# Supplementary Material for CrystEngComm # This journal is (c) The Royal Society of Chemistry 2010 data_global _journal_name_full CrystEngComm _journal_coden_Cambridge 1350 _publ_contact_author_name 'Dimitrii S Yufit' _publ_contact_author_email D.S.YUFIT@DURHAM.AC.UK _publ_section_title ; Low-melting molecular complexes of chloroform. ; loop_ _publ_author_name 'Dimitrii S Yufit' 'J. A. K. Howard' # Attachment 'chloroform_solvates_rev.cif' data_1_mc _database_code_depnum_ccdc_archive 'CCDC 741273' _audit_creation_method SHELXL-97 _chemical_name_systematic ; Methanol chloroform clathrate (1:1) ; _chemical_name_common 'Methanol chloroform clathrate (1:1)' _chemical_melting_point -85 _chemical_formula_moiety 'C H Cl3, C H4 O' _chemical_formula_sum 'C2 H5 Cl3 O' _chemical_formula_weight 151.41 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M 'P c a 21 ' _symmetry_space_group_name_Hall 'P 2c -2ac ' _symmetry_int_tables_number 29 _chemical_absolute_configuration ad loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z+1/2' 'x+1/2, -y, z' '-x+1/2, y, z+1/2' _cell_length_a 18.210(4) _cell_length_b 7.692(2) _cell_length_c 4.6608(7) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 652.8(2) _cell_formula_units_Z 4 _cell_measurement_temperature 185(2) _cell_measurement_reflns_used 515 _cell_measurement_theta_min 2.24 _cell_measurement_theta_max 21.58 _exptl_crystal_description cylinder _exptl_crystal_colour colorless _exptl_crystal_size_max 0.50 _exptl_crystal_size_mid 0.30 _exptl_crystal_size_min 0.30 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.540 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 304 _exptl_absorpt_coefficient_mu 1.282 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details ; SADABS (Bruker-AXS, 2003) ; _exptl_absorpt_correction_T_min 0.5665 _exptl_absorpt_correction_T_max 0.6997 _exptl_special_details ; Crystal was grown in situ on the diffractometer by slow cooling of the mixture of two components sealed in borosilicate capillary 0.3 mm in diameter ; _diffrn_ambient_temperature 185(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type Mo-K\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART CCD 6000' _diffrn_measurement_method '0.30\% \w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 4194 _diffrn_reflns_av_R_equivalents 0.0565 _diffrn_reflns_av_sigmaI/netI 0.0504 _diffrn_reflns_limit_h_min -23 _diffrn_reflns_limit_h_max 3 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 9 _diffrn_reflns_limit_l_min -4 _diffrn_reflns_limit_l_max 4 _diffrn_reflns_theta_min 2.65 _diffrn_reflns_theta_max 27.00 _reflns_number_total 1178 _reflns_number_gt 905 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART Ver. 5.630 (Bruker-AXS, 2003)' _computing_cell_refinement 'SAINT Ver. 6.45 (Bruker-AXS, 2003)' _computing_data_reduction 'SAINT Ver. 6.45' _computing_structure_solution 'SHELXTL Ver. 6.14 (Bruker-AXS, 2003)' _computing_structure_refinement 'SHELXTL Ver. 6.14' _computing_molecular_graphics 'SHELXTL Ver. 6.14' _computing_publication_material 'SHELXTL Ver. 6.14' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0750P)^2^+0.0700P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.2(2) _refine_ls_number_reflns 1178 _refine_ls_number_parameters 63 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0660 _refine_ls_R_factor_gt 0.0461 _refine_ls_wR_factor_ref 0.1309 _refine_ls_wR_factor_gt 0.1173 _refine_ls_goodness_of_fit_ref 1.025 _refine_ls_restrained_S_all 1.025 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.43442(8) 0.07249(18) 0.3231(5) 0.0709(4) Uani 1 1 d . . . Cl2 Cl 0.32118(6) 0.33263(17) 0.3228(5) 0.0698(4) Uani 1 1 d . . . Cl3 Cl 0.45110(8) 0.37637(19) 0.6777(5) 0.0734(5) Uani 1 1 d . . . O1 O 0.2103(2) 0.9197(4) 0.3010(11) 0.0507(10) Uani 1 1 d . . . C1 C 0.3886(3) 0.2277(6) 0.5324(14) 0.0493(11) Uani 1 1 d . . . C2 C 0.1669(3) 0.7667(6) 0.3193(17) 0.0645(13) Uani 1 1 d . . . H2A H 0.1979 0.6647 0.2848 0.097 Uiso 1 1 calc R . . H2B H 0.1278 0.7712 0.1749 0.097 Uiso 1 1 calc R . . H2C H 0.1450 0.7587 0.5110 0.097 Uiso 1 1 calc R . . H1O H 0.225(3) 0.935(5) 0.448(14) 0.032(14) Uiso 1 1 d . . . H1 H 0.366(2) 0.168(5) 0.665(13) 0.040(12) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0806(8) 0.0693(7) 0.0629(11) -0.0084(8) -0.0025(8) 0.0271(6) Cl2 0.0576(6) 0.0799(8) 0.0718(11) 0.0104(8) 0.0049(8) 0.0199(5) Cl3 0.0770(8) 0.0717(8) 0.0715(12) -0.0046(8) 0.0015(8) -0.0275(6) O1 0.066(2) 0.0458(15) 0.040(3) 0.0024(16) -0.005(2) -0.0049(13) C1 0.053(2) 0.051(3) 0.044(4) 0.001(2) 0.008(2) -0.0035(19) C2 0.079(3) 0.048(2) 0.066(4) 0.005(3) 0.000(3) -0.012(2) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1 1.753(6) . yes Cl2 C1 1.764(6) . yes Cl3 C1 1.750(5) . yes O1 C2 1.420(5) . yes O1 H1O 0.75(6) . ? C1 H1 0.87(5) . ? C2 H2A 0.9800 . ? C2 H2B 0.9800 . ? C2 H2C 0.9800 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 O1 H1O 106(4) . . ? Cl3 C1 Cl1 110.5(3) . . yes Cl3 C1 Cl2 111.6(3) . . yes Cl1 C1 Cl2 109.6(4) . . yes Cl3 C1 H1 112(3) . . ? Cl1 C1 H1 105(3) . . ? Cl2 C1 H1 108(3) . . ? O1 C2 H2A 109.5 . . ? O1 C2 H2B 109.5 . . ? H2A C2 H2B 109.5 . . ? O1 C2 H2C 109.5 . . ? H2A C2 H2C 109.5 . . ? H2B C2 H2C 109.5 . