Electronic Supplementary Information

Direct solution synthesis of corundum-type In₂O₃: effects of precursors on products

Guodong Liu, Dairong Chen,* and Xiuling Jiao

Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China. Fax: +86-531-88364281, Tel: +86-531-88364280, E-mail: <u>cdr@sdu.edu.cn</u>

Preparation of In₂O₃ precursors.

Citric acid, $In(NO_3)_3$ ·4H₂O, NH₃·H₂O and acetylacetone (Hacac) were used as reagents. All chemicals were analytical grade and were used as received without further purification. 3.73 g (10 mmol) $In(NO_3)_3$ ·4H₂O and 2.10 g (10 mmol) citric acid were dissolved into 20.0 mL deionized water. After adjusting pH value of the solution to 9.6 through adding 1:1 aqueous ammonia, 3.0 g (30 mmol) acetylacetone was added. Of course the white indium acetylacetonate precipitate was formed. The precipitate was collected by filtration, washed with deionized water for several times, and then dried at 90°C in air for 2.0 h to obtain the C-In₂O₃ precursor. To obtain the H-In₂O₃ precursor, the precipitate washed with water was dipped in the mixture of methanol and water (volume ratio 4:1) to prolong the drying time and let the methanol contact with the In(acac)₃ completely. Then the mixture was dried at 90 °C in air for 2.0 h.

Fig. S2. XRD pattern of the as-prepared C-In₂O₃.

Fig. S3. FE-SEM (a) and HR-TEM (b) images of the as-preapred $C-In_2O_3$.

Fig. S4. XRD patterns of H-In₂O₃ precursor (a) and C-In₂O₃ precursor (b).

The IR spectrum of C-In₂O₃ precursor shows the bands around 2998, 2962 and 2920 cm⁻¹, which can be ascribed to the C-H vibrations of acetylacetone species. The strong absorptions at 1568 and 1529 cm⁻¹ should be attributed to the C=O vibrations from the acetylacetone species. All absorption assignments of C-In₂O₃ precursor are listed below.^[S1]

Absorption	Assignment	Features functional	Absorption	Assignment	Features Functional
/cm ⁻¹		groups	/cm ⁻¹		Groups
2998	ν_{as} C-H	CH ₃	1022	prCH ₃	CH ₃
2962	ν_{as} C-H	СН			
2920	$\nu_sC\text{-}H$				
2132	vC=C	C=C=O	930	v C-CH ₃	C-CH ₃
1575	ν С=О	C=O	803	v C-CH ₃	C-CH ₃
1524	ν C=C	C=C	780	π C-H	С-Н
1445	$\delta_{as} \text{ C-H}$	CH ₃	673	vC-CH ₃	C-CH ₃
1390	$\delta_sC\text{-}H$			+ Ring	$+\pi$ ring
				deformation	
1372	δС-Н	CH ₃	649	ν C-CH ₃	CH ₃
1266	ν C-CH ₃	C-CH ₃	434	v In-O	In-O
	+v C=C	C=C			
1198	ν С-Н	С-Н	404	Ring	π ring
	+v C-CH ₃	C-CH ₃		deformation	

For the C-In₂O₃ precursor, all the IR absorptions are consistent with those of In(acac)₃. However, two new absorptions around 1156 and 506 cm⁻¹ appeared on the IR spectrum of H-In₂O₃ precursor besides those of the C-In₂O₃ precursor. The two bands are attributed to the C-O and In³⁺-O vibrations of -OCH₃ coordinated with In(III), indicating the existence of the -OCH₃ groups in the H-In₂O₃ precursor.

Fig. S6. ¹H NMR (DMSO as solvent) spectra of H-In₂O₃ precursor (a) and C-In₂O₃ precursor (b).^[S2]

Figure S6b shows the ¹H NMR chemical shifts at 1.93 and 5.47 ppm and the molar ratio is 6/1, which can be ascribed to H atom in CH₃ and CH and reveals the C-In₂O₃ precursor is pure indium acetylacetonate. Comparing with that of the C-In₂O₃ precursor, ¹H NMR spectrum of the H-In₂O₃ precursor shows a signal at 3.42 ppm ascribed to the H atoms in -OCH₃ besides the ¹H NMR chemical shifts at 5.47 and 1.97 ppm. (Figure S6a) The molar ratio of H-atoms in -CH- to those located in terminal CH₃ is 4/25, which is less than the theoretical value of In(acac)₃. It is because a small quantity of -acac species in the In(acac)₃ complex are replaced by -OCH₃ during drying at 90 °C in the presence of the mixture of methanol and H₂O. Chemical shifts at 3.47 and 4.52 ppm are ascribed to H atom of -CH₃ and -OH in methanol molecules. Signals at 2.501 ppm and 3.292 ppm in both precursors should be ascribed to H₂O or HOD in solvent DMSO.

Fig. S8. TG curves of the H-In₂O₃ precursor (a) and C-In₂O₃ precursor (b).

Fig. S9. ¹³C (a, c) and ¹H NMR (b, d) spectra of the reaction solutions with different precursors. H-In₂O₃ precursor (a, b) and C-In₂O₃ precursor (c, d) (CDCl₃ as solvent)

Figure S9 shows the ¹³C and ¹H NMR spectra of the final reaction solutions with different precursors. It can be seen that after solvothermal treatment the ¹³C NMR spectrum of the C-In₂O₃ reaction solution (Figure S9c) indicates the existence of the aryl compound (148.6, 136.6, 123.9 ppm) other than the signals of the ¹³C in ethanol (57.1, 17.5 ppm), which is the thermal decomposition product of In(acac)₃. ¹H NMR spectrum (Figure S9d) only shows the ¹H NMR signals of ethanol (3.6, 1.2 ppm). As to the ¹³C NMR spectrum of the H-In₂O₃ reaction solution (Figure S9a), several new signals appeared except the signals of ethanol and aryl compound, which can be assigned to acetone (30.3, 208.1 ppm) and ethyl acetate (60.3, 170.5 ppm), and the signals of aryl compound obviously decreased. ¹H NMR spectrum (Figure S9b) also

indicates the existence of acetone (2.2 ppm) and ethyl acetate (2.0, 4.1 ppm). Based on the ¹³C and ¹H NMR analyses of the reaction solutions, it can be concluded that only thermal decomposition of $In(acac)_3$ carried out during the formation of the C-In₂O₃, which resulted in the formation of the aryl compound. While hydrolysis of indium acetylacetonate firstly formed the Hacac which can react with ethanol to form acetone and ethyl acetate. Then it can be concluded the formation of the C-In₂O₃ went through the thermal decomposition of In(acac)₃, while hydrolysis of indium acetylacetonate occured during the formation of the H-In₂O₃.

References

- S1 (a) K. Nakamoto, C. Udovich and J. Takemoto, J. Am. Chem. Soc., 1970, 92, 3973; (b) J. P. Fackler, M. L. Mittleman, H. Weigold and G. M. Barrow, J. Phys. Chem., 1968, 72, 4631; (c) X. Xing, S. Chen and S. Me, The Workable Index of IR Spectra (in Chinese), Tianjin Science & Technology Press, Tianjin, 1992.
- S2 (a) H. E. Gottlieb, V. Kotlyar, A. Nudelman J. Org. Chem., 1997, 62, 7512; (b) N. Wang, NMR Spectroscopy--Application in Organic Chemistry (in Chinese), Chemistry Industry Press, Beijing, 2006; (c) Q. Deng, L. Liu and H. Deng, Spectrum Analysis Tutorial (in Chinese), Science Press, Beijing, 2007.