Functional formamidines: pyridine substituents make an exception in the usual doubly hydrogen-bonded formamidine dimer

Anne Petitjean*, Liyan Xing, Ruiyao Wang

Supplementary Information:

Content:

(4Py)₂F

p2	Fig. S1. a) ¹ H NMR spectrum for $(4Py)_2F$ (CDCl ₃ , 400 MHz, 25°C), b) ¹³ C NMR
	spectrum for $(4Py)_2F$ (CDCl ₃ , 100 MHz, 25°C).
p3	Fig. S2. Front view of (4Py) ₂ F in the solid state (CPK and Ortep representations).
	Fig. S3. Hydrogen bonded network.
p4	Fig. S4. Unit cell packing in (4Py) ₂ F crystal structure.
p5	Table S1. Crystal data and structure refinement for (4Py) ₂ F.
p6	Table S2. Atomic coordinates and equivalent isotropic displacement parameters, (4Py) ₂ F.
p7	Table S3. Bond lengths and angles for (4Py)2F.
p8	Table S4. Anisotropic displacement parameters for (4Py) ₂ F
p9	Table S5. Hydrogen coordinates and isotropic displacement parameters for $(4Py)_2F$.
	Table S6. Hydrogen bonds for (4Py) ₂ F.
p10	Table S7. Torsion angles for (4Py)2F.
	(2Py) ₂ F
p11	Fig. S5. Front and side views of the (2Py) ₂ F dimer in the solid state (CPK and Ortep)
	Fig. S6. Unit cell packing for the crystal structure of $(2Py)_2F$.
p12	Table S8. Crystal data and structure refinement for (2Py)2F
p13	Table S9. Atomic coordinates, equivalent isotropic displacement parameters $((2Py)_2F)$.
p13-14	Table S10. Bond lengths and angles for (2Py)2F.

- p14-15 **Table S11**: Torsion angles for (**2Py**)₂**F**.
- p15 **Table S12**. Hydrogen bonds for **(2Py)₂F** (distances and angles).

Fig S1. a) ¹H NMR spectrum for $(4Py)_2F$ (CDCl₃, 400 MHz, 25°C), b) ¹³C NMR spectrum for $(4Py)_2F$, with 2D HMBC analysis in insert (CDCl₃, 100 MHz, 25°C).

Fig. S2: Front view of (4Py)₂F in the solid state (CPK left; Ortep right).

Fig. S3: Hydrogen bonded network for (4Py)₂F in the solid state.

Fig. S4: Unit cell packing in (2Py)₂F crystal structure.

Table S1. Crystal data and structure refinement for ap11

Identification code	apll			
Empirical formula	C11 H10 N4			
Formula weight	198.23			
Temperature	180(2) K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	Pbca			
Unit cell dimensions	a = 11.7861(5) Å	<i>α</i> = 90°.		
	b = 7.2290(3) Å	β= 90°.		
	c = 23.2069(9) Å	$\gamma = 90^{\circ}$.		
Volume	1977.27(14) Å ³			
Z	8			
Density (calculated)	1.332 Mg/m ³			
Absorption coefficient	0.085 mm ⁻¹			
F(000)	832			
Crystal size	$0.25 \ x \ 0.25 \ x \ 0.20 \ mm^3$			
Theta range for data collection	2.46 to 25.99°.			
Index ranges	-14<=h<=11, -8<=k<=8	, -28<=l<=28		
Reflections collected	6973			
Independent reflections	1938 [R(int) = 0.0156]			
Completeness to theta = 25.99°	99.8 %			
Absorption correction	Multi-scan			
Max. and min. transmission	0.9831 and 0.9790			
Refinement method	Full-matrix least-squares	s on F ²		
Data / restraints / parameters	1938 / 0 / 141			
Goodness-of-fit on F ²	1.059			
Final R indices [I>2sigma(I)]	R1 = 0.0322, wR2 = 0.0322	R1 = 0.0322, $wR2 = 0.0855$		
R indices (all data)	R1 = 0.0357, wR2 = 0.0893			
Extinction coefficient 0.0100(12)				
Largest diff. peak and hole	0.183 and -0.147 e.Å ⁻³			