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H1O O1 0.75(6) 2.02(5) 2.743(4) 162(5) 4 _diffrn_measured_fraction_theta_max 0.884 _diffrn_reflns_theta_full 27.00 _diffrn_measured_fraction_theta_full 0.884 _refine_diff_density_max 0.312 _refine_diff_density_min -0.238 _refine_diff_density_rms 0.068 # File processed with modiCIFer Dec. 16,2005. I.A.Guzei, UW-Madison. #==END data_II_CCP _database_code_depnum_ccdc_archive 'CCDC 741274' _audit_creation_method SHELXL-97 _chemical_formula_moiety 'C H Cl3, C5 H8 O' _chemical_formula_sum 'C6 H9 Cl3 O' _chemical_formula_weight 203.48 _chemical_melting_point '-93 -95C' _chemical_name_common 'cyclopentanone chloroform clathrate (1:1)' _chemical_name_systematic 'cyclopentanone chloroform clathrate (1:1)' loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P 1 21/n 1' _symmetry_space_group_name_Hall '-P 2yn' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_angle_alpha 90.00 _cell_angle_beta 106.05(2) _cell_angle_gamma 90.00 _cell_formula_units_Z 4 _cell_length_a 9.9104(13) _cell_length_b 9.6599(14) _cell_length_c 10.1505(15) _cell_measurement_reflns_used 2893 _cell_measurement_temperature 178(1) _cell_measurement_theta_max 2.54 _cell_measurement_theta_min 29.78 _cell_volume 933.9(2) _exptl_absorpt_coefficient_mu 0.917 _exptl_absorpt_correction_T_max ? _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_type none _exptl_absorpt_process_details ? _exptl_crystal_F_000 416 _exptl_crystal_colour 'clear light colourless' _exptl_crystal_colour_lustre clear _exptl_crystal_colour_modifier light _exptl_crystal_colour_primary colourless _exptl_crystal_density_diffrn 1.447 _exptl_crystal_density_meas . _exptl_crystal_density_method 'not measured' _exptl_crystal_description cylinder _exptl_crystal_size_max 0.4 _exptl_crystal_size_mid 0.3 _exptl_crystal_size_min 0.3 _exptl_special_details ; Crystal was grown in situ on the diffractometer by slow cooling of the mixture of two components sealed in borosilicate capillary 0.3 mm in diameter ; _diffrn_ambient_temperature 178(1) _diffrn_detector 'CCD area detector' _diffrn_detector_area_resol_mean 8.0 _diffrn_detector_type 'Bruker SMART CCD 6000 area detector' _diffrn_measured_fraction_theta_full 0.807 _diffrn_measured_fraction_theta_max 0.807 _diffrn_measurement_device 'three-circle diffractometer' _diffrn_measurement_device_type 'Bruker SMART CCD 6000 area detector' _diffrn_measurement_method '\w scans' _diffrn_radiation_monochromator graphite _diffrn_radiation_probe x-ray _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_xray_symbol K-L~3~ _diffrn_reflns_av_R_equivalents 0.0323 _diffrn_reflns_av_sigmaI/netI 0.0248 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_h_min -11 _diffrn_reflns_limit_k_max 13 _diffrn_reflns_limit_k_min -13 _diffrn_reflns_limit_l_max 13 _diffrn_reflns_limit_l_min -13 _diffrn_reflns_number 7481 _diffrn_reflns_theta_full 28.99 _diffrn_reflns_theta_max 28.99 _diffrn_reflns_theta_min 2.54 _diffrn_source 'sealed X-ray tube' _diffrn_source_current 25.0 _diffrn_source_power 1.25 _diffrn_source_target Mo _diffrn_source_voltage 50.0 _diffrn_standards_decay_% ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_number ? _reflns_number_gt 1598 _reflns_number_total 1999 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SAINT' _computing_data_reduction 'SAINT v6.45A (Bruker, 2003)' _computing_molecular_graphics ; Olex2, Durham University (compiled Apr 2 2009 15:09:25) ; _computing_publication_material ; Olex2, Durham University (compiled Apr 2 2009 15:09:25) ; _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)/Bruker' _refine_diff_density_max 0.459 _refine_diff_density_min -0.323 _refine_diff_density_rms 0.048 _refine_ls_R_factor_all 0.0458 _refine_ls_R_factor_gt 0.0352 _refine_ls_extinction_coef 0.039(4) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_extinction_method SHELXL _refine_ls_goodness_of_fit_ref 1.032 _refine_ls_hydrogen_treatment refall _refine_ls_matrix_type full _refine_ls_number_parameters 128 _refine_ls_number_reflns 1999 _refine_ls_number_restraints 0 _refine_ls_restrained_S_all 1.032 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 _refine_ls_structure_factor_coef Fsqd _refine_ls_wR_factor_gt 0.0925 _refine_ls_wR_factor_ref 0.0994 _refine_ls_weighting_details ; calc w=1/[\s^2^(Fo^2^)+(0.0500P)^2^+0.3000P] where P=(Fo^2^+2Fc^2^)/3 ; _refine_ls_weighting_scheme calc _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _atom_sites_solution_hydrogens difmap _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.67538(7) 0.29322(5) 0.42381(5) 0.0527(2) Uani 1 1 d . . . Cl2 Cl 0.76874(8) 0.44151(7) 0.67732(7) 0.0748(3) Uani 1 1 d . . . Cl3 Cl 0.88174(8) 0.17067(7) 0.64793(8) 0.0779(3) Uani 1 1 d . . . C1S C 0.8182(2) 0.32712(19) 0.56502(19) 0.0384(5) Uani 1 1 d . . . O1 O 0.86118(16) 0.60257(15) 