Supplementary Materials

Resolution of Chiral polyoxoanion $\left[\mathrm{P}_{2} \mathrm{Mo}_{18} \mathrm{O}_{62}\right]^{6-}$ with Histidine

Ding Liu, Hua-Qiao Tan, Wei-Lin Chen, Yang-Guang Li,* En-Bo Wang*

Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry,

Northeast Normal University, Ren Min Street No.5268, Changchun, Jilin 130024, P. R. China.
*To whom correspondence should be addressed. E-mail: wangeb889@nenu.edu.cn,
liyg658@nenu.edu.cn. Fax: +86-431-85098787.

General methods and materials:

All chemicals were commercially purchased and used without further purification. Elemental analyses (C, H, N) were performed on a Perkin-Elmer 2400 CHN elemental analyzer; P, Mo were analyzed on a PLASMA-SPEC(I) ICP atomic emission spectrometer. IR spectra were recorded in the range of $400 \sim 4000 \mathrm{~cm}^{-1}$ on an Alpha Centaurt FT/IR Spectrophotometer using KBr pellets. The UV-vis absorption spectra were recorded using a Hitachi UV-3010 spectrophotometer. TG analysis was performed on a Perkin-Elmer TGA7 instrument in flowing N_{2} with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Solid-state CD spectra for compounds $\mathbf{1}$ were recorded using a JASCO J-810 spectrophotometer. Polarizing optical microscope measurements were performed using a Changfang XPV-400E polarized optical microscope.

Scheme S1 The L- $\left[\mathrm{P}_{2} \mathrm{Mo}_{18} \mathrm{O}_{62}\right]^{6-}$ and $\mathrm{D}-\left[\mathrm{P}_{2} \mathrm{Mo}_{18} \mathrm{O}_{62}\right]^{6-}$ with D_{3} symmetry viewed as a ideal Dawson-type polyoxoanion by displacing two different sets of three Mo atoms in the ring.

Figure S1 Polyhedral and ball-and-stick representation of the H -bonding interactions
between the $\left[\mathrm{P}_{2} \mathrm{Mo}_{18} \mathrm{O}_{62}\right]^{6-}$ polyoxoanions and histidine molecules in compound 1a.

Figure S2 Polyhedral and filling diagram representation of the 2D layer formed of $\left[\mathrm{P}_{2} \mathrm{Mo}_{18} \mathrm{O}_{62}\right]^{6-}$ polyoxoanion and L-histidine in compound $\mathbf{1 a}$.

Figure S3 Polyhedral and ball-and-stick representation of the 3D supramolecular structure of $1 \mathbf{a}$ viewed along a axis

Figure S4 Polyhedral and ball-and-stick representation of the 3D supramolecular
structure of $\mathbf{1 a}$ viewed along b axis

Figure S5 Polyhedral and ball-and-stick representation of the 3D supramolecular
structure of $\mathbf{1 a}$ viewed along c axis

Figure S6 A space-filling diagram representation of 3D supramolecular structure with channels in compound 1a.

Figure S7. IR spectrum for compounds 1a and 1b

Figure S8. The UV-Vis spectrum for compounds 1a in the solid state.

Figure S9. The UV-Vis spectrum for L-histidine in the solid state.

Figure S10. The UV-Vis spectrum for polyoxoanion $\left[\mathrm{P}_{2} \mathrm{Mo}_{18} \mathrm{O}_{62}\right]^{6-}$ in the solid state.

Figure S11. The TG curve of compound 1 exhibits two weight loss stages in the temperature ranges $46-570^{\circ} \mathrm{C}$, corresponding to the loss of coordinated water and histidine molecules respectively. The whole weight loss (22.63\%) is in good agreement with the calculated value (22.93%).

Figure S12. The polarizing optical micrographs of compound 1a. (a) The bright field images of compound 1a crystals; (b) The dark field images of compound 1a crystals.