		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	Х	У	Z	U(eq)
N(1)	3784(1)	2024(1)	5082(1)	29(1)
N(2)	-1591(1)	-1465(1)	1946(1)	30(1)
N(3)	618(1)	1176(1)	4302(1)	26(1)
N(4)	-657(1)	348(1)	3609(1)	28(1)
C(1)	2799(1)	2371(2)	5349(1)	28(1)
C(2)	1752(1)	2058(2)	5107(1)	26(1)
C(3)	1686(1)	1383(2)	4544(1)	23(1)
C(4)	2702(1)	989(2)	4262(1)	26(1)
C(5)	3703(1)	1319(2)	4549(1)	30(1)
C(6)	-2234(1)	-1740(2)	2413(1)	29(1)
C(7)	-1937(1)	-1201(2)	2964(1)	28(1)
C(8)	-900(1)	-317(2)	3057(1)	24(1)
C(9)	-213(1)	-42(2)	2572(1)	25(1)
C(10)	-595(1)	-631(2)	2040(1)	29(1)
C(11)	374(1)	411(2)	3784(1)	24(1)

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for ap11. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S3: Bond lengths [Å] and angles [°] for ap11.

N(1)-C(1)	1.3390(14)	N(1)-C(1)-H(1A)	118.0
N(1)-C(5)	1.3422(14)	C(2)-C(1)-H(1A)	118.0
N(2)-C(10)	1.3374(15)	C(1)-C(2)-C(3)	119.24(10)
N(2)-C(6)	1.3383(15)	C(1)-C(2)-H(2A)	120.4
N(3)-C(11)	1.3544(13)	C(3)-C(2)-H(2A)	120.4
N(3)-C(3)	1.3867(13)	N(3)-C(3)-C(4)	124.57(9)
N(3)-H(3N)	0.900(14)	N(3)-C(3)-C(2)	117.86(9)
N(4)-C(11)	1.2824(14)	C(4)-C(3)-C(2)	117.56(10)
N(4)-C(8)	1.3983(13)	C(5)-C(4)-C(3)	118.33(10)
C(1)-C(2)	1.3734(15)	C(5)-C(4)-H(4A)	120.8
C(1)-H(1A)	0.9500	C(3)-C(4)-H(4A)	120.8
C(2)-C(3)	1.3972(14)	N(1)-C(5)-C(4)	124.97(10)
C(2)-H(2A)	0.9500	N(1)-C(5)-H(5A)	117.5
C(3)-C(4)	1.3932(15)	C(4)-C(5)-H(5A)	117.5
C(4)-C(5)	1.3753(15)	N(2)-C(6)-C(7)	124.37(10)
C(4)-H(4A)	0.9500	N(2)-C(6)-H(6A)	117.8
C(5)-H(5A)	0.9500	C(7)-C(6)-H(6A)	117.8
C(6)-C(7)	1.3811(15)	C(6)-C(7)-C(8)	119.59(10)
C(6)-H(6A)	0.9500	C(6)-C(7)-H(7A)	120.2
C(7)-C(8)	1.3958(15)	C(8)-C(7)-H(7A)	120.2
C(7)-H(7A)	0.9500	C(7)-C(8)-N(4)	118.57(10)
C(8)-C(9)	1.4006(15)	C(7)-C(8)-C(9)	116.57(9)
C(9)-C(10)	1.3817(15)	N(4)-C(8)-C(9)	124.67(10)
C(9)-H(9A)	0.9500	C(10)-C(9)-C(8)	119.07(10)
C(10)-H(10A)	0.9500	C(10)-C(9)-H(9A)	120.5
C(11)-H(11A)	0.9500	C(8)-C(9)-H(9A)	120.5
		N(2)-C(10)-C(9)	124.79(10)
C(1)-N(1)-C(5)	115.75(9)	N(2)-C(10)-H(10A)	117.6
C(10)-N(2)-C(6)	115.59(9)	C(9)-C(10)-H(10A)	117.6
C(11)-N(3)-C(3)	126.65(9)	N(4)-C(11)-N(3)	119.79(10)
C(11)-N(3)-H(3N)	117.2(9)	N(4)-C(11)-H(11A)	120.1
C(3)-N(3)-H(3N)	116.0(9)	N(3)-C(11)-H(11A)	120.1
C(11)-N(4)-C(8)	119.76(9)		
N(1)-C(1)-C(2)	124.08(10)		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	24(1)	35(1)	29(1)	-3(1)	-3(1)	-2(1)
N(2)	36(1)	29(1)	26(1)	-1(1)	-8(1)	1(1)
N(3)	21(1)	36(1)	21(1)	-4(1)	0(1)	1(1)
N(4)	24(1)	38(1)	22(1)	-4(1)	-1(1)	-1(1)
C(1)	29(1)	32(1)	21(1)	-2(1)	-2(1)	-2(1)
C(2)	25(1)	31(1)	21(1)	-1(1)	2(1)	0(1)
C(3)	23(1)	24(1)	21(1)	1(1)	-1(1)	0(1)
C(4)	26(1)	30(1)	23(1)	-4(1)	1(1)	0(1)
C(5)	24(1)	34(1)	31(1)	-5(1)	1(1)	1(1)
C(6)	27(1)	26(1)	34(1)	0(1)	-9(1)	-1(1)
C(7)	24(1)	32(1)	27(1)	2(1)	-1(1)	-1(1)
C(8)	23(1)	25(1)	22(1)	0(1)	-3(1)	3(1)
C(9)	23(1)	25(1)	26(1)	0(1)	-2(1)	0(1)
C(10)	35(1)	29(1)	23(1)	1(1)	0(1)	1(1)
C(11)	25(1)	27(1)	20(1)	0(1)	1(1)	-1(1)

