# Electronic Supplementary Material for CrystEngComm # This journal is (c) The Royal Society of Chemistry 2008 data_global _journal_name_full CrystEngComm _journal_coden_Cambridge 1350 _journal_year 2006 _journal_volume 8 _journal_page_first 132 _publ_contact_author ; Toshimasa Katagiri Department of Applied Chemistry, Faculty of Engineering, Okayama University 3-1-1 Tsushimanaka, Okayama Japan ; _publ_contact_author_email tkata@cc.okayama-u.ac.jp _publ_section_title ; Nanoporous organic layered crystals of double-headed bis(trifluorolactate)s: Hydrogen-bonded systematic crystal structures controlled by the symmetries of molecular components. ; _publ_section_references ; teXsan Single Crystal Structure Analysis Software. Version 1.11 - Molecular Structure Corporation, Rigaku Corporation. (2000). . MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. Rigaku, 3-9-12 Akishima, Tokyo, Japan. SIR97 - A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 1999, 32, 115-119. SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB] - Programs for Crystal Structure Analysis (Release 97-2). G. M. Sheldrick, Institut fur Anorganische Chemie der Universitat, Tammanstrasse 4, D-3400 Gottingen, Germany, 1998. SAPI91, Structure Analysis Programs with Intelligent Control, H.-F. Fan, Rigaku Corporation, 1991. WinGX - L.J. Farrugia, J. Appl. Cryst., 1999, 32, 837-838. PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, A. L. Spek, 1998. SQUEEZE - P. v.d. Sluis and A. L. Spek, Acta Crystallogr., 1990, A46, 194-201. ORTEP3 for Windows - L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565. MERCURY - I. J. Bruno, J. C. Cole, P. R. Edgington, M. K. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta Crystallogr., B58, 2002, 389-397. ; _publ_contact_author_name 'Toshimasa Katagiri' loop_ _publ_author_name 'Satoshi Takahashi' 'Toshimasa Katagiri' 'Kenji Uneyama' #==END #----------------------------------------------------------------------------# data_3g_hexane_ether_mixed_solvate _database_code_depnum_ccdc_archive 'CCDC 246924' _audit_creation_method SHELXL-97 #----------------------------------------------------------------------------# # CHEMICAL INFORMATION # #----------------------------------------------------------------------------# _chemical_melting_point 339 _chemical_formula_moiety 'C16 H24 F6 O6, (C6H14)0.30, (C4H10O)0.08' _chemical_formula_sum 'C18.12 H29 F6 O6.08' _chemical_formula_weight 458.13 _chemical_name_common ;(S,S)-(-)-decamethylene bis(3,3,3-trifluorolactate) hexane ether mixed solvate ; _chemical_absolute_configuration syn _chemical_optical_rotation '[\a]^25^~D~= -3.78 (c = 1.1, acetone)' #----------------------------------------------------------------------------# # UNIT CELL INFORMATION # #----------------------------------------------------------------------------# _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P 21 21 2 ' _symmetry_Int_Tables_number 18 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'x+1/2, -y+1/2, -z' '-x+1/2, y+1/2, -z' _cell_length_a 28.6832(8) _cell_length_b 5.0572(1) _cell_length_c 7.9245(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1149.50(6) _cell_formula_units_Z 2 _cell_measurement_temperature 100(1) _cell_measurement_reflns_used 13317 _cell_measurement_theta_min 2.1 _cell_measurement_theta_max 27.5 #----------------------------------------------------------------------------# # CRYSTAL INFORMATION # #----------------------------------------------------------------------------# _exptl_crystal_description needle _exptl_crystal_colour colorless _exptl_crystal_size_max 0.300 _exptl_crystal_size_mid 0.100 _exptl_crystal_size_min 0.100 _exptl_crystal_density_diffrn 1.324 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 481 _exptl_special_details ; The single crystal was prepared by slow evaporation of a hexane-ether solution. A