0.40412(18) 0.0558(4) Uani 1 1 d . . . C1 C 0.7649(2) 0.68384(19) 0.3903(2) 0.0413(5) Uani 1 1 d . . . C2 C 0.7759(3) 0.8274(3) 0.4505(3) 0.0560(6) Uani 1 1 d . . . C3 C 0.6252(3) 0.8746(3) 0.4285(3) 0.0619(7) Uani 1 1 d . . . C4 C 0.5443(3) 0.7999(2) 0.2993(3) 0.0522(6) Uani 1 1 d . . . C5 C 0.6159(3) 0.6596(2) 0.3101(3) 0.0550(6) Uani 1 1 d . . . H1 H 0.889(2) 0.368(2) 0.539(2) 0.047(6) Uiso 1 1 d . . . H21 H 0.824(4) 0.826(3) 0.543(4) 0.093(11) Uiso 1 1 d . . . H22 H 0.824(3) 0.882(3) 0.398(3) 0.086(9) Uiso 1 1 d . . . H31 H 0.596(4) 0.835(4) 0.517(4) 0.103(11) Uiso 1 1 d . . . H32 H 0.616(3) 0.973(4) 0.426(3) 0.089(10) Uiso 1 1 d . . . H41 H 0.436(4) 0.798(3) 0.293(3) 0.076(9) Uiso 1 1 d . . . H42 H 0.556(3) 0.851(3) 0.222(3) 0.073(8) Uiso 1 1 d . . . H51 H 0.573(3) 0.593(3) 0.365(3) 0.089(10) Uiso 1 1 d . . . H52 H 0.612(3) 0.623(4) 0.225(3) 0.091(10) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0568(5) 0.0501(3) 0.0431(3) 0.00121(19) 0.0004(3) -0.0120(2) Cl2 0.0966(6) 0.0746(4) 0.0677(4) -0.0328(3) 0.0468(4) -0.0378(4) Cl3 0.0552(5) 0.0660(4) 0.0985(5) 0.0422(4) -0.0020(4) -0.0049(3) C1S 0.0340(14) 0.0416(9) 0.0390(9) 0.0034(7) 0.0089(9) -0.0076(8) O1 0.0382(11) 0.0454(8) 0.0849(11) 0.0195(7) 0.0187(8) 0.0067(6) C1 0.0377(15) 0.0380(9) 0.0489(11) 0.0121(8) 0.0131(10) -0.0008(8) C2 0.0518(18) 0.0535(13) 0.0603(15) -0.0116(10) 0.0114(13) -0.0044(10) C3 0.0570(19) 0.0536(14) 0.0754(17) -0.0110(12) 0.0191(14) 0.0070(11) C4 0.0459(18) 0.0421(11) 0.0658(14) 0.0077(9) 0.0109(12) 0.0078(9) C5 0.0428(18) 0.0367(10) 0.0795(17) -0.0011(10) 0.0066(13) 0.0004(9) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1S 1.745(2) . ? Cl2 C1S 1.752(2) . ? Cl3 C1S 1.759(2) . ? C1S H1 0.90(2) . ? O1 C1 1.213(2) . ? C1 C5 1.494(4) . ? C1 C2 1.507(3) . ? C2 C3 1.517(4) . ? C2 H21 0.93(4) . ? C2 H22 0.96(3) . ? C3 C4 1.518(4) . ? C3 H31 1.09(4) . ? C3 H32 0.95(3) . ? C4 C5 1.519(3) . ? C4 H41 1.05(3) . ? C4 H42 0.96(3) . ? C5 H51 1.02(3) . ? C5 H52 0.93(3) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Cl1 C1S Cl2 110.09(12) . . ? Cl1 C1S Cl3 109.48(10) . . ? Cl2 C1S Cl3 110.98(11) . . ? Cl1 C1S H1 111.0(15) . . ? Cl2 C1S H1 107.0(14) . . ? Cl3 C1S H1 108.3(15) . . ? O1 C1 C5 126.1(2) . . ? O1 C1 C2 125.6(2) . . ? C5 C1 C2 108.34(19) . . ? C1 C2 C3 105.0(2) . . ? C1 C2 H21 111(2) . . ? C3 C2 H21 111(2) . . ? C1 C2 H22 105.9(18) . . ? C3 C2 H22 111.7(19) . . ? H21 C2 H22 112(3) . . ? C2 C3 C4 104.3(2) . . ? C2 C3 H31 104.5(19) . . ? C4 C3 H31 110.6(19) . . ? C2 C3 H32 113(2) . . ? C4 C3 H32 115(2) . . ? H31 C3 H32 109(3) . . ? C3 C4 C5 103.7(2) . . ? C3 C4 H41 110.3(15) . . ? C5 C4 H41 115.9(15) . . ? C3 C4 H42 107.8(18) . . ? C5 C4 H42 110.8(17) . . ? H41 C4 H42 108(2) . . ? C1 C5 C4 105.75(19) . . ? C1 C5 H51 107.4(18) . . ? C4 C5 H51 110.1(18) . . ? C1 C5 H52 110(2) . . ? C4 C5 H52 112(2) . . ? H51 C5 H52 111(3) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A C1S H1 O1 0.90(2) 2.62(2) 3.211(2) 123.8(18) . C1S H1 O1 0.90(2) 2.40(2) 3.179(3) 144.1(19) 3_766 #==END #3. data data_III_cchon _database_code_depnum_ccdc_archive 'CCDC 741275' _audit_creation_method SHELXL-97 _chemical_name_systematic ; cyclohexanone chloroform clathrate (1:1) ; _chemical_name_common 'cyclohexanone chloroform clathrate (1:1)' _chemical_melting_point -65 _chemical_formula_moiety 'C6 H10 O, C H Cl3' _chemical_formula_sum 'C7 H11 Cl3 O' _chemical_formula_weight 217.51 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Triclinic _symmetry_space_group_name_H-M 'P -1 ' _symmetry_space_group_name_Hall '-P 1 ' _symmetry_int_tables_number 2 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 6.0440(12) _cell_length_b 9.0987(18) _cell_length_c 9.5963(19) _cell_angle_alpha 98.82(3) _cell_angle_beta 100.43(3) _cell_angle_gamma 97.22(3) _cell_volume 506.44(17) _cell_formula_units_Z 2 _cell_measurement_temperature 180(2) _cell_measurement_reflns_used 999 _cell_measurement_theta_min 2.19 _cell_measurement_theta_max 30.00 _exptl_crystal_description cylinder _exptl_crystal_colour colorless _exptl_crystal_size_max 0.5 _exptl_crystal_size_mid 0.3 _exptl_crystal_size_min 0.3 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.426 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 224 _exptl_absorpt_coefficient_mu 0.851 _exptl_absorpt_correction_type none _exptl_absorpt_process_details ? _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_T_max ? _exptl_special_details ; Crystal was grown in situ on the diffractometer by slow cooling of the mixture of two components sealed in borosilicate capillary 0.3 mm in diameter ; _diffrn_ambient_temperature 180(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type Mo-K\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART CCD 6000' _diffrn_measurement_method '0.30\% \w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 4457 _diffrn_reflns_av_R_equivalents 0.0148 _diffrn_reflns_av_sigmaI/netI 0.0174 _diffrn_reflns_limit_h_min -7 _diffrn_reflns_limit_h_max 7 _diffrn_reflns_limit_k_min -12 