Table S4. Anisotropic displacement parameters (Å²x 10³) for ap11. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a*

b* U¹²]

PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY

	Х	у	Z	U(eq)
H(3N)	38(12)	1670(20)	4502(5)	37(4)
H(1A)	2825	2863	5728	33
H(2A)	1080	2297	5321	31
H(4A)	2703	505	3882	32
H(5A)	4389	1024	4355	35
H(6A)	-2942	-2346	2363	35
H(7A)	-2436	-1430	3278	33
H(9A)	505	542	2608	30
H(10A)	-115	-428	1717	35
H(11A)	965	-78	3551	28

Table S5. Hydrogen coordinates (x 10 ⁴) and isotropic	displacement parameters (Å ² x 10
³) for ap11.	

Table S6. Hydrogen bonds for ap11 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3N)N(1)#1	0.900(14)	2.001(15)	2.8996(13)	175.2(13)
C(4)-H(4A)N(2)#2	0.95	2.53	3.4212(14)	155.9

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2,-y+1/2,-z+1 #2 x+1/2,y,-z+1/2

C(5)-N(1)-C(1)-C(2)	-0.39(17)
N(1)-C(1)-C(2)-C(3)	-1.80(18)
C(11)-N(3)-C(3)-C(4)	6.61(18)
C(11)-N(3)-C(3)-C(2)	-174.32(10)
C(1)-C(2)-C(3)-N(3)	-176.59(10)
C(1)-C(2)-C(3)-C(4)	2.54(16)
N(3)-C(3)-C(4)-C(5)	177.86(11)
C(2)-C(3)-C(4)-C(5)	-1.21(16)
C(1)-N(1)-C(5)-C(4)	1.88(18)
C(3)-C(4)-C(5)-N(1)	-1.07(18)
C(10)-N(2)-C(6)-C(7)	0.95(17)
N(2)-C(6)-C(7)-C(8)	-0.46(18)
C(6)-C(7)-C(8)-N(4)	174.94(10)
C(6)-C(7)-C(8)-C(9)	-0.33(16)
C(11)-N(4)-C(8)-C(7)	149.62(11)
C(11)-N(4)-C(8)-C(9)	-35.52(16)
C(7)-C(8)-C(9)-C(10)	0.56(15)
N(4)-C(8)-C(9)-C(10)	-174.39(10)
C(6)-N(2)-C(10)-C(9)	-0.69(17)
C(8)-C(9)-C(10)-N(2)	-0.05(17)
C(8)-N(4)-C(11)-N(3)	175.33(10)
C(3)-N(3)-C(11)-N(4)	-178.47(11)