needle crystal was mounted on a glass capillary. ^1^H NMR analysis of the crystal 3g (dissolved in CDCl~3~) showed inclusion of hexane and ether. (3g[mol] : hexane[mol] : ether[mol] = 1 : 0.30 : 0.08) TG analysis of the crystal also showed inclusion and guest escape. (3g[mol] : hexane+ether[mol] = 1 : 0.35-0.40) In this X-ray diffraction analysis, there were four residual peaks within the void from Fourier difference map. However, the highly disordered solvents within the void could not be crystallographically defined. The SQUEEZE routine of the program PLATON estimated a void electron count to be 73 per unit cell. Hexane and ether have 50 and 40 electrons per one molecule, respectively. Z value of the crystal is 2. Amount of guests in 3g crystal was calculated as follows, (3g[mol] : hexane+ether[mol] = 1 : 0.71-0.89) This is larger than the results of NMR and TG analysis. The estimate by SQUEEZE may be unreliable because missing reflections can bias the estimate of the electron count by SQUEEZE. Therefore, the solvate formula based on the result of NMR analysis, C16H24F6O6, (C6H14)~0.30~(C4H10O)~0.08~ was adopted for calculation of the related crystallographic parameters, ; #_chemical_formula_sum 'C18.12H29F6O6.08' #_chemical_formula_moiety 'C16H24F6O6, (C6H14)0.3, (C4H10O)0.08' #_chemical_formula_weight 458.13 #_exptl_crystal_density_diffrn 1.324 #_exptl_crystal_F_000 481 #_exptl_absorpt_coefficient_mu 0.128 #----------------------------------------------------------------------------# # ABSORPTION CORRECTION # #----------------------------------------------------------------------------# _exptl_absorpt_coefficient_mu 0.128 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.790 _exptl_absorpt_correction_T_max 0.987 _exptl_absorpt_process_details ; (HIGASHI, T. (1995). Abscor - Empirical Absorption Correction based on Fourier Series Approximation. Rigaku Corporation, Tokyo, Japan.) ; #----------------------------------------------------------------------------# # DATA COLLECTION # #----------------------------------------------------------------------------# _diffrn_ambient_temperature 100(1) _diffrn_radiation_wavelength 0.71069 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'Rigaku rotating anode' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Rigaku RAXIS-IV Imaging Plate' _diffrn_measurement_method \w _diffrn_detector_area_resol_mean 10 _diffrn_reflns_number 2511 _diffrn_reflns_av_R_equivalents 0.0086 _diffrn_reflns_limit_h_min -34 _diffrn_reflns_limit_h_max 34 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -9 _diffrn_reflns_limit_l_max 9 _diffrn_reflns_theta_min 1.42 _diffrn_reflns_theta_max 27.50 _reflns_number_total 1274 _reflns_number_gt 1200 _reflns_threshold_expression >2sigma(I) #----------------------------------------------------------------------------# # COMPUTER PROGRAMS USED # #----------------------------------------------------------------------------# _computing_data_collection 'RAPID-AUTO (Rigaku)' _computing_cell_refinement 'PAPID-AUTO (Rigaku)' _computing_data_reduction 'teXsan Ver. 1.11 (MSC)' _computing_structure_solution 'SAPI91 (Rigaku, 1991)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_publication_material 'WinGX Ver. 1.7 (Farrugia, 1999)' _computing_molecular_graphics 'Mercury Ver. 1.3 (Bruno et al., 2002)' #----------------------------------------------------------------------------# # REFINEMENT INFORMATION # #----------------------------------------------------------------------------# _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Non H-atoms were refined anisotropically. H-atoms of OH have been located from Fourier difference maps and fixed to its position. The remaining H-atoms were included in calculated positions and treated as riding atoms using the SHELXL default parameters. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0616P)^2^+0.1844P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.046(5) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details ; The absolute configuration was assigned to agree with that of its precursor (S)-trifluorolactic acid at the chiral centre C2. This compound has no atom heavier than Si and analyzed by Mo radiation so that Flack parameter is not listed. Friedel pairs were merged before refinement. ; _refine_ls_number_reflns 1274 _refine_ls_number_parameters 128 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0379 _refine_ls_R_factor_gt 0.0361 _refine_ls_wR_factor_ref 0.0949 _refine_ls_wR_factor_gt 0.0941 _refine_ls_goodness_of_fit_ref 1.121 _refine_ls_restrained_S_all 1.121 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 #----------------------------------------------------------------------------# # DISORDER FIELD INFORMATION # #----------------------------------------------------------------------------# # SQUEEZE RESULTS _platon_squeeze_details ; Although there were four peaks within the void from Fourier difference map, the highly disordered solvents within the void were not crystallographically well defined. The SQUEEZE routine of the program PLATON was used in order to eliminate the contribution of disordered solvents molecules, thereby a final model based only on the ordered part of the crystal structure was obtained. The SQUEEZE routine suggested that a total potential solvent area volume of 206.9 Ang^3^[18.0% of cell volume], and a void electron population of 73 per cell. Refinement after the SQUEEZE routine gave significantly improved R values. [R values before SQUEEZE] R1 = 0.121 for >2sigma(I) data R1 = 0.142 , wR2 = 0.360, GooF = S = 1.83 for all data ( 1496 data and 0 restraint / 128 parameters) #loop_ #_platon_squeeze_void_nr #_platon_squeeze_void_average_x #_platon_squeeze_void_average_y #_platon_squeeze_void_average_z #_platon_squeeze_void_volume #_platon_squeeze_void_count_electrons #1 0.000 -0.051 0.078 102.8 36.7 #2 0.500 -0.048 -0.078 102.8 36.7 #_platon_squeeze_details ; #----------------------------------------------------------------------------# # ATOMIC TYPES, COORDINATES AND THERMAL PARAMETERS # #----------------------------------------------------------------------------# loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0 0 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.006 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group F1 F 0.14329(5) 0.2442(3) -0.05708(17) 0.0447(4) Uani 1 1 d . . . F2 F 0.13264(5) 0.6214(3) 0.0598(2) 0.0485(4) Uani 1 1 d . . . F3 F 0.12136(5) 0.2628(4) 0.20115(17) 0.0505(5) Uani 1 1 d . . . O1 O 0.22652(6) 0.4749(3) 0.00716(17) 0.0293(4) Uani 1 1 d . . . O2 O 0.22802(5) 0.7685(3) 0.28282(18) 0.0252(3) Uani 1 1 d . . . O3 O 0.18564(4) 0.4694(3) 0.42813(17) 0.0206(3) Uani 1 1 d . . . C1 C 0.14860(8) 0.3781(5) 0.0871(3) 0.0312(5) Uani 1 1 d . . . C2 C 0.19943(7) 0.3809(4) 0.1413(3) 0.0221(4) Uani 1 1 d . . . H2 H 0.2093 0.2016 0.1714 0.027 Uiso 1 1 calc R . . C3 C 0.20618(6) 0.5650(4) 0.2914(2) 0.0198(4) Uani 1 1 d . . . C4 C 0.18910(7) 0.6285(4) 0.5823(3) 0.0229(4) Uani 1 1 d . . . H4A H 0.2200 0.7054 0.5895 0.027 Uiso 1 1 calc R . . H4B H 0.1847 0.5152 0.6798 0.027 Uiso 1 1 calc R . . C5 C 0.15310(6) 0.8467(4) 0.5851(3) 0.0232(4) Uani 1 1 d . . . H5A H 0.1581 0.9603 0.4881 0.028 Uiso 1 1 calc R . . H5B H 0.1578 0.9528 0.6856 0.028 Uiso 1 1 calc R . . C6 C 0.10295(7) 0.7499(4) 0.5827(3) 0.0245(4) Uani 1 1 d . . . H6A H 0.0977 0.6357 0.6792 0.029 Uiso 1 1 calc R . . H6B H 0.0978 0.6461 0.4814 0.029 Uiso 1 1 calc R . . C7 C 0.06792(7) 0.9771(4) 0.5873(3) 0.0263(4) Uani 1 1 d . . . H7A H 0.0733 1.0811 0.6884 0.032 Uiso 1 1 calc R . . H7B H 0.0732 1.0910 0.4907 0.032 Uiso 1 1 calc R . . C8 C 0.01740(6) 0.8849(4) 0.5855(3) 0.0272(5) Uani 1 1 d . . . H8A H 0.0118 0.7751 0.6838 0.033 Uiso 1 1 