S3Selected bond lengths (Å) and bond angles (°) for 2

Fig. S10 Partial ESI-mass spectrum of 2 showing the existence of $[Ag_3(L^2)_4]^{3+}$ species.

Fig. S11 Asymmetric unit of 3a, $[Hg_2(L^2)Br_4]_n$. Hydrogen atoms are omitted. Thermal ellipsoids are drawn at the 30% probability level.

Hg1-N1	2.198(8)	Hg1-S2	2.864(3)
Hg1-Br1	2.439(1)	Hg1-S1	2.928(3)
Hg2-Br2	2.527(1)	Hg2-Br3	2.541(1)
Hg2-Br4	2.600(1)	Br2-Hg2B	2.978(1)
Hg2-Br2A	2.978(1)	-	
N1-Hg1-Br1	170.8(2)	Br1-Hg1-S2	109.3(1)
N1-Hg1-S2	79.8(2)	N1-Hg1-S1	78.6(2)
Br1-Hg1-S1	94.2(1)	S2-Hg1-S1	127.6(1)
Br2-Hg2-Br3	131.8(1)	Br2-Hg2-Br4	118.3(1)
Br3-Hg2-Br4	107.9(1)	Br2-Hg2-Br2A	94.6(1)
Br3-Hg2-Br2A	89.6(1)	Br4-Hg2-Br2B	100.6(1)
Hg2-Br2-Hg2B	99.6(1)		

Table S4Selected bond lengths (Å) and bond angles (°) for 3a

Symmetry Code: (A) - x - 1/2, y + 1/2, z, (B) - x - 1/2, y - 1/2, z.

Fig. S12 (a) Leaf-shaped infinite 1D structure and (b) asymmetric unit of **3b**, $[Hg_2(L^2)I_4]_n$. Thermal ellipsoids are drawn at the 30% probability level. Symmetry operations: (A) - x - 1/2, y + 1/2, z.

Hg1-N1	2.224(9)	Hg1-I1	2.6003(11)
Hg1-S2	2.855(3)	Hg1-S1	3.012(3)
Hg2-I3	2.7029(10)	Hg2-I2A	2.716(15)
Hg2-I4	2.709(16)	Hg2-I2	3.147(15)
I2-Hg2B	2.716(15)	C C	
N1-Hg1-I1	162.7(2)	N1-Hg1-S2	79.6(2)
I1-Hg1-S2	117.73(8)	N1-Hg1-S1	76.3(2)
I1-Hg1-S1	92.22(7)	S2-Hg1-S1	123.09(9)
I3-Hg2-I2A	120.9(3)	I3-Hg2-I4	111.6(3)
I2A-Hg2-I4	122.7(3)	I3-Hg2-I2	98.9(3)
I2A-Hg2-I2	97.6(3)	I4-Hg2-I2	99.9(4)
Hg2B-I2-Hg2	98.5(4)	J	

 Table S5
 Selected bond lengths (Å) and bond angles (°) for 3b

Symmetry Code: (A) - x - 1/2, y + 1/2, z, (B) - x - 1/2, y - 1/2, z.

13

(a)

Fig. S13 (a) Packing diagram, showing π - π stacking interactions (dashed lines) and (b) projection of the 1D chain for **3**, $[Hg_2(L^2)X_4]_n$ (**3a**: X = Br and **3b**: X = I) along the a-axis.

Fig. S14 Coordination environment of 4, $[Hg_2(L^3)Br_4]_n$. Thermal ellipsoids are drawn at the 30% probability level. Thermal ellipsoids are drawn at the 30% probability level. Symmetry operations: (A) - x + 2, y + 1/2, - z + 1/2.

Table S6 Selected bond lengths (Å)	and bond angles (°) for 4
---	-------------------	-----------------

Hg1-N1	2.393(15)	Hg1-Br1	2.494(2)
Hg1-S1	2.524(4)	Hg1-Br2	2.687(2)
Hg2-Br4	2.483(2)	Hg2-Br3	2.557(2)
Hg2-S2A	2.601(4)	Hg2-Br2	2.997(2)
S2-Hg2B	2.601(4)	-	
N1-Hg1-Br1	119.0(3)	N1-Hg1-S1	83.8(4)
Br1-Hg1-S1	144.4(1)	N1-Hg1-Br2	88.0(3)
Br1-Hg1-Br2	110.3(1)	S1-Hg1-Br2	96.6(1)
Br4-Hg2-Br3	127.3(1)	Br4-Hg2-S2A	123.2(1)
Br3-Hg2-S2A	108.0(1)	Br4-Hg2-Br2	94.0(1)
Br3-Hg2-Br2	93.9(1)	S2A-Hg2-Br2	94.5(1)
Hg1-Br2-Hg2	149.0(1)	-	

Symmetry Code: (A) - x + 2, y + 1/2, -z + 1/2, (B) - x + 2, y - 1/2, -z + 1/2.