Table S7. Torsion angles [°] for ap11.

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2,-y+1/2,-z+1 #2 x+1/2,y,-z+1/2

(2Py)₂F

Fig. S5: Front (left) and side (middle) views of the $(2Py)_2F$ in the solid state (CPK representation). Note the twist in the side view. Ortep representation of the $(2Py)_2F$ dimer (right).

Fig. S6: Unit cell packing in (2Py)₂F crystal structure.

Identification code	ap04t	
Empirical formula	C11 H10 N4	
Formula weight	198.23	
Temperature	180(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2/n	
Unit cell dimensions	a = 10.9881(19) Å	<i>α</i> = 90°.
	b = 4.3351(7) Å	$\beta = 98.561(3)^{\circ}$.
	c = 20.561(4) Å	$\gamma = 90^{\circ}$.
Volume	968.5(3) Å ³	
Ζ	4	
Density (calculated)	1.360 Mg/m ³	
Absorption coefficient	0.087 mm ⁻¹	
F(000)	416	
Crystal size	0.35 x 0.25 x 0.15 mm	1 ³
Theta range for data collection	1.99 to 25.99°.	
Index ranges	-11<=h<=13, -5<=k<=	=5, -25<=1<=25
Reflections collected	5802	
Independent reflections	1911 [R(int) = 0.0399]
Completeness to theta = 25.99°	100.0 %	
Absorption correction	Multi-scan	
Max. and min. transmission	0.9870 and 0.9701	
Refinement method	Full-matrix least-squa	res on F ²
Data / restraints / parameters	1911 / 0 / 176	
Goodness-of-fit on F ²	0.973	
Final R indices [I>2sigma(I)]	R1 = 0.0331, wR2 = 0	0.0843
R indices (all data)	R1 = 0.0436, WR2 = 0	0.0893
Largest diff. peak and hole	0.143 and -0.168 e.Å-	3