Table S1 Selected H-bonding for compound 1a and 1b

Compound 1a		Compound 1b	
$\mathrm{O}(20)-\mathrm{H}(1 \mathrm{~A})$	2.44	$\mathrm{O}(55)-\mathrm{H}(9 \mathrm{C})$	2.483
$\mathrm{H}(18 \mathrm{~A})-\mathrm{O}(35)$	2.517	$\mathrm{O}(59)-\mathrm{H}(1 \mathrm{~A})$	2.553
$\mathrm{O}(35)-\mathrm{H}(5 \mathrm{~B})$	2.526	$\mathrm{H}(16 \mathrm{~A})-\mathrm{O}(55)$	2.554
$\mathrm{O}(14)-\mathrm{H}(11 \mathrm{~A})$	2.531	$\mathrm{O}(45)-\mathrm{H}(17 \mathrm{~B})$	2.567
$\mathrm{O}(45)-\mathrm{H}(2 \mathrm{~B})$	2.531	$\mathrm{H}(6 \mathrm{~A})-\mathrm{O}(4)$	2.569
$\mathrm{O}(20)-\mathrm{H}(3 \mathrm{~A})$	2.569	$\mathrm{O}(59)-\mathrm{H}(6 \mathrm{~B})$	2.586
$\mathrm{H}(18 \mathrm{~A})-\mathrm{O}(37)$	2.598	$\mathrm{O}(33)-\mathrm{H}(6 \mathrm{~B})$	2.607
$\mathrm{O}(22)-\mathrm{H}(2 \mathrm{~A})$	2.598	$\mathrm{O}(61)-\mathrm{H}(17 \mathrm{~A})$	2.608
$\mathrm{O}(24)-\mathrm{H}(5 \mathrm{~A})$	2.599	$\mathrm{O}(57)-\mathrm{H}(14 \mathrm{~A})$	2.628
$\mathrm{H}(8 \mathrm{~B})-\mathrm{O}(30)$	2.617	$\mathrm{H}(2 \mathrm{~A})-\mathrm{O}(51)$	2.661