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_l_min -13 _diffrn_reflns_limit_l_max 13 _diffrn_reflns_theta_min 2.19 _diffrn_reflns_theta_max 30.00 _reflns_number_total 2253 _reflns_number_gt 1955 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART Ver. 5.630 (Bruker-AXS, 2003)' _computing_cell_refinement 'SAINT Ver. 6.45 (Bruker-AXS, 2003)' _computing_data_reduction 'SAINT Ver. 6.45' _computing_structure_solution 'SHELXTL Ver. 6.14 (Bruker-AXS, 2003)' _computing_structure_refinement 'SHELXTL Ver. 6.14' _computing_molecular_graphics 'SHELXTL Ver. 6.14' _computing_publication_material 'SHELXTL Ver. 6.14' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0400P)^2^+0.1000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 2253 _refine_ls_number_parameters 144 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0346 _refine_ls_R_factor_gt 0.0300 _refine_ls_wR_factor_ref 0.0816 _refine_ls_wR_factor_gt 0.0778 _refine_ls_goodness_of_fit_ref 1.066 _refine_ls_restrained_S_all 1.066 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.30269(7) 0.80497(5) 0.78546(4) 0.05150(14) Uani 1 1 d . . . Cl2 Cl 0.62134(10) 0.64402(5) 0.66096(5) 0.06239(16) Uani 1 1 d . . . Cl3 Cl 0.77774(7) 0.93482(5) 0.84440(4) 0.05634(15) Uani 1 1 d . . . C1S C 0.5510(3) 0.82272(15) 0.71553(14) 0.0374(3) Uani 1 1 d . . . O1 O 0.4077(3) 0.12943(16) 0.60199(13) 0.0614(4) Uani 1 1 d . . . C1 C 0.2714(3) 0.18011(16) 0.66664(15) 0.0412(4) Uani 1 1 d . . . C2 C 0.0385(3) 0.19789(17) 0.59204(16) 0.0446(4) Uani 1 1 d . . . C3 C -0.0253(3) 0.3501(2) 0.64509(18) 0.0521(4) Uani 1 1 d . . . C4 C 0.0079(4) 0.3810(2) 0.80885(19) 0.0546(4) Uani 1 1 d . . . C5 C 0.2521(3) 0.37650(19) 0.87780(17) 0.0500(4) Uani 1 1 d . . . C6 C 0.3229(3) 0.2259(2) 0.82809(15) 0.0474(4) Uani 1 1 d . . . H1S H 0.528(3) 0.8689(18) 0.6385(18) 0.042(4) Uiso 1 1 d . . . H21 H -0.064(3) 0.124(2) 0.6101(19) 0.048(5) Uiso 1 1 d . . . H22 H 0.032(3) 0.180(2) 0.490(2) 0.058(5) Uiso 1 1 d . . . H31 H 0.079(4) 0.429(2) 0.612(2) 0.061(5) Uiso 1 1 d . . . H32 H -0.188(4) 0.352(2) 0.603(2) 0.065(6) Uiso 1 1 d . . . H41 H -0.086(4) 0.306(2) 0.834(2) 0.057(5) Uiso 1 1 d . . . H42 H -0.027(4) 0.477(3) 0.841(2) 0.074(6) Uiso 1 1 d . . . H51 H 0.349(4) 0.462(2) 0.854(2) 0.064(6) Uiso 1 1 d . . . H52 H 0.276(4) 0.394(2) 0.981(2) 0.067(6) Uiso 1 1 d . . . H61 H 0.233(4) 0.148(2) 0.868(2) 0.058(5) Uiso 1 1 d . . . H62 H 0.485(4) 0.225(2) 0.860(2) 0.072(6) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0400(3) 0.0607(2) 0.0574(2) 0.01322(18) 0.01571(19) 0.01042(18) Cl2 0.0807(4) 0.0493(2) 0.0686(3) 0.01435(19) 0.0298(3) 0.0277(2) Cl3 0.0467(3) 0.0688(3) 0.0477(2) 0.01435(18) 0.00120(18) -0.00505(19) C1S 0.0403(8) 0.0424(6) 0.0323(6) 0.0111(5) 0.0074(6) 0.0112(6) O1 0.0759(10) 0.0803(8) 0.0455(6) 0.0226(6) 0.0275(7) 0.0425(8) C1 0.0513(10) 0.0443(7) 0.0348(6) 0.0134(5) 0.0149(7) 0.0172(7) C2 0.0499(10) 0.0449(7) 0.0352(6) 0.0015(5) 0.0039(6) 0.0072(7) C3 0.0526(11) 0.0529(8) 0.0484(8) 0.0060(7) -0.0008(8) 0.0200(8) C4 0.0586(12) 0.0549(9) 0.0503(9) -0.0022(7) 0.0116(8) 0.0222(9) C5 0.0556(11) 0.0527(8) 0.0354(7) 0.0003(6) 0.0041(7) 0.0018(7) C6 0.0467(10) 0.0677(10) 0.0334(6) 0.0161(6) 0.0098(7) 0.0191(8) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1S 1.7508(17) . yes Cl2 C1S 1.7585(16) . yes Cl3 C1S 1.7595(16) . yes C1S H1S 0.903(17) . ? O1 C1 1.212(2) . yes C1 C2 1.499(2) . yes C1 C6 1.505(2) . yes C2 C3 1.521(2) . yes C2 H21 0.913(19) . ? C2 H22 0.96(2) . ? C3 C4 1.525(2) . yes C3 H31 1.02(2) . ? C3 H32 1.00(2) . ? C4 C5 1.512(3) . yes C4 H41 0.92(2) . ? C4 H42 0.94(2) . ? C5 C6 1.520(3) . yes C5 H51 1.00(2) . ? C5 H52 0.96(2) . ? C6 H61 1.00(2) . ? C6 H62 0.98(2) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Cl1 C1S Cl2 110.23(8) . . yes Cl1 C1S Cl3 110.45(8) . . yes Cl2 C1S Cl3 110.29(9) . . yes Cl1 C1S H1S 109.3(11) . . ? Cl2 C1S H1S 108.9(10) . . ? Cl3 C1S H1S 107.6(11) . . ? O1 C1 C2 122.44(14) . . yes O1 C1 C6 122.06(15) . . yes C2 C1 C6 115.48(16) . . yes C1 C2 C3 112.54(13) . . yes C1 C2 H21 108.0(12) . . ? C3 C2 H21 108.3(12) . . ? C1 C2 H22 108.3(13) . . ? C3 C2 H22 112.5(12) . . ? H21 C2 H22 106.9(16) . . ? C2 C3 C4 110.87(14) . . yes C2 C3 H31 107.0(12) . . ? C4 C3 H31 110.1(11) . . ? C2 C3 H32 110.0(12) . . ? C4 C3 H32 108.5(12) . . ? H31 C3 H32 110.4(17) . . ? C5 C4 C3 110.59(17) . . yes C5 C4 H41 109.0(13) . . ? C3 C4 H41 107.2(13) . . ? C5 C4 H42 108.3(15) . . ? C3 C4 H42 110.3(13) . . ? H41 C4 H42 111(2) . . ? C4 C5 C6 111.47(14) . . yes C4 C5 H51 107.5(12) . . ? C6 C5 H51 112.1(13) . . ? C4 C5 H52 111.9(14) . . ? C6 C5 H52 108.1(13) . . ? H51 C5 H52 105.7(17) . . ? C1 C6 C5 112.70(13) . . yes C1 C6 H61 107.7(11) . . ? C5 C6 H61 107.4(12) . . ? C1 C6 H62 106.4(13) . . ? C5 C6 H62 113.2(13) . . ? H61 C6 H62 109.3(17) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A C1S H1S O1 0.903(17) 2.620(17) 3.305(2) 133.3(13) 1_565 C1S H1S O1 0.903(17) 2.411(17) 3.1924(19) 144.9(14) 2_666 _diffrn_measured_fraction_theta_max 0.762 _diffrn_reflns_theta_full 30.00 _diffrn_measured_fraction_theta_full 0.762 _refine_diff_density_max 0.363 _refine_diff_density_min -0.167 _refine_diff_density_rms 0.043 # File processed with modiCIFer Dec. 16,2005. I.A.Guzei, UW-Madison. #==END #3. data data_V_cdmf _database_code_depnum_ccdc_archive 'CCDC 741276' _audit_creation_method SHELXL-97 _chemical_name_systematic ; dimethylformamide chloroform clathrate (1:1) ; _chemical_name_common 'dimethylformamide chloroform clathrate (1:1)' _chemical_melting_point -83 _chemical_formula_moiety 'C3 H7 N O, C H Cl3' _chemical_formula_sum 'C4 H8 Cl3 N O' _chemical_formula_weight 192.46 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'C 1 c 1 ' _symmetry_space_group_name_Hall 'C -2yc ' _symmetry_int_tables_number 9 _chemical_absolute_configuration ad # Options are 'rm', 'ad', 'rmad', 'syn', 'unk' or '.' # # rm : absolute configuration established by the structure determination # of a compound containing a chiral reference molecule of known # absolute configuration. # ad : absolute configuration established by anomalous dispersion effects # in diffraction measurements on the crystal. # rmad : absolute configuration established by the structure determination # of a compound containing a chiral reference molecule of known # absolute configuration and confirmed by anomalous dispersion # effects in diffraction measurements on the crystal. # syn : absolute configuration has not been established by anomalous # dispersion effects in diffraction measurements on the crystal. # The enantiomer has been assigned by reference to an unchanging # chiral centre in the synthetic procedure. # unk : absolute configuration is unknown, there being no firm chemical # evidence for its assignment to hand and it having not been # established by anomalous dispersion effects in diffraction # measurements on the crystal. An arbitrary choice of enantiomer # has been made. # . : inapplicable. loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x, -y, z+1/2' 'x+1/2, y+1/2, z' 'x+1/2, -y+1/2, z+1/2' _cell_length_a 8.2840(7) _cell_length_b 8.6700(9) _cell_length_c 12.8290(15) _cell_angle_alpha 90.00 _cell_angle_beta 107.10(3) _cell_angle_gamma 90.00 _cell_volume 880.68(16) _cell_formula_units_Z 4 _cell_measurement_temperature 185(2) _cell_measurement_reflns_used 999 _cell_measurement_theta_min 3.32 _cell_measurement_theta_max 27.98 _exptl_crystal_description cylinder _exptl_crystal_colour colorless _exptl_crystal_size_max 0.50 _exptl_crystal_size_mid 0.30 _exptl_crystal_size_min 0.30 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.452 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 392 _exptl_absorpt_coefficient_mu 0.971 _exptl_absorpt_correction_type none _exptl_absorpt_process_details ? _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_T_max ? _exptl_special_details ; Crystal was grown in situ on the diffractometer by slow cooling of the mixture of two components sealed in borosilicate capillary 0.3 mm in diameter ; _diffrn_ambient_temperature 185(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type Mo-K\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART CCD 6000' _diffrn_measurement_method '0.30\% \w scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 6408 _diffrn_reflns_av_R_equivalents 0.0840 _diffrn_reflns_av_sigmaI/netI 0.0491 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -11 _diffrn_reflns_limit_k_max 11 _diffrn_reflns_limit_l_min -16 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min 3.32 _diffrn_reflns_theta_max 27.98 _reflns_number_total 1815 _reflns_number_gt 1666 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'SMART Ver. 5.630 (Bruker-AXS, 2003)' _computing_cell_refinement 'SAINT Ver. 6.45 (Bruker-AXS, 2003)' _computing_data_reduction 'SAINT Ver. 6.45' _computing_structure_solution 'SHELXTL Ver. 6.14 (Bruker-AXS, 2003)' _computing_structure_refinement 'SHELXTL Ver. 6.14' _computing_molecular_graphics 'SHELXTL Ver. 6.14' _computing_publication_material 'SHELXTL Ver. 6.14' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.28(14) _refine_ls_number_reflns 1815 _refine_ls_number_parameters 115 _refine_ls_number_restraints 2 _refine_ls_R_factor_all 0.0537 _refine_ls_R_factor_gt 0.0498 _refine_ls_wR_factor_ref 0.1356 _refine_ls_wR_factor_gt 0.1326 _refine_ls_goodness_of_fit_ref 1.079 _refine_ls_restrained_S_all 1.079 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.85095(15) 0.06032(12) 0.26507(10) 0.0579(3) Uani 1 1 d . . . Cl2 Cl 0.53646(14) 0.13761(13) 0.30628(9) 0.0554(3) Uani 1 1 d . . . Cl3 Cl 0.76104(14) -0.08497(12) 0.44345(8) 0.0580(3) Uani 1 1 d . . . N1 N 0.7151(4) 0.5559(3) 0.0623(3) 0.0403(7) Uani 1 1 d . . . O1 O 0.5883(4) 0.7163(3) 0.1546(3) 0.0529(7) Uani 1 1 d . . . C1 C 0.6846(5) -0.0112(4) 0.3108(3) 0.0419(7) Uani 1 1 d . . . C2 C 0.6711(5) 0.6933(4) 0.0916(3) 0.0431(8) Uani 1 1 d . . . C3 C 0.8136(8) 0.5395(6) -0.0129(5) 0.0618(12) Uani 1 1 d . . . C4 C 0.6685(8) 0.4170(5) 0.1086(5) 0.0606(12) Uani 1 1 d . . . H1 H 0.654(8) -0.102(7) 0.267(5) 