Table S8. Crystal data and structure refinement for ap04t

Х	У	Z	U(eq)	
2182(1)	-867(2)	3993(1)	34(1)	
884(1)	2169(2)	4529(1)	32(1)	
1656(1)	5298(2)	5402(1)	32(1)	
2605(1)	7000(2)	6422(1)	39(1)	
2309(1)	-2904(3)	3516(1)	37(1)	
1349(1)	-4103(3)	3088(1)	39(1)	
165(1)	-3168(3)	3156(1)	39(1)	
2(1)	-1087(3)	3637(1)	35(1)	
1035(1)	17(2)	4043(1)	30(1)	
1820(1)	3301(2)	4962(1)	31(1)	
2727(1)	6418(2)	5796(1)	32(1)	
3815(1)	7037(3)	5542(1)	36(1)	
4806(1)	8221(3)	5957(1)	41(1)	
4694(1)	8790(3)	6604(1)	43(1)	
3586(1)	8164(3)	6810(1)	43(1)	
	x 2182(1) 884(1) 1656(1) 2605(1) 2309(1) 1349(1) 165(1) 2(1) 1035(1) 1820(1) 2727(1) 3815(1) 4806(1) 4694(1) 3586(1)	xy $2182(1)$ $-867(2)$ $884(1)$ $2169(2)$ $1656(1)$ $5298(2)$ $2605(1)$ $7000(2)$ $2309(1)$ $-2904(3)$ $1349(1)$ $-4103(3)$ $165(1)$ $-3168(3)$ $2(1)$ $-1087(3)$ $1035(1)$ $17(2)$ $1820(1)$ $3301(2)$ $2727(1)$ $6418(2)$ $3815(1)$ $7037(3)$ $4806(1)$ $8221(3)$ $4694(1)$ $8790(3)$ $3586(1)$ $8164(3)$	xyZ $2182(1)$ $-867(2)$ $3993(1)$ $884(1)$ $2169(2)$ $4529(1)$ $1656(1)$ $5298(2)$ $5402(1)$ $2605(1)$ $7000(2)$ $6422(1)$ $2309(1)$ $-2904(3)$ $3516(1)$ $1349(1)$ $-4103(3)$ $3088(1)$ $165(1)$ $-3168(3)$ $3156(1)$ $2(1)$ $-1087(3)$ $3637(1)$ $1035(1)$ $17(2)$ $4043(1)$ $1820(1)$ $3301(2)$ $4962(1)$ $2727(1)$ $6418(2)$ $5796(1)$ $3815(1)$ $7037(3)$ $5542(1)$ $4806(1)$ $8221(3)$ $5957(1)$ $4694(1)$ $8790(3)$ $6604(1)$ $3586(1)$ $8164(3)$ $6810(1)$	xyzU(eq) $2182(1)$ -867(2) $3993(1)$ $34(1)$ $884(1)$ $2169(2)$ $4529(1)$ $32(1)$ $1656(1)$ $5298(2)$ $5402(1)$ $32(1)$ $2605(1)$ $7000(2)$ $6422(1)$ $39(1)$ $2309(1)$ -2904(3) $3516(1)$ $37(1)$ $1349(1)$ -4103(3) $3088(1)$ $39(1)$ $165(1)$ -3168(3) $3156(1)$ $39(1)$ $2(1)$ -1087(3) $3637(1)$ $35(1)$ $1035(1)$ $17(2)$ $4043(1)$ $30(1)$ $1820(1)$ $3301(2)$ $4962(1)$ $31(1)$ $2727(1)$ $6418(2)$ $5796(1)$ $32(1)$ $3815(1)$ $7037(3)$ $5542(1)$ $36(1)$ $4806(1)$ $8221(3)$ $5957(1)$ $41(1)$ $4694(1)$ $8790(3)$ $6604(1)$ $43(1)$ $3586(1)$ $8164(3)$ $6810(1)$ $43(1)$

Table S9. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for ap04t. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S10. Bond lengths [Å] and angles [°] for ap04t

N(1)-C(5)	1.3365(14)	C(5)-N(1)-C(1)	116 60(10)
N(1)-C(1)	1.3408(16)	C(6) N(2) C(5)	123 72(10)
N(2)-C(6)	1.3476(15)	C(0)-N(2)-C(3)	123.72(10)
N(2)-C(5)	1.3950(15)	C(6)-N(2)-H(2N)	119.8(9)
N(2)-H(2N)	0.850(14)	C(5)-N(2)-H(2N)	116.3(9)
N(3)-C(6)	1.2847(15)	C(6)-N(3)-C(7)	116.31(10)
N(3)-C(7)	1 4119(14)	C(7)-N(4)-C(11)	117.22(11)
N(4)-C(7)	1 3383(15)	N(1)-C(1)-C(2)	124.35(12)
N(4)-C(11)	1.3409(16)	N(1)-C(1)-H(1)	116.7(7)
C(1) C(2)	1.3700(10)	C(2)-C(1)-H(1)	119.0(7)
C(1) - C(2)	1.3720(18)	C(1)-C(2)-C(3)	117 85(12)
C(1)-H(1)	0.976(14)		
C(2)-C(3)	1.3888(18)	C(1)-C(2)-H(2)	120.4(7)
C(2)-H(2)	0.984(13)	C(3)-C(2)-H(2)	121.8(7)
C(3)-C(4)	1.3697(17)	C(4)-C(3)-C(2)	119.38(12)
		C(4)-C(3)-H(3)	118.0(8)