$\mathrm{O}(37)-\mathrm{H}(7 \mathrm{~B})$	2.673	$\mathrm{O}(25)-\mathrm{H}(5 \mathrm{~B})$	2.7
$\mathrm{O}(11)-\mathrm{H}(8 \mathrm{~B})$	2.676	$\mathrm{O}(50)-\mathrm{H}(16 \mathrm{~A})$	2.702
$\mathrm{O}(35)-\mathrm{H}(9 \mathrm{~A})$	2.679	$\mathrm{O}(55)-\mathrm{H}(9 \mathrm{~A})$	2.707
$\mathrm{O}(19)-\mathrm{H}(2 \mathrm{C})$	2.693	$\mathrm{O}(33)-\mathrm{H}(5 \mathrm{~A})$	2.711
$\mathrm{O}(20)-\mathrm{H}(1 \mathrm{C})$	2.693	$\mathrm{H}(2 \mathrm{~A})-\mathrm{O}(18)$	2.715
$\mathrm{O}(30)-\mathrm{H}(6 \mathrm{~B})$	2.696	$\mathrm{O}(56)-\mathrm{H}(91 \mathrm{~A})$	2.729
$\mathrm{H}(7 \mathrm{~A})-\mathrm{O}(1)$	2.706	$\mathrm{O}(59)-\mathrm{H}(31 \mathrm{~A})$	2.731
$\mathrm{O}(61)-\mathrm{H}(3 \mathrm{~A})$	2.706	$\mathrm{H}(9 \mathrm{~B})-\mathrm{O}(32)$	2.737
$\mathrm{O}(37)-\mathrm{H}(7 \mathrm{~A})$	2.735	$\mathrm{H}(1 \mathrm{~A})-\mathrm{O}(62)$	2.752
$\mathrm{H}(1 \mathrm{~B})-\mathrm{O}(60)$	2.751	$\mathrm{O}(33)-\mathrm{H}(5 \mathrm{~B})$	2.762
$\mathrm{O}(55)-\mathrm{H}(2 \mathrm{~B})$	2.769	$\mathrm{O}(51)-\mathrm{H}(2 \mathrm{C})$	2.769
$\mathrm{H}(5 \mathrm{~B})-\mathrm{O}(58)$	2.792	$\mathrm{O}(56)-\mathrm{H}(14 \mathrm{~A})$	2.782
$\mathrm{H}(9 \mathrm{~B})-\mathrm{O}(32)$	2.804	$\mathrm{O}(36)-\mathrm{H}(17 \mathrm{~B})$	2.786
$\mathrm{O}(1)-\mathrm{H}(15 \mathrm{~A})$	2.83	$\mathrm{O}(21)-\mathrm{H}(15 \mathrm{~A})$	2.805
$\mathrm{O}(8)-\mathrm{H}(4 \mathrm{D})$	2.837	$\mathrm{H}(9 \mathrm{C})-\mathrm{O}(32)$	2.814
$\mathrm{O}(37)-\mathrm{H}(9 \mathrm{~A})$	2.854	$\mathrm{O}(34)-\mathrm{H}(6 \mathrm{~A})$	2.821
$\mathrm{O}(54)-\mathrm{H}(8 \mathrm{~A})$	2.855	$\mathrm{O}(25)-\mathrm{H}(7 \mathrm{~A})$	2.839
$\mathrm{O}(61)-\mathrm{H}(6 \mathrm{~A})$	2.855	$\mathrm{O}(27)-\mathrm{H}(8 \mathrm{~B})$	2.843
$\mathrm{O}(47)-\mathrm{H}(6 \mathrm{~A})$	2.86	$\mathrm{O}(16)-\mathrm{H}(31 \mathrm{~A})$	2.849
$\mathrm{O}(26)-\mathrm{H}(11 \mathrm{~A})$	2.862	$\mathrm{O}(47)-\mathrm{H}(2 \mathrm{~B})$	2.859
$\mathrm{O}(60)-\mathrm{H}(1 \mathrm{~A})$	2.866	$\mathrm{O}(33)-\mathrm{H}(31 \mathrm{~A})$	2.866
$\mathrm{H}(9 \mathrm{~A})-\mathrm{O}(8)$	2.87	$\mathrm{O}(59)-\mathrm{H}(2 \mathrm{~A})$	2.871
$\mathrm{H}(14 \mathrm{~A})-\mathrm{O}(48)$	2.871	$\mathrm{H}(1 \mathrm{~A})-\mathrm{O}(13)$	2.874
$\mathrm{O}(35)-\mathrm{H}(8 \mathrm{~B})$	2.873	$\mathrm{H}(2 \mathrm{~B})-\mathrm{O}(9)$	2.88
$\mathrm{O}(25)-\mathrm{H}(8 \mathrm{~A})$	2.877	$\mathrm{O}(16)-\mathrm{H}(3 \mathrm{~B})$	2.881
$\mathrm{O}(18)-\mathrm{H}(1 \mathrm{C})$	2.89	$\mathrm{O}(22)-\mathrm{H}(31 \mathrm{~A})$	2.886
$\mathrm{H}(5 \mathrm{~A})-\mathrm{O}(31)$	2.91	$\mathrm{H}(14 \mathrm{~A})-\mathrm{O}(37)$	2.901
$\mathrm{O}(25)-\mathrm{H}(4 \mathrm{C})$	2.918	$\mathrm{O}(47)-\mathrm{H}(3 \mathrm{C})$	2.911
$\mathrm{H}(5 \mathrm{~B})-\mathrm{O}(7)$	2.919	$\mathrm{H}(9 \mathrm{~A})-\mathrm{O}(63)$	2.922
$\mathrm{O}(17)-\mathrm{H}(6 \mathrm{~A})$	2.923	$\mathrm{O}(36)-\mathrm{H}(8 \mathrm{C})$	2.943
$\mathrm{O}(55)-\mathrm{H}(3 \mathrm{~B})$	2.94	$\mathrm{H}(15 \mathrm{~A})-\mathrm{O}(50)$	2.956
$\mathrm{H}(2 \mathrm{C})-\mathrm{O}(47)$	2.943	$\mathrm{H}(15 \mathrm{~A})-\mathrm{O}(45)$	2.96
$\mathrm{O}(45)-\mathrm{H}(6 \mathrm{~A})$	2.962	$\mathrm{H}(15 \mathrm{~A})-\mathrm{O}(3)$	2.964
$\mathrm{H}(18 \mathrm{~A})-\mathrm{O}(24)$	2.964	$\mathrm{H}(2 \mathrm{C})-\mathrm{O}(41)$	2.982
$\mathrm{O}(4)-\mathrm{H}(6 \mathrm{~A})$	2.976	$\mathrm{H}(9 \mathrm{~B})-\mathrm{O}(63)$	2.988
$\mathrm{O}(45)-\mathrm{H}(3 \mathrm{~A})$	3.004	$\mathrm{O}(55)-\mathrm{H}(8 \mathrm{C})$	2.999