0.055(14) Uiso 1 1 d . . . H2 H 0.712(6) 0.780(6) 0.048(4) 0.043(12) Uiso 1 1 d . . . H31 H 0.914(9) 0.462(8) 0.020(6) 0.066(17) Uiso 1 1 d . . . H32 H 0.842(10) 0.655(8) -0.038(6) 0.071(18) Uiso 1 1 d . . . H33 H 0.760(8) 0.476(8) -0.077(6) 0.066(16) Uiso 1 1 d . . . H41 H 0.751(8) 0.361(6) 0.137(4) 0.041(12) Uiso 1 1 d . . . H42 H 0.593(10) 0.350(10) 0.051(7) 0.09(2) Uiso 1 1 d . . . H43 H 0.646(12) 0.438(8) 0.179(7) 0.08(2) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0621(8) 0.0546(5) 0.0678(6) 0.0099(4) 0.0358(5) 0.0049(4) Cl2 0.0518(6) 0.0629(6) 0.0503(5) 0.0082(4) 0.0130(4) 0.0181(4) Cl3 0.0694(8) 0.0520(4) 0.0533(5) 0.0205(4) 0.0192(4) 0.0119(4) N1 0.045(2) 0.0347(13) 0.0441(14) -0.0017(11) 0.0178(13) 0.0025(10) O1 0.062(2) 0.0417(12) 0.0600(15) -0.0163(11) 0.0257(14) -0.0026(11) C1 0.049(2) 0.0366(14) 0.0410(15) -0.0023(12) 0.0154(14) -0.0006(13) C2 0.046(2) 0.0331(13) 0.0491(18) -0.0006(13) 0.0126(15) 0.0004(12) C3 0.069(4) 0.063(2) 0.066(3) 0.002(2) 0.041(2) 0.011(2) C4 0.081(4) 0.0322(17) 0.078(3) 0.0025(18) 0.039(3) 0.0039(18) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1 1.762(4) . yes Cl2 C1 1.770(4) . yes Cl3 C1 1.753(4) . yes N1 C2 1.332(4) . yes N1 C3 1.443(6) . yes N1 C4 1.444(5) . yes O1 C2 1.220(5) . yes C1 H1 0.96(6) . ? C2 H2 1.05(5) . ? C3 H31 1.06(7) . ? C3 H32 1.10(7) . ? C3 H33 0.98(7) . ? C4 H41 0.83(6) . ? C4 H42 1.00(9) . ? C4 H43 0.99(9) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 N1 C3 122.2(3) . . yes C2 N1 C4 120.1(3) . . yes C3 N1 C4 117.7(3) . . yes Cl3 C1 Cl1 110.9(2) . . yes Cl3 C1 Cl2 110.3(2) . . yes Cl1 C1 Cl2 109.59(19) . . yes Cl3 C1 H1 103(4) . . ? Cl1 C1 H1 101(4) . . ? Cl2 C1 H1 121(4) . . ? O1 C2 N1 125.9(3) . . yes O1 C2 H2 125(3) . . ? N1 C2 H2 109(3) . . ? N1 C3 H31 109(4) . . ? N1 C3 H32 109(4) . . ? H31 C3 H32 119(5) . . ? N1 C3 H33 114(4) . . ? H31 C3 H33 95(5) . . ? H32 C3 H33 110(5) . . ? N1 C4 H41 113(4) . . ? N1 C4 H42 111(5) . . ? H41 C4 H42 104(6) . . ? N1 C4 H43 111(4) . . ? H41 C4 H43 93(6) . . ? H42 C4 H43 123(7) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A C1 H1 O1 0.96(6) 2.10(6) 3.049(4) 173(5) 1_545 _diffrn_measured_fraction_theta_max 0.867 _diffrn_reflns_theta_full 27.98 _diffrn_measured_fraction_theta_full 0.867 _refine_diff_density_max 0.461 _refine_diff_density_min -0.275 _refine_diff_density_rms 0.082 # File processed with modiCIFer Dec. 16,2005. I.A.Guzei, UW-Madison. #==END data_IV_CDEAS _database_code_depnum_ccdc_archive 'CCDC 741277' _audit_creation_method SHELXL-97 _chemical_formula_moiety 'C H Cl3, C4 H11 N' _chemical_formula_sum 'C5 H12 Cl3 N' _chemical_formula_weight 192.51 _chemical_melting_point -99 _chemical_name_common 'diethylamine chloroform clathrate (1:1)' _chemical_name_systematic ; diethylamine chloroform clathrate (1:1) ; loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M 'P 21 21 21' _symmetry_space_group_name_Hall 'P 2ac 2ab' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' 'x+1/2, -y+1/2, -z' '-x, y+1/2, -z+1/2' _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_formula_units_Z 4 _cell_length_a 7.1434(9) _cell_length_b 10.4147(15) _cell_length_c 13.2477(18) _cell_measurement_reflns_used 3347 _cell_measurement_temperature 153(2) _cell_measurement_theta_max 28.56 _cell_measurement_theta_min 2.49 _cell_volume 985.6(2) _exptl_absorpt_coefficient_mu 0.860 _exptl_absorpt_correction_T_max 0.7458 _exptl_absorpt_correction_T_min 0.3036 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details ; SADABS-2006/1 (Bruker,2006) was used for absorption correction. R(int) was 0.0226 before and 0.0137 after correction. The Ratio of minimum to maximum transmission is 0.407079646018. The \l/2 correction factor is 0.0015 ; _exptl_crystal_F_000 400 _exptl_crystal_colour 'dull colourless' _exptl_crystal_colour_lustre dull _exptl_crystal_colour_primary colourless _exptl_crystal_density_diffrn 1.297 _exptl_crystal_density_meas . _exptl_crystal_density_method 'not measured' _exptl_crystal_description cylinder _exptl_crystal_size_max 0.4 _exptl_crystal_size_mid 0.3 _exptl_crystal_size_min 0.3 _exptl_special_details ; Crystal was grown in situ on the diffractometer by slow cooling of the mixture of two components sealed in borosilicate capillary 0.3 mm in diameter ; _diffrn_ambient_temperature 153(2) _diffrn_detector 'CCD area detector' _diffrn_detector_area_resol_mean 8.0 _diffrn_detector_type 'Bruker SMART CCD 6000 area detector' _diffrn_measured_fraction_theta_full 0.828 _diffrn_measured_fraction_theta_max 0.828 _diffrn_measurement_device 'three-circle diffractometer' _diffrn_measurement_device_type 'Bruker SMART CCD 6000 area detector' _diffrn_measurement_method '\w scans' _diffrn_radiation_monochromator graphite _diffrn_radiation_probe x-ray _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_xray_symbol K-L~3~ _diffrn_reflns_av_R_equivalents 0.0279 _diffrn_reflns_av_sigmaI/netI 0.0233 _diffrn_reflns_limit_h_max 6 _diffrn_reflns_limit_h_min -6 _diffrn_reflns_limit_k_max 14 