C(3)-H(3)	0.952(14)	C(2)-C(3)-H(3)	122.6(8)
C(4)-C(5)	1.3907(16)	C(3)-C(4)-C(5)	118.47(11)
C(4)-H(4)	0.919(13)	C(3)-C(4)-H(4)	122.1(8)
C(6)-H(6)	0.964(11)	C(5)-C(4)-H(4)	119.4(8)
C(7)-C(8)	1.3992(16)	N(1)-C(5)-C(4)	123.35(11)
C(8)-C(9)	1.3787(17)	N(1)-C(5)-N(2)	117.53(10)
C(8)-H(8)	0.956(12)	C(4)-C(5)-N(2)	119.11(10)
C(9)-C(10)	1.3757(18)	N(3)-C(6)-N(2)	122.45(11)
C(9)-H(9)	0.959(13)	N(3)-C(6)-H(6)	124.3(6)
C(10)-C(11)	1.3744(18)	N(2)-C(6)-H(6)	113.2(6)
С(10)-Н(10)	0.945(14)	N(4)-C(7)-C(8)	122.37(11)
С(11)-Н(11)	0.998(13)	N(4)-C(7)-N(3)	114.99(10)
		C(8)-C(7)-N(3)	122.56(11)
Symmetry transformat	ions used to generate	C(9)-C(8)-C(7)	118.77(12)
equivalent atoms.		C(9)-C(8)-H(8)	122.3(7)
		C(7)-C(8)-H(8)	118.8(7)
		C(10)-C(9)-C(8)	119.23(12)
		C(10)-C(9)-H(9)	121.7(8)
		C(8)-C(9)-H(9)	119.0(8)
		C(11)-C(10)-C(9)	118.31(12)
		C(11)-C(10)-H(10)	119.8(8)
		C(9)-C(10)-H(10)	121.9(8)
		N(4)-C(11)-C(10)	124.09(12)
		N(4)-C(11)-H(11)	115.2(8)
		C(10)-C(11)-H(11)	120.8(8)

Table S11. Torsion angles [°] for ap04t.

C(5)-N(1)-C(1)-C(2)	0.01(17)
N(1)-C(1)-C(2)-C(3)	-0.60(18)
C(1)-C(2)-C(3)-C(4)	0.64(17)
C(2)-C(3)-C(4)-C(5)	-0.12(17)
C(1)-N(1)-C(5)-C(4)	0.57(16)
C(1)-N(1)-C(5)-N(2)	-179.08(10)
C(3)-C(4)-C(5)-N(1)	-0.51(17)
C(3)-C(4)-C(5)-N(2)	179.13(10)
C(6)-N(2)-C(5)-N(1)	-2.64(16)

C(6)-N(2)-C(5)-C(4)	177.70(10)
C(7)-N(3)-C(6)-N(2)	-176.32(10)
C(5)-N(2)-C(6)-N(3)	179.54(10)
C(11)-N(4)-C(7)-C(8)	-1.27(17)
C(11)-N(4)-C(7)-N(3)	-177.86(10)
C(6)-N(3)-C(7)-N(4)	-144.63(10)
C(6)-N(3)-C(7)-C(8)	38.79(15)
N(4)-C(7)-C(8)-C(9)	1.60(18)
N(3)-C(7)-C(8)-C(9)	177.93(11)
C(7)-C(8)-C(9)-C(10)	-0.74(19)
C(8)-C(9)-C(10)-C(11)	-0.3(2)
C(7)-N(4)-C(11)-C(10)	0.11(19)
C(9)-C(10)-C(11)-N(4)	0.7(2)

Symmetry transformations used to generate equivalent atoms:

Table S12. Hydrogen bonds for ap04t [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(2)-H(2N)N(3)#1 C(4)-H(4) N(4)#1	0.850(14)	2.173(15)	3.0212(14)	175.6(12)	
$C(4)^{-11}(4)^{-11}(4)^{+1}$	0.919(13)	2.473(14)	5.5545(10)	100.2(10)	

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1