calc R . . H8B H 0.0122 0.7772 0.4860 0.033 Uiso 1 1 calc R . . H1 H 0.2397 0.3546 -0.0484 0.050 Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 F1 0.0575(8) 0.0559(9) 0.0207(6) -0.0135(7) 0.0006(6) -0.0173(8) F2 0.0409(7) 0.0493(8) 0.0552(10) -0.0090(8) -0.0158(7) 0.0134(6) F3 0.0428(7) 0.0853(12) 0.0233(7) -0.0060(8) 0.0065(6) -0.0325(8) O1 0.0412(8) 0.0228(7) 0.0237(7) -0.0014(7) 0.0182(6) 0.0001(6) O2 0.0289(7) 0.0242(7) 0.0226(7) 0.0020(6) 0.0032(6) -0.0072(6) O3 0.0265(6) 0.0193(6) 0.0159(6) 0.0003(6) 0.0033(6) -0.0011(5) C1 0.0357(11) 0.0395(12) 0.0183(9) -0.0063(10) 0.0030(9) -0.0075(10) C2 0.0299(10) 0.0176(9) 0.0188(9) 0.0011(8) 0.0082(8) 0.0004(8) C3 0.0204(8) 0.0214(9) 0.0176(9) 0.0031(8) 0.0010(8) 0.0022(7) C4 0.0260(9) 0.0277(10) 0.0149(8) -0.0033(8) -0.0007(8) -0.0014(8) C5 0.0276(9) 0.0223(9) 0.0198(9) -0.0043(9) 0.0023(8) -0.0023(8) C6 0.0265(9) 0.0211(10) 0.0259(9) -0.0005(9) 0.0018(8) -0.0003(8) C7 0.0285(10) 0.0223(9) 0.0279(10) -0.0028(10) 0.0023(8) 0.0010(8) C8 0.0273(9) 0.0209(9) 0.0336(11) -0.0004(9) -0.0001(9) -0.0007(8) #----------------------------------------------------------------------------# # MOLECULAR GEOMETRY # #----------------------------------------------------------------------------# _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag F1 C1 1.337(3) . no F2 C1 1.330(3) . no F3 C1 1.330(3) . no O1 C2 1.399(2) . no O1 H1 0.8400 . no O2 C3 1.206(2) . no O3 C3 1.325(2) . no O3 C4 1.466(2) . no C1 C2 1.520(3) . no C2 C3 1.523(3) . no C2 H2 0.9800 . no C4 C5 1.511(3) . no C4 H4A 0.9700 . no C4 H4B 0.9700 . no C5 C6 1.520(3) . no C5 H5A 0.9700 . no C5 H5B 0.9700 . no C6 C7 1.527(3) . no C6 H6A 0.9700 . no C6 H6B 0.9700 . no C7 C8 1.522(3) . no C7 H7A 0.9700 . no C7 H7B 0.9700 . no C8 C8 1.533(4) 2_575 no C8 H8A 0.9700 . no C8 H8B 0.9700 . no loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 O1 H1 114.00 . . no C3 O3 C4 116.82(14) . . no F3 C1 F2 108.3(2) . . no F3 C1 F1 106.97(17) . . no F2 C1 F1 106.88(19) . . no F3 C1 C2 112.08(19) . . no F2 C1 C2 111.55(18) . . no F1 C1 C2 110.84(18) . . no O1 C2 C1 108.73(17) . . no O1 C2 C3 108.37(15) . . no C1 C2 C3 110.39(16) . . no O1 C2 H2 109.8 . . no C1 C2 H2 109.8 . . no C3 C2 H2 109.8 . . no O2 C3 O3 126.03(18) . . no O2 C3 C2 122.90(17) . . no O3 C3 C2 111.06(15) . . no O3 C4 C5 111.50(15) . . no O3 C4 H4A 109.3 . . no C5 C4 H4A 109.3 . . no O3 C4 H4B 109.3 . . no C5 C4 H4B 109.3 . . no H4A C4 H4B 108.0 . . no C4 C5 C6 114.27(16) . . no C4 C5 H5A 108.7 . . no C6 C5 H5A 108.7 . . no C4 C5 H5B 108.7 . . no C6 C5 H5B 108.7 . . no H5A C5 H5B 107.6 . . no C5 C6 C7 112.33(16) . . no C5 C6 H6A 109.1 . . no C7 C6 H6A 109.1 . . no C5 C6 H6B 109.1 . . no C7 C6 H6B 109.1 . . no H6A C6 H6B 107.9 . . no C8 C7 C6 113.30(17) . . no C8 C7 H7A 108.9 . . no C6 C7 H7A 108.9 . . no C8 C7 H7B 108.9 . . no C6 C7 H7B 108.9 . . no H7A C7 H7B 107.7 . . no C7 C8 C8 112.8(2) . 2_575 no C7 C8 H8A 109.0 . . no C8 C8 H8A 109.0 2_575 . no C7 C8 H8B 109.0 . . no C8 C8 H8B 109.0 2_575 . no H8A C8 H8B 107.8 . . no loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag F3 C1 C2 O1 172.82(17) . . . . no F2 C1 C2 O1 -65.6(2) . . . . no F1 C1 C2 O1 53.4(2) . . . . no F3 C1 C2 C3 -68.4(2) . . . . no F2 C1 C2 C3 53.2(2) . . . . no F1 C1 C2 C3 172.14(16) . . . . no C4 O3 C3 O2 1.2(3) . . . . no C4 O3 C3 C2 -179.54(14) . . . . no O1 C2 C3 O2 6.5(3) . . . . no C1 C2 C3 O2 -112.5(2) . . . . no O1 C2 C3 O3 -172.78(15) . . . . no C1 C2 C3 O3 68.2(2) . . . . no C3 O3 C4 C5 82.0(2) . . . . no O3 C4 C5 C6 61.7(2) . . . . no C4 C5 C6 C7 179.44(17) . . . . no C5 C6 C7 C8 -179.86(19) . . . . no C6 C7 C8 C8 -178.48(12) . . . 2_575 no _diffrn_measured_fraction_theta_max 0.936 _diffrn_reflns_theta_full 25.50 _diffrn_measured_fraction_theta_full 0.976 _refine_diff_density_max 0.191 _refine_diff_density_min -0.200 _refine_diff_density_rms 0.054 #==END