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_l_max 18 _diffrn_reflns_limit_l_min -18 _diffrn_reflns_number 7967 _diffrn_reflns_theta_full 28.99 _diffrn_reflns_theta_max 28.99 _diffrn_reflns_theta_min 2.49 _diffrn_source 'sealed X-ray tube' _diffrn_source_current 35.0 _diffrn_source_power 1.75 _diffrn_source_target Mo _diffrn_source_voltage 50.0 _diffrn_standards_decay_% ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_number ? _reflns_number_gt 1947 _reflns_number_total 2164 _reflns_threshold_expression >2sigma(I) _computing_cell_refinement ? _computing_data_collection ? _computing_data_reduction 'SAINT v6.45A (Bruker, 2003)' _computing_molecular_graphics ; Olex2, Durham University (compiled Mar 6 2009 16:11:20) ; _computing_publication_material ; Olex2, Durham University (compiled Mar 6 2009 16:11:20) ; _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)/Bruker' _refine_diff_density_max 0.541 _refine_diff_density_min -0.473 _refine_diff_density_rms 0.045 _refine_ls_R_factor_all 0.0422 _refine_ls_R_factor_gt 0.0365 _refine_ls_abs_structure_Flack 0.0(4) _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_extinction_coef 0.019(4) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_extinction_method SHELXL _refine_ls_goodness_of_fit_ref 1.016 _refine_ls_hydrogen_treatment refall _refine_ls_matrix_type full _refine_ls_number_parameters 132 _refine_ls_number_reflns 2164 _refine_ls_number_restraints 0 _refine_ls_restrained_S_all 1.016 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 _refine_ls_structure_factor_coef Fsqd _refine_ls_wR_factor_gt 0.0933 _refine_ls_wR_factor_ref 0.0991 _refine_ls_weighting_details ; calc w=1/[\s^2^(Fo^2^)+(0.0500P)^2^+0.4000P] where P=(Fo^2^+2Fc^2^)/3 ; _refine_ls_weighting_scheme calc _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _atom_sites_solution_hydrogens geom _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.50098(16) 0.34170(7) 0.45940(5) 0.0708(3) Uani 1 1 d . . . Cl2 Cl 0.53171(13) 0.24727(7) 0.66210(5) 0.0603(2) Uani 1 1 d . . . Cl3 Cl 0.47735(15) 0.51850(7) 0.62741(8) 0.0802(3) Uani 1 1 d . . . N1 N 0.9787(3) 0.50326(16) 0.60076(13) 0.0367(4) Uani 1 1 d . . . C1 C 0.9795(5) 0.6243(2) 0.54486(17) 0.0457(6) Uani 1 1 d . . . C2 C 0.9733(7) 0.6001(3) 0.4319(2) 0.0618(9) Uani 1 1 d . . . C3 C 0.9973(5) 0.5225(2) 0.71013(16) 0.0416(6) Uani 1 1 d . . . C4 C 1.0170(5) 0.3947(2) 0.76402(18) 0.0508(7) Uani 1 1 d . . . C5 C 0.5818(4) 0.3775(2) 0.58109(18) 0.0408(6) Uani 1 1 d . . . H1N H 1.069(5) 0.461(3) 0.584(2) 0.043(8) Uiso 1 1 d . . . H11 H 0.867(5) 0.676(3) 0.560(3) 0.059(10) Uiso 1 1 d . . . H12 H 1.107(5) 0.671(3) 0.565(2) 0.049(8) Uiso 1 1 d . . . H21 H 1.077(6) 0.559(4) 0.408(3) 0.072(13) Uiso 1 1 d . . . H22 H 0.874(6) 0.540(4) 0.419(3) 0.072(11) Uiso 1 1 d . . . H23 H 0.983(5) 0.679(3) 0.394(2) 0.061(9) Uiso 1 1 d . . . H31 H 0.880(5) 0.571(3) 0.735(3) 0.054(9) Uiso 1 1 d . . . H32 H 1.109(5) 0.581(3) 0.718(2) 0.047(8) Uiso 1 1 d . . . H41 H 1.133(6) 0.343(4) 0.737(3) 0.069(11) Uiso 1 1 d . . . H42 H 0.900(5) 0.336(3) 0.748(2) 0.054(9) Uiso 1 1 d . . . H43 H 1.031(5) 0.407(3) 0.832(3) 0.061(9) Uiso 1 1 d . . . H5 H 0.710(5) 0.393(3) 0.577(2) 0.040(7) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0961(8) 0.0697(4) 0.0466(3) 0.0051(3) -0.0217(4) -0.0247(5) Cl2 0.0654(6) 0.0645(4) 0.0508(3) 0.0106(3) 0.0038(3) -0.0084(4) Cl3 0.0519(6) 0.0529(4) 0.1359(8) -0.0342(4) 0.0048(5) 0.0046(4) N1 0.0396(14) 0.0315(8) 0.0391(8) -0.0031(6) 0.0020(9) -0.0014(9) C1 0.056(2) 0.0348(10) 0.0464(11) 0.0005(8) 0.0025(13) -0.0023(12) C2 0.086(3) 0.0528(14) 0.0469(13) 0.0074(11) 0.0004(17) -0.0087(19) C3 0.0461(18) 0.0381(9) 0.0406(9) -0.0023(7) -0.0016(12) -0.0016(12) C4 0.062(2) 0.0466(12) 0.0432(12) 0.0039(9) -0.0049(14) 0.0001(14) C5 0.038(2) 0.0392(11) 0.0448(12) -0.0064(9) -0.0027(10) -0.0020(10) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C5 1.752(3) . ? Cl2 C5 1.766(3) . ? Cl3 C5 1.757(3) . ? N1 C1 1.462(3) . ? N1 C3 1.469(3) . ? N1 H1N 0.81(3) . ? C1 C2 1.518(4) . ? C1 H11 0.99(4) . ? C1 H12 1.07(3) . ? C2 H21 0.91(4) . ? C2 H22 0.96(4) . ? C2 H23 0.97(3) . ? C3 C4 1.518(3) . ? C3 H31 1.03(4) . ? C3 H32 1.01(3) . ? C4 H41 1.05(4) . ? C4 H42 1.06(4) . ? C4 H43 0.92(3) . ? C5 H5 0.93(3) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 N1 C3 112.42(16) . . ? C1 N1 H1N 109(2) . . ? C3 N1 H1N 106(2) . . ? N1 C1 C2 110.88(19) . . ? N1 C1 H11 111.3(19) . . ? C2 C1 H11 105(2) . . ? N1 C1 H12 105.7(16) . . ? C2 C1 H12 110.0(17) . . ? H11 C1 H12 114(2) . . ? C1 C2 H21 113(3) . . ? C1 C2 H22 108(2) . . ? H21 C2 H22 103(3) . . ? C1 C2 H23 111.9(18) . . ? H21 C2 H23 99(3) . . ? H22 C2 H23 121(3) . . ? N1 C3 C4 110.64(18) . . ? N1 C3 H31 107.9(19) . . ? C4 C3 H31 110.6(18) . . ? N1 C3 H32 105.2(19) . . ? C4 C3 H32 113.9(18) . . ? H31 C3 H32 108(2) . . ? C3 C4 H41 111(2) . . ? C3 C4 H42 109.8(18) . . ? H41 C4 H42 105(2) . . ? C3 C4 H43 111(2) . . ? H41 C4 H43 109(3) . . ? H42 C4 H43 111(3) . . ? Cl1 C5 Cl3 111.05(16) . . ? Cl1 C5 Cl2 109.20(14) . . ? Cl3 C5 Cl2 110.10(15) . . ? Cl1 C5 H5 107.6(17) . . ? Cl3 C5 H5 107.1(17) . . ? Cl2 C5 H5 111.7(17) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A C5 H5 N1 0.93(3) 2.26(3) 3.134(4) 156(2) . N1 H1N Cl3 0.81(3) 3.03(3) 3.583(3) 127(3) 1_655 #==END data_VI_SAD _database_code_depnum_ccdc_archive 'CCDC 741278' _audit_creation_method SHELXL-97 _chemical_formula_moiety 'C H Cl3' _chemical_formula_sum 'C H Cl3' _chemical_formula_weight 119.37 _chemical_melting_point -64 _chemical_name_common trichloromethane _chemical_name_systematic trichloromethane loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M 'P n m a' _symmetry_space_group_name_Hall '-P 2ac 2n' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z' '-x-1/2, y-1/2, z-1/2' _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_formula_units_Z 4 _cell_length_a 7.4422(6) _cell_length_b 9.4578(7) _cell_length_c 5.8025(4) _cell_measurement_reflns_used ? _cell_measurement_temperature 120(2) _cell_measurement_theta_max ? _cell_measurement_theta_min ? _cell_volume 408.42(5) _exptl_absorpt_coefficient_mu 2.004 _exptl_absorpt_correction_T_max 0.6468 _exptl_absorpt_correction_T_min 0.4379 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details ; SADABS-2006/1 (Bruker,2006) was used for absorption correction. R(int) was 0.0286 before and 0.0150 after correction. The Ratio of minimum to maximum transmission is 0.677025355597. The \l/2 correction factor is 0.0015 ; _exptl_crystal_F_000 232 _exptl_crystal_colour less _exptl_crystal_density_diffrn 1.941 _exptl_crystal_density_meas . _exptl_crystal_density_method 'not measured' _exptl_crystal_description cylinder _exptl_crystal_size_max 0.5 _exptl_crystal_size_mid 0.3 _exptl_crystal_size_min 0.3 _exptl_special_details ? _diffrn_ambient_temperature 120(2) _diffrn_detector 'CCD area detector' _diffrn_detector_area_resol_mean 8.0 _diffrn_detector_type 'Bruker SMART CCD 6000 area detector' _diffrn_measured_fraction_theta_full 0.947 _diffrn_measured_fraction_theta_max 0.947 _diffrn_measurement_device 'three-circle diffractometer' _diffrn_measurement_device_type 'Bruker SMART CCD 6000 area detector' _diffrn_measurement_method '\w scans' _diffrn_radiation_monochromator graphite _diffrn_radiation_probe x-ray _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_xray_symbol K-L~3~ _diffrn_reflns_av_R_equivalents 0.0137 _diffrn_reflns_av_sigmaI/netI 0.0133 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_h_min -11 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_number 2989 _diffrn_reflns_theta_full 33.11 _diffrn_reflns_theta_max 33.11 _diffrn_reflns_theta_min 4.12 _diffrn_source 'sealed X-ray tube' _diffrn_source_current 25.0 _diffrn_source_power 1.125 _diffrn_source_target Mo _diffrn_source_voltage 45.0 _diffrn_standards_decay_% ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_number ? _reflns_number_gt 733 _reflns_number_total 776 _reflns_threshold_expression >2sigma(I) _computing_cell_refinement ? _computing_data_collection ? _computing_data_reduction 'SAINT v6.45A (Bruker, 2003)' _computing_molecular_graphics ; Olex2, Durham University (compiled Mar 6 2009 16:11:20) ; _computing_publication_material ; Olex2, Durham University (compiled Mar 6 2009 16:11:20) ; _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)/Bruker' _refine_diff_density_max 0.186 _refine_diff_density_min -0.277 _refine_diff_density_rms 0.045 _refine_ls_R_factor_all 0.0188 _refine_ls_R_factor_gt 0.0172 _refine_ls_extinction_coef ? _refine_ls_extinction_method none _refine_ls_goodness_of_fit_ref 1.043 _refine_ls_hydrogen_treatment refall _refine_ls_matrix_type full _refine_ls_number_parameters 25 _refine_ls_number_reflns 776 _refine_ls_number_restraints 0 _refine_ls_restrained_S_all 1.043 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 _refine_ls_structure_factor_coef Fsqd _refine_ls_wR_factor_gt 0.0483 _refine_ls_wR_factor_ref 0.0494 _refine_ls_weighting_details ; calc w=1/[\s^2^(Fo^2^)+(0.0300P)^2^+0.0500P] where P=(Fo^2^+2Fc^2^)/3 ; _refine_ls_weighting_scheme calc _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _atom_sites_solution_hydrogens geom _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.31322(3) 0.40223(2) 0.14097(4) 0.03150(8) Uani 1 1 d . . . Cl2 Cl 0.39393(4) 0.2500 -0.28111(5) 0.02944(9) Uani 1 2 d S . . C1 C 0.41244(14) 0.2500 0.02105(19) 0.02233(18) Uani 1 2 d S . . H1 H 0.534(2) 0.2500 0.058(3) 0.027(4) Uiso 1 2 d S . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.04179(14) 0.02353(11) 0.02917(14) -0.00252(6) 0.00783(7) -0.00039(7) Cl2 0.02755(14) 0.04325(17) 0.01753(15) 0.000 0.00171(8) 0.000 C1 0.0214(4) 0.0260(4) 0.0196(5) 0.000 0.0003(3) 0.000 _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1 1.7613(7) . ? Cl2 C1 1.7587(12) . ? C1 Cl1 1.7613(7) 7_565 ? C1 H1 0.927(16) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Cl2 C1 Cl1 111.16(4) . 7_565 ? Cl2 C1 Cl1 111.16(4) . . ? Cl1 C1 Cl1 109.65(6) 7_565 . ? Cl2 C1 H1 107.7(10) . . ? Cl1 C1 H1 108.5(5) 7_565 . ? Cl1 C1 H1 108.5(5) . . ?